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Design ofExperiments forNonlinear System Identification:
a SetMembershipApproach

Milad Karimshoushtari a, Carlo Novara a,

aDepartment of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

Design of Experiments (DoE) is an important step in system identification. Regardless of the chosen model structure and
identification method, the DoE quality determines an upper bound on the accuracy of the identified models. One of the greatest
challenges in this context is to design an experiment which gives the maximum information about the dynamics of the system
of interest. In this paper, a novel DoE algorithm for input-constrained MISO nonlinear systems, based on set membership
identification, is proposed. The DoE algorithm is aimed to minimize the so-called radius of information, a quantity giving the
worst-case model error. Two numerical examples are presented, showing the e↵ectiveness of the approach and its potential in
view of real-world applications.

Key words: DoE, DoDE, SM-DoE, Experiment Design, System Identification, Model Predictive Control, Adaptive
Identification, Data Driven Control

1 Introduction

1.1 Background

In many technological areas, obtaining an accurate
model of a dynamic system of interest is a fundamental
step for any system analysis and/or design operation.
However, building an accurate model using the physi-
cal laws governing the system may not be possible in
several situations, due to the fact that these laws are
not su�ciently well known or they are too complex,
requiring a computationally expensive model that may
be di�cult to analyze or to use for design purposes. In
this view, data-driven system identification approaches
can be crucial in a wide range of applications.

Data-driven system identification can be seen as the sci-
ence of building mathematical models of dynamic sys-
tems, using data and a “weak” prior physical knowledge.
For example, the physical laws governing the system of
interest may be not known but some less detailed infor-
mation may be available, regarding its block structure,
the type of involved dynamics, the type of involved non-
linearities, the system order, etc.

Typically, the identification process consists of the fol-
lowing main steps (not necessarily in the order reported
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here): 1) design of experiment (DoE); 2) selection of a
suitable parametrized model structure; 3) identification
of the model parameters (usually done through an op-
timization problem); 4) evaluation of the model quality
through some validation analysis. In this process, the
command input signal is the only means that can be used
in the DoE phase to influence the information content of
a dataset to be used for identification (this set is called
identification dataset or training dataset). Regardless of
the chosen model structure and identification method,
the quality of the DoE determines the accuracy that can
be achieved by any method.

1.2 State of the Art

One of the greatest challenges in this context is to design
an experiment giving the maximum information about
the system to be identified [11,17]. Most of the studies
carried out so far have mainly focused on linear systems
[14,39,36,9,35] and static systems [8,33,15]. On the other
side, very few studies regarding nonlinear dynamic sys-
tems are available [28,6,10,12,27,20,19]. In fact, nonlin-
ear systems are characterized by a significantly higher
complexity than linear systems. While for linear systems
the excitation properties of an input signal essentially
depend on the signal frequencies, for nonlinear systems
they also depend on the signal amplitudes [28]. For ex-
ample, a white noise input signal is known in general to
be appropriate for the identification of a linear system
of any order. On the other side, it may not be suitable
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to allow an accurate exploration of the regressor domain
of a nonlinear system, and this may lead to a low model
accuracy. More specifically, because of the high complex-
ity of the DoE problem for nonlinear systems, in most
of the literature, the general DoE problem is either re-
duced to an input selection problem [28] or to a prob-
lem requiring quite restrictive assumptions. Typically,
see e.g. [27,20,19], it is assumed that the exact model
structure and some bounds of the parameters to iden-
tify are known. However, this assumption may not hold
in many real-world situations. In this paper, we are in-
terested in the more general case where the exact struc-
ture is not known. A more detailed discussion is given in
Section 3.4.

Generally, the most popular DoE methods for nonlin-
ear dynamic systems can be classified in two main cat-
egories: model-free and model-based methods. The idea
in most of these methods, see e.g. [6,38,5,13], is to pa-
rameterize a pre-defined excitation signal and then op-
timize the signal parameters, called the design points,
according to di↵erent criteria. In model-free DoE, no as-
sumptions on the model structure are made. The typ-
ical approach is to distribute the design points in the
input domain as much uniformly as possible. This DoE
approach is also known as space-filling DoE.

In model-based DoE, after assuming a particular model
structure (which can be a rough estimate of the model
structure), the idea is to distribute the design points in
the input domain, in such a way that the estimation of
the model parameters is as much insensitive as possi-
ble to the measurement noise. In both model-free and
model-based DoE, after designing the distribution of the
design points in the input space, they are used as the pa-
rameter values of the pre-defined excitation signal. How-
ever, both methods provide no information about the
optimal sequence of the design points. Although these
methods are simple and adequate to capture the steady
state behavior of a system of interest, they don’t take
into account the dynamics of the system. Therefore, by
using these methods, capturing the nonlinear dynamic
behavior of the system in the whole regressor domain
turns out to be a heuristic/arbitrary process. In gen-
eral, as far as the authors are aware, no DoE method for
nonlinear dynamic systems can be found in the litera-
ture, which can ensure the exploration of the relevant re-
gressor domain of a nonlinear system and, consequently,
guarantee a desired model accuracy.

Due to imprecise prior knowledge, disturbances and
measurement noise, in general, no identification process
can result in a model that perfectly corresponds to the
true system. Any identified model is always a↵ected by
some uncertainty. Understanding which are the regions
of the regressor space where the model is most uncer-
tain is a key element to build a proper DoE algorithm.
However, knowing where the model is most uncertain
is not su�cient. Since the unknown system is dynamic,
the DoE algorithm has to be able to generate an input
sequence such that the system moves toward those un-

certain regions of the regressor space, in order to collect
new measurements.

In the last three decades, there has been an increas-
ing interest and research, formulating the identifica-
tion problem in the Set Membership (SM) framework
[22,37,21,26,25,29,30,24,4]. The main reason is the fact
that SM identification allows us to properly quantify the
uncertainty of the identified model in a deterministic
manner. In SM nonlinear identification, no assumptions
on the structure of the unknown system are required. In-
stead, two basic assumptions are made: An assumption
on the regularity of the system, given by its Lipschitz
constant or by bounds on its gradient, and another as-
sumption on the noise boundedness. Then, an optimal
estimate, with minimal guaranteed identification error
and tight uncertainty bounds, is derived. This nonlinear
SM approach does not require iterative minimization
and thus avoids the issue of local minima. Since no op-
timization problems have to be solved, nonlinear SM
identification is particularly suitable for adaptive iden-
tification, making the model more accurate over time by
adding new measurements collected online. Because of
these features, the applications of SM in robust control
and experiment design is a promising research area [37].

