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Abstract

Let S = NA be a Damek-Ricci space, identified with the unit ball B in s
via the Cayley transform. Let Sp+q = ∂B be the unit sphere in s, p = dim v,
q = dim z. The metric in the ball model was computed in [1] both in Euclidean
(or geodesic) polar coordinates and in Cartesian coordinates on B. The induced
metric on the Euclidean sphere S(R) of radius R is the sum of a constant curvature
term, plus a correction term proportional to h1, where h1 is a suitable differential
expression which is smooth on S(R) for R < 1, but becomes (possibly) singular
on the unit sphere at the pole (0, 0, 1). It has a simple geometric interpretation,
namely h1 = |Θ|2, where Θ is, up to a conformal factor, the pull-back of the
canonical 1-form on the group N (defining the horizontal distribution on N) by
the generalized stereographic projection. In the symmetric case h1, as well as the
transported distribution on Sp+q \{(0, 0, 1)}, have a smooth extension to the whole
sphere. This can be interpreted by the Hopf fibration of Sp+q. In the general case
no such structure is allowed on the unit sphere, and the question was left open in
[1] whether or not h1 extends smoothly at the pole. In this paper we prove that h1
does not extend, except in the symmetric case. More precisely, writing h1 in the

coordinates (V, Z) on Sp+q as h1 =
∑

h
(z)
ij dzi dzj +

∑
h
(v)
ij dvi dvj +

∑
h
(zv)
ij dzi dvj ,

we prove that, in the non-symmetric case, the coefficients h
(z)
ij do not have a limit at

the pole, but remain bounded there, whereas the coefficients h
(v)
ij and h

(zv)
ij extend

smoothly at the pole. In order to do this, we obtain an explicit formula for the 1-
form Θ valid for any Damek-Ricci space. From this formula we deduce that Θ does
not extend to the pole, except for q = 1 (hermitian symmetric case). The square
of Θ and the distribution kerΘ do not extend, unless S is symmetric. Indeed, we
prove that the singular part of h1 vanishes identically iff the J2-condition holds.

∗2010 Mathematics Subject Classification. 22E25, 43A85, 53C30.
Keywords. Homogeneous harmonic spaces.
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1 Introduction

Let S = NA be a Damek-Ricci space, i.e., the semidirect product of a (connected and
simply connected) nilpotent Lie group N of Heisenberg type [7] and the one-dimensional
Lie group A ∼= R+ acting on N by anisotropic dilations. When S is equipped with a
suitable left-invariant Riemannian metric γS, S becomes a (noncompact, simply con-
nected) homogeneous harmonic Riemannian space [3, 4]. Conversely, every such space
is a Damek-Ricci space if we exclude Rn and the “degenerate” case of real hyperbolic
spaces (see [6], Corollary 1.2). We take the basic notation from [9], to which we refer for
a nice introduction to the geometry and harmonic analysis on Damek-Ricci spaces.

We use the ball model B of S, namely we identify S with the unit ball B in the Lie
algebra s via the Cayley transform C : NA → B [2, 9],

S = NA
C∼= B = {(V, Z, t) ∈ s : R2 = |V |2 + |Z|2 + t2 < 1}.

Here s = n ⊕ a = v ⊕ z ⊕ a, where a ≃ R, z is the center of n and v its orthogonal
complement in n. We denote by ⟨·, ·⟩ the inner product on s, and by | · | the associated
norm. For any Z ∈ z we have the linear map JZ : v → v defined by

⟨JZV, V ′⟩ = ⟨Z, [V, V ′]⟩, ∀V, V ′ ∈ v.

The Lie algebra n = v ⊕ z of N is a two-step real nilpotent Lie algebra of Heisenberg
type (or H-type), i.e., the map JZ satisfies

J2
Z = −|Z|2I, ∀Z ∈ z,

where I denotes the identity mapping. This implies that the map Z → JZ extends to
a representation of the real Clifford algebra Cl(z) on v. This procedure can be reversed
and yields a general method for constructing H-type Lie algebras [7].

We let p = dim v, q = dim z, and let Sp+q be the unit sphere in s:

Sp+q = ∂B = {(V, Z, t) ∈ s : |V |2 + |Z|2 + t2 = 1}.

Let γS be the left-invariant Riemannian metric on S given by [1], (1.1). The transported
metric γB = C−1 ∗(γS) was computed in [1], Theorem 3.1, in Euclidean polar coordinates
(R, (V, Z, t)) ∈ [0, 1)× Sp+q. It is given by

γB =
4 dR2

(1−R2)2
+ γS(R), (1.1)

where the induced metric on the Euclidean sphere S(R) of radius R < 1 is

γS(R)|R(V,Z,t) =
4R2

1−R2
γSp+q |(V,Z,t) +

4

(1−R2)2
h1|R(V,Z,t).

Here γSp+q is the round metric on Sp+q, and h1 is the following differential expression on
Sp+q \ {(0, 0, 1)}:

h1|(V,Z,t) =
∣∣[V, dV ] + tdZ − Zdt

∣∣2 + |Z|2|dZ|2 − ⟨Z, dZ⟩2

+ 2
(
⟨V, dV ⟩⟨Z, dZ⟩ −

〈
JdZV, JZdV

〉)
+ k1(V, Z, t), (1.2)
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where

k1(V, Z, t) =
1

((1− t)2 + |Z|2)2

{
|V |4

(
⟨Z, dZ⟩2 − |Z|2|dZ|2

)
+
∣∣[JZV, JdZV ]

∣∣2
+ 4(1− t)

(
|V |2

(〈
JZV, dV

〉
⟨Z, dZ⟩ − |Z|2

〈
JdZV, dV

〉)
+
〈
J[JZV,dV ]JZV, JdZV

〉)
− 4(1− t)

(
|Z|2 − (1− t)2

) (〈
JZV, dV

〉
⟨V, dV ⟩+

〈
J[V,dV ]JZV, dV

〉)
+ 4(1− t)2

(〈
JZV, dV

〉2 − |Z|2
∣∣[V, dV ]

∣∣2 + ∣∣[JZV, dV ]
∣∣2 − |Z|2⟨V, dV ⟩2

)
+ 2

(
|Z|2−(1− t)2

)(
|V |2

(
⟨V, dV ⟩⟨Z, dZ⟩−

〈
JdZV, JZdV

〉)
−
〈
J[V,dV ]JZV, JdZV

〉)}
.

(1.3)

(See [1], (3.3), and observe that R4hR|(V,Z,t) = h1|R(V,Z,t), and k1(R(V, Z, t)) is just
R4 times the term with the curly bracket in [1], (3.3). In the notations of [1], h1 =
limR→1 hR.)

For R < 1, the expression h1|R(V,Z,t) is smooth ∀(V, Z, t) ∈ Sp+q. For R = 1, h1|(V,Z,t)
in (1.2)-(1.3) is smooth for (V, Z, t) ̸= (0, 0, 1), but it could be singular at the pole (0, 0, 1).
The question whether or not h1 extends smoothly at the pole was left open in [1], p. 330.

Note that we can rewrite the ball metric (1.1) in Cartesian coordinates (V ′, Z ′, t′) =
R(V, Z, t) ∈ B as

γB|(V ′,Z′,t′) = 4
|dV ′|2 + |dZ ′|2 + dt′2

1−R2
+

4

(1−R2)2

{
R2dR2 + h1|(V ′,Z′,t′)

}
, (1.4)

where RdR = ⟨V ′, dV ′⟩ + ⟨Z ′, dZ ′⟩ + t′dt′ (cf. [1], (3.1), (3.11), (3.12)). The question
is then whether or not the curly bracket in (1.4) admits a continuous extension to the
boundary R = 1 (namely at the pole (0, 0, 1)).

In this paper we address these questions. We prove that h1 does not extend to the
pole, except when the curly bracket in k1 vanishes identically. Using the coordinates
(V, Z) on Sp+q to write h1 =

∑
h
(z)
ij dzi dzj +

∑
h
(v)
ij dvi dvj +

∑
h
(zv)
ij dzi dvj, we will see

that, in the non-symmetric case, the coefficients h
(z)
ij do not have a limit at the pole, but

remain bounded there, whereas the coefficients h
(v)
ij and h

(zv)
ij extend smoothly to zero at

the pole.
In section 2 we prove that the first two terms of the bracket in (1.3) vanish if and

only if the J2-condition holds, i.e., if and only if S is symmetric [2]. Combined with
Proposition 3.1, this implies that k1 = 0 iff the J2-condition holds. We then briefly
discuss the example of the 7-dimensional non-symmetric Damek-Ricci space with N the
complex Heisenberg group. In this case it is easily proved that the h

(z)
ij do not extend.

