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Machine Learning (ML) is increasingly applied in optical network management, especially in cross-layer
frameworks where physical layer characteristics may trigger changes at the network layer due to trans-
mission performance measurements (Quality of Transmission - QoT) monitored by optical equipment.
Leveraging ML-based QoT estimation approaches has proven to be a promising alternative to exploiting
classical mathematical methods or transmission simulation tools.
However, supervised ML models rely on large representative training sets, which are often unavailable,
due to the lack of the necessary telemetry equipment or of historical data. In such cases, it can be use-
ful to use training data collected from a different network. Unfortunately, the resulting models may be
uneffective when applied to the current network, if the training data (the source domain) is not well rep-
resentative of the network under study (the target domain). Domain Adaptation (DA) techniques aim at
tackling this issue, to make possible the transfer of knowledge among different networks.
This paper compares several DA approaches applied to the problem of estimating the QoT of an optical
lightpath using a supervised machine learning approach. Results show that, when the number of sam-
ples from the target domain is limited to few dozens, DA approaches consistently outperform standard
supervised ML techniques. © 2020 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Predicting the Quality of Transmission (QoT) of a candidate
lightpath prior to its establishment plays a pivotal role for an
effective design and management of optical networks. In the
last few years, Machine Learning (ML) techniques for QoT es-
timation [1] have been advocated as promising alternatives to
i) approximated mathematical models or ii) simulation frame-
works that model the propagation of the optical signal along
the fiber core. The former often introduce high margins to con-
servatively compensate for simplifying assumptions and/or for
uncertainties in input parameters values, the latter typically re-
quire prohibitive computational effort when applied to real-scale
scenarios. Supervised ML-based approaches learn a mapping
from a set of features, e.g., characteristics of a lightpath such as
length, amount of served traffic and adopted modulation format
to a target variable, e.g., an indicator of the expected QoT in the
lightpath, such as the Bit Error Rate (BER). To make the learning
phase effective, a large amount of samples (training set) must be

provided to the learning algorithm. Each sample consists of the
features of an already established lightpath associated with the
actual value of the target variable (ground truth), e.g. the BER
that can be measured at the receiver node [2].

On one hand, supervised ML methods assume that the train-
ing set is large and representative of the samples that will be pro-
cessed when the model is exploited to predict the QoT. On the
other hand, the collection of training samples is often hindered
by practical issues (e.g., lack of dedicated telemetry equipment
in every network node) or is too costly to permit the acquisition
of large datasets. This is especially true for networks in the early
stage of deployment, where the number of already installed (and
thus, monitorable) lightpaths is very limited. Some approaches
to cope with the scarcity of training data have recently been
proposed. The usage of synthetically generated data has been
suggested for the initial training phase of ML algorithms, which
will be re-trained once field-gathered data become available
to mitigate the model inaccuracies introduced by the artificial

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Research Article Journal of Optical Communications and Networking 2

data generation process [3]. Alternatively, active learning may
be leveraged to complement the data at disposal with a small
amount of samples acquired by means of dedicated probes to
cover specific areas of the feature space, indicated by the active
learning model itself [4]. However, it is sometimes possible to
rely on large training datasets from a different network than
the one on which the ML model should operate. Therefore, we
assume that a large amount of training data is given for a source
domain (e.g., a backbone network monitored for a long opera-
tional period), and must be used to train a model that predicts
the QoT of lightpaths to be established in a different target do-
main (e.g., a newly deployed network), for which only a small
labeled training dataset is available [5–7]. In such a scenario, we
wish to exploit at best the data from the source domain to tailor
a good model to the target domain. This approach is known in
ML research as Domain Adaptation (DA) [8] and leverages the
intuition that samples from one domain provide useful informa-
tion concerning the solution of the QoT estimation problem in
the other domain.