1.3 Paper Contribution

In this paper, a novel online DoE algorithm for nonlinear
dynamic MISO systems is proposed, that is able to re-
duce the worst-case model error, while considering input
constraints of the system. The proposed DoE algorithm
is able to guarantee any desired worst-case error larger
than the measurement error in a finite-time experiment.
The main contributions of this paper are the following.
First, a so-called quasi-local nonlinear SM identification
method is presented, that is characterized by less conser-
vative bounds with respect to the global version of [22]
and is simpler with respect to the local version of [22].
The second contribution of this paper is a novel adaptive
Set Membership Predictive Control (SMPC) algorithm,
that is able to drive the system toward the most uncer-
tain regions of the regressor space. And finally, the third
contribution of this paper is the online DoE algorithm
itself. The e↵ectiveness of the proposed DoE algorithm
is illustrated in two simulation examples and compared
to other DoE methods taken from the literature.

The paper is organized as follows. In section 2, the iden-
tification problem is formulated in the nonlinear SM
framework and the quasi-local approach is introduced.
In section 3, a static DoE algorithm, and a SM predic-
tive controller are proposed, which are then used in the
dynamic SM-DoE algorithm. In section 4, the proposed
SM-DoE algorithm is tested in two simulation examples.

2 Quasi-Local Nonlinear SetMembership Iden-
tification

Consider a nonlinear discrete-time dynamic system in
regression form:
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yt+1 = fo(w
t),

wt = [yt . . . yt�ny+1 ut . . . ut�nu+1].
(1)

where yt 2 R , ut 2 Rm , fo : Rn ! R, n = ny +mnu

and the superscript is used to indicate the time index
t 2 Z. Suppose that the function fo is unknown but a
set of noise corrupted data called measurement dataset

generated by the system (1) is available.

D .
=
�
eyt+1, ewt

 T�1

t=1
. (2)

Then,

eyt+1 = fo( ewt) + dt, t = 1, . . . , T � 1. (3)

where the term dt accounts for the fact that y and w
are not exactly known, due to possible disturbances and
noises a↵ecting the system.

The aim is to derive an estimate bf of fo from the avail-
able measurements D, using a suitable identification al-
gorithm. An identification algorithm � can be seen as
a sequence of operations, providing some estimate bf of
the unknown function fo from the available measure-
ments D. Clearly, the algorithm � should be chosen
to give a small (possibly minimal) identification error

e( bf) = kfo � bfkp, where k·kp is the functional Lp norm,
defined as

kfk
p
⌘ kf(·)k

p

.
=

8
<

:
[
R
W |f(w)|p dw]1/p, p 2 [1,1)

ess supw2W |f(w)| , p = 1
(4)

being W a compact and connected set in Rn.

This error is not known, since from the available data,
it is only known that fo 2 F̃ , where F̃ is the set of
all functions that could have generated the data. If no
assumptions are made on fo, this set, even in the case
of exact measurements, is unbounded. Whatever algo-
rithm � is chosen, no information on the identification
error can be derived, unless some assumptions are made
on the function fo and the noise d. The typical approach
in the literature is to assume a finitely parameterized
structure for fo (linear, polynomial, neural network,
etc.) and a statistical model for the noise, see [34]. In
the SM approach, di↵erent and somewhat weaker as-
sumptions are taken, not requiring the choice of the
parametric structure for fo, but related to its regularity.
Moreover, the noise sequence {dt}T�1

t=1 is only supposed
to be bounded.

Assumption 1. The noise dt is unknown but bounded.
��dt

�� 6 ", t = 1, . . . , T � 1. (5)

Assumption 2. The function fo is Lipschitz continu-
ous on W.

Based on Assumption 2, we can define the following
quantity, called the quasi-local Lipschitz parameter :

�(w) = sup
bw2W,bw 6=w

|fo(w)� fo( bw)|
kw � bwk . (6)

where k·k is the vector euclidean norm. Obviously, the
global Lipschitz constant of fo on W is given by

� = sup
w2W

�(w). (7)

Lemma 1. For any w 2 W, a �(w) exists, such that

|fo(w)� fo( bw)| 6 �(w) kw � bwk, 8 bw 2 W.

Proof. The statement follows directly from (6).

Let us now suppose that the quasi-local Lipschitz pa-
rameters �( ewt), t = 1, . . . , T � 1, are known or can be
estimated (a method for performing such an estimation
is given in Section 2.5). On the basis of this information,
we can define the following function set:

F .
= {f : |f(w)� f( ewt)| 6 �( ewt) kw � ewtk ,

8w 2 W, t = 1, . . . , T � 1}.
(8)

This allows us to introduce the Feasible Function Set

(FFS), i.e. the set of all functions consistent with prior
assumptions and measured data.

Definition 1. Feasible Function Set

FFST .
= {f 2 F :

��eyt+1 � f( ewt)
�� 6 ",

t = 1, . . . , T � 1}.
(9)

The Feasible Function Set summarizes all the informa-
tion on the mechanism generating the data, that is avail-
able up to time T . If the prior assumptions hold, then
fo 2 FFST , that is an important property for evaluat-
ing the accuracy of any estimate. Indeed, from the FFS
definition, it follows that fo(w) is bounded as

f(w) 6 fo(w) 6 f(w), 8w 2 W (10)

where
f(w) = sup

f2FFST

f(w)

f(w) = inf
f2FFST

f(w).
(11)

Provided that the prior assumptions hold, f and f are
tightest upper and lower bounds of fo. For this reason,
such functions are called optimal bounds.

In the set membership framework, validation of the
prior assumptions is a fundamental step. It is usual to
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introduce the concept of prior assumption validation as
consistency with the available data; the prior assump-
tions are considered validated if at least one estimate
consistent with these assumptions and the data exists,
i.e. if FFS is not empty [21,4].

Definition 2. Validation of prior assumptions
Prior assumptions are considered validated if FFST 6= ;
Note that the fact that prior assumptions are validated,
i.e., that they are consistent with the present data, does
not exclude that they may be invalidated by future data.
In the following, the FFST is assumed to be non-empty.
If not, values of the constants appearing in the assump-
tions on function fo and on the noise d have to be suit-
ably modified to give a non-empty FFST , as discussed
in section 2.3.

Now, the notion of optimal algorithm is introduced. An
identification algorithm � is an operator mapping all the
available information about the function fo, the noise d,
the measurement data D until time T , summarized by
FFST , into an estimate bf of fo:

�(FFST ) = bf ' fo.

For a given estimate bf , the related Lp error is:

e( bf) = e(�(FFST )) = kfo � bfkp.

This error cannot be exactly computed, since it is only
known that fo 2 FFST . However, its tightest bound is
given by

e( bf) 6 supf2FFST kf � bfkp.