In section 3 we approach the problem using z-valued 1-forms on N and Sp+q. Let
C : N → Sp+q \ {(0, 0, 1)} be the generalized stereographic projection, given by C(n) =
limt→−∞C(net), and let Ω′|(V,Z) = dZ − 1

2
[V, dV ] be the canonical 1-form on the group

N , whose kernel is the horizontal distribution on N . Then h1 = Θ2 ≡ |Θ|2, where
Θ = λ−1(C−1 ∗Ω′), with λ(V, Z, t) = −2/[(1 − t)2 + |Z|2]. We obtain an explicit formula
for the 1-form Θ. We discuss the symmetric case and the 7-dim example in detail. Then
we conclude with the general result valid for any Damek-Ricci space (Theorem 3.7).
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2 The vanishing of k1 and the J2-condition

Consider the limit of k1(V, Z, t) as (V, Z, t) → (0, 0, 1). The term ((1− t)2+ |Z|2)−2 blows
up, while the curly bracket tends to zero. Obviously, the limit is either zero or does not
exist. We will see that this limit does not exist, and h1 does not extend to the pole,
except when the curly bracket in k1 vanishes identically.

In order to prove this, we have to work with the coordinates (V, Z) on the sphere Sp+q.
Fix orthonormal bases {Ui}qi=1 of z and {Vj}pj=1 of v, and set Z =

∑
ziUi, V =

∑
vjVj.

Then we write k1 in (1.3) as

k1 =

q∑
i,j=1

k
(z)
ij dzi dzj +

p∑
i,j=1

k
(v)
ij dvi dvj +

q∑
i=1

p∑
j=1

k
(zv)
ij dzi dvj, (2.1)

and take the limit of the components kij as (V, Z) → (0, 0). We can assume t > 0

and t =
√
1− |V |2 − |Z|2. The mixed components, as well as the V -components, are

complicated, in general. However the Z-components only involve the quantity

|V |4
(
⟨Z, dZ⟩2 − |Z|2|dZ|2

)
+
∣∣[JZV, JdZV ]

∣∣2, (2.2)

i.e., the first two terms of (1.3). For later use we note that, in coordinates, we have

|Z|2|dZ|2 − ⟨Z, dZ⟩2 =
∑
i<j

(zidzj − zjdzi)
2 , (2.3)

[JZV, JdZV ] =
∑
i<j

(zidzj − zjdzi) [JiV, JjV ], (2.4)

where Ji ≡ JUi
, with J2

i = −I, JiJj = −JjJi (i ̸= j) (see [1], p. 325).

The quantity (2.2), divided by ((1 − t)2 + |Z|2)2, is just
∑

k
(z)
ij dzi dzj (cf. (1.3) and

(2.1)). It will turn out that this is precisely the singular part of k1, namely the coefficients

k
(z)
ij do not have a limit at the pole unless k

(z)
ij = 0, whereas the k

(v)
ij and k

(zv)
ij tend to zero

at the pole. We shall prove this later in a simple example, and in the next section in the
general case.

First, let us prove that the expression (2.2) vanishes if and only if the J2-condition
holds. We recall here the definition of the J2-condition (see [2], Definition 2.10).

Definition 2.1. Let n = v ⊕ z be an H-type Lie algebra. We say that n satisfies the
J2-condition if for all V in v and all Z,Z ′ in z such that ⟨Z,Z ′⟩ = 0, there exists Z ′′ in
z (possibly depending on V , Z and Z ′) such that

JZJZ′V = JZ′′V.

In [2], Proposition 4.1 and Theorem 4.5, it is proved that the J2-condition is equivalent
to S being symmetric.

Theorem 2.2. Let n = v⊕ z be an H-type Lie algebra. The following are equivalent:

(i)
∣∣[JZV, JZ′V ]

∣∣2 = |V |4
(
|Z|2|Z ′|2 − ⟨Z,Z ′⟩2

)
, ∀V ∈ v, ∀Z,Z ′ ∈ z.

(ii) n satisfies the J2-condition.

Thus the expression (2.2) vanishes, i.e., k
(z)
ij = 0, ∀i, j, iff the J2-condition holds.
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Proof. (i) ⇒ (ii). Let Z ′ be orthogonal to Z. Using [JZV, JZ′V ] = [V, JZJZ′V ] and (i),
we have ∣∣[V, JZJZ′V ]

∣∣2 = |Z|2|Z ′|2|V |4. (2.5)

Now suppose V ̸= 0, and recall the orthogonal direct sum decomposition

v = RV ⊕ Jz(V )⊕ k(V ),

where
Jz(V ) = {JZV : Z ∈ z},

and k(V ) is the orthogonal complement of RV in ker ad(V ). We decompose JZJZ′V
accordingly:

JZJZ′V = cV + JZ′′V +W, (2.6)

for some c ∈ R, Z ′′ ∈ z, and W ∈ k(V ). It follows that∣∣JZJZ′V
∣∣2 = |Z|2|Z ′|2|V |2 = c2|V |2 + |Z ′′|2|V |2 + |W |2.

On the other hand [V, JZJZ′V ] = [V, JZ′′V ] = |V |2Z ′′, and (2.5) implies

|Z ′′|2|V |4 = |Z|2|Z ′|2|V |4.

Comparing the latter two equalities, we obtain c = 0 and W = 0, whence JZJZ′V =
JZ′′V . This proves (ii).

(ii) ⇒ (i). Assuming (ii), for any V ∈ v and any orthogonal vectors Z,Z ′ ∈ z, there
exists Z ′′ ∈ z such that JZJZ′V = JZ′′V .

On the one hand [V, JZJZ′V ] = [V, JZ′′V ] = |V |2Z ′′, therefore∣∣[JZV, JZ′V ]
∣∣2 = ∣∣[V, JZJZ′V ]

∣∣2 = |Z ′′|2|V |4.

On the other hand
∣∣JZJZ′V

∣∣2 = ∣∣JZ′′V
∣∣2, so |Z|2|Z ′|2|V |2 = |Z ′′|2|V |2, and (i) follows for

Z ′ orthogonal to Z.
Finally, decomposing an arbitrary Z ′ ∈ z as Z ′ = λZ + Z⊥, with Z⊥ ∈ z orthogonal

to Z, we have ∣∣[JZV, JZ′V ]
∣∣2 = ∣∣[JZV, JZ⊥V ]

∣∣2 = |Z|2|Z⊥|2|V |4

=
(
|Z|2|Z ′|2 − ⟨Z,Z ′⟩2

)
|V |4.

Remark 2.3. This theorem implies that the expression k1 in (1.3) vanishes iff the J2-
condition holds. Indeed if k1 vanishes then (2.2) vanishes and the J2-condition holds.
Conversely, if this condition holds, one can prove the vanishing of the remaining part of
the curly bracket in k1. For instance, using the identity (3.17) below (which is equivalent
to the J2-condition, see Remark 3.2), one can easily prove the vanishing of the mixed

components k
(zv)
ij in k1. In a similar way one proves the vanishing of the V -components

k
(v)
ij . We omit the details because this will follow somewhat more transparently from the

approach below using z-valued 1-forms (see Proposition 3.1 and Remark 3.6).
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Now let us prove that the quantity (2.2) does not have a limit at the pole in the non-
symmetric case. We consider a simple example here, and treat the general case in the
next section. Consider the lowest (=7) dimensional non-symmetric Damek-Ricci space,
namely S = NA, where N is the complexified Heisenberg group. Here q = 2, p = 4,
z = R2 and v = R4, with commutations (see [9], p. 67)

[V, V ′] = [(a, b, c, d), (a′, b′, c′, d′)]

= (ab′ − ba′ + dc′ − cd′, ac′ − ca′ + bd′ − db′).

One computes [JZV, JdZV ] = 0, so that by (2.3) and (2.2) we get

q∑
i,j=1

k
(z)
ij dzi dzj = −|V |4(z1dz2 − z2dz1)

2

((1− t)2 + |Z|2)2
= −β2, (2.7)

where β is the 1-form

β|(V,Z,t) =
|V |2(z1dz2 − z2dz1)

(1− t)2 + |Z|2
= − z2|V |2

(1− t)2 + |Z|2
dz1 +

z1|V |2

(1− t)2 + |Z|2
dz2.

