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SHARP Lp ESTIMATES FOR SCHRÖDINGER GROUPS ON

SPACES OF HOMOGENEOUS TYPE

THE ANH BUI, PIERO D’ANCONA, AND FABIO NICOLA

Abstract. We prove an Lp estimate

‖e−itLϕ(L)f‖p . (1 + |t|)s‖f‖p, t ∈ R, s = n

∣∣∣∣12 − 1

p

∣∣∣∣
for the Schrödinger group generated by a semibounded, selfadjoint oper-
ator L on a metric measure space X of homogeneous type (where n is the

doubling dimension of X). The assumptions on L are a mild Lp0 → Lp
′
0

smoothing estimate and a mild L2 → L2 off–diagonal estimate for the
corresponding heat kernel e−tL. The estimate is uniform for ϕ varying in
bounded sets of S (R), or more generally of a suitable weighted Sobolev
space.

We also prove, under slightly stronger assumptions on L, that the
estimate extends to

‖e−itLϕ(θL)f‖p . (1 + θ−1|t|)s‖f‖p, θ > 0, t ∈ R,
with uniformity also for θ varying in bounded subsets of (0,+∞). For
nonnegative operators uniformity holds for all θ > 0.

1. Introduction

Bounds in Lp for the Schrödinger group eit∆ have applications in har-
monic analysis and to nonlinear dispersive equations. The group itself is
not bounded in Lp for p 6= 2, but (1 −∆)−seit∆ is Lp bounded for s suffi-
ciently large. A sharp estimate can be written if one introduces a frequency
cutoff ϕ ∈ C∞c (Rn): for all 1 ≤ p ≤ ∞, k ∈ Z, t ∈ R, we have

(1) ‖eit∆ϕ(2−k(−∆)1/2)f‖Lp . (1 + 22k|t|)s‖f‖Lp , s = n

∣∣∣∣12 − 1

p

∣∣∣∣,
see [4], [27], [19].

This result can be regarded as an elementary example of Lp estimates
with loss of derivatives for FIOs, in the spirit of [25]. However, our goal here
is to extend (1) in a different direction, namely, to Schrödinger groups eitL

generated by a semibounded, selfadjoint operator L on a metric measure
space X endowed with a doubling measure. This framework covers a large
variety of situations which go far beyond the classical FIO setting.

Many properties of L and functions of L can be deduced from suitable
estimates on the corresponding heat kernel e−tL. A common assumption in
the euclidean case (see [16], [14]) is the Gaussian upper estimate

|e−tL(x, y)| . t−n/m exp
(
− b
(
t−1/m|x− y|

) m
m−1

)
, t > 0, x, y ∈ Rn,

1



2 THE ANH BUI, PIERO D’ANCONA, AND FABIO NICOLA

for some b > 0, m > 1. This includes Schrödinger operators perturbed with
an electromagnetic potential (in this case m = 2: see [5], [6] for some appli-

cations), and fractional Laplacians (−∆)m/2 with m even. Note that these
operators are already outside the reach of the classical theory of singular
operators.

In order to include more general operators, one can weaken the assump-
tions on the heat kernel. In [12] we proposed, in the euclidean case, to

replace the Gaussian upper estimate with a weak Lp0 → Lp
′
0 smoothing es-

timate on dyadic cubes, and an even weaker off–diagonal L2 → L2 algebraic
decay (see (4), (5) below). These conditions are much more inclusive, as
discussed in Remark 1.1 below, but they still allow to recover the estimate
(1) at least in the restricted range p ∈ [p0, p

′
0].

Here we study the more general situation of metric measure spaces of
homogeneous type. More precisely, in the following we shall assume that
(X, d, µ) is a metric space with distance d, equipped with a nonnegative
Borel measure µ which satisfies the doubling property : there exists a constant
c1 > 0 such that

(2) µ(B(x, 2r)) ≤ c1µ(B(x, r))

for all x ∈ X and r > 0, where B(x, r) is the open ball of radius r and center
x. We recall that the doubling property (2) implies the existence of C > 0
and n > 0 such that

µ(B(x, λr)) ≤ Cλnµ(B(x, r)), ∀λ > 0.

We shall also assume that X satisfies a reverse doubling condition: there
exist κ ∈ [0, n] and C > 0 such that for all x ∈ X, 0 < r < diam(X)/2 and
1 ≤ λ < diam(X)/(2r), one has

(3) Cλκµ(B(x, r)) ≤ µ(B(x, λr))

where diam(X) = supx,y∈X d(x, y). Note that the reverse doubling condition
is always satisfied with κ = 0, thus (3) is restrictive only when κ ∈ (0, n].

It was proved in [8] that it is always possible, for each ν ∈ Z, to define
an almost covering Dν of open sets, with diameter ' 2−ν , which are called
dyadic cubes and enjoy properties very similar to the standard dyadic cubes
in Rn; see Lemma 2.1 below for precise definitions and more details.

In this setting, we consider an operator L on L2(X) satisfying the following
assumption, where 1Q denotes the characteristic function of the cube Q:

Assumption (L0): L is a selfadjoint operator on L2(X) with L+M0 ≥ 0
for some constant M0 ≥ 0, satisfying the following estimate. There exist
p0 ∈ [1, 2), m1,m2 > 0 and C ≥ 0 such that for all t > 0 and ν ∈ Z with

either 2−ν ≤ t1/m1 < 2−ν+1, 0 < t < 1 or 2−ν ≤ t1/m2 < 2−ν+1, t ≥ 1 we
have
(4)∑
Q∈Dν

‖1Qe−tL1Q′‖p0→2 +
∑
Q∈Dν

‖1Qe−tL1Q′‖2→p′0 ≤ Ce
M0t(t

n
m1
>1 + t

κ
m2
≤1 )

1
2
− 1
p0
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for all Q′ ∈ Dν , where t>1 = t · 1(1,+∞)(t) and t≤1 = t · 1(−∞,1](t), and
(5)

sup
Q′∈Dν

∑
Q∈Dν

(1+2νdist(Q,Q′))N‖1Qe−tL1Q′‖2→2 ≤ CeM0t, N = bn/2c+1.

Remark 1.1. The previous assumptions include of course the typical Gauss-
ian upper estimates for Schrödinger operators on Rn. Indeed, in the particu-
lar case m1 = m2 = m, condition (5) is a direct consequence of the following
estimate
(6)

‖1B(x,t1/m)e
−tL1B(y,t1/m)‖p0→p′0 ≤ Ce

M0tµ(B(x, t1/m))
− 1
p0

+ 1
p′0 exp

(
−d(x,y)m/(m−1)

ct1/(m−1)

)
,

for all t > 0, and all x, y ∈ X. Note that the presence of an exponentially
growing factor eM0t allows to include some interesting cases like non–positive
Schrödinger operators −∆ + V (x), see [26].

However, the converse implication may be false. An example is given by
the fractional Laplacian L = (−∆)α, α > 0. It was proved in [12] that for
α > bn/2c+ 1, L satisfies (4) and (5) for p0 = 1 and m = 2α, but not (6).

Moreover, the estimate (6) does not imply the condition (4). However, if
we assume in addition that (X, d, µ) satisfies the non-collapsing condition

(7) µ(B(x, 1)) & 1, ∀x ∈ X,

then (4) is a consequence of (6).

Then we can prove:

Theorem 1.1. Assume L satisfies (L0). Let p ∈ [p0, p
′
0] and s = n

∣∣∣12 − 1
p

∣∣∣.
Then the estimate

‖e−itLϕ(L)f‖p . (1 + |t|)s‖f‖p, t ∈ R
holds uniformly for ϕ in bounded subsets of S (R).

Remark 1.2. The previous result is still valid for functions ϕ of Sobolev
regularity. More precisely, the estimate is true and uniform in ϕ provided
the following norm

(8)
∑
j≤n+1

‖〈λ〉2+n+j+n/m1ϕ(j)(λ)‖L2 .

remains bounded. This condition is not sharp; see Remark 2.2 for further
details.

We now examine a few directions in which one can relax the assumptions
of Theorem 1.1. In order to do this we introduce some definitions. The
amalgam space X1,p

ν , with 1 ≤ p ≤ ∞ and ν ∈ Z, is the space of measurable
functions on X such that the following norm is finite:

(9) ‖f‖
X1,p
ν

:=
∑
Q∈Dν

‖f‖Lp(Q).

