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Abstract
This work provides a definition of concentration curve alternative to the one presented on
this journal by Schechtman and Schechtman (Metron 77:171–178, 2019). Our definition
clarifies, at the population level, the relationship between concentration and the omnipresent
ROC curve in diagnostic and classification problems.

Keywords Likelihood ratio · Lorenz curve · Length-Biased · Gini

1 A critical appraisal of a paper by E. Schechtman and G. Schechtman

In a paper appeared recently on this journal Schechtman and Schechtman [6] try to shed some
light on the relationship between the Gini Mean Difference (Gini), the Gini Covariance (co-
Gini), the Lorenz curve, the Receiver Operating Characteristic (ROC) curve and a particular
definition of concentration function. The purpose of the paper is commendable, since there
is a lot of confusion regarding the various relationships among these concepts. In particular,
we agree that the ROC curve and its functions (such as the Area Under the Curve, AUC), as
well as an appropriate definition of relative concentration of a probability distribution with
respect to another, are bivariate objects tying together two different distributions, and can not
be reduced to univariate indices such as the Gini.

Schechtman and Schechtman [6] build on the wealth of research reviewed in the mono-
graph by Yitzhaki and Schechtman [7], where a whole technology based on the Gini and the
co-Gini are proposed as basic tools to study variability, correlation, regression and the like. In
particular, the authors try to use certain conditional expectations to establish the connection
between concentration and ROC. In this note, we claim their approach is not justified in the

B Mauro Gasparini
mauro.gasparini@polito.it

Lidia Sacchetto
lidia.sacchetto@polito.it

1 Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10124 Torino, Italy

2 Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino and Università di Torino,
Corso Duca degli Abruzzi 24, 10124 Torino, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40300-020-00191-5&domain=pdf
http://orcid.org/0000-0001-8011-4005


272 M. Gasparini et al.

diagnostic (classification) setup, where ROC curves typically arise, and propose an alterna-
tive simpler connection between concentration and ROC curves based on first principles,
namely the likelihood ratio and the application of the Neyman-Pearson lemma.

Studying how jointly distributed random variables interrelate is a very fundamental prob-
lem in Statistics and its applications to Economics and the Sciences. However, when turning
to the diagnostic (or classification) setup, one typically observes one or more diagnostic vari-
ables (called features in the Machine Learning literature) from two populations and try to set
up a rule that discriminates between them. Some special requirements can then be identified:

1. Two probability distributions should be evaluated as distinct explanations of the data,
rather than from a joint point of view; for example, a diagnostic marker Y observed on a
sick patient will have a different distribution from the same diagnosticmarker X observed
on a healthy patient, and in no way the same marker can be observed jointly under both
the sick and the healthy conditions. Conditioning on the population label is possible (as
done, for example, in the causal inference literature), but not conditioning of, say, Y on
X .

2. The definition of the ROC curve and the associated concentration function should be
viable also in the multivariate setup; for example, more than one diagnostic marker can
be observed on the same patient.

3. The definition of the ROC curve and the associated concentration function must be given
both at the population and at the sample level, as widely discussed in the ROC literature
(see for example [3]); a clear definition of the ROC curve at the population level is
necessary to understand basic ideas and to give appropriate definitions.

We claim the definition of concentration curve contained in [6] is not appropriate for the
diagnostic setup since:

a. Conditional distributions are used in the Definition 1 of [6], thus contradicting require-
ment (1);

b. Percentiles are used in the same definition, thus contradicting requirement (2);
c. In [6], the discussion on the ROC curve is mantained at the sample level only, making it

hard to understand what is, for example, the definition of population ROC curve.

2 The ROC curve of the likelihood ratio test, a definition of
concentration curve and their equivalence

We now briefly introduce the diagnostic ( i.e. classification) setup. Assume that Y is a con-
tinuous random variable with distribution function FY and strictly positive density fY and X
is a continuous random variable with distribution function FX and strictly positive density
fX . As mentioned in the previous section, let Y and X represent, respectively, the relevant
diagnostic variable under the two conditions to be compared by a diagnostic test. For exam-
ple, Y may be a biological marker measured in a diseased person, whereas X is the same
marker when measured in a healthy person.