Consider the first component of β. Using (1− t)2 + |Z|2 = 2− |V |2 − 2t, we get

lim
(V,Z,t)→(0,0,1)

z2|V |2

(1− t)2 + |Z|2
= lim

(V,Z)→(0,0)

z2|V |2

2− |V |2 − 2
√

1− |V |2 − |Z|2

= lim
(V,Z)→(0,0)

z2|V |2
(
2− |V |2 + 2

√
1− |V |2 − |Z|2

)
(2− |V |2)2 − 4(1− |V |2 − |Z|2)

= 4 lim
(V,Z)→(0,0)

z2|V |2

|V |4 + 4|Z|2
.

This is either zero or does not exist. Taking z1 = 0, z2 = |V |2, or z1 = z2 = |V |2, we
get a nonzero value, thus the limit does not exist. Alternatively, set 1 − t = ρ cosφ,
|Z| = ρ sinφ, and z2 = |Z| sinα, then |V |2 = ρ(2 cosφ− ρ) and

z2|V |2

(1− t)2 + |Z|2
= sinα sinφ(2 cosφ− ρ).

This does not have a limit at the pole, where ρ → 0 but φ and α are undefined. The
same conclusion holds for the second component of β and for the coefficients k

(z)
ij . We

shall see later that the components k
(v)
ij and k

(zv)
ij of k1 tend to zero at the pole. These

results will then be generalized to any Damek-Ricci space.

Remark 2.4. In order to compute the limit lim(V,Z,t)→(0,0,1) k1(V, Z, t), we could follow
the suggestion in [1], p. 330, to use bispherical coordinates (ρ, φ, ω1, ω2), or equivalently,
(|V |, |Z|, ω1, ω2), on Sp+q ([1], p. 332). The expression of h1 in these coordinates is given
by [1], (4.14), with R = 1, k1 being the term with the curly bracket there. Recall that

V = |V |ω1, Z = |Z|ω2, |Z| = ρ sinφ, t = ρ cosφ, |V |2 = 1− ρ2,
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and ω1 ∈ Sp−1, ω2 ∈ Sq−1 (the unit spheres in v and z, respectively). Let ε = 1 − t.
Using [1], (4.14), we can rewrite k1(V, Z, 1− ε) in (1.3) in terms of (|V |, |Z|, ε, ω1, ω2) as

k1(V, Z, 1−ε) =
|Z||V |4

(ε2 + |Z|2)2
{
A|Z|3+B|Z|2ε+Cε(|Z|2−ε2)+Dε2|Z|+E|Z|(|Z|2−ε2)

}
,

(2.8)

where A,B,C,D,E are the following differential expressions on Sp−1 × Sq−1:

A = −γSq−1 +
∣∣ [Jω2ω1, Jdω2ω1]

∣∣2,
B = 4

(
−

〈
Jdω2ω1, dω1

〉
+
〈
J[Jω2ω1,dω1]Jω2ω1, Jdω2ω1

〉)
,

C = −4
〈
J[ω1,dω1]Jω2ω1, dω1

〉
,

D = 4
(〈

Jω2ω1, dω1

〉2 − ∣∣ [ω1, dω1]
∣∣2 + ∣∣ [Jω2ω1, dω1]

∣∣2),
E = 2

(〈
Jω2Jdω2ω1, dω1

〉
−
〈
J[ω1,dω1]Jω2ω1, Jdω2ω1

〉)
,

γSq−1 = |dω2|2 being the round metric on Sq−1. Now the functions

|Z|4

(ε2 + |Z|2)2
,

ε|Z|3

(ε2 + |Z|2)2
,

ε|Z|(|Z|2 − ε2)

(ε2 + |Z|2)2
,

ε2|Z|2

(ε2 + |Z|2)2
,

|Z|2(|Z|2 − ε2)

(ε2 + |Z|2)2
(2.9)

are bounded in a neighborhood of (Z, ε) = (0, 0), and it would seem from (2.8) that

lim
(V,Z,ε)→(0,0,0)

k1(V, Z, 1− ε) = 0, (2.10)

so that (1.2) would imply

lim
(V,Z,t)→(0,0,1)

h1|(V,Z,t) = |dZ|2. (2.11)

The curly bracket in (1.4) would then extend continuously to the boundary R = 1,
with the value dt′2 + |dZ ′|2 at the pole (0, 0, 1).

Unfortunately, this result is wrong, as seen above in the 7-dim example. The point is
that we cannot use bispherical coordinates to compute the limit in (2.10), because these
coordinates are singular (undefined) precisely at the pole. In (2.8) we have products of
biradial quantities (namely the functions in (2.9) multiplied by |V |4), that tend to zero
at the pole, times the “angular” expressions A,B,C,D,E, that are undefined and do
not have a limit at the pole. Note that A,B,C,D,E are not scalar-valued but tensor-
valued (they are quadratic in the differentials of the angular coordinates ω1, ω2). By
no means can they be regarded as bounded quantities. Thus we cannot conclude that
these products tend to zero and extend smoothly. For instance in the 7-dim example, let
ω2 = (cosα, sinα) ∈ S1, then z1dz2 − z2dz1 = |Z|2dα, A = −dα2, and (2.7) becomes∑

i,j

k
(z)
ij dzi dzj = − |V |4|Z|4

((1− t)2 + |Z|2)2
dα2.

The scalar quantity multiplying dα2 tends to zero as (V, Z, t) → (0, 0, 1). However, the
1-form dα is unbounded around the pole with respect to the Euclidean norm, being
∥dα∥ = 1/|Z| → ∞ as Z → 0. In fact, this expression does not extend smoothly at the

pole, since the coefficients k
(z)
ij in Cartesian coordinates (z1, z2) do not have a limit there.
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3 The approach by z-valued 1-forms

Let us recall the following geometric interpretation of the differential expression h1. Con-
sider the stereographic projection C : N → Sp+q \ {(0, 0, 1)}. This is the diffeomorphism
defined by C(n) = limt→−∞C(net) ∈ ∂B (see [9], section 4.6), and given explicitly by
(V, Z) → (V ′, Z ′, t′), where 

V ′ =

(
1+

1
4
|V |2

)
V−JZV(

1+
1
4
|V |2

)2
+|Z|2

,

Z ′ = 2Z(
1+

1
4
|V |2

)2
+|Z|2

,

t′ =
−1+

(
1
4
|V |2

)2
+|Z|2(

1+
1
4
|V |2

)2
+|Z|2

,

with inverse {
V = 2

(1−t′)V ′+JZ′V ′

(1−t′)2+|Z′|2 ,

Z = 2Z′

(1−t′)2+|Z′|2 .

Recall the generalized contact structure on the H-type group N . The horizontal
subbundle HN ⊂ TN is spanned by the left-invariant vector fields X such that Xe ∈ v.
The bundle HN can be represented as the kernel of the following z-valued 1-form on N :

Ω′|(V,Z) = dZ − 1
2
[V, dV ] (3.1)

(see [1], p. 329). We define the horizontal distribution HS⋆ on the punctured sphere
S⋆ = Sp+q \ {(0, 0, 1)} to be

HS⋆ = C∗HN = C∗ kerΩ′ = ker(C−1 ∗Ω′). (3.2)

The pull-back C−1 ∗Ω′ can be computed by calculating dV , dZ in terms of dV ′, dZ ′, dt′

and then substituting in (3.1). The result is (dropping primes):(
C−1 ∗Ω′)|(V,Z,t) = 2

((1− t)2 + |Z|2)2

{
dZ

(
(1− t)2 + |Z|2 − (1− t)|V |2

)
+ Z

(
(2− |V |2)dt+ 2t⟨V, dV ⟩ − 2⟨JZV, dV ⟩

)
+
(
|Z|2 − (1− t)2

)
[V, dV ]− 2(1− t)[JZV, dV ]− [JZV, JdZV ]

}
, (3.3)

for any (V, Z, t) ̸= (0, 0, 1) (cf. [1], (3.18)). Here, of course, ⟨V, dV ⟩ + ⟨Z, dZ⟩ + t dt =
0. The norm squared of this z-valued 1-form on S⋆ is related to h1. Indeed, by [1],
Proposition 3.4 (with h1 = limR→1 hR), we have∣∣C−1 ∗Ω′∣∣2|(V,Z,t) = (

λ(V, Z, t)
)2

h1|(V,Z,t) (3.4)

for (V, Z, t) ̸= (0, 0, 1), where

λ(V, Z, t) = − 2

(1− t)2 + |Z|2
. (3.5)
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If we could prove that

lim
(V,Z,t)→(0,0,1)

((
λ(V, Z, t)

)−1
(C−1 ∗Ω′)|(V,Z,t)

)
= dZ|(0,0,1), (3.6)

then (2.11) would follow, being h1 = |λ−1(C−1 ∗Ω′)|2 by (3.4). However, (3.6) does not
hold, in general, i.e., the z-valued 1-form

Θ = λ−1(C−1 ∗Ω′), (3.7)

such that h1 = Θ2 ≡ |Θ|2, does not extend continuously to the pole, in general. We will
actually see that the limit in (3.6) does not exist, except when q = 1.