Moreover, we say that w : X×X→ R is a weight function if it is equivalent
to the distance function, in the sense that

(10) K−1
0 d(x, y) ≤ |w(x, y)| ≤ K0d(x, y)
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for some constant K0 > 0. Denoting by wx the multiplication operator
by the function w(x, ·), for any linear operator T on L2(X), we define its
commutators of order k with the weight w as follows:

Ad0
x(T ) = I, Ad1

x(T ) = [wx, T ], Adk+1
x (T ) = [wx,Adkx(T )].

In view of the applications, we shall also consider a more general kind of
vector valued weight functions w = (w1, . . . , w`) : X×X→ R`, defined again

by condition (10) (where now |w| = (w2
1 + · · ·+w2

` )
1/2). In the vector valued

case Adkx(T ) will denote the `–tuple of commutators with w1, . . . , w`, that
is to say we define for j = 1, . . . , `

Ad0
j,x(T ) = I, Ad1

j,x(T ) = [wj,x, T ], Adk+1
j,x (T ) = [wj,x,Adkx(T )].

(where wj,x is multiplication by wj(x, ·)) and Adkx(T ) := (Adk1,x(T ), . . . ,Adk`,x(T )).
Note that the simplest choice of a weight satisfying (10) is given by the dis-
tance function itself, with ` = 1.

We can now state our second set of assumptions on L:

Assumption (L): L is a selfadjoint operator on L2(X) with L+M0 ≥ 0
for some constant M0 ≥ 0, satisfying the following estimates. There exist
p0 ∈ [1, 2), m1,m2 > 0 and C ≥ 0 such that for all t > 0 and ν ∈ Z with

either 2−ν ≤ t1/m1 < 2−ν+1, 0 < t < 1 or 2−ν ≤ t1/m2 < 2−ν+1, t ≥ 1 we
have

(11) ‖e−tL‖
X

1,p0
ν →X1,2

ν
+ ‖e−tL‖

X1,2
ν →X

1,p′0
ν

≤ CeM0t(t
n
m1
>1 + t

κ
m2
≤1 )

1
2
− 1
p0

where t>1 = t · 1(1,+∞)(t) and t≤1 = t · 1(−∞,1](t). Moreover, there exists
a weight function w(x, y) and a constant M1 > M0 such that the resolvent
R(z) = (L+ z)−1 satisfies, for all x ∈ X,

(12) ‖Adkx(R(M1))‖2→2 ≤ C 0 ≤ k ≤ bn/2c+ 1.

Remark 1.3. The reason why condition (12) is interesting, besides being
much weaker than (5), is that it is very easy to check directly for differ-
ential operators, and even some pseudodifferential ones, in the euclidean
setting. Indeed, by elementary computations one can write Adkx(R) as a
linear combination of terms

(13) R Adk1x (L) R Adk2x (L) . . . R AdkNx (L) R

with k ≥ ki, N ≥ 1 and k1 + · · · + kN = k. Then, if we choose as weight
function w(x, y) = x − y : R2n → Rn (with the choice ` = n) and L is a
magnetic Schrödinger operator

L = (i∇+A(x))2 + V (x),

with magnetic potential A = (A1, . . . , An) and electric potential V (x), we
have

Ad1
x(L) = 2∇+ 2iA, Ad2

x(L) = (2, . . . , 2)

and
Adjx(L) = 0 for j ≥ 2.

The vector of operators Ad2
x(L)R is obviously bounded on L2; since R is

also bounded from L2(Rn) to H1(Rn), if the magnetic potential satisfies

‖Af‖L2 . ‖f‖H1
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then also Ad1
x(L)R is bounded on L2 and condition (L) is satisfied. For

instance, in dimension n ≥ 3 it is sufficient to assume that |A| ≤ C+C|x|−1,
thanks to Hardy’s inequality.

Then we can prove:

Theorem 1.2. Assume L satisfies (L). Let p ∈ [p0, p
′
0] and let s = n

∣∣∣12− 1
p

∣∣∣.
Then the estimate

‖e−itLϕ(L)f‖p . (1 + |t|)s‖f‖p, t ∈ R
holds uniformly for ϕ in bounded subsets of S (R).

Remark 1.4. Comparing the two sets of assumptions we see that

Assumption (L0) =⇒ Assumption (L).

Indeed, the implication

condition (4) =⇒ condition (11)

is obviously true. On the other hand, one has

condition (5) =⇒ condition (12), with w(x, y) = d(x, y),

but this is more delicate and will be proved in Propositions 2.4 and 2.5
below.

One notices that estimate (1) for the standard Laplacian is uniform also
for rescaling in frequency ∼ 2k, k ∈ Z. This is a direct consequence of the
scaling properties of Rn and its Lebesgue measure, which are not available
on a general metric measure space X. Uniformity in frequency is an impor-
tant property, especially useful when doing dyadic analysis on Sobolev or
Besov spaces generated by the operator L. We can recover uniformity under
slightly stronger assumptions on the operator L:

Assumption (L1): L is a selfadjoint operator on L2(X), with L+M0 ≥ 0
for some constant M0 ≥ 0, satisfying condition (11) with m1 = m2 = m > 0.
Moreover, there exists a weight function w(x, y) such that the resolvent
R(z) = (L+ z)−1 satisfies, for all 0 ≤ j ≤ bn/2c+ 1,

(14) ‖Adjx(R(M))‖2→2 ≤ C(M −M0)−1− j
m , ∀M > M0, x ∈ X.

Remark 1.5. Note that when m1 = m2 the following implication holds:

Assumption (L0) =⇒ Assumption (L1) (with w(x, y) = d(x, y))

(compare with Remark 1.4). This is proved in Propositions 2.4 and 2.5
below.

Under this assumption we can prove:

Theorem 1.3. Assume L satisfies Assumption (L1). Let p ∈ [p0, p
′
0] and

let s = n
∣∣∣12 − 1

p

∣∣∣. Then we have

‖e−itLϕ(θL)f‖p . (1 + θ|t|)s‖f‖p, t ∈ R,
and the estimate is uniform for ϕ in bounded subsets of S (R) and θ in
bounded subsets of (0,+∞). In the special case when κ = n and M0 = 0 the
estimate is uniform for all θ > 0.
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Remark 1.6. Like for Theorems 1.1 and 1.2, the previous estimate is valid
and uniform in the more general case of functions ϕ varying in any bounded
subset for the weighted Sobolev norm (8).

As an intermediate step in the proof of the previous Theorems, we obtain
uniform Lp estimates for operators of the form ϕ(L) which are of indepen-
dent interest, see Theorem 2.12. (This result can be recovered from the
statement of Theorem 1.3 choosing t = 0).

Our results are based on a commutator argument and a reduction to amal-
gam spaces, following the methods of Jensen–Nakamura [17]. The adapta-
tion of the argument from [17] to a multi–scale setting was introduced in
[12] and was inspired by the ideas of [29]. Moreover, our approach can be
adapted to study the Lp-boundedness for Schrödinger group on an open
subset of the space of homoegeneous type X.

We finally consider a selfadjoint operator L on L2(Ω), where Ω is an open
subset of X. This case can not be reduced to the previous results since Ω may
not satisfy the doubling condition. However, if we assume that L+M0 ≥ 0
for some M0 ≥ 0 and the kernel pt(x, y) of heat semigroup e−tL satisfies the
following estimate: ∃C ≥ 0, m > 1 such that

(15) |pt(x, y)| ≤ CeM0t

µ(B(x, t1/m))
exp

(
− d(x, y)m/(m−1)

ct1/(m−1)

)
for all t > 0 and x, y ∈ Ω, then we can prove:

Theorem 1.4. Let L be a nonnegative self-adjoint operator on L2(Ω), where
Ω is an open subset of X. Assume that L satisfies (15). Let p ∈ [1,∞] and

let s = n
∣∣∣12 − 1

p

∣∣∣. Then we have

‖e−itLϕ(θL)f‖Lp(Ω) . (1 + θ|t|)s‖f‖Lp(Ω), t ∈ R,

and the estimate is uniform for ϕ in bounded subsets of S (R) and θ in
bounded subsets of (0,+∞). In the special case κ = n and M0 = 0 the
estimate is uniform for all θ > 0.

The proofs of the Theorems, and some additional estimates, are given in
the next section. The third, and final, section of the paper is devoted to
an extensive list of applications: we consider Laplace–Beltrami operators
on Riemannian manifolds with or without Gaussian heat kernel bounds;
the operator associated to the Sierpinski gasket; Hörmander type opera-
tors generated by vector fields on homogeneous groups; Bessel operators;
Schrödinger operators with potentials on manifolds; euclidean Schrödinger
operators with singular potentials of inverse square type; the sub-Laplacian
on Heisenberg groups; and Dirichlet Laplacian on Lipschitz domains. The
list is not exhaustive and is intended to show the variety of possible appli-
cations and the generality of Assumption (L).