Intuitively, the more the target domain differs from the source
domain, in terms of distribution of lightpath lengths and/or in
the type of installed fibers and transmission equipment, the less
accurate the prediction on the lightpaths drawn from the target
domain is expected to be. Indeed, the mapping between features
and target variable somewhat differs between the two domains:
the joint probability distribution of features and target variable
is not the same in the two domains. Therefore, training data
extracted from the source domain need to be complemented by
a few samples obtained from the target domain: quantifying the
amount of samples required to achieve satisfactory predictive
performance of the adopted learning model is a crucial issue to
determine the practical applicability of DA techniques in real-
world scenarios.

In [9], a preliminary assessment of existing DA approaches
for ML-based QoT estimation of candidate lightpaths was pre-
sented. The focus was on two networks characterized by dif-
ferent topologies, but adopting the same fiber type and trans-
mission equipment. In this paper, we generalize that analysis
by considering various topologies, rescaled in their link length
by different factors, to obtain a wider set of domains. We as-
sess the performance of two DA techniques as a function of the
number of available training instances from the target domain
and on the degree of dissimilarity between the two domains.
Furthermore, we compare the performance of different learning
algorithms to identify which benefits more of the application of
DA techniques.

The remainder of the manuscript is organized as follows:
after a brief review of the related literature in Section 2, we
describe the applied DA methods in Section 3 and present the
adopted classification framework in Section 4. We assess the per-
formance of the considered approaches in Section 5 and finally
draw our conclusions in Section 6.

2. RELATED WORK

Though ML approaches for QoT estimation have been widely
investigated in the last few years [1], only a few studies propos-
ing the use of Transfer Learning (TL) to predict various metrics
related to QoT (e.g., BER, Q-factor or Optical Signal to Noise
Ratio - OSNR) or network design/management (e.g., routing
reconfiguration time) have appeared.

In [5], an Artificial Neural Network (ANN) based TL frame-
work is adopted to predict the Q-factor in a real-time mixed

line-rate optical system. A 4-span Large Effective Area Fiber
(LEAF) with Quadrature Phase Shift Keying (QPSK) transmis-
sion is considered as source domain, while a 4-span LEAF with
16-Quadrature Amplitude Modulation (QAM) transmission, a 2-
span LEAF with 16-QAM transmission and a 3-span Dispersion-
Shifted Fiber (DSF) with QPSK transmission are used as target
domains. After an initial training phase during which ANN
weights are learned using samples from the source domain, the
pre-trained weights of the hidden layer(s) are readjusted based
on a small number of samples from one of the three different
target domains, thus tailoring the trained model to the target
domain without need to recompute the weights from scratch.
Results show that only a few dozens of training samples are nec-
essary to fine-tune the weights in order to produce an accurate
prediction of QoT for the three domains, applying knowledge
transfer.

In [6], a Deep Neural Network (DNN) for OSNR estimation
is proposed, which relies on TL techniques to enable fast remod-
eling in case of variations of different system parameters such as
optical launch power, chromatic dispersion and bit rate. Once
weights and bias values are obtained from the initial training
phase, they are readjusted leveraging other samples obtained by
changing launch power, residual dispersion and bit rate. Also
in this case, the TL mechanism exploits the reuse of ANN pa-
rameters obtained from a pre-trained model in a new model.
Results show that a consistent reduction in the number of re-
quired samples from the target domain and in the training time
can be achieved, with respect to training the ANN from scratch
with randomly initialized weights scheme, without relying on
previously acquired knowledge from the source domain.

Using a similar methodological approach, in [10] a multi-task
DNN is adopted for joint OSNR prediction and modulation
format identification. Results obtained from an experimental
test-bed show that knowledge transfer of the neural network
weights achieves a significant reduction of the required training
samples and epochs.