3.1 The symmetric case

Let S = NA be a symmetric Damek-Ricci space. Then S can be identified with a
noncompact Riemannian symmetric space of rank one X = G/K, by viewing NA as the
solvable component in the Iwasawa decomposition G = NAK of a noncompact simple
Lie group G of real rank one. By suitably scaling the metric, S is isometric to one of
the following hyperbolic spaces: CHn (complex hyperbolic spaces, q = 1, p = 2(n − 1),
n ≥ 2); HHn (quaternionic hyperbolic spaces, q = 3, p = 4(n − 1), n ≥ 2); OH2

(octonionic hyperbolic plane, q = 7, p = 8). (See [9], Proposition 27, p. 97.)
The unit sphere Sp+q is a fibre bundle with fibre Sq over a suitable projective space

(the generalized Hopf fibration, see [5]):

Sq ↪→ Sp+q → KP p/(q+1), (3.8)

where K = C,H,O for q = 1, 3, 7, respectively, and OP 1 ≡ S8. Explicitly, we have the
fibrations [5]

S1 ↪→ S2n−1 → CP n−1 = complex projective n− 1 space,

S3 ↪→ S4n−1 → HP n−1 = quaternionic projective n− 1 space,

S7 ↪→ S15 → S8.

Let Ω be the z-valued 1-form on Sp+q given by (cf. [1], (3.14)):

Ω|(V,Z,t) = [V, dV ] + tdZ − Zdt+ 1
|V |2 [JZV, JdZV ]. (3.9)

For q = 1, 3 the bundle (3.8) is principal, and Ω is a connection 1-form. Thus the kernel
of Ω defines a p-dimensional distribution (the horizontal subbundle HT (Sp+q)), with
supplementary (vertical) subspace V T (Sp+q) provided by the fibers of the Hopf fibration.
For q = 7 the bundle (3.8) is not principal, but we have a similar interpretation of Ω as
a connection 1-form. However, in this case, Ω is undefined and has no limit at the points
V = 0, Z ̸= 0 of S15, due to the last term in (3.9). This term explicitly depends on V
(unlike q = 1, 3, see below for details), and has no limit at

{(0, Z, t) : |Z|2 + t2 = 1, Z ̸= 0} ≡ S7 \ {(0, 0,±1)}.
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Here S7 (the unit sphere in z ⊕ a) is just the Hopf fiber through the poles (0, 0,±1) of
S15. (We identify z ⊕ a ≃ O ≃ R8 with the Cayley line L∞ = {(0, u) : u ∈ O} in
O2 ≃ R16, corresponding to the south pole of the base space S8 ≃ {Lm, m ∈ O}∪{L∞},
see [5].) At the poles the last term in (3.9) tends to zero, and Ω tends to ±dZ|(0,0,±1).
Nevertheless, we prove in Proposition 3.1 that the norm squared of Ω is well defined and
smooth on the whole sphere and equals h1 − k1 in (1.2) (cf. (3.18)). The kernel of Ω2 is
then smooth on S15, and defines the horizontal distribution HT (S15) (of dimension 8).
Of course, at the points x = (0, Z, t), we have HTx(S

15) = v and V Tx(S
15)⊕Rx = z⊕ a.

To see that kerΩ2 agrees with the distribution (3.2) on S⋆, we need the relationship
between Ω and C−1 ∗Ω′. In the hermitian case of q = 1, we have v = Cn−1 = R2(n−1),
z = ImC = RU1, JU1V = iV = (iV1, . . . , iVn−1), and we compute [JZV, JdZV ] = 0, so
Ω|(V,Z,t) = [V, dV ] + tdZ − Zdt is smooth on Sp+q = S2n−1, and (cf. [1], p. 330)

C−1 ∗Ω′ = λΩ (q = 1) (3.10)

(λ given by (3.5)), i.e., Θ = Ω on S⋆. Thus Θ and kerΘ extend continuously to the whole
sphere S2n−1, and (3.6) holds. For q = 3, 7, the relationship between C−1 ∗Ω′ and Ω is
more complicated. If Ω′ = (α1, . . . , αq) and Ω = (ω1, . . . , ωq), one gets (see Remark 3.6)

C−1 ∗αi = λ
∑
j

rijωj (q = 3, 7) (3.11)

(λ given by (3.5)), i.e., Θ = R(Ω), where R = (rij) is a smooth function on S⋆ (for
q = 3) or S15 \ S7 (for q = 7) with values in SO(q). This function does not have a limit
as (V, Z, t) → (0, 0, 1). We discuss this separately for q = 3 and q = 7.

q = 3. In the quaternionic case, we have v = Hn−1 = R4(n−1), z = ImH = R3, and
we take U1 · U2 = U3 plus permutations (where {U1, U2, U3} is an orthonormal basis of
z), and JZV = Z · V = (Z · V1, . . . , Z · Vn−1). Then J1J2 = J3 plus permutations (where
Ji = JUi

), and we compute from (2.4)

[JZV, JdZV ] = |V |2(z2dz3 − z3dz2)U1 + |V |2(z3dz1 − z1dz3)U2

+ |V |2(z1dz2 − z2dz1)U3.

Formula (3.9) yields
ω1 = [V, dV ]1 + tdz1 − z1dt+ z2dz3 − z3dz2,

ω2 = [V, dV ]2 + tdz2 − z2dt+ z3dz1 − z1dz3,

ω3 = [V, dV ]3 + tdz3 − z3dt+ z1dz2 − z2dz1,

and Ω is smooth on Sp+q = S4n−1. Using (3.3), one obtains the general formula (3.24)-
(3.25) for the 1-form Θ. Specializing this formula to our case, we get (3.28), i.e., Θ =
R(Ω), with

R(V, Z, t) =


(1−t)2+z21−z22−z23

(1−t)2+|Z|2
2(z1z2−z3(1−t))
(1−t)2+|Z|2

2(z1z3+z2(1−t))
(1−t)2+|Z|2

2(z1z2+z3(1−t))
(1−t)2+|Z|2

(1−t)2+z22−z21−z23
(1−t)2+|Z|2

2(z2z3−z1(1−t))
(1−t)2+|Z|2

2(z1z3−z2(1−t))
(1−t)2+|Z|2

2(z2z3+z1(1−t))
(1−t)2+|Z|2

(1−t)2+z23−z21−z22
(1−t)2+|Z|2

 . (3.12)
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It is easy to check thatR(V, Z, t) ∈ SO(3). Using bispherical coordinates (|V |, |Z|, ω1, ω2)
and then polar coordinates 1 − t = ρ cosφ, |Z| = ρ sinφ, we see that the entries rij are
bounded around the pole (0, 0, 1) but do not have a limit there. Thus the 1-form Θ in
(3.7) does not extend to the pole, and (3.6) does not hold.