Now suppose a new observation Z , coming in un unknown way from one of the two
populations, has to be assigned either to the X or to the Y population based on some function
of s(Z), called the score. Usually, the score is real valued and the decision rule is worded
as “assign Z to the Y population if s(Z) is larger than a threshold t”. The ROC curve of the
decision rule is then the locus of the points obtained by varying the threshold t :

{FPR(t),TPR(t), t ∈ R},
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where the false positive rate FPR is the probability the decision rule assigns the object to the
Y population given the object comes from the X population and the true positive rate TPR
is the probability the decision rule assigns the object to the Y population given the object
comes from the Y population.

If, for the sake of simplicity, we assume FX and FY are known, it is well known that
the best decision rule is the one using as score the likelihood ratio itself, as discussed for
example in [8]. Optimality stems from the Neyman-Pearson lemma—and from its Dantzig-
Wald generalization ([2]), as it was recognized very early in the ROC literature. Such a
decision rule is

Definition 1 The likelihood ratio based test assigns Z to the Y (resp. X ) population if
fY (Z)/ fX (Z) > t (resp. ≤) for some t .

If FX and FY are not known, then they must be estimated based on two samples from the
X and Y populations; this problem, often called supervised learning classification, populates
a large amount of Statistics and Machine Learning literature, but it is beyond the scope of
this article.

To obtain an explicit formula for the ROC curve of the optimal likelihood ratio based test,
define the likelihood ratio random variables

LX = fY (X)

fX (X)
and LY = fY (Y )

fX (Y )

which are pro bono random variables since they are functions of X and Y , respectively.
Now, for the sake of simplicity, assume LX is continuous with distribution function HX (l) =
PX (LX ≤ l) = PX (LX < l), l > 0which has inverse H−1

X (·), its quantile function. Similarly,
assume LY is a continuous random variable with distribution function HY (·). Then it is easy
to see that

TPRLR(t) = PY

(
fY (Y )

fX (Y )
> t

)
= 1 − HY (t)

FPRLR(t) = PX

(
fY (X)

fX (X)
> t

)
= 1 − HX (t)

so that, eliminating t and setting q = FPRLR , the ROC curve of the likelihood ratio based
diagnostic test can be written in explicit form:

ROCLR(q) = 1 − HY (H−1
X (q)) 0 ≤ q ≤ 1, (1)

while, by definition, ROCLR(0) = 0 and ROCLR(1) = 1.
We now turn to an appropriate definition of concentration curve in this situation.

Definition 2 The concentration curve of Y with respect to X is the function ϕ(p), p ∈ [0, 1]
such that ϕ(0) = 0, ϕ(1) = 1 and

ϕ(p) = HY (H−1
X (p)), p ∈ (0, 1). (2)

Such definition is a special case of [1] (for details, see [5]); according to their suggestion,
for each p ∈ [0, 1] the concentration function ϕ(p) is the likelihood ratio Y -mass of a set
collecting the smallest p fraction of the likelihood ratio X -mass.

Themain point of thiswork is to notice the obvious relationship between the twodefinitions
given above; the likelihood ratio based test has aROCcurvewhich is a bijective transformation
of the concentration function in Definition 2:

ROCLR(q) = 1 − ϕ(1 − q) 0 ≤ q ≤ 1, (3)
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274 M. Gasparini et al.

Notice that the ROC of the likelihood ratio based test is proper, i.e. a nondecreasing, contin-
uous and concave function, while other ROC curves not based on the likelihood ratio may
not be. Similarly, the concentration curve based on the likelihood ratio is nondecreasing,
continuous and convex (detailed proofs can be found in [1]), as concentrations are usually
required to be. The likelihood ratio is a necessary requirement for these constructions, and
we claim likelihood ratios, and not conditional expectations as in [6], are the proper tools to
establish the connection between the two objects.

3 The Lorenz curve and the AUC of the likelihood ratio based test

An interesting special case discussed in [1] arises when X is a positive random variable with
finite mean μx = ∫ ∞

0 x fX (x)dx and Y is the length-biased version of X , i.e.

fY (y) = y fX (y)

μX
, y > 0.

In economic applications, Y represents wealth; in general, it may be a transferable character,
i.e. some characteristic which can in theory be transported from one unit of the population
to another. This is the Lorenz-Gini setup. The likelihood ratios simplify to

LX = fY (X)

fX (X)
= X fX (X)

μX fX (X)
= X

μX

and

LY = fY (Y )

fX (Y )
= Y fX (Y )

μX fX (Y )
= Y

μX

so that HX (l) = FX (μx l) and HY (l) = FY (μx l) and finally

ϕLorenz(p) = HY (H−1
X (p)) = FY (F−1

x (p)) =
∫ F−1

x (p)
0 y fX (y)dy∫ ∞

0 x fX (x)dx
,

in which we recognize one of the usual forms of the Lorenz curve. We have just proven the
following

Lemma 1 In the Lorenz-Gini scenario, i.e. when fY (y) = y fX (y)/μX , the concentration
curve is the usual Lorenz curve.