In [11, 12] a TL methodology for QoT estimation in multi-
domain networks with broker orchestration is discussed. QoT
monitoring data of intra-domain paths collected by each network
domain manager are associated to a set of encoded features (to
avoid disclosure of confidential domain information) and pro-
vided as samples to the broker plane. The broker leverages the
samples acquired from various domains to train a DNN-based
QoT estimator for each inter-domain path. In this context, the
transfer of trained weights between neural networks from a
model trained with samples from a different path is limited to
the first few hidden layers and those weights are kept locked in
the new model. In the upper hidden layers, conversely, weights
are randomly initialized and trainable with data from the target
domain. Note that in [12] the architecture of the DNN is defined
beforehand by applying a genetic algorithm which optimizes
the number of layers, the number of neurons per layer, the acti-
vation and learning functions, with an evolutionary approach.
Results show that the number of required training samples can
be reduced by one order of magnitude.

In [7], a resource reservation algorithm for traffic requests
in Space Division Multiplexed Elastic Optical Networks (SDM-
EON) based on transductive TL is proposed. The study consid-
ers a scenario where traffic requests either require immediate
reservation or can be reserved in advance. If the latter type of
requests cannot be accommodated, TL is used to predict the
spectrum de-fragmentation time to complete resource realloca-
tion before their start time. A set of traffic requests is collected
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from the source domain topology and then sorted to discrim-
inate between i) blocked service set, consisting of all requests
that will be blocked and not be accounted for the reservation of
the network resources; ii) affected service set, including all the
requests already satisfied in the network. Each element of the
sets is associated to a value indicating the duration of spectrum
de-fragmentation process. These samples are used to perform
the initial training phase. Then, the blocked service set and af-
fected service set from the selected target domain topology are
used as inputs to refine the pre-trained model. The outputs of
the model coincide with the prediction of spectrum migration
time of the requests. Finally, based on this output, a further opti-
mization phase of spectrum utilization takes place to improve
resource reservations among different services. Authors used a
six-node topology as source domain, while the fourteen-node
NSF topology is used as target domain. They show that the
adoption of TL may decrease the blocking probability up to 67%.

TL methodologies have also been applied to other manage-
ment tasks in optical networks: in [13], TL-aided neural net-
works are proposed for nonlinear equalization in a short optical
link. The weights obtained by training the neural network with
samples acquired from a source system with different bit rate or
link length are leveraged to initialize the training phase of the
equalizer to be applied in the target system, thus allowing for a
drastic reduction in the number of training epochs and required
samples.

All the studies mentioned so far, including ours, apply knowl-
edge transfer approaches in a supervised learning framework.
In the context of reinforcement learning, a multi-task-learning-
aided knowledge transfer approach is proposed in [14] to learn
routing, modulation format and spectrum assignment policies:
given the source-destination nodes and the time duration of a
traffic request, the agent learns how to choose the best route
among a set of pre-computed paths and performs first-fit spec-
trum assignment. Results show that knowledge acquired from
paths belonging to a given network topology can be leveraged to
take routing, modulation and spectrum assignment decisions for
traffic requests to be allocated in a different network topology,
achieving up to 20% reduction of the blocking probability.

In this study, we tackle the problem of BER classification, i.e.,
predicting whether the BER of an un-established lightpath will
fall below or above a given system threshold. In our analysis
we will consider various network topologies, i.e. the NSF and
Japan networks, which we opportunely rescale to account for
populations of lightpaths of different lengths. Differently from
the previously mentioned studies, our features are high-level
lightpath characteristics such as length, amount of served traf-
fic and modulation format adopted for transmission. The TL
approaches mentioned above rely on the standard technique
of fine-tuning pre-trained neural network models on the target
domain. In contrast, this paper explores DA techniques that
explicitly account for diverse feature distributions from different
domains.

A recent trend in ML deals with models [15, 16] that explic-
itly operate on graph data; when adopting these models, the
topology of different optical networks could be considered an
additional input to the model rather than a domain. By training
such a model on data from many different optical networks of
known topology, this approach could yield a model that gener-
alizes to new unseen networks. In this paper we do not follow
this approach and rely on standard classifiers designed to oper-
ate on low-dimensional feature vectors; when a new network
is introduced, the model needs to be retrained (with domain

adaptation) using ad-hoc data collected from the new network.
As in our case the instances are paths within a given network,
instead of handling the entire network as an input, which would
severely limit the size of the training set, we handle the problem
as a domain adaptation task.