Nevertheless, from (3.11) or (3.28) we get |C−1 ∗Ω′|2 = λ2|Ω|2, i.e., Θ2 = Ω2, so the
square of Θ does extend to the pole. Moreover, it follows from (3.11) that kerΘ = kerΩ
on S⋆, i.e., the horizontal distribution (3.2) coincides with the horizontal subbundle of
the Hopf bundle on S⋆, and thereby extends continuously to the whole sphere S4n−1.

q = 7. A similar analysis can be repeated in the octonionic case. The details are
more complicated, due to the non-associativity of the product in v ≃ O and z ≃ Im(O).
In particular, the claim made in [1], Example 3, p. 326, about the “multiplication table”
for the products JiJj with i ̸= j (where Ji = JUi

, {Ui}7i=1 an orthonormal basis of z),
is incorrect. (See also Remark 3.3.) Recall that the operators JZ are defined as left (or
right) multiplication in O, say JZV = Z · V . Then JiJjV = Ui · (Uj · V ) is different from
(Ui ·Uj) · V = JUi·Uj

V , in general, and the products JiJj do not follow the multiplication
table of octonions. We only have the J2-condition:

JiJjV = JZij(V )V (i ̸= j), (3.13)

where v \ {0} ∋ V → Zij(V ) ∈ z are nontrivial functions. (For q = 3, the Zij are
independent of V , being Zij(V ) = Ui ·Uj, ∀V ̸= 0.) Using [V, JZV ] = |V |2Z, we get from
(3.13)

Zij(V ) = 1
|V |2 [V, JiJjV ].

Defining the components Zij(V ) =
∑

k Z
k
ij(V )Uk, we have

Zk
ij(V ) = 1

|V |2 ⟨JiJjV, JkV ⟩. (3.14)

Note that Zi
ij(V ) = 0 = Zj

ij(V ), and Zk
ij(V ) = −Zj

ik(V ), so that Zijk ≡ Zk
ij is totally

antisymmetric. By (2.4) we compute

1
|V |2 [JZV, JdZV ] =

∑
i<j

(zidzj − zjdzi)Zij(V ) =
∑
k

∑
i<j

(zidzj − zjdzi)Z
k
ij(V )Uk,

and the connection 1-form Ω =
∑

ωkUk in (3.9) has components

ωk|(V,Z,t) = [V, dV ]k + tdzk − zkdt+
∑
i<j

(zidzj − zjdzi)Z
k
ij(V ).

Note that the Zij, Z
k
ij are actually functions of ω1 = V/|V | ∈ Sp−1 = S7 (the unit sphere

in v), and they are bounded since by (3.13) we get

|Zij(V )|2 =
∑
k

|Zk
ij(V )|2 = 1, ∀i ̸= j, ∀V ̸= 0.

It follows that lim(V,Z,t)→(0,0,1) ωk|(V,Z,t) = dzk, but Ω has no limit at the points (0, Z, t) ∈
S15 with Z ≠ 0, although it is obviously bounded there. We shall see in Proposition 3.1
that Ω2 is well defined and smooth on S15, with Ω2 = h1 − k1 in (1.2) (cf. (3.18)).
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Here is a simple algorithm to compute the functions Zij. Fix a multiplication table
in v ≃ O, and identify z ≃ Im(O). Each V ∈ v is written as v0U0 +

∑7
1 vjUj, where

U0 is the neutral element and Uj (1 ≤ j ≤ 7) are the imaginary units, with U2
j = −U0.

Given i < j, determine k from the table such that Ui · Uj = ±Uk, and let T = ±JkJiJj
(same sign). Then T ∗ = T , T 2 = I, and v = v+ ⊕ v−, where v± are the eigenspaces of
T with eigenvalues ±1, respectively. Let {a, b, c, d} = {1, . . . , 7} \ {i, j, k}. Each V ∈ v
can be written as V = V+ + V−, where V+ = vaUa + vbUb + vcUc + vdUd ∈ v+, and
V− = v0U0 + viUi + vjUj + vkUk ∈ v−. Then Zij(V±) = ∓Ui · Uj, but in general

Zij(V ) = Zk
ij(V )Uk + Za

ij(V )Ua + Zb
ij(V )Ub + Zc

ij(V )Uc + Zd
ij(V )Ud,

where by (3.14) we compute

Zk
ij(V ) = ±|V−|2 − |V+|2

|V |2
,

Z l
ij(V ) = ± 2

|V |2
〈
JkV−, JlV+

〉
(l = a, b, c, d)

(same sign as in Ui · Uj = ±Uk). It is easy to see from these formulas that the functions
ω1 → Zm

ij (ω1) are spherical harmonics of degree 2 on Sp−1.

Again the general formula (3.24)-(3.25) for the 1-form Θ yields (3.28), i.e., Θ = R(Ω),
where R = (rij) is given as follows:

rii(V, Z, t) =
(1− t)2 + z2i −

∑
j ̸=i z

2
j

(1− t)2 + |Z|2
(1 ≤ i ≤ 7), (3.15)

rij(V, Z, t) =
2

(1− t)2 + |Z|2
{
zizj + (1− t)

∑
k ̸=i,j

zkZ
j
ik(V )

}
=

2

(1− t)2 + |Z|2
{
zizj − (1− t)

〈
Z,Zij(V )

〉}
(i ̸= j), (3.16)

where we used the identities Zj
ik(V ) = −Zk

ij(V ) to write∑
k

zkZ
j
ik(V ) = −

∑
k

zkZ
k
ij(V ) = −⟨Z,Zij(V )⟩.

The non-diagonal entries rij and rji are related by a sign change in the second term of
the curly bracket in (3.16) (as in (3.12)). It then follows that R(V, Z, t) ∈ SO(7), and
the entries rij are bounded around the pole (0, 0, 1) but do not have a limit there. Thus
Θ does not extend to the pole but its square does, being Θ2 = Ω2 with Ω2 smooth on
S15 (cf. (3.18)). Again kerΘ = kerΩ2 on S⋆ = S15 \ {(0, 0, 1)}, and the horizontal
distribution (3.2) extends continuously to the whole sphere S15. Note that Θ is smooth
on S⋆ (by (3.25)), so the singularities of R and Ω at the points (0, Z, t), Z ̸= 0 (due to
the functions Zij) cancel out in Θ = R(Ω).

We can now easily prove that k1 = 0 in (1.3).
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Proposition 3.1. Let n satisfy the J2-condition. Then in (1.2) we have h1 − k1 = Ω2,
so since h1 = Θ2 = Ω2, we get k1 = 0.

Proof. From (3.9) we have

Ω2|(V,Z,t) =
∣∣[V, dV ] + tdZ − Zdt

∣∣2 + ∣∣|V |−2[JZV, JdZV ]
∣∣2

+ 2
〈
[V, dV ], 1

|V |2 [JZV, JdZV ]
〉
+ 2

〈
tdZ − Zdt, 1

|V |2 [JZV, JdZV ]
〉
.

The last term in this expression vanishes, as easily seen. The second term equals(
|Z|2|dZ|2 − ⟨Z, dZ⟩2

)
(by Theorem 2.2). Let us prove that〈

[V, V ′], 1
|V |2 [JZV, JZ′V ]

〉
= ⟨V, V ′⟩⟨Z,Z ′⟩ − ⟨JZ′V, JZV

′⟩, (3.17)

for all V, V ′ ∈ v, V ̸= 0, and Z,Z ′ ∈ z. This will establish that Ω2 = h1− k1 in (1.2), i.e.,

Ω2|(V,Z,t) =
∣∣[V, dV ] + tdZ − Zdt

∣∣2 + |Z|2|dZ|2 − ⟨Z, dZ⟩2

+ 2
(
⟨V, dV ⟩⟨Z, dZ⟩ −

〈
JdZV, JZdV

〉)
, ∀(V, Z, t) ∈ Sp+q. (3.18)

First let Z ′ ∈ z with ⟨Z,Z ′⟩ = 0. Then, by the J2-condition, there is Z ′′ ∈ z such
that JZJZ′V = JZ′′V . Therefore,

[JZV, JZ′V ] = [V, JZJZ′V ] = [V, JZ′′V ] = |V |2Z ′′, (3.19)

and

−
〈
JZ′V, JZV

′〉 =
〈
V ′, JZJZ′V

〉
=

〈
V ′, JZ′′V

〉
=

〈
Z ′′, [V, V ′]

〉
.

Thus (3.17) follows for Z ′ orthogonal to Z.
For an arbitrary Z ′ ∈ z, we decompose Z ′ = λZ + Z⊥, with Z⊥ ∈ z orthogonal to Z.

Let Z ′′ be determined by JZJZ⊥V = JZ′′V . Then we have

[JZV, JZ′V ] = [JZV, JZ⊥V ] = |V |2Z ′′,

where we used (3.19) with Z⊥ in place of Z ′. The left-hand side of (3.17) is then equal
to

〈
Z ′′, [V, V ′]

〉
. The right-hand side of (3.17) equals

⟨V, V ′⟩λ|Z|2 −
〈
JλZV, JZV

′〉− 〈
JZ⊥V, JZV

′〉
=

〈
JZJZ⊥V, V ′〉 = 〈

JZ′′V, V ′〉 =
〈
Z ′′, [V, V ′]

〉
.