This motivates the following definition of the identifica-
tion error, often indicated as the worst-case or guaran-
teed error.

Definition 3. Identification error.
The identification error of bf = �(FFST ) is

E[�(FFST )] = E( bf) .
= sup

f2FFST

kf � bfkp.

Looking for algorithms that minimize the identification
error, leads to the following optimality concepts.

Definition 4. Optimal algorithm.
An algorithm �⇤ is optimal if

E[�⇤(FFST )] = inf
�

E[�(FFST )]

= inf
bf

sup
f2FFST

kf � bfkp
.
= RI .

RI is called the radius of information and is the mini-
mum worst-case error that can be achieved on the basis
of the prior and experimental information available

up to time T . In other words, RI is a measure of the
uncertainty associated with the identification process,
for the given dataset and prior information. A reduc-
tion/minimization of RI can be obtained by a suitable
experiment design procedure, as shown in Section 3.

After introducing the general framework of nonlinear
SM identification, now we show that the optimal bounds
and optimal algorithm formally introduced so far can
be actually computed in closed form. We also provide
necessary and su�cient conditions for assumption vali-
dations.

2.1 Optimal Bounds

The optimal bounds formally defined in (11) can be com-
puted in closed form upon definition of the functions

fu(w)
.
= min

t=1,...,T�1
(h

t

+ �( ewt)kw � ewtk)

fl(w)
.
= max

t=1,...,T�1
(ht � �( ewt)kw � ewtk)

(12)

where h
t .
= eyt+1 + "t and ht .

= eyt+1 � "t.

The next result shows that fu and fl are optimal
bounds, i.e., the tightest upper and lower bounds of fo
according to (11).

Theorem 1. The functions fu and fl defined in (12) are

optimal bounds, i.e.,

f(w) = fu(w)

f(w) = fl(w).

Proof. The complete proof is given in [16]. It can be
obtained byminor modifications of the proof of Theorem
2 in [22].

2.2 Optimal Algorithm and Estimate

The functions f and f can be used to solve the problem
of finding the optimal estimate of fo(w) for givenw 2 W.
Let the function fc be defined as

fc(w)
.
=

1

2
[f(w) + f(w)]. (13)

where f(w) and f(w) are given in Theorem 1. The next

result shows that the algorithm �c(FFST ) = fc is opti-
mal for any Lp norm.

Theorem 2. For any Lp(W) norm, with p 2 [1,1]:
(i) The identification algorithm �c(FFST ) = fc is opti-
mal.

(ii) The worst-case identification error of fc is bounded

as

E(fc) = inf
�

E[�(FFST )] =
1

2
kf � fkp = RI .
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Proof. The proof can be obtained by minor modifica-
tions of the proof of Theorem 7 in [22].

Remark 1. The point-wise bounds (10) provide an in-
terval estimate of the unknown value fo (w). Interval es-
timates allow us to quantify the uncertainty associated
with the identification process, and are thus important
in system and control applications. Indeed, these esti-
mates can be used e.g. for robust control design [31,40],
fault detection [29] and experiment design [28].

2.3 Assumption Validation

Necessary and su�cient conditions for checking the as-
sumptions validity are now given.

Theorem 3. (i) A necessary condition for prior as-

sumptions to be validated is: f( ewt) > ht
, f( ewt) 6 h

t

,

t = 1, . . . , T � 1.
(ii) A su�cient condition for prior assumptions to be

validated is: f( ewt) > ht
, f( ewt) < h

t

, t = 1, . . . , T � 1.

Proof. The complete proof can be obtained by minor
modifications of the proof of Theorem 1 in [3]. See also
[16].

In the reminder of paper, it is assumed that the su�cient
condition holds. If not, values of the constants appearing
in the assumptions on function fo and on the noise d have
to be suitably modified. The above validation Theorem
can be used for assessing the values of such constants so
that su�cient conditions holds.

Fig. 1. (a) global bound, (b) quasi-local bound, fo(w) red
line, Measurements black cross, fc(w) blue line, f(w), f(w)
grey line.

Figure 1 shows the global and quasi-local set member-
ship bounds for a nonlinear function. In Figure 1(a), a
constant global bound � was assumed to compute the
optimal bounds [22]. In Figure 1(b), a quasi-local bound
was assumed (Eq. (12)). The bounds are clearly tighter

in the quasi-local model, especially when the function is
“flat”.

2.4 Radius of Information

The quantity RI , called the radius of information, al-
lows us to assess the accuracy achieved by the optimal
estimate. In our approach, this quantity is used to quan-
tify the informative content of a data set. Let us define
the following error function:

fe(w,D) ⌘ fe(w)
.
=

1

2
[f(w)� f(w)]. (14)

where D is the measurement dataset (2). Here, the de-
pendence on D is explicited, in order to emphasize the
fact that the function fe is constructed from the mea-
surement dataset. This function allows us to write the
radius of information as

Rp

I = kfe(·,D)kp. (15)

The analytical computation of kfekp is not feasible, since
fe is a quite “complex” nonlinear function, defined over a
multi-dimensional domain. Hence, following a standard
approach, we compute numerically the norm, evaluating
fe on a finite set of points wk and then approximating
the norm as

kfk
p
' dkfk

p
=

8
<

:

⇥P
m

k=1 ak
��f(wk)

��p⇤1/p , p 2 [1,1)

max
k=1,...,m

��f(wk)
�� , p = 1

(16)
where ak are suitably chosen coe�cients. For ak = 1/m
we have the widely used quasi-Monte Carlo algorithms
[23]. The expression of Rp

I given in (15) and computed
according to (16) will be used in the next sections, in
order to develop our DoE algorithms.

2.5 Parameter Estimation

Estimates of the noise bound ", Lipschitz constant �, and
the quasi-local Lipschitz parameter �(w) such that the
assumptions are validated can be obtained by means of
two algorithms given in [7] and reported in the following.
The first algorithm is directly taken from [7], while the
second one is a generalization of the corresponding one
in [7].

The following theorems show that, under reasonable
density conditions on the noise, the estimates given by
these two algorithms converge to the corresponding true
values.

Theorem 4. (Theorem 2 of [7]) Let the set { ewt, dt}T�1
t=1

appearing in (1) be dense on W ⇥B" as T ! 1. Then,

lim
T!1

b" = ". ⇤

Theorem 5. (Theorem 3 of [7]) Let the set { ewt, dt}T�1
t=1
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appearing in (1) be dense on W ⇥B" as T ! 1. Then,

lim
T!1

b� = �. ⇤

Algorithm 1 Noise Bound Estimation "

(1) Choose a “small” ⇢ > 0. for example:
⇢ = 0.01maxt,k=1,...,T�1k ewt � ewkk.