3. DOMAIN ADAPTATION APPROACHES FOR QOT ES-
TIMATION

We describe the DA techniques adopted in this study and com-
pare them to simple ML algorithms that will be considered as
benchmarks for their performance evaluation.

A. Baselines
Fig.1a-c depicts the three scenarios against which the adopted
DA techniques will be benchmarked. In the following, we con-
sider a large set S including samples collected from the source
domain Rsource that is used to train a QoT estimation model
and a small set T of samples gathered from the target domain
Rtarget. We consider a generic supervised learning framework
and define three benchmark scenarios:

• Only Source Domain Baseline (SDB) trains the model only
on S (Fig.1a).

• Only Target Domain Baseline (TDB) trains the model only
on T (Fig.1b).

• Dataset Mixing Baseline (DMB) trains the classifier on S∪
T (Fig.1c).

For validation purposes, in all scenarios the test phase is con-
ducted using a large set T′ gathered from the target domain
Rtarget, containing samples that were not used during the train-
ing phase (i.e., T ∩ T′ = ∅).

We expect SDB, even if trained on a large amount of data, to
perform badly on T′ because of domain shift. TDB is not affected
by domain shift, but suffers the limited size of the training set
that might cause overfitting. DMB should improve over SDB,
but the effect of T will be “washed out” by the large size of S.

B. Domain Adaptation Techniques
The two DA techniques adopted in this study are Feature Aug-
mentation (FA) [17] and CORrelation ALignment (CORAL) [18].

FA (see Fig.1d) implements a simple approach which encodes
the domain of a sample by augmenting its feature vector. In
particular, the length of the original feature vector x is tripled,
with a rule that depends on the domain: if the sample belongs
to S, the resulting feature vector is computed as x′ = 〈x, x, 0〉;
otherwise, for a sample in T, the feature vector is redefined as
x′ = 〈x, 0, x〉. This augmentation transformation is applied to all
samples, both in the training and test phases. It is expected that
such transformation allows a classifier to learn and exploit both
the commonalities between the two domains and the unique
characteristics of each domain.

CORAL is originally conceived as an unsupervised DA tech-
nique that minimizes domain shift by aligning the second-order
statistics of source and target data-sets. This is done by applying
a transformation φ that re-colors whitened source features of
the source domain with the covariance of the distribution of the
dataset gathered from the target domain. In this case, we assume
that a large amount Tunlabeled of unlabeled data (i.e., samples for
which the associated BER is not known) from the target domain
is available, and we implement the following steps (see Fig.1e):
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Fig. 1. Baseline and Domain Adaptation learning scenarios.

1. estimate the transformation φ from the source to the target
feature spaces using S and Tunlabeled;

2. train the ML algorithm on φ(S).

Note that, differently from FA, CORAL can be applied even
when no BER measurements from the target domain are avail-
able, because large sets of prospective lightpath configurations
can be obtained without proceeding with their establishment in
the network.

As in the former three cases, validation is performed using a
large set T′ gathered fromRsource, disjoint from T.

4. CLASSIFICATION FRAMEWORK AND SYNTHETIC
DATA GENERATION TOOL

A. ML-Classifier
We adopt the ML framework for QoT classification proposed in
[19], which uses the following features to characterize a light-
path: total length, number of traversed links, maximum link
length, amount of traffic to be transmitted and modulation for-
mat to be adopted for transmission. Optionally, the following
additional features can be included to characterize the light-
paths’ neighbor channels: traffic volume, modulation format
and guardband size of the spectrally-nearest right and left ad-
jacent channels co-propagating along at least one of the links
traversed by the considered lightpath. Given a candidate light-
path, the classifier provides as output a binary variable whose
value depends on whether the predicted probability that the
lightpath configuration satisfies a given threshold γ on the BER
measured at the receiver is above or below 50%. In this study we
use Support Vector Machine (SVM) classifiers, which proved to
benefit from the application of DA techniques more substantially
than Random Forests (RF), adopted in [19]. In Section 5D we
also report results comparing different models.