2. Proof of the theorems

With the notation V (x, r) = µ(B(x, r)), the doubling property (2) implies
the existence of C > 0 and n > 0 such that

(16) V (x, λr) ≤ CλnV (x, r), ∀λ > 0, x ∈ X,



SHARP Lp ESTIMATES FOR SCHRÖDINGER GROUPS 7

and

(17) V (x, r) ≤ C
(

1 +
d(x, y)

r

)n
V (y, r), ∀r > 0, x, y ∈ X.

As a consequence of (17), we have V (x, r) ' V (y, r) when d(x, y) ≤ r.
We recall the fundamental covering lemma from [8]:

Lemma 2.1. There exists a collection of open sets {Qkτ ⊂ X : k ∈ Z, τ ∈ Ik},
where Ik denotes certain (possibly finite) index sets depending on k, and
constants ρ ∈ (0, 1) c0 ∈ (0, 1] and C0, C1 ∈ (0,∞) such that

(i) µ(X\ ∪τ Qkτ ) = 0 for all k ∈ Z;
(ii) if ` ≥ k and τ ∈ I`, β ∈ Ik, then either Q`τ ⊂ Qkβ or Q`τ ∩Qkβ = ∅;

(iii) for k ∈ Z, τ ∈ Ik and each ` < k, there exists a unique τ ′ ∈ I` such
that Qkτ ⊂ Q`τ ′;

(iv) the diameters of the sets satisfy diam (Qkτ ) ≤ C1ρ
k;

(v) for k ∈ Z, τ ∈ Ik there exists xQkτ ∈ X such that

B(xQkτ , c0ρ
k) ⊂ Qkτ ⊂ B(xQkτ , C0ρ

k).

Remark 2.1. (a) The constants ρ, c0 and C0 are inessential for our purposes,
thus, without loss of generality, we may assume that ρ = a0 = 1/2 and
C0 = 1. We then fix a collection of open sets in Lemma 2.1 and denote this
collection by D. We call these open sets the dyadic cubes in X and xQkτ the

center of the cube Qkτ . We also write Dν := {Qντ : τ ∈ Iν} for each ν ∈ Z.
We have then `Q := diam Q ∼ 2−ν for all Q ∈ Dν .

(b) From the doubling property (16), there exists a constant C such that
for any x ∈ X and k ∈ N there are at most C2kn dyadic cubes in D0 which
cover the ball B(x, 2k).

2.1. Amalgam spaces. For 1 ≤ p, q ≤ ∞ and ν ∈ Z, we define the space
Xp,q
ν as the vector space of all measurable functions f : X → C such that

the following norm is finite:

(18) ‖f‖Xp,q
ν

:=
( ∑
Q∈Dν

‖f‖pLq(Q)

)1/p

with the usual modification when p =∞. We also write Xp,q = Xp,q
0 .

The following embedding holds:

Proposition 2.2. For 1 ≤ p ≤ q ≤ ∞ and ν ∈ Z we have

‖f‖Xp,q ≤ C
(

1 + 2
−νn( 1

p
− 1
q

)
)
‖f‖Xp,q

ν

where C depends only on the constant c1 in the doubling property (2).

Proof. The proof of this proposition is elementary and we leave it to the
reader. �

Recall that Adjx(T ) denotes the j-th order commutator of an operator T
with the weight function wx(·) = w(x, ·), w : X× X→ R`, satisfying (10).

Theorem 2.3. Let T be a bounded operator on L2(X). Assume that for
some constant B0 ≥ 1 one has

‖Adkz(T )‖2→2 ≤ Bk
0 for all 0 ≤ k ≤ bn/2c+ 1 and all z ∈ X.
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Then for 1 ≤ p ≤ 2 we have

‖T‖Xp,2→Xp,2 ≤ CBn(1/p−1/2)
0

where C is a constant depending only on n, ‖T‖2→2 and K0 (from (10)).

Proof. We first note that the L2-boundedness of T implies

‖T‖
X2,2
ν0
→X2,2

ν0
≤ C.

Hence, by interpolation it suffices to prove that

‖T‖X1,2→X1,2 ≤ CBn/2
0 .

To prove this, let w = (w1, . . . , w`) be the weight function and recall that

Adkj,z(T ) denotes the commutator of order k with multiplication by wj,z :=
wj(z, ·). We use a combinatorial identity from [17, Lemma 3.1] and we write

(19) wmj,zT =
m∑
k=0

cm,kAdkj,z(T )wm−kj,z , j = 1, . . . , `

where cm,k are appropriate constants. Denote also by dz the multiplication
operator by d(z, ·). Then, we have for every xQ with Q ∈ D0 and N,m ∈ N
with 0 ≤ m ≤ N ≤ bn/2c+ 1,

‖|wj,xQ |
mT [1 + dxQ ]−N‖2→2 ≤

m∑
k=0

cm,k‖Adkj,xQ(T )‖2→2‖wm−kj,xQ
[1 + dxQ ]−N‖2→2

≤ CBm
0

since |wj | is dominated by d. Summing over j = 1, . . . , ` and recalling (10)
we obtain, for 0 ≤ N ≤ bn/2c+ 1,

(20)
∥∥[1 + dxQ ]NT [1 + dxQ ]−N

∥∥
2→2
≤ CBN

0 .

This implies

(21)
∥∥∥dNxQT1Q

∥∥∥
2→2
≤ CBN

0 , ∀Q ∈ D0.

Let f ∈ X1,2. For each cube Q, write fQ = f1Q. Then we have

‖Tf‖X1,2 =
∑
Q′∈D0

‖1Q′Tf‖2 ≤
∑
Q∈D0

∑
Q′∈D0

‖1Q′TfQ‖2.

Let now α ≥ 1 be a constant which will be precised later. For each Q ∈ D0

we can write

(22)
∑
Q′∈D0

‖1Q′TfQ‖2 = I + II

where

I =
∑

Q′:d(xQ,xQ′ )>α

d(xQ, xQ′)
−Nd(xQ, xQ′)

N‖1Q′TfQ‖2,

II =
∑

Q′:d(xQ,xQ′ )≤α

‖1Q′TfQ‖2.

On the other hand, by Remark 2.1 we get

(23) ]{Q′ ∈ D0 : d(xQ, xQ′) ≤ α} . αn.
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This, in combination with Hölder’s inequality, implies that

II ≤
( ∑
Q′:d(xQ,xQ′ )≤α

1
)1/2( ∑

Q′:d(xQ,xQ′ )≤α

‖1Q′TfQ‖22
)1/2

. αn/2‖TfQ‖2

. αn/2‖T‖2→2‖fQ‖2.
Similarly,

I ≤
( ∑
Q′:d(xQ,xQ′ )≥α

d(xQ, xQ′)
−2N

)1/2( ∑
Q′:d(xQ,xQ′ )≥α

d(xQ, xQ′)
2N‖1Q′TfQ‖22

)1/2

.
( ∑
Q′:d(xQ,xQ′ )≥α

d(xQ, xQ′)
−2N

)1/2
‖d(·, xQ)NTfQ‖2

which along with (21) and (23) yields

I . α−N+n/2BN
0 ‖fQ‖2

provided that N > n/2.
Inserting the estimates of I and II into (22) and taking α = B0, we obtain∑

Q′∈D0

‖1Q′TfQ‖2 . (1 + ‖T‖2→2) ·B
n
2
0 ‖fQ‖2.

Therefore,

‖Tf‖X1,2 . (1 + ‖T‖2→2) ·B
n
2
0 ‖f‖X1,2 .

On the other hand, since T is bounded on L2, we have

‖Tf‖X2,2 . ‖T‖2→2‖f‖X2,2 .

Interpolating between the two estimates we get the claim. �

We conclude this section by proving that assumption (5) implies (12) and
(14), as stated in the Introduction.

Proposition 2.4. Let the weight function be w(x, y) = d(x, y). Assume that
L is a self-adjoint operator in L2(X) with L + M0 ≥ 0 for some M0 ∈ R,
satisfying the following condition: there exist p0 ∈ [1, 2), m1,m2 > 0 and

C ≥ 0 such that for all t > 0 and ν ∈ Z with either 2−ν ≤ t1/m1 < 2−ν+1, 0 <
t < 1 or 2−ν ≤ t1/m2 < 2−ν+1, t ≥ 1 we have
(24)

sup
Q′∈Dν

∑
Q∈Dν

(1+2νdist(Q,Q′))N‖1Qe−tL1Q′‖2→2 ≤ CeM0t, N = bn/2c+1.