(2) Find the set of indexes: It
.
=
�
k : k ewt � ewkk 6 ⇢

 
.

if It = ; for all t = 1, . . . , T � 1, go to step 1 and
choose a larger ⇢.

(3) For t = 1, . . . , T � 1 compute �eyt+1 =
max
i2It

��eyt+1 � eyi+1
��. If It = ;, set �eyt+1 = 1.

(4) Obtain the estimate b" of the noise bound " as
b" = 1

2N

P
t2Q

�eyt+1

where Q
.
=

�
t 2 {1, . . . , T � 1} : �eyt+1 < 1

 
and

N
.
= card(Q)

Algorithm 2 Lipschitz Parameter Estimation �, �

For t = 1, . . . , T � 1 and ewt 6= ewk, compute

b�( ewt) = max
k=1,...,T�1

8
<

:

|eyt+1�eyk+1|+2b"
kewt�ewkk if |eyt+1�eyk+1|>2b"

0 otherwise

(17)
Obtain the estimate b� of the Lipschitz constant � as

b� = max
t,k=1,...,T�1

8
<

:

|eyt+1�eyk+1|�2b"
kewt�ewkk if |eyt+1�eyk+1|>2b"

0 otherwise

(18)

3 Set Membership Design of Experiments

The goal of DoE is to synthesize an input sequence to
apply to the plant, in order to explore the regressor space
W in the most e↵ective way, allowing us to maximize
the information extracted from the collected data, thus
minimizing the uncertainty of the estimated model. In
the set membership framework, the model uncertainty is
measured by the radius of information (15), calculated
in some selected norm.

In this section, we propose a novel set membership de-
sign of experiments (SM-DoE) approach for nonlinear
dynamic systems, aimed at minimizing the radius of in-
formation.

3.1 Problem Formulation

Let us consider a multiple input single output (MISO)
nonlinear system described by (1). The system is un-
known and the output is corrupted by noise.

Let Assumptions 1 and 2 hold. And, let UT
t

.
=
�
uk
 T�1

k=t

be an input sequence from time t to time T � 1. The
problem considered in this section is the following.

Problem: Design an input sequence UT
1 that, applied

to the nonlinear system (1), yields a minimal radius of
information Rp

I = kfe(w)kp.

Ideally, a solution to this problem is given by:

U⇤T
1 = argmin

UT
1

kfe(·,D)k
p

subject to eyt+1 = fo( ewt) + dt, t = 1, . . . , T � 1

D =
�
eyt+1, ewt

 T�1

t=1
(19)

where dt, t = 1, . . . , T � 1 is the actual noise sequence.

However, for several reasons, this optimization problem
cannot be used for DoE in real applications: 1) it requires
to know fo and the complete noise sequence {dt}T�1

t=1 ;
2) even assuming that fo is known and the noise can be
measured, the optimization problem can only be solved
at time T � 1, since at previous time instants t < T � 1,
the noise samples dk are not known for k > t; 3) even
in the case that fo and the complete noise sequence are
known, the optimization problem is highly nonlinear and
non-convex, and thus hard to solve analytically. Never-
theless, in the simulations studies that will be presented
in the paper, the problem (19) will be solved numerically
(without guarantees of finding a global minimum) and
the obtained estimate of the “ideal” optimal input se-
quence U⇤T

1 will be used as a term of comparison, to in-
dicate the maximum performance that can be achieved
by any DoE algorithm.

The approach to DoE that we propose can actually be
applied in real situations, without knowing a-priori the
true function and noise sequence. A key feature is that
the approach is sequential: at each time step, on the basis
of the current and past measured data, the approach in-
dividuates what is the next point of the regressor domain
that the system has to visit, in order tomaximally reduce
the radius of information. In the case where the system
is a static function of the input - i.e., where wt = ut - the
optimal input is obviously chosen equal to the individu-
ated next point. In the general case of dynamic systems,
it may be not possible to visit the desired point, since
the system future regressor depends not only on the cur-
rent input but also on the past input and output val-
ues. Hence, once the next point to visit has been found,
a model predictive control (MPC) strategy is used to
drive the system toward that point. The proposed MPC
strategy is based on a nonlinear set membership model
identified from the past data and updated at each time
step on the basis of the new measurement.

The DoE algorithms for static and dynamic systems are
treated separately in the next two subsections. Indeed,
although the idea behind both the algorithms is the same
and the algorithm for static systems can be seen as a sub-
case of that for dynamic ones, the algorithm for static
systems is much simpler. It thus deserves a separate pre-
sentation, in order to allow the user an easy algorithm
implementation and usage in the static case.
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3.2 Static Set Membership DoE

Consider a static nonlinear system of the form

zt = fo(w
t), wt = ut 2 W. (20)

In this case, solving the experiment design problem is
easier with respect to the general dynamic case, since
the system trajectory depends only on the current input
and not on the past input and output values. Hence, it
is possible to obtain a measurement of the function fo at
any desired point of the regressor domain W. The static
Set-Membership DoE algorithm that we propose is the
following.

Algorithm 3 Static Set-Membership DoE

(1) Choose the initial regressor w1 (e.g., the center of
the regressor domain W);
Measure ez1 = fo(w1);
Define the measurement dataset D =

�
ez1, w1

 
.

(2) While t < T , solve the optimization problem

Wt

M
= arg max

w2W
f t

e
(w,D);

wt 2 Wt

M

(21)

Measure ezt = fo(wt);
Add ezt and wt to the dataset D := D [ {ezt, wt};
t := t+ 1.

The vector wt is any point in Wt

M
and f t

e
is the error

function (14) computed at time instant t.

The algorithm is iterative. At each iteration, a point in
the regressor domain where the uncertainty is maximum
is considered. The optimization problem (21) is nonlin-
ear and non-convex. However, as discussed in section
2.4, we evaluate fe on a finite set of points in the do-
main W, making the computation easy (thus obtaining
in general a sub-optimal solution). The following result
holds for Algorithm 3.

Theorem 6. Let T be the number of steps in Algorithm

3 and RI(t) be the radius of information computed at

time t. Then, there exists a T such that RI(t) 6 ", for

all t > T .