This proves the proposition.

Remark 3.2. If n = v ⊕ z is an H-type Lie algebra such that (3.17) holds, then the
J2-condition holds. Indeed let ⟨Z,Z ′⟩ = 0, and decompose JZJZ′V as in (2.6). Then the
left-hand side of (3.17) equals ⟨[V, V ′], Z ′′⟩, and we get ⟨JZ′′V, V ′⟩ = ⟨JZJZ′V, V ′⟩, for all
V, V ′ ∈ v. Thus JZJZ′V = JZ′′V , and the J2-condition holds. This condition is then
equivalent to (3.17).
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Remark 3.3. Consider the z-valued 1-form

Φ|(V,Z,t) = [V, dV ] + tdZ − Zdt+
∑
i<j

(zidzj − zjdzi)Ui · Uj.

This is smooth on Sp+q and it reduces to Ω for q = 1, 3, but for q = 7, Φ ̸= Ω. In this
case, the component 1-forms φk of Φ =

∑
φkUk are given by

φk|(V,Z,t) = [V, dV ]k + tdzk − zkdt+
∑
i<j

(zidzj − zjdzi)Cijk,

where Cijk are the structure constants defined by Ui · Uj =
∑7

k=1Cijk Uk from any given
multiplication table in O. Note that Cijk is totally antisymmetric. It is natural to ask
whether Φ2 = Ω2 for q = 7. Formula (3.15) in [1] would then apply, with the component
1-forms ω1, . . . , ω7 being just the φk. Unfortunately this is not true, i.e., Φ2 does not
agree with Ω2 on S15, as easily seen. Thus there is no simple formula for the vertical part
of the metric h1 = Θ2 = Ω2 in terms of the 1-forms φk.

To summarize, in the symmetric case the 1-form Θ does not extend to the pole
(0, 0, 1) of Sp+q for q = 3, 7, but its square does, together with the distribution. This can
be explained by the generalized Hopf fibration.

The horizontal-vertical distributions on the unit sphere Sp+q can also be described
as follows. Recall that Sp+q is a homogeneous space K/M , where K is the subgroup of
the isometry group of S = NA that fixes the origin, and M is the group of orthogonal
automorphisms of NA, namely the automorphisms of S that preserve the inner product
on the Lie algebra s. The origin eM in K/M corresponds to the north pole (0, 0, 1),
and the tangent space TeMSp+q decomposes as v ⊕ z. The horizontal subbundle is then
the assignment kM → k∗v, the vertical one is kM → k∗z. If we use Euclidean polar
coordinates on the unit ball B in s to write b = Rω ∈ B, with R > 0 and ω = kM ∈ Sp+q,
then we have the orthogonal splitting of the tangent space TbB = T

(1)
b ⊕T

(2)
b ⊕Rb, where

T
(1)
b = k∗v and T

(2)
b = k∗z. See [2], Theorem 7.10, for an explicit description of T

(1)
b and

T
(2)
b ⊕ Rb in the coordinates ω = (V, Z, t) ∈ Sp+q.

3.2 The general case

In the non-symmetric case, the situation is as follows. The unit sphere Sp+q is no longer
a fibration with fiber Sq, and the horizontal distribution (3.2) does not extend smoothly,
in general. For instance for q even, so that p+q is even, there are no smooth distributions
on Sp+q of dimension k (smooth fields of k-planes) for 1 ≤ k ≤ p+ q − 1 ([10], Theorem
27.18). It was proved recently that the horizontal distribution extends iff the J2-condition
holds, iff S is symmetric ([8], Proposition 4.3).

The distribution (3.2) on S⋆ = Sp+q \ {(0, 0, 1)} is just the kernel of the z-valued
1-form Θ in (3.7) (λ in (3.5) being smooth and non-vanishing on S⋆). This distribution
can also be described as the kernel of the rank-2 tensor h1 = Θ2. Indeed, recall that

kerh1 = {X ∈ TS⋆ : h1(X,Y ) = 0, ∀Y ∈ TS⋆}.
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If Θ = (θ1, . . . , θq), then Θ2 = θ21 + · · ·+ θ2q , and kerΘ =
⋂

j ker θj ⊆ kerΘ2. Conversely,

if X ∈ kerh1 = kerΘ2, then taking Y = X in the definition above gives

0 = h1(X,X) = Θ(X)2 = θ1(X)2 + · · ·+ θq(X)2,

whence θj(X) = 0, ∀j, i.e., X ∈ kerΘ. As mentioned before, h1 does not extend to the
pole (0, 0, 1) in the non-symmetric case, in agreement with the non-extendability of the
distribution. We saw this in the 7-dimensional example, to which we now return.

3.2.1 The 7-dimensional example

We want to write down the 1-form Θ more explicitly, and show it does not extend. Let
U1, U2 be an orthonormal basis of z, and Ji = JUi

, i = 1, 2, as usual. If Z = (z1, z2) ∈ z
and V = (v1, v2, v3, v4) ∈ v, we have

[V, dV ]1 = ⟨J1V, dV ⟩ = v1dv2 − v2dv1 + v4dv3 − v3dv4,

[V, dV ]2 = ⟨J2V, dV ⟩ = v1dv3 − v3dv1 + v2dv4 − v4dv2,

⟨J1J2V, dV ⟩ = v4dv1 − v1dv4 + v2dv3 − v3dv2,

and we compute [JZV, JdZV ] = 0,

[JZV, dV ] = −⟨V, dV ⟩Z + ⟨J1J2V, dV ⟩(z2U1 − z1U2).

By (3.3), we obtain the following formula for the 1-form Θ in (3.7):

Θ|(V,Z,t) = [V, dV ] + tdZ − Zdt+
2(z2U1 − z1U2)

(1− t)2 + |Z|2
×

×
{
z1dz2 − z2dz1 + z1[V, dV ]2 − z2[V, dV ]1 + (1− t)⟨J1J2V, dV ⟩

}
. (3.20)

Letting Θ = (θ1, θ2), we get the following 1-forms on S6 \ {(0, 0, 1)}:

θ1|(V,Z,t) = [V, dV ]1 + tdz1 − z1dt+
2z2

(1−t)2+|Z|2×
×
{
z1dz2 − z2dz1 + z1[V, dV ]2 − z2[V, dV ]1 + (1− t)⟨J1J2V, dV ⟩

}
,

θ2|(V,Z,t) = [V, dV ]2 + t dz2 − z2dt− 2z1
(1−t)2+|Z|2×{

z1dz2 − z2dz1 + z1[V, dV ]2 − z2[V, dV ]1 + (1− t)⟨J1J2V, dV ⟩
}
.

We can now prove that these 1-forms do not extend to the pole, the problem being due
to the coefficients of the dzj.

Theorem 3.4. Let S = NA be the non-symmetric Damek-Ricci space of dimension 7
with p = 4, q = 2, and N the complexified Heisenberg group. Then the 1-form Θ, given
by (3.20), does not extend to the pole (0, 0, 1). More precisely, the coefficients of the dzj
do not have a limit at the pole, but remain bounded there, whereas the coefficients of the
dvj tend to zero at the pole.
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Proof. Consider the coefficients of the dzj in the term with the curly bracket in (3.20),
namely the functions

z1z2
(1− t)2 + |Z|2

,
z21

(1− t)2 + |Z|2
,

z22
(1− t)2 + |Z|2

. (3.21)

These functions do not have a limit at the pole. For instance, we get

lim
(V,Z)→(0,0)

z1z2
(1− t)2 + |Z|2

= lim
(V,Z)→(0,0)

z1z2

2− |V |2 − 2
√
1− |V |2 − |Z|2

= lim
(V,Z)→(0,0)

z1z2

(
2− |V |2 + 2

√
1− |V |2 − |Z|2

)
(2− |V |2)2 − 4(1− |V |2 − |Z|2)

= 4 lim
(V,Z)→(0,0)

z1z2
|V |4 + 4|Z|2

.