B. E-Tool Data Generator
To generate synthetic BER measurements we use the E-Tool pre-
sented in [19]. Given a candidate lightpath, traffic volume and
modulation format, the E-Tool calculates the BER as a function
of the signal-to-noise ratio measured at the channel decoder via
the approximated additive white Gaussian noise model of dis-
persion uncompensated transmission over single mode fibers.
The E-Tool also adds random penalties (with negative expo-
nential distribution and average 1 dB) to account for model
uncertainties. We assume a flexi-grid scenario with 12.5 GHz
slice width and transceivers operating at 28 Gbaud with 37.5
GHz optical bandwidth, using a modulation format chosen
among Dual Polarization (DP)-BPSK, QPSK and n-QAM, with
n = 8, 16, 32, 64. Traffic demands exceeding the capacity of a
transceiver are served by super-channels containing multiple
adjacent transceivers.

C. Dataset generation
We consider the Japan (Jnet) and NSF (NSFnet) networks de-
picted in Fig.2. In our numerical assessment, each topology has
been resized by multiplying the length of each link by a scaling
factor α = 0.25, 0.5, 1, 2, thus obtaining multiple rescaled copies
of the two network graphs.

To construct the training dataset for each topology, we pro-
duce instances by randomly choosing a source-destination node
pair, a modulation format and a traffic demand uniformly se-
lected in the range [50− 500] Gbps with 50 Gbps granularity
and calculating the BER with the E-Tool. The choice of a 50
Gbps granularity is based on the transmission capacity of a 28
GBaud transceiver operating with DP-BPSK modulation format,
i.e., the basic transceiver configuration adopting the least spec-
trally efficient modulation format. We set the BER threshold to
γ = 4 · 10−3. The distributions of lightpath lengths obtained
in each topology are plotted in Fig.3, for different values of the
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Fig. 2. Japan (left) and NSF (right) network topologies

Fig. 3. Lightpath length distributions in the rescaled Jnet topologies (left) and NSFnet topologies (right), considering 90000 samples

scaling factor α. Note that the values of the α parameter were
chosen with the aim of covering a variety of ligthpath lengths
distributions in the two domains. In particular, the domain pair
constituted by the Jnet with scaling factor α = 2 and the NSFnet
with scaling factor α = 0.25 show very similar ligthpath lengths
distributions, both in the range [1− 2100] km, whereas the pair
constituted by the Jnet scaled by α = 0.5 and the NSFnet scaled
by α = 1 offers the most diverse lightpath length distributions,
with Jnet lightpaths spanning up to 700 km and the NSFnet
lightpaths ranging up to 9000 km (i.e., lengths differ on average
by one order of magnitude).

The test dataset T′ is always constructed, for both topologies,
by generating a separate set of instances |T′| = 45000 with the
same procedure used to produce the training dataset.

D. Considered scenarios
The two DA methods, FA and CORAL, are benchmarked against
the previously described SDB, TDB and DMB baselines and
against a Large TDB (LTDB) baseline that trains the SVM classi-
fier using |T| = 10000 samples drawn from the target domain
Rtarget. The SDB baseline and the two DA methods assume
|S| = 10000 for the training phase, where the samples of S are
extracted from Rsource. In the TDB and DMB baselines and in
the FA approach, |T| = 10, 50, 100, 500, where the samples of
T belong to the domain Rtarget. For CORAL only, we assume
|Tunlabeled| = 10000, where Tunlabeled contains the feature vec-
tors of elements belonging toRtarget. Indeed, for the QoT estima-
tion task, collecting unlabeled samples of the set Tunlabeled from
the target domain is trivial, as we simply need to select route,
traffic volume and modulation format of a perspective lightpath
to derive its feature vector, without measuring its BER. If not
differently stated, we include in the feature vector the lightpath
total length, number of traversed links, maximum link length,

amount of traffic to be transmitted and modulation format to be
adopted for transmission. Experiments are repeated 20 times,
with random extraction of the elements of T from the pool of
training samples belonging to domainRtarget.