Proof. Let us define the following set:

Wt

e
=
�
w 2 W : �kw � wtk < fe(w)� "

 
. (22)

The following inequalities hold at each iteration of the
algorithm:

f t+1
e

(w) < f t

e
(w) 8w 2 Wt

e
, (23)

f t+1
e

(w) = f t

e
(w) 8w 2 W \Wt

e
. (24)

IfWt

M
✓ Wt

e
, we have f t

e
(w) < f t

e
(wt) for allw 2 W\Wt

e

and from (24) we can write f t+1
e

(w) < f t
e
(wt) = RI(t)

for all w 2 W\Wt
e
. From (23) we have f t+1

e
(w) < RI(t)

for all w 2 Wt
e
,. Therefore, f t+1

e
(w) < RI(t) for all

w 2 W. which also means

RI(t+ 1) < RI(t). (25)

If Wt

M
* Wt

e
, from (23), at each iteration we have

Wt+1
M

= Wt

M
\Wt

e
. (26)

Since wt 2 Wt
e
, wt 2 Wt

M
it is evident that Wt

M
\Wt

e
6=

;. Therefore,Wt+1
M

⇢ Wt

M
whichmeansWM is shrinking

at each time step therefore in a finite ni steps we have
Wt+ni

M
✓ Wt+ni

e
. Thus from (25) we have,

RI(t+ ni + 1) < RI(t). (27)

RI is a positive definite function and RI 6 " if D =
W. Also from (25),(27) we can say RI is a decreasing
function. Therefore, as t ! 1, Then RI(t) 6 ".

3.3 Dynamic Set Membership DoE

Suppose that the DoE has to be carried out for a non-
linear dynamic system, written in the general regression
form (1). Unlike the static case (20), it is not possible
to evaluate the regression function at any desired point
w, since the system regressor depends not only on the
current input but also on the past input and output
values. The idea that we propose is to use an algorithm
similar to Algorithm 3 to generate desired reference
points wr in combination with an MPC controller mak-
ing the dynamic system visit the desired point wr. The
MPC approach that we propose is novel and is called
set membership model predictive control (SMPC).

3.3.1 Set Membership Model Predictive Control

In recent years, there has been an increasing interest
in set membership predictive control laws, designed
from experimental data [1,2,32,37]. However, such ap-
proaches, implicitly or explicitly, assume that a su�-
ciently informative set of data is available and do not
consider the problem of experiment design. In this sec-
tion, we propose a novel MPC approach, called SMPC,
able to perform together experiment design and con-
troller design.

To formulate the SMPC approach, a state-space-like rep-
resentation of the plant (1) and related models is needed.
To this aim, we introduce the following pseudo-state:

xt = [yt . . . yt�ny+1 ut�1 . . . ut�nu+1]

= [xt

(1) . . . x
t

(ny)
xt

(ny+1) . . . x
t

(ny+nu)
].

(28)

where xt 2 X is equal to wt 2 W without the input
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sample at time t:

wt = [xt

(1) . . . x
t

(ny)
ut xt

(ny+1) . . . x
t

(ny+nu)
].

W andX are bounded sets inRn andRn�m, respectively,
with W ✓ (X ⇥ Rm).

The state space representation of the plant and the one-
step prediction of the model are given by

xt+1 = fo(x
t, ut)

fo(x
t, ut)

.
= [fo(w

t) xt

(1) . . . x
t

(ny�1) u
t . . . xt

(ny+nu�1)]
(29)

bxt+1
c

= fc(x
t, ut)

fc(x
t, ut)

.
= [fc(w

t) xt

(1) . . . x
t

(ny�1) u
t . . . xt

(ny+nu�1)]
(30)

In the notation above, f(xt, ut) returns a vector of
pseudo-states, while f(wt) returns a scalar. fc is the
central estimate of set membership model (Eq. (13))
and b· represents the estimate given by the model.

From (29) and (30), it follows that

xt+1 = fo(x
t, ut) = fc(x

t, ut) + [et 0 . . . 0]. (31)

where the model uncertainty is described in terms of
additive perturbation et, which is known to be bounded
as ��et

�� 6 fe(w
t) 6 R1

I
8w 2 W. (32)

The sequence of inputs
�
ui
 t+k�1

i=t
, starting from a

generic time instant t, up to a time instant t+ k � 1, is
indicated with Uk

t
. The state of the plant at time t + k

obtained starting from a generic “initial” state xt and
applying the input sequence Uk

t
is defined as

So(x
t, Uk

t
)
.
= xt+k :

xt+n+1 = fo(x
t+n, ut+n) 8n 2 [0, k � 1].

(33)

The set of all possible plant state values at time t+k that
originate from a generic “initial” state xt by applying
the input sequence Uk

t
to the system (31) is defined as

S(xt, Uk

t
) = { bxt+k :

bxt+n+1 = fc(bxt+n, ut+n) + [et+n 0 . . . 0],��et+n
�� 6 fe( bwt+n), 8n 2 [0, k � 1] } .

(34)

bwt+n = [bxt+n

(1) . . . bxt+n

(ny)
ut+n bxt+n

(ny+1) . . . bx
t+n

(ny+nu)
].

Note that this set is generated by all possible sequences
{et+n}k�1

n=0 such that |et+n| 6 fe( bwt+n), for all n 2 [0, k�
1]. Clearly, it holds that So(xt, Uk

t
) 2 S(xt, Uk

t
). It is

also true that if R1
I

= 0 then So(xt, Uk
t
) = S(xt, Uk

t
).

The size of the set S(xt, Uk
t
) can be interpreted as the

uncertainty of the state at time t + k. In other words,
the uncertainty of the trajectory points, when a certain
input sequence Uk

t
is applied to the system.

Recalling the idea behind our approach from section 3.1,
the aim is to reduce the radius of information by collect-
ing measurements where the uncertainty is maximum.
Thus, suppose that we want to take a measurement at
a point wr, or its equivalent (xr, ur), where the uncer-
tainty amplitude is fe(wr). Our approach consists in us-
ing a SMPC controller (to be defined later) to drive the
plant state xt to a neighborhood of xr, called the refer-
ence set Xr ⇢ Rn�m, defined as

Xr

.
= {x : � kx� xrk2 + " < �fe(w

r),� 2 (0, 1]} (35)

This set is a ball of radius �fe(w
r)�"

� , centered at xr; �
is a design parameter, allowing us to change the size of
the reference set. When the state of the system xt is
inside Xr i.e. xt 2 Xr, by applying ur as input to the
system and adding the new measurement to the dataset
D, the uncertainty fe(wr) will be reduced by at least a
factor of �.

Assumption 3. For any “initial” state xt and reference
state xr, there exists a control sequence Uk

t
that moves

the state from xt to xr:

8xt, xr 2 X , 9K < 1, 9Uk

t
2 U :

So(x
t, Uk

t
) = xr for k < K

(36)

where U is the set of all possible input sequences com-
patible with the input constraints.