This is either zero or does not exist. Taking z1 = z2 = |V |2 we get a nonzero value, thus
the limit does not exist. Alternatively, use bispherical coordinates (|V |, |Z|, ω1, ω2) on
S6, defined by

V = |V |ω1, ω1 = (a1, a2, a3, a4) ∈ S3, Z = |Z|ω2, ω2 = (cosα, sinα) ∈ S1.

Then
z1z2

(1− t)2 + |Z|2
=

|Z|2

(1− t)2 + |Z|2
sinα cosα.

Now take polar coordinates 1 − t = ρ cosφ, |Z| = ρ sinφ, then ρ → 0 when (V, Z, t) →
(0, 0, 1), while φ, α are undefined at the pole. The first function in (3.21) reduces to
(sinφ)2 sinα cosα, so the limit does not exist. However, this function remains bounded.
A similar analysis can be repeated for the other functions in (3.21): they do not have a
limit but remain bounded around the pole.

Now look at the coefficients of the dvj. Consider, for instance, the first component θ1
of Θ. The coefficient of dv1 in the term with the curly bracket is

f(V, Z, t) =
2z2

(1− t)2 + |Z|2
{
− z1v3 + z2v2 + (1− t)v4

}
.

It is easy to see that this tends to zero at the pole. Indeed, in bispherical coordinates, it
reads

f(V, Z, t) =
2|Z| sinα

(1− t)2 + |Z|2
{
|Z||V |(−a3 cosα + a2 sinα) + (1− t)|V |a4

}
.

Now take polar coordinates 1− t = ρ cosφ, |Z| = ρ sinφ, then

|V |2 = 1− t2 − |Z|2 = (1− t)(1 + t)− |Z|2

= ρ(2 cosφ− ρ).
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The range of (ρ, φ) is 0 ≤ ρ ≤ 2 cosφ, 0 ≤ φ ≤ π/2, and corresponds to the semicircle
t2+ |Z|2 ≤ 1, 0 ≤ |Z| ≤ 1 in the (t, |Z|) plane. In this region we have 0 ≤ 2 cosφ−ρ ≤ 2.
Now when (V, Z, t) → (0, 0, 1), ρ → 0, while φ, α, aj are undefined in the limit. We get

f(V, Z, t) =
2ρ sinφ sinα

ρ2
ρ3/2

√
2 cosφ− ρ

{
sinφ(−a3 cosα + a2 sinα) + a4 cosφ

}
.

This tends to zero as ρ1/2 when ρ → 0, the remaining expression being bounded. A similar
analysis shows that the coefficients of the dvj in the curly bracket in (3.20) extend to
zero at the pole. The remaining coefficients of the dvj in (3.20) obviously tend to zero at
the pole.

Using (3.20), we can compute the square of Θ. The result can be written as follows:

Θ2|(V,Z,t) =
∣∣[V, dV ] + tdZ − Zdt

∣∣2+ (
z1dz2 − z2dz1 + ⟨J1J2V, dV ⟩

)2 − θ2|(V,Z,t), (3.22)

where θ is the 1-form

θ|(V,Z,t) =
1

(1− t)2 + |Z|2

(
|V |2 (z1dz2 − z2dz1)

+ 2(1− t)
(
z1[V, dV ]2 − z2[V, dV ]1

)
−

(
|Z|2 − (1− t)2

)
⟨J1J2V, dV ⟩

)
≡ (f1 dz1 + f2 dz2) + (g1 dv1 + g2 dv2 + g3 dv3 + g4 dv4) ≡ β + γ.

Formula (3.22) for Θ2 agrees with the known formula for h1 (= limR→1 hR, see [1], (3.16)),
in agreement with (3.4)-(3.7). The precise identification of k1 in (1.2)-(1.3) is:

k1(V, Z, t) = ⟨J1J2V, dV ⟩2 − θ2|(V,Z,t). (3.23)

The 1-forms θ, β do not extend to the pole, whereas γ extends to zero there. Indeed,
the functions f1, f2 do not have a limit (but remain bounded), whereas the functions gj,
1 ≤ j ≤ 4, tend to zero as (V, Z, t) → (0, 0, 1). The proof is the same as above: use
bispherical coordinates followed by polar coordinates for 1−t, |Z|. We can then complete
the analysis of the differential expression k1 as (V, Z, t) → (0, 0, 1). Since

θ2 =
2∑

i,j=1

fifj dzi dzj +
4∑

i,j=1

gigj dvi dvj + 2
2∑

i=1

4∑
j=1

figj dzi dvj

= β2 + γ2 + 2βγ,

we get, comparing (3.23) with (2.1), k
(z)
ij = −fifj, k

(zv)
ij = −2figj, and∑

k
(v)
ij dvidvj = −

∑
gigjdvidvj + ⟨J1J2V, dV ⟩2.

Therefore, as (V, Z, t) → (0, 0, 1), the coefficients k
(z)
ij do not have a limit (as we already

know), whereas the k
(v)
ij tend to zero, as well as the k

(zv)
ij (since gj → 0 and the fi are

bounded around the pole).
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As regards the horizontal distribution kerh1, this is smooth on S⋆ = S6 \ {(0, 0, 1)},
with dimension p = 4. In principle, it could extend smoothly on S6, but it would have
to change dimension at the pole. Indeed on S6 there are no continuous k-dimensional
distributions (continuous fields of k-planes) for 1 ≤ k ≤ 5 ([10], Theorem 27.18). For
k = 1, this is the well known result that even spheres do not admit continuous nowhere
vanishing vector fields, or 1-forms by duality. However, kerh1 can not extend smoothly
on S6, since h1 = Θ2 is not smooth at the pole

Again note that, in bispherical coordinates, z1dz2 − z2dz1 = |Z|2dα, and if we take
the limit of Θ in these coordinates we seem to get the result (3.6), i.e., that Θ extends
to the pole. This proof would be wrong for the same reasons discussed before (Remark
2.4).

3.2.2 The 1-form Θ in the general case

In order to generalize the above calculations, we examine in more detail the 1-form Θ in
(3.7). We would like to write it in a more explicit form, analogous to (3.20).

Theorem 3.5. Let S be any Damek-Ricci space. Fix an orthonormal basis {Ui}qi=1 of z,
and set Z =

∑
ziUi, Ji ≡ JUi

. Then the 1-form Θ in (3.7) can be written as

Θ|(V,Z,t) = [V, dV ] + tdZ − Zdt+
1

(1− t)2 + |Z|2
∑
i<j

{
2
(
zjUi − ziUj

)
×

×
(
zidzj − zjdzi + zi[V, dV ]j − zj[V, dV ]i + (1− t)⟨JiJjV, dV ⟩

)
+ (zidzj − zjdzi)[JiV, JjV ]

}
. (3.24)

Proof. We insert the quantity 0 = −2(⟨V, dV ⟩ + ⟨Z, dZ⟩ + tdt) in the curly bracket in
(3.3), and use the identity

(1− t)2 + |Z|2 − (1− t)|V |2 = 2(t2 + |Z|2)− t(2− |V |2),

to get, after some algebra,

Θ|(V,Z,t) = [V, dV ] + tdZ − Zdt+
1

(1− t)2 + |Z|2

{
2
(
⟨Z, dZ⟩Z − |Z|2dZ

)
+ 2

(
Z
〈
JZV, dV

〉
− |Z|2[V, dV ]

)
+ 2(1− t)

(
Z⟨V, dV ⟩+ [JZV, dV ]

)
+ [JZV, JdZV ]

}
. (3.25)

The following identities are easily proved:

⟨Z, dZ⟩Z − |Z|2dZ =
∑
i<j

(
zjUi − ziUj

)(
zidzj − zjdzi

)
,

Z
〈
JZV, dV

〉
− |Z|2[V, dV ] =

∑
i<j

(
zjUi − ziUj

)(
zi[V, dV ]j − zj[V, dV ]i

)
,

18



Z⟨V, dV ⟩+ [JZV, dV ] =
∑
i<j

(
zjUi − ziUj

)
⟨JiJjV, dV ⟩.

Using these and (2.4) in (3.25), gives (3.24).