5. NUMERICAL ASSESSMENT

A. Performance of Feature Augmentation
We start analyzing the performance of the FA approach. Fig.4
plots on the left side the Area Under the ROC Curve (AUC,
where ROC indicates the Receiver Operating Characteristic) ob-
tained when the original Jnet (α = 1) is used as source domain
and the NSFnet rescaled by a factor α = 0.25 as target domain.
As noticeable from Fig.3, the length of the lightpaths deployed
in the Jnet with α = 1 spans the range up to 1300 km, whereas
lightpaths deployed in the NSFnet with α = 0.25 exhibit lengths
up to 2000 km. Since the average lightpath length in the Jnet is
lower than in the NSF network, little knowledge about the BER
of long lightpaths can be obtained through the samples of the
Jnet, i.e., the source domain used to compute SDB. This moti-
vates the AUC gap between SDB and LTDB reported in Fig.4
and for this reason, when |T| ≥ 50, TDB always outperforms
SDB, hinting that learning even from a limited number of sam-
ples gathered from the target domain yields to better knowledge
about long lightpaths rather then relying on a large amount of
samples of short lightpaths obtained from the source domain.
Indeed, considering the performance of DMB, it turns out that
learning from S ∪ T leads to worse AUC values with respect
to learning exclusively from T. Conversely, FA outperforms
SDB and DMB when |T| ≤ 50, whereas for large |T|, FA shows
comparable performance to TDB and closely approach LTDB,
hinting that 100 samples gathered from the target domain are
sufficient to obtain classification results almost as accurate as
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Fig. 4. AUC comparison using Jnet (α = 1) as source domain and NSFnet (α = 0.25) as target domain dataset (left), and viceversa
(right).
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Fig. 5. AUC comparison using Jnet (α = 1) as source domain and NSFnet (α = 1) as target domain dataset (left), and viceversa
(right).

those obtained by LTDB with 10000 samples.
In Fig.4, we report on the right side AUC results obtained

using the NSFnet with α = 0.25 as source domain and the Jnet
with α = 1 as target domain. As the average lightpath length
in the NSF network is higher than in the Japan network, set
|S| is expected to contain a representative number of lightpath
samples for the whole range of lengths that can appear in the
Jnet. For this reason, the gap between the AUC values obtained
by SDB and LTDB baselines is very small (around 0.01), meaning
that learning from samples gathered from the NSFnet already
provides good knowledge on the BER of lightpaths deployed
in the Jnet. Moreover, when |T| is low, SDB outperforms TDB,
confirming that learning from a high number of source domain
samples is more effective than learning from a very limited
number of target domain samples. Additionally, learning from
the set S ∪ T (DMB) brings no improvements in the AUC with
respect to SDB. In this context, when |T| is low, FA significantly
improves the AUC with respect to TDB, but does not reach
the values exhibited by SDB and DMB baselines. Conversely,
when |T| = 500, FA and TDB provide similar results, which
closely approach LTDB. It follows that, in such a scenario, DA
techniques are expected to be less useful, as samples gathered
from the source domain are already sufficiently representative
of the part of the feature space which is relevant for the target
domain.