Then there exist C1 ≥ 0 such that for all t and ν as above we have

(25) ‖Adkx(e−tL)‖2→2 ≤ C1e
M0t2−kν , 0 ≤ k ≤ bn/2c+ 1, x ∈ X.

Proof. By considering the nonnegative operator L̃ = L + M0 instead of L,
we see that we can assume M0 = 0. If pt(x, y) is the kernel of the heat
semigroup e−tL we obtain the representation

Adkz(e
−tL)f(x) =

∫
X

(dz(x)− dz(y))kpt(x, y)f(y)dµ(y)
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and our goal is to prove that the operator

Af(x) = 2νk
∫
X

(dz(x)− dz(y))kpt(x, y)f(y)dµ(y)

for 0 < t < 1 and 2−ν ≤ t1/m1 < 2−ν+1, or for t ≥ 1 and 2−ν ≤ t1/m2 <
2−ν+1, satisfies ‖A‖2→2 ≤ C with C independent of ν.

We shall now prove the estimate

(26) sup
Q′∈Dν

∑
Q∈Dν

‖1QA1Q′‖2→2 ≤ C1

with constants independent of ν. This implies the dual estimate

sup
Q′∈Dν

∑
Q∈Dν

‖1Q′A1Q‖2→2 ≤ C1

and by the Schur test for sequences the two estimates together imply that
A is bounded on Xp,2

ν with norm not larger than C1, for all p ∈ [1,∞] and

all ν ∈ Z. Since L2 = X2,2
ν for all ν ∈ Z, this concludes the proof.

It remains to prove (26). We write the kernel of 1QA1Q′ as

1QA1Q′(x, y) = 2νk(dz(x)− dz(y))k1Q(x)pt(x, y)1Q′(y)

and we use the estimate

|dz(x)− dz(y)| ≤ d(xQ, xQ′) + d(x, xQ) + d(y, xQ′), x ∈ Q, y ∈ Q′

where Q ⊂ B(xQ, 2
−ν) and Q′ ⊂ B(xQ′ , 2

−ν) according to Remark 2.1. We
now expand

|1QA1Q′(x, y)| ≤
∑

α+β+γ=k

k!
α!β!γ!(2

νd(xQ, xQ′))
α(2νd(x, xQ))β1Q(x)pt(x, y)1Q′(y)(2νd(y, xQ′))

γ .

We have trivially

‖(2νd(x, xQ))β1Q‖2→2 ≤ C ‖(2νd(y, xQ′))
γ1Q‖2→2 ≤ C,

and recalling assumption (24) we see that the proof is concluded. �

From condition (25) it is fairly easy to deduce (12), thus concluding the
proof of the implication (5) ⇒ (12), (14).

Proposition 2.5. Let the weight function be w(x, y) = d(x, y). Assume L
satisfies (25) and L+M0 ≥ 0. Then for all M > M0 we have, for all z ∈ X

and 0 ≤ k ≤ bn/2c+ 1,

(27) ‖Adkz((L+M)−1)‖2→2 . (M −M0)
−1− k

m1 + (M −M0)
−1− k

m2

with a constant independent of z,M .

Proof. By spectral calculus we can represent R = (M + L)−1 in the form

R = (M + L)−1 =
∫∞

0 e−Mte−tLdt

which implies
Adkz(R) =

∫∞
0 e−MtAdkz(e

−tL)dt.

By assumption (25), since 2−ν ' t
1/m2 for t < 1 and 2−ν ' t

1/m1 for t > 1,
we obtain

‖Adkz(R)‖2→2 .
∫ 1

0 e
(M0−M)ttk/m2dt+

∫ +∞
1 e(M0−M)ttk/m1dt

and the claim follows easily. �
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2.2. Estimates for the heat semigroup. The following result gives an
estimate for the semigroups e−tL on almagam spaces which plays an impor-
tant role in the sequel.

Proposition 2.6. For every t > 0 we have

‖e−tLf‖Lp0→Xp0,2 ≤ CeM0t
(
t
− n
m1

( 1
p0
− 1

2
)

+ t
n−κ
m2

( 1
p0
− 1

2
))

where C depends only on the constants C in assumption (11) and c1 in (2).

Proof. By redefining L̃ = L+M0, we see that it is not restrictive to assume
M0 = 0. Now fix ν ∈ Z and t > 0 such that either 2−ν ≤ t1/m1 < 2−ν+1, 0 <
t < 1 or 2−ν ≤ t1/m2 < 2−ν+1, t ≥ 1. By assumption (11), using duality we
have

‖e−tL‖
X
∞,p0
ν →X∞,2ν

≤ C
(
2
νκ( 1

p0
− 1

2
)

+ 2
νn( 1

p0
− 1

2
))

and interpolating with (11) we have, for all 1 ≤ p ≤ ∞,

‖e−tL‖
X
p,p0
ν →Xp,2

ν
≤ C

(
2
νκ( 1

p0
− 1

2
)

+ 2
νn( 1

p0
− 1

2
))

We choose p = p0 and notice that Xp0,p0
ν = Lp0 ; thus we have proved

‖e−tL‖
Lp0→Xp0,2

ν
≤ C

(
2
νκ( 1

p0
− 1

2
)

+ 2
νn( 1

p0
− 1

2
))

By the embedding in Proposition 2.2 this implies

‖e−tL‖Lp0→Xp0,2 ≤C
(
2
νκ( 1

p0
− 1

2
)

+ 2
νn( 1

p0
− 1

2
))(

1 + 2
−νn( 1

p0
− 1

2
))

' 2
ν(κ−n)( 1

p0
− 1

2
)

+ 2
νn( 1

p0
− 1

2
)

and recalling the conditions on t, we obtain the claim. �

As a consequence we obtain the following result.

Proposition 2.7. Let M > M0 and γ = n
m1

( 1
p0
− 1

2) + ε, with ε > 0. Then

‖(M + L)−γf‖Xp0,2 ≤ C
(
ε−1 + (M −M0)

γ+n−κ
m2

( 1
p0
− 1

2
)
)
‖f‖p0

where C depends only on the constants C in assumption (11) and c1 in (2).

Proof. It is sufficient to apply Minkowski’s inequality and Proposition 2.6
to the standard representation

(28) (M + L)−γ =
1

Γ(γ)

∫ ∞
0

tγe−Mte−tL
dt

t
.

�

2.3. Estimate of ϕ(L). We shall now prove that if ϕ is in a suitable
weighted Sobolev space then ϕ(L) is bounded on Lp. The proof will be
achieved through a series of Lemmas, some of which are of independent
interest.

In the following, L is an operator satisfying Assumption (L), and we can
take R as the resolvent operator

R = (M1 + L)−1

with M1 > M0 as in (L).
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Lemma 2.8. We have the estimate

‖e−iξRf‖Xp0,2 ≤ c(n)C(1 + |ξ|)n(1/p0−1/2)‖f‖
Xp0,2

, ξ ∈ R

where C is the constant in assumption (12) and c(n) depends only on n.

Proof. From

e−iξRwz(·)eiξR − wz(·) =

∫ ξ

0
∂s(e

−isRwz(·)eisR)ds

we obtain the formula

Adz(e
−iξR) = −i

∫ ξ

0
e−isRAdz(R)e−i(ξ−s)Rds

and by (12) we get

‖Ad1
z(e
−iξR)‖2→2 ≤ C|ξ|,

Using repeatedly this identity and proceeding by induction we obtain

‖Adkz(e
−iξR)‖2→2 ≤ C(1 + |ξ|)k, k = 0, . . . , bn/2c+ 1

uniformly in z ∈ X, and by Theorem 2.3 we obtain the claim. �

Lemma 2.9. For any sufficiently smooth function ψ on R we have the
estimate

(29) ‖ψ(R)f‖Xp0,2 ≤ c(n)C‖(1 + |ξ|)n(1/p0−1/2)ψ̂(ξ)‖L1‖f‖Xp0,2

with c(n), C as in Lemma 2.8.

Proof. It is sufficient to use the identity

ψ(R) = (2π)−1

∫
eiξRψ̂(ξ)dξ

and apply the previous result. �

We introduce a seminorm for functions ψ : R → C, depending on the
constant M1 ≥ 0 and on the integer N ≥ 0:

|||ψ|||N := ‖ψ‖L2(−M1,∞) +
∑N

j=0 ‖(λ+M1)j+N∂jψ(λ)‖L2(−M1,∞).