Remark 3.6. For q = 1, the curly bracket in (3.25) vanishes, and we get back (3.10). In
the non-symmetric example of q = 2, the last term in the curly bracket of (3.25) vanishes,
and we obtain formula (3.20). In the symmetric case of q = 3, 7, we use the J2-condition
(3.13) to write Θ in (3.24) as

Θ = Ω + Λ, (3.26)

where Ω = (ω1, . . . , ωq) is the connection 1-form (3.9), and Λ is the 1-form

Λ|(V,Z,t) =
2

(1− t)2 + |Z|2
∑
i<j

{(
zjUi − ziUj

)
×

×
(
zidzj − zjdzi + zi[V, dV ]j − zj[V, dV ]i + (1− t)⟨JZij(V )V, dV ⟩

)
+
(
|V |2 − (1− t)

)
(zidzj − zjdzi)Zij(V )

}
. (3.27)

Using (3.26)-(3.27), we can easily rewrite Θ = (θ1, . . . , θq) in the form

Θ = R(Ω), i.e., θi =
∑
j

rijωj, (3.28)

where R = (rij) is given respectively by (3.12) and (3.15)-(3.16). Thus Θ2 = Ω2, and
Λ = R(Ω) − Ω satisfies ⟨Λ + 2Ω,Λ⟩ = 0. We conclude that although Θ and Λ do not
extend to the pole (0, 0, 1), Θ2 does, as already discussed.

We can now repeat a similar analysis as was done before in the 7-dimensional example.
We obtain the following result.

Theorem 3.7. Let S = NA be any Damek-Ricci space.
1) The z-valued 1-form Θ, defined in (3.7) and given by (3.24), does not extend

to the pole (0, 0, 1), except for q = 1 (hermitian symmetric case). More precisely, the
coefficients of the dzj in Θ do not have a limit at the pole for q > 1, but remain bounded
there, whereas the coefficients of the dvj tend to zero at the pole.

2) The differential expression h1 = Θ2 in (1.2)-(1.3) does not extend to the pole, unless
S is symmetric. More precisely, the differential expression k1 in (1.3) vanishes identically
in the symmetric case, but it is nonzero for S non-symmetric. In this case, writing k1 in
the form (2.1), the metric coefficients k

(z)
ij do not have a limit as (V, Z, t) → (0, 0, 1), but

remain bounded, whereas the coefficients k
(v)
ij and k

(zv)
ij tend to zero at the pole.

3) The horizontal distribution kerΘ = kerh1 on Sp+q \ {(0, 0, 1)} does not extend
smoothly to the pole unless S is symmetric.
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Proof. Let Θ = (θ1, . . . , θq) =
∑

θiUi. From (3.24) we get, for 1 ≤ i ≤ q,

θi|(V,Z,t) = [V, dV ]i + tdzi − zidt+
1

(1− t)2 + |Z|2
×

×
{
2
∑
j ̸=i

zj

(
zidzj − zjdzi + zi[V, dV ]j − zj[V, dV ]i + (1− t)⟨JiJjV, dV ⟩

)
+
∑
j<k

(zjdzk − zkdzj)⟨JiJjV, JkV ⟩
}
. (3.29)

Consider the coefficients of the differentials dzl for l = i and l = j ̸= i in the term with
the curly bracket in (3.29). They involve the functions

z2j
(1− t)2 + |Z|2

,
zizj

(1− t)2 + |Z|2
,

zk⟨JiJjV, JkV ⟩
(1− t)2 + |Z|2

. (3.30)

These functions do not have a limit at the pole. Indeed in bispherical coordinates V =
|V |ω1, Z = |Z|ω2, where ω1 ∈ Sp−1, ω2 ∈ Sq−1, we have, e.g.,

zizj
(1− t)2 + |Z|2

=
|Z|2

(1− t)2 + |Z|2
(ω2)i(ω2)j.

Letting 1 − t = ρ cosφ, |Z| = ρ sinφ, then ρ → 0 when (V, Z, t) → (0, 0, 1), and the
functions above do not have a limit. In a similar way we get, being |V |2 = ρ(2 cosφ− ρ),

zk⟨JiJjV, JkV ⟩
(1− t)2 + |Z|2

=
|Z||V |2

(1− t)2 + |Z|2
(ω2)k⟨JiJjω1, Jkω1⟩

= sinφ(2 cosφ− ρ)(ω2)k⟨JiJjω1, Jkω1⟩,

which does not have a limit when ρ → 0. Notice, however, that these functions remain
bounded around the pole.

As regards the coefficients of the dvl in the curly bracket in (3.29), they are generated
by the 1-forms

zizj[V, dV ]j
(1− t)2 + |Z|2

,
z2j [V, dV ]i

(1− t)2 + |Z|2
,

zj(1− t)⟨JiJjV, dV ⟩
(1− t)2 + |Z|2

, (3.31)

and tend to zero at the pole. Indeed, the terms [V, dV ]j and ⟨JiJjV, dV ⟩ are linear
expressions in the coordinates vk and the differentials dvl, for instance, we have

[V, dV ]j =

p∑
k,l=1

a
(j)
kl vkdvl (1 ≤ j ≤ q),

for suitable constants a
(j)
kl . Using again bispherical coordinates and then polar coordinates

for (1− t, |Z|), we get, e.g.,

zizj[V, dV ]j
(1− t)2 + |Z|2

=
|Z|2|V |

(1− t)2 + |Z|2
(ω2)i(ω2)j

∑
k,l

a
(j)
kl (ω1)kdvl

=
√
ρ
√

2 cosφ− ρ (sinφ)2(ω2)i(ω2)j
∑
k,l

a
(j)
kl (ω1)kdvl.
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The coefficients of the dvl in this formula go to zero as
√
ρ when ρ → 0, the remaining

expressions being bounded. The same result holds for the other terms in (3.31).
Thus Θ does not extend smoothly on Sp+q unless q = 1 (in which case the curly

bracket in (3.29) vanishes). Its square does not extend either, except in the symmetric
case, and the same holds for the differential expression h1 in (1.2), being

h1 = Θ2 = θ21 + · · ·+ θ2q .

Indeed, in the symmetric case the quantity k1 in (1.3) vanishes identically (Proposition
3.1), and h1 = Θ2 = Ω2 extends to the pole.

In the non-symmetric case k1 is nonzero, indeed the expression (2.2) vanishes iff the
J2-condition holds (Theorem 2.2). By writing k1 in the form (2.1), and computing the

square of Θ from (3.29), we see that the coefficients k
(z)
ij involve products of the functions

in (3.30) (or products of those functions and t), the k
(v)
ij are generated by products of

the 1-forms in (3.31) (or products of those 1-forms and [V, dV ]i), and the k
(zv)
ij arise from

products of the functions in (3.30) and the 1-forms in (3.31) (or those in (3.30) and

[V, dV ]i, or those in (3.31) and t). Therefore, the coefficients k
(z)
ij do not have a limit

as (V, Z, t) → (0, 0, 1), but remain bounded there, whereas the coefficients k
(v)
ij and k

(zv)
ij

tend to zero at the pole. Finally, the horizontal distribution kerΘ = kerh1 on S⋆ does
not extend smoothly to Sp+q in the non-symmetric case, since Θ2 = h1 is not smooth at
the pole.

As a final remark, we record the following formula for h1, that generalizes (3.22) to
any Damek-Ricci space.

Proposition 3.8. The differential expression h1 in (1.2)-(1.3) can be written (in the
notations of Theorem (3.5)) as

h1|(V,Z,t) =
∣∣[V, dV ] + tdZ − Zdt

∣∣2 +∑
i<j

(
zidzj − zjdzi + ⟨JiJjV, dV ⟩

)2
+

1

((1− t)2 + |Z|2)2

{ ∣∣[JZV, JdZV ]
∣∣2 + 4(1− t)

〈
[JZV, JdZV ], [JZV, dV ]

〉
− 2

(
|Z|2 − (1− t)2

) 〈
[JZV, JdZV ], [V, dV ]

〉
−

∑
i<j

(
|V |2 (zidzj − zjdzi) + 2(1− t)

(
zi[V, dV ]j − zj[V, dV ]i

)
−

(
|Z|2 − (1− t)2

)
⟨JiJjV, dV ⟩

)2

− 4(1− t)2
∑
i<j<k

(
zi⟨JjJkV, dV ⟩+ zj⟨JkJiV, dV ⟩+ zk⟨JiJjV, dV ⟩

)2
}
. (3.32)

The quantity k1(V, Z, t) in (1.3) is then
∑

i<j⟨JiJjV, dV ⟩2 plus the term with the curly
bracket in (3.32) (this generalizes (3.23)).

Proof. We use the identities in [1], p. 325 and top p. 326, in (1.2)-(1.3).
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