Assumption 4. For any input sequence Uk
t
, the state

of the system (29) remains inside the compact set X :

8Uk

t
2 U , 8t > 0, k > 1 : xt 2 X . (37)

Assumption 3 is a standard controllability assumption.
Assumption 4 is a mild boundedness assumption, just re-
quiring that the system trajectory does not tend to infin-
ity. Note that many identification and DoE approaches
require stability, which is a stronger assumption than
boundedness.

Let us define the set of potential trajectory horizons from
xt to xr as follows:

I(xt, xr)
.
= {i 2 N : i < K,

9U i

t
such that xr 2 S(xt, U i

t
)}.

(38)

For each element of the set I(xt, xr), there exists an
input sequence such that xr 2 S(xt, U i

t
). Assumption

3 ensures that this set is non-empty and finite for any
initial and reference states. The optimization problem
solved in the SMPC approach is:
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J⇤(xt, xr, i) = max
Ui

t

J(xt, xr, U i

t
)

subject to U i

t
2 U

xr 2 S(xt, U i

t
)

J(xt, xr, U i

t
) =

iX

n=1

diam(S(xt, Un

t
))

(39)

where i = min {I(xt, xr)} and diam(S) is the diameter
of the set S.
The controller is implemented according to a reced-
ing horizon strategy. The control law, indicated as
ut = K(xt, xr), means solving (39) and applying the
first element of the maximizer U i⇤

t
as the control action

ut⇤ to the system, and adding the new measurement to
the set D (D := D [ {eyt+1, ewt}). Then, these opera-
tions are repeated at each time t. The resulting control
sequence, starting from a generic time instant t up to
another instant k is denoted as Kk

t
.

Theorem 7. Let Assumptions 3 and 4 hold. Starting

from any initial state xt 2 X , the state of the system

controlled by the feedback law So(xt,Kk
t
), will visit a point

inside reference set Xr in finite time. That is,

8xt, xr 2 X , 9K < 1 :

So(x
t,Kk

t
) 2 Xr for some k < K.

Proof. Assumption 3 ensures that the set I is not empty
and the optimization problem (39) is always feasible for
all i 2 I. From the definition of the cost function, the
following inequality holds for all feasible solutions.

8U i

t
such that U i

t
2 U , xr 2 S(xt, U i

t
) :

diam(S(xt, U i

t
)) 6 J⇤(xt, xr, i).

(40)

From (40) and the fact that Xr is a ball centered at xr we
can conclude that if J⇤(xt, xr, i) 6 diam(Xr)/2, then the
set S(xt, U i

t
) is inside Xr. i.e. So(xt, U i

t
) 2 S(xt, U i

t
) ⇢

Xr. This holds for all feasible solutions which means the
state of the real systemwill be insideXr in i steps. There-
fore, in order to prove the theorem, we have to prove that

8" > 0, 9K such that J⇤
k
< " for k < K. (41)

where J⇤
k
is the cost computed at time instant k. At each

time step we solve (39) and apply the first element of
the maximizer U i⇤

t
as control action ut⇤ and add a new

measurement to the dataset D. The following inequali-
ties hold when a new measurement is added

diam(Sk+1(x
t, ut⇤)) = 2fe(w

t) < 2". (42)

Sk+1(x
t, ut⇤) ⇢ Sk(x

t, ut⇤). (43)

diam(Sk+1(x
t, ut⇤)) < diam(Sk(x

t, ut⇤)). (44)

where the subscript k + 1 indicates a measurement is
added to the datasetD, which happens at each time step.

When a new measurement is added to the dataset D,
the uncertainty of the successive predicted states might
also be reduced

Sk+1(x
t, Un

t
) ✓ Sk(x

t, Un

t
) 8n 2 [2, i]. (45)

From (45), since the size of the uncertainty of the pre-
dicted states might be reduced, two things could happen.
If xr 2 Sk+1(xt, U i⇤

t
), from (44) we have

J⇤
k+1(x

t, xr, ik+1) < J⇤
k
(xt, xr, ik) , ik+1 = ik. (46)

If xr /2 Sk+1(xt, U i⇤
t
), whichmeansU i⇤

t
is no longer a fea-

sible solution. In such conditions, from the definition of
the optimization problem, one of the following inequal-
ities hold

card(Ik+1) 6 card(Ik), ik+1 > ik. (47)

or

J⇤
k+1(x

t, xr, ik+1) < J⇤
k
(xt, xr, ik), ik+1 = ik. (48)

Now consider the following function

v(xt, xr) =
X

i2I(xt,xr)

J⇤(xt, xr, i). (49)

From (46), (47), (48) and (49) we have

vk+1(x
t, xr) < vk(x

t, xr)

vk+2(x
t+1, xr) < vk+1(x

t+1, xr)

vk+3(x
t+2, xr) < vk+2(x

t+2, xr)
. . .

(50)

Finally, consider the integral of the function v over the
compact set X

V (xr) =

Z

x2X
v(x, xr)dx. (51)

From (49), (51) we can say V (xr) is a positive definite
function V (xr) > 0 since J⇤ > 0 and V (xr) = 0 if and
only if R1

I = 0. From (50), (51) it holds that

Vk+1(x
r)� Vk(x

r) < 0, 8k > 0. (52)

Therefore limk!1 Vk(xr) = 0 which is true if and only
if limk!1 J⇤

k
= 0.

The dynamic Set Membership DoE is implemented in
Algorithm 4. The algorithm is iterative. At each itera-
tion, a reference regressor wr is computed to be visited.
Ideally this reference should be where fe is maximum
(similarly to Algorithm 3). However, if the reference
is close to the estimated state, it can be visited more

9



Algorithm 4 Dynamic Set Membership DoE

(1) Select a reference regressor wr to be visited which
has a high uncertainty and its equivalent pseudo-
state xr is close to the estimated state:

wr, xr = arg min
wr2W,xr2X

(
��bxt+1 � xr

��
2
+

�

fe(wr)
).

(53)
(2) Compute Xr according to (35) with a suitable �.
(3) Apply the following criterion:

if bxt+1 2 Xr

then ut = ur 2 wr

else ut = K(xr, xt).

(4) Evaluate eyt+1 = fo( ewt) = fo(xt, ut).
(5) Add eyt+1 and ewt to the datasetD := D[{eyt+1, ewt}.
(6) Update � and � according to Algorithm 2.
(7) Set t := t+ 1 and go to step (1).

quickly. Equation (53) combines these two objectives.
In step 2, the reference set Xr is computed. In step 3,
if the central estimate is inside the reference set, the
input is generated according to the corresponding ut of
the vector wr. Otherwise, the input is generated by the
SMPC controller K. Finally, at each iteration, a new
measurement is taken and added to the measurement
dataset D and the Lipschitz bounds �, � are updated.
To compute fe in step 1 and 2, a global bound � is used
and a quasi-local bound � is used in step 3.