Lemma 2.10. Let N = bn/p0c+ 1 and ψ : R→ C. Then we have

(30) ‖(L+M1)2ψ(L)f‖Xp0,2 ≤ c(n)C|||ψ|||N · ‖f‖Xp0,2

with c(n), C as in Lemma 2.8.

Proof. Define ρ(ξ) := 0 for ξ ≤ 0, and

ρ(ξ) := ξ−2 · ψ(1
ξ −M1) for ξ > 0

and note that (λ + M1)2ψ(λ) = ρ((M1 + λ)−1) for λ in the spectrum of L,
so that (L+M1)2ψ(L) = ρ(R). By the previous result we get

‖(L+M1)2ψ(L)f‖Xp0,2 ≤ c(n)C‖(1 + |ξ|)n(1/p0−1/2)ρ̂(ξ)‖L1‖f‖Xp0,2 .

It remains to estimate the norm of ρ. We proceed as follows:

‖(1 + |ξ|)n(1/p0−1/2)ρ̂(ξ)‖L1 . ‖(1 + |ξ|)N ρ̂‖L2 = ‖ρ‖HN (R+).

We note the elementary identity for ξ > 0, k ≥ 0

∂kξ ρ(ξ) =
∑k

j=0 cj,k · ∂jψ(1
ξ −M1) · ξ−(j+k+2)
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(for suitable constants cj,k). This gives

‖∂kξ ρ‖L2(0,∞) ≤ c(n)
∑k

j=0 ‖(λ+M1)j+k∂jψ(λ)‖L2(−M1,∞).

Using the last estimate for k = 0 and k = N we obtain

‖ρ‖HN (R+) ≤ c(n)‖ψ‖L2(−M1,∞)+c(n)
∑N

j=0 ‖(λ+M1)j+N∂jψ(λ)‖L2(−M1,∞)

and we obtain the claim. �

Lemma 2.11. Let N = bn/p0c + 1, β ≥ 0 with β + 2 > n
m1

( 1
p0
− 1

2) and

ψ : R→ C. Then for p ∈ [p0, p
′
0] we have the estimate

(31) ‖ψ(L)f‖Lp . ‖f‖Lp .

The norm of ψ(L) : Lp → Lp can be estimated by

(32) C(1 + (M1 −M0)
β+2+n−κ

m2
( 1
p0
− 1

2
)
)|||(λ+M1)βψ(λ)|||N

where C depends on c1 in the doubling property (2), on supQ∈Q0
µ(Q) and

on the constants in Assumption (L), but is independent of M0,M1,ψ.

Proof. We apply the previous Lemma to the function ψ̃(λ) = (λ+M1)β+2ψ(λ):

‖ψ̃(L)f‖Xp0,2 = ‖(L+M1)2ψ(L)(L+M1)βf‖Xp0,2

≤ c(n)C|||(λ+M1)βψ|||N‖f‖Xp0,2 .

Since ψ(L) = ψ̃(L)Rβ+2, we can write, using Proposition 2.7,

‖ψ(L)f‖Xp0,2 ≤ ‖ψ̃(L)‖Xp0,2→Xp0,2‖Rβ+2f‖Xp0,2 . ‖ψ̃(L)‖Xp0,2→Xp0,2‖f‖Lp0

where the implicit constant has the form

C(1 + (M1 −M0)
β+2+n−κ

m2
( 1
p0
− 1

2
)
)

with C depending on c1 in the doubling property (2) and on the constants
in Assumption (L), but independent of M0,M1. Since Xp0,2 is continu-

ously embedded in Lp0 with embedding norm ≤ supQ∈Q0
µ(Q)

1
p0
− 1

2 , we have
proved that ψ(L) is bounded on Lp0 with the same norm. By duality and
interpolation we condlude the proof. �

Remark 2.2. The dependence on ψ of the norm of ψ(L) is particularly inter-
esting. The quantity |||(λ+M1)βψ(λ)|||N is uniformly bounded if ψ varies in a
bounded subset of C∞c (R) or of S (R), and M1 is bounded. More generally,
we can write

|||(λ+M1)βψ(λ)|||N . ‖λβψ(λ−M1)‖L2(R+)+
∑N

j=0 ‖λj+N+β∂jψ(λ−M1)(λ)‖L2(R+)

and we see that the quantity is uniform for ψ varying in any bounded subset
of a suitable weighted Sobolev space, provided M1 is bounded (which is
always the case in our applications). For instance, we can take the weighted
Sobolev space with norm

(33)
∑
j≤n+1

‖〈λ〉2+n+j+n/m1ψ(j)(λ)‖L2 .
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Theorem 2.12. Under Assumption (L) the following estimate holds: for
all p ∈ [p0, p

′
0],

‖ϕ(L)f‖Lp ≤ C‖f‖Lp
and the estimate is uniform for ϕ in bounded subsets of S (R) (or, more
generally, in bounded subsets for the norm (33)).

If the stronger Assumption (L1) holds, then for all θ > 0 we have

‖ϕ(θL)f‖Lp ≤ C‖f‖Lp
and the estimate is uniform for ϕ in bounded subsets of S (R) (or, more
generally, in bounded subsets for the norm (33)) and θ in bounded subsets
of (0,+∞). If in addition we assume κ = n and M0 = 0, then the estimate
is uniform for all θ > 0.

Proof. The first claim is just a special case of the previous Lemma. Thus
we assume that (L1) holds and we focus on the second claim. Clearly it is
sufficient to prove the result for all θ > 0 of the form

θ = 2−mγ for some γ ∈ Z.
Thus we fix a θ = 2−mγ > 0 and define a new metric measure space (X, d, µ)
by multiplying d and µ by fixed constants, as follows:

X = X, d = 2γd, µ = 2nγµ.

Note the relation
‖u‖Lp(X,dµ) = 2

nγ
p ‖u‖Lp(X,dµ).

Writing
Dν = Dν+γ

we see that the Dν form a collection of dyadic cubes for the space X, and
with respect to the new distance d we have diam Q ∼ 2−ν for all Q ∈ Dν .
Then if we define the amalgam spaces X

p,q
ν as in (18) but with Dν instead

of Dν and with the Lq(Q) norms computed in the measure µ, we get

‖f‖Xp,q
ν

= 2
nγ
q ‖f‖Xp,q

ν+γ
.

Next, we denote by L the operator θL, which is selfadjoint on L2(X) and
satisfies L+M0 ≥ 0 with M0 = θM0. To prove the claim, it will be sufficient
to prove that the operator L satisfies the conditions of Assumption (L), with
constants independent of θ in the prescribed range. By the first part of the
Theorem, the claim will follow.

Fix a t > 0 and ν ∈ Z as in condition (11) with m1 = m2 = m, i.e.,

2−ν ≤ t1/m < 2−ν+1.

Consider the first term in (11) (the second one is handled in a similar way):

‖e−tL‖
X

1,p0
ν →X1,2

ν
= ‖e−(θt)L‖

X
1,p0
ν+γ→X

1,2
ν+γ
· 2nγ( 1

2
− 1
p0

)
;

using assumption (11) (with m1 = m2 = m), since 2−(ν+γ) ≤ (θt)1/m =

2−γt < 2−(ν+γ)+1 we get

≤ CeM0(θt)((θt)
n
m ∧ (θt)

κ
m )

1
2
− 1
p0 · 2nγ( 1

2
− 1
p0

)

= CeM0t(t
n
m ∧ t

κ
m · 2(n−κ)γ)

1
2
− 1
p0 .
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Thus we see that the operator L also satisfies condition (11) with m1 =
m2 = m. Note that the estimate is uniform in γ provided γ ≥ γ0 for some
fixed γ0, or equivalently, provided θ is bounded from above; moreover, M0

is also uniformly bounded from above. It is also clear that if κ = n and
M0 = 0 the condition is uniform for all γ ∈ Z, i.e., for all θ > 0.

It remains to check condition (12); we choose as weight function

w(x, y) = 2γw(x, y).

Writing Ad
j
x for the commutators with the new weight function w, we have

Ad
j
x((L+M)−1) = 2mγ2jγAdjx((L+ 2mγM)−1)).