A second important consequence of our definitions in the previous section is about the
AUC of the likelihood ratio based test, which can be easily computed as follows:

AUCLR =
∫ 1

0
ROCLR(q)dq =

∫ 1

0
(1 − ϕ(1 − q))dq = 1 −

∫ 1

0
ϕ(s)ds. (4)

Now, in the Lorenz-Gini scenario, the Gini concentration coefficient (Gini) is defined to be
twice the area between the diagonal and the Lorenz curve:

Gini = 2
∫ 1

0
(p − ϕLorenz(p))dp = 1 − 2

∫ 1

0
ϕLorenz(p)dp

Since the concentration curve is a generalization of the Lorenz curve which describes the
concentration of one variable with respect to another (and not necessarily its length-biased
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version), we can define the generalized Gini as

Ginigen = 2
∫ 1

0
(p − ϕ(p))dp,

similarly to the co-Gini in [6]. Substituting into expression (4) we obtain the following
corollary.

Corollary 1 The AUC of the optimal likelihood ratio based diagnostic test equals

AUCLR = 1

2

(
1 + Ginigen

)
.

The same result can be found in [4] and mentioned by several other authors. We stress that
the result is true for the likelihood ratio based test and, of course, for models with monotone
likelihood ratios (like the example considered in [4]) but not in general for the AUC of any
ROC.

4 Two examples

Example 1 Let X be exponential with rate parameter λX and Y be exponential with rate
parameter λY and assume, as it is customary, that λX > λY , so that Y is stochastically greater
than X (this corresponds to a situation where the greater a diagnostic marker, the more is
indicative of disease). Then it is easy to verify that

HX (l) = P

(
fY (X)

fX (X)
≤ l

)
= P

(
λY e−λY X

λXe−λX X
≤ l

)
= 1 −

(
1

rl

)r/(r−1)

for l > 1/r and 0 otherwise, where r = λX/λY . Similarly,

HY (l) = P

(
fY (Y )

fX (Y )
≤ l

)
= 1 −

(
1

rl

)1/(r−1)

for l > 1/r and 0 otherwise. Also,

H−1
X (p) = 1

r

(
1

1 − p

)(r−1)/r

so that the concentration function is

ϕ(p) = HY (H−1
X (p)) = 1 − (1 − p)1/r , p ∈ (0, 1),

the ROC curve of the likelihood ratio based optimal test is

ROCLR(q) = q1/r 0 ≤ q ≤ 1,

and
AUCLR = r

r + 1
.

Example 2 Let X be exponential with rate parameter λX and assume Y is its length-biased
version, so that
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fY (y) = yλXe−λX y

1/λX
= λ2X ye

−λX y, y > 0,

i.e. Y is a gamma random variable with parameters 2 and λX . This is a Lorenz-Gini scenario,
where it is easy to verify that

HX (l) = P

(
fY (X)

fX (X)
≤ l

)
= P (λX X ≤ l) = 1 − e−l

whereas, after some calculus,

HY (l) = P(
fY (Y )

fX (Y )
≤ l) = P(λXY ≤ l) = 1 − e−l − le−l . (5)

Since H−1
X (p) = − log(1 − p),

ϕ(p) = p + (1 − p) log(1 − p), ROCLR(q) = q − q log(q).

5 Conclusions

The definition of concentration function given here is a convenient one since it compares two
alternative probability distributions, reaching a natural bivariate generalization of the Lorenz
curve. The discussion on the concentration and the ROC curves at the population level allows
for a deeper understanding of the concepts, including the centrality of the likelihood ratio. In
higher dimensions, computations may become very hard, but all results apply nonetheless.
In particular, the likelihood ratio may then be an efficient dimension reduction technique
which reduces the comparison to a one-dimensional problem and allows for Definition 2
of concentration function without involving higher dimensional conditional expectations or
quantiles.

We hope we have convinced the reader that the nature of the diagnostic (classification)
problem requires a definition of concentration function which does not involve conditional
and joint distributions of the populations which are being compared.
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