Corollary 1. For any desired radius of information
Rd > ", there exists a finite number of steps T of Algo-
rithm 4 such that RI(t) 6 Rd , for all t > T .

According to Theorem 6, if the system is static (which
means it is possible to take a measurement anywhere in
the regressor domain W) then, Algorithm 3 can reach
any desired radius of information. Also, according to
Theorem 7, it is shown that, for a dynamic system, the
SMPC controller can visit any desired reference point in
the regressor domain. Algorithm 4 is the combination of
Algorithm 3 and the SMPC controller assuming a large
value of � in equation (53). Thus, we can conclude that
Algorithm 4 can reach any desired radius of information
i.e. any desired worst-case error larger than the measure-
ment error in a finite-time experiment.

3.4 Discussion and comparison with other DoE ap-

proaches

Asmentioned in the introduction, not much research has
been carried out in DoE for nonlinear systems in the set
membership context, and the existing literature shows
the following limitations: 1)The experiment design prob-
lem is reduced to an input selection problem [28]; 2)The
method only works for a specific class of nonlinear sys-
tems [27,19]. 3)The exact model structure (given for ex-

ample by the system physical equations) is assumed to
be known [27,20,19]. 3)The parameter bounds are as-
sumed to be known [27,20,19]. 3)If the assumed parame-
ter bounds are conservative the algorithm does not work
[27,18].

On the other side, due to its non-parametric nature, our
DoE approach is not a↵ected by these limitations. In-
deed, the approach does not require to know the struc-
ture of the equations describing the system to identify
and, as a consequence, no parameter bounds are re-
quired. We can say that our approach is more general
than the other set membership DoE approaches for non-
linear systems available in the literature. Indeed, besides
the use of less restrictive assumptions, our approach
is independent on the particular identification method
used. It can work with methods relying on physical mod-
els and methods involving black-box parameterizations
(this latter case is considered in the examples presented
below). On the contrary, the other existing approaches
are usually based on a specific identification method
(e.g., least squares or minimization of the worst-case
parametric error).

It is worth mentioning that the philosophy behind our
DoE approach is di↵erent from the one followed in lin-
ear DoE (in the time-domain). Indeed, our approach is
non-parametric, and the goal is to explore the regressor
domain in order to minimize the worst-case function er-
ror. On the contrary, in linear DoE, a parametric model
structure is typically assumed, and the goal is to have
convergence of the estimates (statistical setting), [17,35],
or minimal worst-case parametric errors (set member-
ship setting), [36]. For this reason, in the case of linear
system, our approach is not equivalent to any other lin-
ear approach that we found in the literature. Note that,
in principle, our approach can be e↵ective also when the
system to identify is linear. However, its utilization in
the linear case may be not convenient due to a higher
complexity with respect to the methods tailored specif-
ically for linear systems.

4 Simulation Results

In this section, we present two simulation studies to il-
lustrate the SM-DoE algorithm. The first example is
concerned with a simulated nonlinear system, previously
studied in [28]. The input signals obtained by the SM-
DoE approach are comparedwith other input signals and
with the optimal one, discussed in section 3.1. The sec-
ond example, also studied in [6], is a nonlinear dynamic
system with a static nonlinearity, where we compare the
SM-DoE approach with three other DoE methods, taken
from the literature.

4.1 Example 1

This section is concerned with the DoE for the following
nonlinear dynamic system:

yt+1 = 0.88 yt � 0.12 tanh(15 yt) + 0.06ut. (54)
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Assuming the initial condition y1 = 0. Three input sig-
nals have been considered:

U(1) = {3 sin(0.2t), t = 1, 2, . . . , T} ,
U(2) =

�
3 sin(0.0009t2), t = 1, 2, . . . , T

 
,

U(3) = {WN(0, 4, t), t = 1, 2, . . . , T} .
(55)

where WN(0, 4, t) is a white gaussian noise of mean 0
and variance 4. For each of these signals, a simulation
of the system (54) with length T = 300 was performed.
The output signal was corrupted by a uniform random
noise with amplitude 6 0.01. The corresponding radius
of informationRI was computed. The involved regressor
is

wt = [yt ut].

The regressor domain of interest W is the rectangular
region indicated in Figure 2 and defined by

W .
= {w : w1  0.35, w1 � �0.35,

w2  3.5, w2 � �3.5}. (56)

The values " = 0.01 and �( ew) were computed accord-
ing to Algorithm 1,2. The ideal optimal input sequence
UOptimal was computed according to (19), using Mat-
lab Global Optimization Toolbox, providing the mini-
mum possible radius of information. Finally, a fifth in-
put signal USM�DoE was obtained, using the proposed
SM-DoE algorithm. For each of the five input signals, a
dataset was obtained.
In order to assess the quality of each dataset, a quasi-
local set membership model was identified. Then, the
prediction accuracy was validated on a 100 ⇥ 100 grid
in the rectangular region defined in (56). The following
accuracy indexes were considered to evaluate the model
accuracy:

RMSE = key � ŷk
2
/
p
N.

FIT = 100

✓
1�

key � ŷk
2

kỹ �mean(ey)k
2

◆
.

(57)

where ey indicates the measured output vector and ŷ is
the predicted output vector and N is the length of these
two vectors.

Table 1 shows the radius of information and the accuracy
on the validation set of the identified set membership
models for each input signal.

Table 1
Radius of Information and set membership model accuracy
corresponding to the input sequences.

Inputs U(1) U(2) U(3) UOptimal USM-DoE

R1
I 0.568 0.536 0.209 0.053 0.055

R2

I 0.210 0.177 0.055 0.030 0.033
RMSE 0.0391 0.0350 0.0214 0.0061 0.0062
FIT 0.69 0.72 0.85 0.96 0.96

It can be noted from Table 1 that the optimal input se-
quence and the SM-DoE sequence provide much lower
radius of information compared to the sinusoidal and
random inputs. The fact that the data generated from
UOptimal and USM�DoE provide lower radius of infor-
mation, and consequently a higher identification accu-
racy, is related to the a more e↵ective exploration of the
regressor domain W. This can be observed in Figure 2,
where the “measured” regressors are shown for the five
simulations.

Fig. 2. Measured regressor
�
eyt, eut

 300

t=1
for di↵erent input

sequences.