By (14) we have then

‖Ad
j
x((L+M)−1)‖2→2 ≤ C2mγ2jγ(2mγM −M0)−1− j

m

provided 2mγM > M0. Now, if γ ≥ γ0 is bounded from below, we can
choose M = M1 = 2−mγ0(M0 + 1) and we get

≤ C2mγ2jγ(2m(γ−γ0))−1− j
m ≤ C ′

for some constant independent of γ. Note that if M0 = 0 we have

‖Ad
j
x((L+M)−1)‖2→2 ≤ C2mγ2jγ(2mγM)−1− j

m = CM−1− j
m

for all M > 0, thus we can pick simply M1 = 1 without restrictions on
γ ∈ Z. The proof is concluded. �

2.4. Proof of Theorems 1.2, 1.3 and 1.4. We keep using the notation

Adx(A) = [wx, A], Adkx(A) = [wx,Adk−1
x (A)]

for a generic operator A and a R` valued weight function wx(·) = w(x, ·).

Lemma 2.13. For any k ≥ 1 and z ∈ X the following identities hold:

Adz(R
2ke−itL) =

=
k∑

α=0

RαAdz(R)e−itLR2k−α−1 +
k∑

α=0

R2k−α−1e−itLAdz(R)Rα+

+ i

∫ t

0
e−isLRk−1Adz(R)Rk−1ei(s−t)Lds,

Adz(R
2k+1e−itL) =

=

k∑
α=0

RαAdz(R)e−itLR2k−α +

k+1∑
α=0

R2k−αe−itLAdz(R)Rα+

+ i

∫ t

0
e−isLRk−1Adz(R)Rkei(s−t)Lds.

Proof. The first identity is proved by induction on k. From

e−itLwz(·)eitL − wz(·) =

∫ t

0
∂s(e

−isLwz(·)eisL)ds
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we obtain the formula

Adz(e
−itL) = −i

∫ t

0
e−isLAdz(L)ei(s−t)Lds.

Since RAdz(L)R = −Adz(R), we get

Adz(Re
−itLR) = Adz(R)e−itLR+e−itLRAdz(R)+i

∫ t

0
e−isLAdz(R)ei(s−t)Lds

which is the first formula for k = 1. To prove the step k → k + 1 we write

Adz(R · (R2ke−itL) ·R) = Adz(R)e−itLR2k+1 +R2k+1e−itLAdz(R) + I

where
I = R ·Adz(R

2ke−itL) ·R
and using the inductive assumption for the case k we easily obtain the claim.
The second formula is deduced from the first one writing

Adz((R
2ke−itL) ·R) = Adz(R

2ke−itL)R+R2ke−itLAdz(R).

�

Lemma 2.14. For 0 ≤ ` ≤ k and 1 ≤ k ≤ bn/2c+ 1 we have

‖Ad`z(R
2ke−itL)‖2→2 ≤ C(1 + |t|)`

with C independent of z ∈ X and t ∈ R.

Proof. We proceed by induction on k = 1, . . . , bn/2c + 1. When k = 1,
recalling the formulas from the previous Lemma and assumption (12), we
obtain the claim immediately. Assume now the result is true for a certain
k and let us prove it for k + 1. If ` = 1 the estimate follows again from the
first identity in the previous Lemma. If the estimate is true for some ` < k,
we prove it for `+ 1 writing

Ad`+1
z (R2ke−itL) = Ad`z(Adz(R

2ke−itL)),

expanding the term Adz(R
2ke−itL) via the first identity of the previous

Lemma, and distributing the adjoint via the formula

Ad`z(A1 . . . An) =
∑

j1+···+jn=`

`!

j1! . . . jn!
Adj1z (A1) . . .Adjnz (An).

It is easy to check that all the terms obtained are bounded operators on L2,
either using the inductive assumption or (12). The proof is concluded. �

Lemma 2.15. Let k = bn/2c+ 1. Then we have the estimates

‖R2ke−itL‖Xp0,2→Xp0,2 ≤ C(1 + |t|)n(1/p0−1/2)

and, for all p ∈ [p0, p
′
0] and β > n

m1
( 1
p0
− 1

2),

‖R2k+βe−itL‖Lp→Lp ≤ C(1 + |t|)n|1/p−1/2|.

Proof. The first result is a direct application of Lemma 2.14 and Theorem
2.3. Moreover, by Proposition 2.7 we have

‖R2k+βe−itL‖Xp0,2→Lp0 . ‖R2ke−itL‖Xp0,2→Xp0,2‖Rβ‖Xp0,2→Lp0 . (1+|t|)n(1/p0−1/2)

and by the embedding Xp0,2 ⊂ Lp0 we obtain

‖R2k+βe−itL‖Lp0→Lp0 . (1 + |t|)n(1/p0−1/2).
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Finally, by duality and interpolation, we obtain the second claim. �

We can now conclude the proof of our main results (Theorems 1.2 and
1.3):

Theorem 2.16. Assume that L satisfies (L). Let p ∈ [p0, p
′
0] and s =

n
∣∣∣12 − 1

p

∣∣∣. Then we have the following estimate

‖e−itLϕ(L)f‖p . (1 + |t|)s‖f‖p, t ∈ R,

uniformly for ϕ in bounded subsets of S (R) (or, more generally, in bounded
subsets for the norm (33)).

If Assumption (L1) holds, we have

‖e−itLϕ(θL)f‖p . (1 + θ−1|t|)s‖f‖p, θ > 0, t ∈ R,

and the estimate is uniform for θ in bounded subsets of (0,+∞) and ϕ in
bounded subsets of S (R) (or, more generally, in bounded subsets for the
norm (33)). If in addition we assume κ = n and M0 = 0, the estimate is
uniform also for all θ > 0.

Proof. For the first claim it is sufficient to write

e−itLϕ(L) = (I + L)2k+βe−itL · (I + L)−2k−βϕ(L)

and use the previous Lemma and Lemma 2.11. The second claim is proved
by a rescaling argument exactly as in the proof of Theorem 2.12. �

Proof of Theorem 1.4: Since the proof is quite similar to that of Theorem
1.3, we just sketch the main steps.

Denote by pXt (x, y) the kernel of 1Ωe
−tL1Ω, regarded as an operator on

functions defined on the entire space X. Then it is easy to see that

pXt (x, y) =

{
pt(x, y), if x, y ∈ Ω,

0, otherwise.

This, along with (15), implies

(34) |pXt (x, y)| ≤ CeM0t

µ(B(x, t1/m))
exp

(
− d(x, y)m/(m−1)

ct1/(m−1)

)
for all t > 0 and x, y ∈ X.

As a consequence, the assumption (4) and (5) hold true with m1 = m2 =
m and 1Ωe

−tL1Ω taking place of e−tL.
Arguing similarly to the proof of Proposition 2.4, ν ∈ Z with 2−ν ≤

t1/m < 2−ν+1, there exist C ≥ 0 such that for all t and ν as above we have
(35)

‖Adkx(1Ωe
−tL1Ω)‖2→2 ≤ CeM0t2−kν , 0 ≤ k ≤ bn/2c+ 1, x ∈ X.

We then argue as in the proof of Proposition 2.5 to find that for all M > M0

we have, for all z ∈ X and 0 ≤ k ≤ bn/2c+ 1,

(36) ‖Adkz(1Ω(L+M)−11Ω)‖2→2 . (M −M0)−1− k
m

with a constant independent of z,M , where w(x, y) = d(x, y).
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The argument used in the proof of Proposition 2.7 allows us to obtain
that for M > M0 and γ = n

2m + ε, with ε > 0. Then

‖1Ω(M + L)−γ1Ωf‖X1,2 ≤ C
(
ε−1 + (M −M0)γ+n−κ

2
m
)
‖f‖1.

Fix M1 > M0 and set R = (M1 + L)−1. Then we can verify that

Adz(1Ωe
−iξR1Ω) = −i

∫ ξ

0
1Ωe

−isRAdz(1ΩR1Ω)e−i(ξ−s)R1Ωds.

Hence, similarly to Lemma 2.8, we obtain

‖1Ωe
−iξR1Ωf‖X1,2 ≤ C(1 + |ξ|)n/2‖f‖

X1,2 , ξ ∈ R.

This, along with the identity

1Ωψ(R)1Ω = (2π)−1

∫
1Ωe

iξR1Ωψ̂(ξ)dξ,

implies that

(37) ‖1Ωψ(R)1Ωf‖X1,2 ≤ C‖(1 + |ξ|)n/2ψ̂(ξ)‖L1‖f‖X1,2

for any sufficiently smooth funtion ψ on R.
Arguing similarly as in Theorem 2.12, for all θ > 0 we have

‖1Ωϕ(θL)1Ωf‖Lp ≤ C‖f‖Lp

and the estimate is uniform for ϕ in bounded subsets of S (R). Moreover,
if κ = n, then the estimate is uniform for all θ > 0.