We now repeat the same analysis focusing on the original
Jnet and NSFnet topologies (i.e., α = 1 for both networks) and
report the obtained results in Fig.5. In this case, the lightpath
lengths in the two topologies cover two significantly different
ranges, since the NSFnet exhibits lightpaths up to 8000 km long
(see right side of Fig.2), but only a few of them cover the range

below 1300 km, where the Jnet lightpaths lie (see left side of
Fig.2). Therefore, in both cases the AUC gaps between SDB
and LTDB are significant (especially when the Jnet is used as
source domain) and when |T| is low the benefits of adopting FA
emerge more clearly, if compared to DMB and TDB. Moreover,
in Fig.6 we consider the same scenarios of Fig.5, but we restrict
the test set to 3000 elements exhibiting a BER within the range
[10−5, 10−2], i.e., close to the system threshold γ. Such samples
are expected to be more difficult to classify correctly. Though the
AUC is generally lower, the considered approaches show AUC
trends similar to those obtained considering the full test dataset
and in this case FA shows some improvements over TDB also
for large cardinalities of T.

Finally, to more thoroughly evaluate the impact of the differ-
ence between source and domain network sizes on the perfor-
mance of FA, in Fig.7 we report on the left side the performance
of FA, DMB, SDB, TDB and LTDB using Jnet (α = 0.5, 1, 2) as
source domain and NSFnet (α = 1) as target domain dataset,
assuming that |T| = 10, whereas on the right side we report
the same results considering NSFnet (α = 0.25, 0.5, 1) as source
domain and Jnet (α = 1) as target domain. In both scenarios,
decreasing the intersection between the supports of lightpath
length distributions yield increasing gaps between the perfor-
mance of SDB and LTDB. DMB never improves over SDB. When
Jnet is used as source domain, FA achieves better AUC than TDB
as long as the supports of the two distributions have a reason-
ably large intersection, but when the size of Jnet is halved (i.e.,
when the length of its links is multiplied by α = 0.5) the median
AUC is lower in FA than in SDB. Conversely, when the NSFnet
is used as source domain, FA shows improvements over TDB for
all scaling factors and it achieves higher AUC than SDB when
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Fig. 6. AUC comparison over near-to-threshold test samples using Jnet (α = 1) as source domain and NSFnet (α = 1) as target
domain dataset (left), and viceversa (right).

S: Jnet ( =0.5), T: NSFnet ( =1)

FA 10 DMB 10 TDB 10 SDB LTDB

S: Jnet ( =1), T: NSFnet ( =1)

0.5 0.6 0.7 0.8 0.9 1.0

S: Jnet ( =2), T: NSFnet ( =1)

S: NSFnet ( =1), T: Jnet ( =1)

FA 10 DMB 10 TDB 10 SDB LTDB

S: NSFnet ( =0.5), T: Jnet ( =1)

0.5 0.6 0.7 0.8 0.9 1.0

S: NSFnet ( =0.25), T: Jnet ( =1)

Fig. 7. AUC comparison with |T| = 10, using Jnet (α = 0.5, 1, 2) as source domain and NSFnet (α = 1) as target domain dataset
(left), or using NSFnet (α = 1, 0.5, 0.25) as source domain and Jnet (α = 1) as target domain dataset (right).

the NSFnet is much larger than the Jnet (i.e., when the length of
the NSFnet links is multiplied by α = 1).

B. Performance of Correlation Alignment
We now focus on the CORAL approach and compare its perfor-
mance to that of SDB and LTDB. Note that, since CORAL relies
exclusively on sets S and Tunlabeled, both having fixed size in
our experiments, results are independent of the cardinality of
T. Fig.8 shows on the left side the AUC obtained by CORAL
when the Jnet (with different scaling factors) is used as source
domain and the NSFnet (with α = 1) is used as target domain,
whereas on the right side the NSFnet (with different scaling
factors) is used as source domain and the Jnet (with α = 1) is
used as target domain. When Jnet is used as source domain,
CORAL always closely approaches the LTDB baseline, whereas
the AUC values achieved by SDB decrease when the overlap of
the lightpath length distributions in source and target domain
diminishes. Therefore, CORAL proves to be useful especially
in conditions where the lightpath lengths of the source domain
are significantly lower than those of the target domain. On the
right side, where results obtained by swapping source and target
domain topologies are shown, the AUC achieved by SDB is quite
close to that of LTDB for all values of α; the limited gap leaves
very little opportunity for CORAL to yield improvements over
the SDB baseline.