Figure 3 shows the radius of information and model ac-
curacy during the SM-DoE process. It can be seen that
only half of the experiment was su�cient to derive an ac-
curate model. It is also evident that reducing the radius
of information directly leads to increasing the model ac-
curacy.

Fig. 3. Radius of Information and model accuracy during
SM-DoE experiment.

4.2 Example 2

To evaluate the performance of proposed SM-DoE com-
pared to other DoE methods, a simulation study was
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performed considering a nonlinear dynamic system pre-
viously investigated by [6]. In this example, three dif-
ferent DoE methods, as well as the SM-DoE algorithm,
were tested. The system under investigation is the fol-
lowing:

ẏ = g(y, x) = 2x/(2.4 cos(10x+ 4)� 0.5y + 3.3). (58)

where

x = f(u1, u2) = cos(9
q
u2
1 + u2

2 + 2) + 0.5 cos(11u1 + 2)

+ 15((u1 � 0.4)2 + (u2 � 0.4)2)2.
(59)

This system was discretized using the forward Euler
method with a sampling time of 0.5 s. The system has
two inputs, and the single output is corrupted by a uni-
form bounded noise of amplitude 6 0.025. An illustra-
tion of the scaled functions of the system is shown in
Figure 4. the function g of the discretized system is dif-
ferent from that of the continuous-time system.

Fig. 4. Nonlinear Dynamic System.

In the SM-DoE algorithm, the regressor has been defined
as wt = [yt ut

1 u
t
2], and values " = 0.05 and � = 10, �( ew)

were computed according to Algorithms 1 and 2. Al-
gorithm 4 has been applied to the system according to
Figure 5, with � = 0.25, � = 0.5 and duration T = 560s.

!"#, "% &'(#

)

*

+,#

-
"#
"% -'

&' .&

Nonlinear Dynamic System

SM-DoE

Fig. 5. Set Membership DoE scheme.

For comparison, three other DoE methods were also
considered. As mentioned in the introduction, the most
popular DoE methods for nonlinear dynamic systems
are classified into two main categories: model-free and
model-based methods [6,38,5,13]. The idea of these
methods is to parameterize a pre-defined excitation

signal, and then optimize the signal parameters called
the design points, according to di↵erent criteria. For
example, a widely applied excitation signal in industrial
identification tasks is the amplitude modulated pseudo-
random binary signal (APRBS). The APRBS signal is
a sequence of N fixed steps with associated hold times
Thi and amplitudes ai 2 [uminumax] i = 1, . . . , N . Since
the values of the amplitudes are free design parameters
in the following they are called design points. In Figure
6, a schematic APRBS signal in the time domain is plot-
ted. Given the length T of the signal, the hold times Thi

determine the number of steps and thus influences the
frequency characteristics of the signal. It’s important
to choose an appropriate minimum hold time Thmin to
assure that the system has a reasonable time to settle.

Besides the minimum hold time, the distribution of the
design points ai i = 1, . . . , N is essential for the quality
of the excitation signal.

Fig. 6. APRBS signal in time domain.

In model-free DoE, no assumptions on the model struc-
ture are made. The typical approach is to distribute de-
sign points in the input domain as much uniformly as
possible. This DoE approach is also known as space-
filling DoE. The most popular space-filling DoE tech-
nique is based on the Latin Hypercube (LHC) distribu-
tion. To calculate an LHC distribution, the input space
is divided into N intervals. In every column and row,
only one design point is placed. Figure 7(b) shows an
example of LHC distribution of 50 design points for a
two-dimensional input space. In model-based DoE, af-
ter assuming a particular model structure, the idea is to
distribute the design points in the input domain, in such
a way that the estimation of the model parameters is as
much insensitive as possible to the measurement noise.
The most popular model-based DoE is the D-optimal
distribution technique. Figure 7(c) shows an example
of the D-optimal distribution technique with 50 design
points based on a polynomial model of the third order.

After designing the distribution of the points in the in-
put space, they are used for a parameterized excitation
signal, like the above mentioned APRBS signal. Both
model-free and model-based DoEs do not take into ac-
count the dynamics of the system and do not provide
any indication about the optimal sequence of the design
points.

In this example, three distributions (Random, LHC, D-
optimal) have been constructed with 50 design points
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Fig. 7. distribution of 50 design points for two-dimensional
input space.

that are shown in Figure 7. For each distribution, 10 dif-
ferent APRBS signals have been constructed with a ran-
dom sequence of the design points with Thmin = 6s and
duration of T = 560s. (A total of 30 input sequences).
Thmin was chosen by trial and error which gave the best
results.

For each set of data generated by the considered input
sequences, a Neural-Network model has been identified
with 18 sigmoid neurons. Table 2 shows the identified
model accuracy for each DoE method. This table shows
that the accuracy of the model derived from SM-DoE
data is significantly higher.

Table 2
model accuracy mean and standard deviation.

Inputs FIT RMSE

Random 0.69± 0.03 0.149± 0.017
LHC 0.68± 0.04 0.155± 0.022
D-optimal 0.76± 0.01 0.115± 0.008
SM-DoE 0.91 0.043

Fig. 8. Measured Regressor. (a),(b) D-optimal design, (c),(d)
SM-DoE.

Themeasured regressors of the D-optimal design and the
SM-DoE approach are shown in Figure 8. The domain
is the same as the one in Figure 4. Both the experiments
have the same duration. In the D-optimal case, although
the input space is covered very well (In Fig. 8a, the design
points are on top of each other due to the nature of
the APRBS signal), we can see that the most nonlinear
regions of the dynamic system are not explored (Fig. 8b),
and the measurements are more concentrated around
the diagonal which represents the steady state behavior
of this system. Thus, the dynamic system nonlinearities
are not captured by the data. On the other hand, the
SM-DoE was able to better explore the whole regressor
domain (Fig.8c, 8d).

5 Conclusion

The aim of this paper was to develop a systematic DoE
method for nonlinear dynamic systems. We formulated
the problem in a set membership framework and pro-
posed a quasi-local nonlinear set membership approach
that results in less conservative uncertainty bounds com-
pared to the global approach. Then, we proposed a SM-
DoE algorithm for input-constrained MISO nonlinear
dynamic systems. The algorithm uses a novel SMPC con-
troller to move the system toward the most uncertain
regions of the regressor space and take new informative
measurements. The proposed SM-DoE algorithm min-
imizes the worst-case model error. Thus, it is able to
guarantee any desired worst-case error larger than the
measurement error in a finite-time experiment. Appli-
cations of the proposed method are clearly most useful
in areas where experiments are expensive and/or a very
accurate model is desired. The DoE approach presented
in this paper may also be of interest for future studies
on adaptive data-driven nonlinear control design.
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