As this stage, arguing, mutatis mutandis, as in the proof of Theorem 1.3

we obtain that for any p ∈ [1,∞] and s = n
∣∣∣12 − 1

p

∣∣∣,
‖1Ωe

−itLϕ(θL)1Ωf‖p . (1 + θ|t|)s‖f‖p, t ∈ R,

and the estimate is uniform for ϕ in bounded subsets of S (R) and 0 < θ ≤
θ0, for any fixed θ0 > 0. If, in addition, κ = n and M0, then the estimate is
uniform for all θ > 0. This completes our proof.

�

3. Applications

Our framework is sufficiently general to include a large variety of appli-
cations; in this section we survey a few of the most interesting cases.

3.1. Laplace-Beltrami operators with a Gaussian heat kernel bound.
Let X be a complete connected non-compact n-dimensional Riemannian
manifold. The geodesic distance and the Riemannian measure are denoted
by d and µ, respectively. The Laplace-Beltrami operator L = −∆ on X is
nonnegative and self-adjoint.

We assume that the Riemannian measure µ satisfies the volume doubling
property (2) and the non-collapsing condition

(38) µ(B(x, 1)) ≥ c

for all x ∈ X and for some fixed constant c > 0.
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It is well-known (see [21]) that if the Ricci curvature of X is non-negative,
then the heat kernel of the heat semigroup e−tL satisfies the estimate

(39) e−tL(x, y) .
1

µ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
.

It can be verified that the Gaussian upper bound (39) implies (5). Moreover,

the upper bound (39) also yields that for ν ∈ Z and 2−ν ≤ t1/2 < 2−ν+1, we
have ∑

Q∈Dν

‖1Qe−tL1Q′‖1→∞ ≤ Cµ(Q′)−1, for all Q′ ∈ Dν .

This, in combination with the non-collapsing condition and (16), implies
that ∑

Q∈Dν

‖1Qe−tL1Q′‖1→∞ ≤ C(1 + 2νn), for all Q′ ∈ Dν

and this proves (4) and (5).
Hence, Assumption (L0) is satisfied with m1 = m2 = 2 and p0 = 1.

3.2. Laplace-Beltrami operators without Gaussian heat kernel bound.
Let X be a complete connected non-compact Riemannian manifold. The
geodesic distance and the Riemannian measure are denoted by d and µ, re-
spectively. We assume that the Riemannian measure µ satisfies the volume
doubling property (2) and the non-collapsing condition (7).

Let L = −∆ be the non-negative Laplace-Beltrami operator on X. We
assume that the kernel e−tL(x, y) of the semigroup e−tL satisfies the following
sub-Gaussian heat kernel upper estimate with exponent m > 0

(40) e−tL(x, y) ≤


C

µ(B(x,
√
t))

exp
(
d(x,y)2

ct

)
, 0 < t < 1

C
µ(B(x,t1/m))

exp
(
d(x,y)m/(m−1)

ct1/(m−1)

)
, t ≥ 1

for all x, y ∈ X.
Typical examples that satisfy (2), (7) and (40) include certain fractal

manifolds and infinite connected locally finite graphs. For further details,
we refer to [3, 7].

By a similar argument as in Subsection 3.1 one can prove that L satisfies
Assumption (L0) with m1 = 2, m2 = m and p0 = 1.

3.3. Sierpinski gasket SG in Rn. Let X be the unbounded Sierpinski
gasket SG in Rn. Let d be the induces metric on SG and µ be the Hausdorff
measure on SG of dimension α = log2(n + 1). It is well-known that the
Hausdorff measure µ satisfies the doubling property (2); moreover,

(41) µ(B(x, r)) . rα,

for all x ∈ X and r > 0.
It was also proved in [2] that SG admits a local Dirichlet form E which gen-

erates a nonnegative self-adjoint operator L; moreover, the kernel e−tL(x, y)
of e−tL satisfies the sub-Gaussian estimate

e−tL(x, y) .
1

tα/m
exp

(
− d(x, y)m/(m−1)

ct1/(m−1)

)
where m = log2(n+ 3) is called the walk dimension.
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Note that the assumption (5) is a direct consequence of the kernel upper
bound above whereas the assumption (4) is a consequence of the same kernel
upper bound, the doubling property (2) and (41). Theorefore, L satisfies
Assumption (L0) with m1 = m2 = m and p0 = 1.

3.4. Homogeneous groups. Let G be a Lie group of polynomial growth
and let X1, ..., Xk be a system of left-invariant vector fields on G satisfying
the Hörmander condition. We define the Laplace operator L on L2(G) by

(42) L = −
k∑
i=1

X2
i .

Denote by d the distance associated with the system X1, ..., Xk, and let
B(x, r) be the corresponding balls. Then (see [31]) there exist positive num-
bers d,D ≥ 0 such that

(43) µ(B(x, r)) ∼

{
rd, r ≤ 1

rD, r > 1.

Hence (G, d, µ) satisfies the doubling property (2).
G is called a homogeneous group (see [15]) if there exists a family of

dilations (δt)t>0 on G, that is to say, a one-parameter group (δt ◦ δt = δts)
of automorphisms of G determined by

(44) δtYj = tdjYj ,

where Y1, ..., Y` is a linear basis of the Lie algebra of G and dj ≥ 1 for
1 ≤ j ≤ `. We say that the operator L defined by (42) is homogeneous if
δtXi = tYi for 1 ≤ i ≤ k. It well known that the heat kernel of the heat
semigroup e−tL satisfies the estimate

e−tL(x, y) .
1

µ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
.

This upper bound together with (43) implies that L satisfies (4) and (5)
with m1 = m2 = 2 and p0 = 1, and hence L satisfies Assumption (L0) with
m1 = m2 = 2 and p0 = 1.

3.5. Bessel operators. Let X = ((0,∞)m, dµ(x)) where dµ(x) = dµ1(x1) . . . dµn(xm)
and dµk = xαkk dxk, αk > −1, for k = 1, . . . ,m (dxj being the one dimen-
sional Lebesgue measure). We endow X with the distance d defined for
x = (x1, . . . , xm) and y = (y1, . . . , ym) ∈ X as

d(x, y) := |x− y| =
( m∑
k=1

|xk − yk|2
)1/2

.

Then it is clear that

(45) µ(B(x, r)) ∼ rm
m∏
k=1

(xk + r)αk .

Note that this estimate implies the doubling property (2) with n = m+α1 +
. . .+ αn and the non-collapsing condition (7).
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For an element x ∈ Rm, unless specified otherwise, we shall write xk for
the k-th component of x, k = 1, . . . ,m. Moreover, for λ ∈ Rm, we write
λ2 = (λ2

1, . . . , λ
2
m).

We consider the second order Bessel differential operator

L = −∆−
m∑
k=1

αk
xk

∂

∂xk

whose system of eigenvectors is defined by

Eλ(x) :=

n∏
k=1

Eλk(xk), Eλk(xk) := (xkλk)
−(αk−1)/2J(αk−1)/2(xkλk), λ, x ∈ X

where J(αk−1)/2 is the Bessel function of the first kind of order (αk − 1)/2

(see [20]). It is known that L(Eλ) = |λ|2Eλ. Moreover, the functions Eλk
are eigenfunctions of the one-dimension Bessel operators

Lk = − ∂2

∂xk 2
− αk
xk

∂

∂xk

and indeed Lk(Eλk) = λ2
kEλk for k = 1, . . . ,m.

It is well known that L is nonnegative and self-adjoint; moreover, the
kernel e−tL(x, y) of e−tL satisfies the Gaussian estimate

(46) e−tL(x, y) .
1

µ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
.

Hence, the Gaussian upper bound (46), along with the doubling and the
non-collapsing properties imply Assumption (L0) with m1 = m2 = m and
p0 = 1.

3.6. Schrödinger operators with real potentials on manifolds. Let X
be a complete connected non-compact Riemannian manifold. The geodesic
distance and the Riemannian measure are denoted by d and µ, respectively.
We assume that the Riemannian measure µ satisfies the doubling property
(2) and the non-collapsing condition (7). We also assume that the heat
kernel pt(x, y) of the Laplace-Beltrami operator −∆ satisfies the standard
Gaussian upper bound

(47) pt(x, y) ≤ C

µ(B(x,
√
t))

exp
(
− d2(x, y)

ct

)
.