Based on the above reported results, we conclude that both
DA approaches show considerable improvement in the AUC

with respect to standard ML techniques, when the number of
available samples from the target domain is very limited and
when the source domain network has smaller size than the target
domain network.

C. Impact of the features choice
In this subsection we evaluate the effect of enlarging the feature
vector to include characteristics of the neighboring channels of
the lightpath being considered. Therefore, we repeat the same
experiments described in Subsections 5A and 5B including as
attributes the traffic volume, modulation format and guardband
size of the spectrally-nearest right and left adjacent channels
co-propagating along at least one of the links traversed by the
considered lightpath. Results obtained with FA using the Jnet
with α = 1 as source domain and the NSFnet with α = 1 as target
domain, and viceversa, are reported in Fig.9. The general trend
is very similar to that shown in Fig.5, though the AUC values
obtained by TDB and FA are slightly lower when the number
of samples is 100 or less. This is due to the fact that with the
increase in the number of dimensions of the feature space, the
classification problem becomes more complex and more samples
are likely to be required, in order to achieve comparable AUC
performances. When we focus on samples near to the system
threshold γ, comparing results reported in Fig.10 to those shown
in Fig.6 we observe that, by using 11 features instead of 5, the
AUC values achieved by TBD with |T| = 10 drop significantly
(median value below 0.6 instead of around 0.7), whereas FA
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Fig. 8. AUC performance of CORAL.
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Fig. 9. AUC comparison using Jnet (α = 1) as source domain and NSFnet (α = 1) as target domain dataset (left), and viceversa
(right), when features characterizing neighbor channels are included.

maintains similar AUC values (of at least 0.7) in both cases.
Results obtained with FA using 11 features in all the remain-

ing scenarios showed analogous characteristics to those dis-
cussed above and are thus not reported for the sake of concise-
ness. The same holds for the results obtained with CORAL using
11 features (also not reported), which do not show significant
differences with respect to those appearing in Fig.8.

D. Impact of the learning model
To conclude our analysis, we consider two alternative estimators,
i.e., Logistic Regression (LR) and RF classifiers, in place of the
SVM adopted in the previous experiments. This comparison is
possible because the considered DA techniques are agnostic to
the downstream classifier. We repeat the experiments for the
three baselines and the two DA techniques considered so far.
In Fig.11 we report results obtained in the same scenario used
for the SVM-based classifier in Fig.5(left). While LR achieves
comparable results to those obtained with SVM, RF shows a
very different trend, with SDB and LTDB providing exactly the
same AUC value (0.97). In such case, there is no benefit in apply-
ing DA techniques, since it is possible to obtain a very accurate
estimate relying exclusively on the samples gathered from the
source domain. In fact, RF is a powerful estimator, which is
capable of representing the training set more accurately than
LR. Furthermore, as an ensemble method, RF resists overfitting,
which in this case helps its generalization ability even on a dif-
ferent domain. In this context, the effect of DA approaches is
beneficial to LR but irrelevant for RF.

6. CONCLUSION

In this paper, we considered a ML-based QoT estimation frame-
works for candidate optical paths, focusing on the particular
case where large training datasets are unavailable or their ac-
quisition requires high costs. In such scenarios, it is necessary
to exploit the few available data and integrate them with larger
datasets gathered from a different network domain. To this aim,
DA techniques can be adopted to transform the features space
based on the domain from which the data have been collected.
We assessed the performance of two types of DA approaches in
different settings, depending on the number of available sam-
ples belonging to the target domain. Achieved results show
that Feature Augmentation and Correlation Alignment outper-
form a model trained by simply joining the sets of data collected
from source and target domains. Furthermore, we explored
the dependency of the AUC on the overlap between the two
distributions of lightpath lengths of the two domains. Results
show that DA techniques reduce the AUC decrement when the
overlap between the two distributions becomes smaller.
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