We now consider the Schrödinger operator L = −∆ + V , V ∈ L1
loc(X). If

the potential V is nonnegative, then the kernel of the semigroup {e−tL}t>0

generated by L satisfies the same Gaussian bound (47); in the general case,
we must impose some conditions on the negative part of V . Denote by V +

and V − the positive and negative parts of V , respectively. We define

Q(u, v) =

∫
X

∇u∇vdµ+

∫
X

V +uvdµ−
∫
X

V −uvdµ

with domain

D(Q) = {u ∈W 1,2(X) :

∫
X

V +u2dµ <∞}.
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Then we assume that the positive part V + ∈ L1
loc and the negative part V −

satisfy the following condition

(48)

∫
X

V −u2dµ ≤ α
[ ∫

X

|∇u|2dµ+

∫
X

V +u2dµ
]
, ∀u ∈ D(Q),

for some α ∈ (0, 1).
It was proved in [1, Theorem 3.4] that for any ( 2

1−
√

1−α)′ < p0 < 2 there

exist C, c > 0 and β > 0 such that

‖1B(x,r)e
−sL1B(y,r)‖p0→p′0 ≤ Cµ(B(x, r))

− 1
p0

+ 1
p′0

(
max

( r√
s
,

√
s

r

))β
exp

(
−dist(B(x, r), B(y, r))2

ct

)
for all r, s > 0 and x, y ∈ X.

This, in combination with the volume doubling property (2) and the non-
collapsing condition (7), implies that Assumption (L0) is satisfied with m1 =
m2 = 2 and any ( 2

1−
√

1−α)′ < p0 < 2.

3.7. Schrödinger operators with inverse-square potentials. Consider
the following Schrödinger operators with inverse square potential on Rn,
n ≥ 3:

(49) La = −∆ +
a

|x|2
with a ≥ −

(n− 2

2

)2
.

Set

σ :=
n− 2

2
− 1

2

√
(n− 2)2 + 4a.

The Schrödinger operator La is understood as the Friedrichs extension of

−∆ + a
|x|2 defined initially on C∞c (Rn\{0}). The condition a ≥ −

(
n−2

2

)2

guarantees that La is nonnegative. It is well-known that La is self-adjoint

and the extension may not be unique as −
(
n−2

2

)2
≤ a < 1 −

(
n−2

2

)2
. For

further details, we refer the readers to [18, 24, 30]. For the corresponding
heat kernel, we have the following result:

Theorem 3.1 ([23, 22]). Assume n ≥ 3 and a ≥ −
(
n−2

2

)2
. Then there exist

two positive constants C and c such that for all t > 0 and x, y ∈ Rn\{0},

pt(x, y) ≤ C
(

1 +

√
t

|x|

)σ(
1 +

√
t

|y|

)σ
t−n/2e−

|x−y|2
ct .

Set nσ = n/σ if σ > 0 and nσ = ∞ if σ ≤ 0. From Theorem 3.1 and
Theorem 3.1 in [10], for any n′σ < p ≤ q < nσ there exist C, c > 0 such that
for every t > 0, any measurable subsets E,F ⊂ Rn, and all f ∈ Lp(E), we
have:

(50)
∥∥e−tLf∥∥

Lq(F )
≤ Ct−

n
2

( 1
p
− 1
q

)
e−

d(E,F )2

ct ‖f‖Lp(E).

Hence, with the standard dyadic systems in Rn, this implies that Assumption
(L0) is satisfied with m1 = m2 = 2 and any n′σ < p0 < 2. Moreover, in this
situation the reverse doubling condition (3) is valid with κ = n.
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3.8. Sub-Laplacian operators on Heisenberg groups. Let Hd be a
(2d+ 1)-dimensional Heisenberg group. Recall that a (2d+ 1)-dimensional
Heisenberg group is a connected and simply connected nilpotent Lie group
with the underlying manifold R2d × R. The group structure is defined by

(x, s)(y, t) = (x+ y, s+ t+ 2
d∑
j=1

(xd+jyj − xjyd+j))

The homogeneous norm on Hd is defined by

|(x, t)| = (|x|4 + |t|2)1/4 for all (x, t) ∈ Hd.

See for example [28].
This norm satisfies the the triangle inequality and hence induces a left-

invariant metric d((x, t), (y, s)) = |(−x,−t)(y, s)|. Moreover, there exists a
positive constant C such that |B((x, t), r)| = Crn, where n = 2d + 2 is the
homogeneous dimension of Hd and |B((x, t), r)| is the Lebesgue measure of
the ball B((x, t), r). Obviously, the triplet (Hd, d, dx) satisfies the doubling
condition (2), the reverse doubling condition (3) with κ = n, and the non-
collapsing condition (7).

A basis for the Lie algebra of left-invariant vector fields on Hd is given by

X2d+1 =
∂

∂t
,Xj =

∂

∂xj
+ 2xd+j

∂

∂t
,Xd+j =

∂

∂xd+j
− 2xj

∂

∂t
, j = 1, . . . , d.

The sub-Laplacian ∆Hd is defined by

∆Hd = −
2d∑
j=1

X2
j .

Furthermore, it is well-known that the sub-Laplacian ∆Hd satisfies the Gauss-
ian upper bound:

e−t∆Hd ((x, u), (y, s)) ≤ C

tn/2
exp

(
− d((x, u), (y, s)2

ct

)
.

In Hd, we consider the standard dyadic system consists of the cubes

2−k((0, 1]2d + j)× 4−k((0, 1] + `), k ∈ Z, j ∈ Z2d, ` ∈ Z.

Hence, the Gaussian upper bound yields the assumption (L0) with m1 =
m2 = 2 and p0 = 1.

3.9. Dirichlet Laplacians on Lipchitz domains. Let X = (Rn, | · |, dx).
Then X is a space of homogeneous type satisfying (3) with κ = n and the
non-collapsing condition (7).

Let Ω be a connected open subset of Rn. Note that Ω may not satisfy
the doubling condition. Let L = ∆Ω be Dirichlet Laplacian on the domain
Ω. It is well known that the semigroup kernel pt(x, y) of e−tL satisfies the
Gaussian upper bound

pt(x, y)(x, y) ≤ 1

(4πt)n/2
exp

(
− |x− y|

2

4t

)
,

for all t > 0 and all x, y ∈ Ω.
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Hence, all assumptions in Theorem 1.4 are satisfied with X = (Rn, |·|, dx),
L = ∆Ω and κ = n.

3.10. Schrödinger operators with singular potentials. For our last
example, we recall the definition of the Kato class Kn of potentials. The
measurable function V : Rn → R belongs to Kn if the following conditions
are satisfied:

(1) If n ≥ 3,

limα↓0 supx
∫
|x−y|≤α |x− y|

2−nV (x)dx = 0.

(2) If n = 2,

limα↓0 supx
∫
|x−y|≤α log(|x− y|−1)V (x)dx = 0.

(3) If n = 1,

supx
∫
|x−y|≤1 V (x)dx <∞.

Moreover, we say that V ∈ Kn,loc if 1BV ∈ Kn for all balls B.
We consider a Schrödinger operator of the form L = −∆ + V (x) on

Rn, n ≥ 1. We assume that the positive part V+ of V is in Kn,loc while
the negative part V− is in Kn. Then the results of [26] (see in particular
Proposition B.6.7) imply that L can be realized as a semibounded selfadjoint
operator in L2(Rn), and that the heat kernel e−tL satisfies

(51) |e−tL(x, y)| ≤ Ct−n/2eM0te−
|x−y|2
ct

with C, c > 0. Thus Assumption (L1) is satisfied, with M0 ≥ 0. If in
addition we assume that the negative part satisfies

(52) supx
∫
|x− y|2−nV−(y)dy < 2πn/2/Γ(n/2− 1)

in dimension n ≥ 3 (or V− = 0 in dimensions 1,2) then in [13] it is proved
that one can take M0 = 0, so that the uniform estimates of Theorem 1.3
apply.

Moreover, one can consider the same operator L with Dirichlet boundary
conditions on L2(Ω), for an open subset Ω of Rn. If we assume for simplicity
V ≥ 0, then by the maximum principle we obtain that the heat kernel
is nonnegative and satisfies again the upper Gaussian estimate (51), with
M0 = 0 i.e. all the assumptions of the second part of Theorem 1.4 are
satisfied.

Similar results can be proved for the magnetic Schrödinger operators of
the form (i∇+A(x))2 +V (x), using the heat kernel estimates proved in [11],
and for elliptic operators with fully variable coefficients on exterior domains,
via the results of [6]. We omit the details.

References

[1] J. Assaad and E. M. Ouhabaz, Riesz transforms of Schrödinger operators on mani-
folds. J. Geom. Anal., 22:1108–1136, 2012.

[2] M. T. Batrlow, Diffusions on fractals, Lectures on Probability Theory and Statistics,
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