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ABSTRACT
In this paper, we systematically investigate the feasibility of different extremum-seeking (ES) control and optimization schemes to improve the
conversion efficiency of wave energy converters (WECs). Continuous-time and model-free ES schemes based on the sliding mode, relay, least-
squares gradient, self-driving, and perturbation-based methods are used to improve the mean extracted power of a heaving point absorber
subject to regular and irregular waves. This objective is achieved by optimizing the resistive and reactive coefficients of the power take-off
(PTO) mechanism using the ES approach. The optimization results are verified against analytical solutions and the extremum of reference-to-
output maps. The numerical results demonstrate that except for the self-driving ES algorithm, the other four ES schemes reliably converge for
the two-parameter optimization problem, whereas the former is more suitable for optimizing a single parameter. The results also show that for
an irregular sea state, the sliding mode and perturbation-based ES schemes have better convergence to the optimum in comparison to other
ES schemes considered here. The convergence of PTO coefficients toward the performance-optimal values is tested for widely different initial
values in order to avoid bias toward the extremum. We also demonstrate the adaptive capability of ES control by considering a case in which
the ES controller adapts to the new extremum automatically amid changes in the simulated wave conditions. Moreover, no explicit knowledge
of (future) wave excitation forces is required in the algorithm, which implies that the model-free ES can be used as a causal controller for
WECs. Our results demonstrate that the continuous-time and model-free ES method achieves the optimum within a single simulation, which
is in contrast to evolution-based optimization strategies that typically require a large number of (possibly expensive) function evaluations.
This makes ES control optimization schemes suitable for nonlinear computational fluid dynamics simulations, where typically evolutionary
strategies are used for performing black-box optimization.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0028500., s

I. INTRODUCTION

Renewable energy harvesting technologies have made tremen-
dous progress over the last several decades, which are enabling us to
reduce our current carbon footprint of energy production and con-
sumption. In particular, technologies based on wind and solar power
are now sufficiently mature and economically viable to be deployed
at commercial and utility scales. In contrast, wave energy conversion
has yet to achieve a level of commercial success like solar and wind

technologies, despite the concerted research efforts dating back since
the early 1970s after the oil crisis.1

The economy of scale model demonstrated for solar and wind
farms motivates future commercial wave farms. For example, the
cost of a photovoltaic module dropped from $66.1/W in 1976 to
$0.62/W in 2016. Similarly, the levelized cost of electricity gen-
erated from wind has significantly decreased over the years, with
prices ranging from $0.55/kWh in 1980 to $0.05/kWh in 2012.2

It is estimated that 2.11 ± 0.05 TW of wave energy is available
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globally.3 Moreover, wave power density is extremely high com-
pared to wind and solar; compare 25 kW/m of crest width for wave
energy against 1 kW/m2 at peak insolation for solar energy or at
a wind speed of 12 m/s for wind energy.4 Despite the favorable
attributes, wave power is the most underutilized renewable energy
resource.5 Nevertheless, significant progress has been made in the
design and analysis of wave energy converter (WEC) devices, which
convert the mechanical energy of the waves to electrical energy
through a power take-off (PTO) system.

One of the challenging aspects of making wave energy com-
mercially profitable is designing an optimal controller for a WEC
device that maximizes its mean extracted power. Consequently, sev-
eral optimal control formulations have been proposed in order to
improve energy extraction from WECs. An extensive review on this
topic can be found in the work of Ringwood et al.6,7 and Maria-
Arenas et al.8 One such optimal control formulation is the model-
free extremum-seeking (ES) method, which can be applied to both
linear and nonlinear systems. ES is an adaptive control that tracks
a maximum/minimum (extremum) of a performance/cost function
and then drives the output of this function to its extremum.9 ES con-
trol has been used for a variety of applications, including, but not
limited to, reducing thermo-acoustic instabilities in gas turbines and
rocket engines,10 flight formation optimization,11 control of thermo-
acoustic coolers,12 autonomous vehicles13 and robots,14 and beam
matching in particle accelerators.15 ES control has also been widely
used for wind16–18 and solar power applications.19–21 However, only
a limited number of ES studies are available for wave energy in the
literature.22,23 The aim of the current study is to fill this gap by testing
and comparing different ES control algorithms and demonstrating
their feasibility for WECs.

ES control was conceived at the beginning of the twentieth
century by Leblanc.24 The method first received considerable atten-
tion in the USSR in the 1940s25 and then in the Western world
in the 1950s and 1960s. Although ES was one of the first forms
of adaptive control, it was not until 2000 that a proof of stability
for a generic plant was provided by Krstić and Wang.9 Soon after,
many applications and variants of the algorithm followed in the lit-
erature. The first application of ES for WECs appeared in 2011 by
Hals et al.,23 in which various control strategies, including tuning
of controller parameters using perturbation-based ES, were com-
pared through simulation results. Hals et al. defined a performance
function based on low-pass filters and knowledge of wave excitation
forces for tuning linear damping or the threshold value of latch-
ing, depending on the controller. The authors compared the con-
troller parameters tuned through gain scheduling and ES strategies
in their work.23 In 2012, Garcia-Rosa et al.22 used a discrete-time ES
scheme to obtain performance-optimal PTO coefficients of a hyper-
baric point absorber converter. In their simulation results, both reac-
tive and resistive coefficients were simultaneously optimized, with-
out requiring the knowledge of wave excitation forces. Similar to
Hals et al., the authors in Ref. 22 also used a perturbation-based ES
control.

In this work, we use continuous-time ES control algorithms
to optimize the resistive and reactive PTO coefficients for a heav-
ing point absorber subject to regular and irregular waves. The
continuous-time formulation of ES control makes it applicable for
different simulation approaches as well, such as within a fully
resolved computational fluid dynamics framework. Moreover, our

approach also does not require any knowledge of wave excita-
tion forces, which translates to not requiring any wave measur-
ing/forecasting instrument at the site of operation. Furthermore, in
contrast to prior works22,23 that considered only the perturbation-
based ES method, we systematically test and compare the perfor-
mance of the sliding mode,26 relay,27 least-squares gradient,28 self-
driving,29 and perturbation-based9 ES schemes. The optimization
results are verified against analytical solutions and the extremum of
reference-to-output maps. The numerical results show that except
for the self-driving ES algorithm, the other four ES schemes reli-
ably converge for the two-parameter optimization problem, whereas
the former is more suitable for optimizing a single parameter. The
results also show that for an irregular sea state, the sliding mode
and perturbation-based ES schemes have better convergence to the
optimum, in comparison to other ES schemes. The convergence
of parameters toward the performance-optimal values is tested for
widely different initial values, in order to avoid bias toward the
extremum. We also demonstrate the adaptive capability of ES con-
trol by considering a case in which the ES controller adapts to the
new extremum automatically amid changes in the simulated wave
conditions.

There are several advantages to using model-free controllers
as opposed to classical model-based controllers such as the linear
quadratic regulator (LQR)30 or model predictive control (MPC)31

for devices that operate in extreme environments, such as WECs.
For example, model-free controllers are able to adapt to various sys-
tem alterations that may occur during a long-term operation of a
WEC device. Typical scenarios include marine growth on the sub-
merged surface, non-critical subsystem failures, and aging/fatigue
of internal components of the conversion system. Such alterations
are hard to predict or model, but they affect the dynamics of the
device significantly over a long period of time. Even if a model
is available, it will typically be nonlinear, which rules out linear
model-based controllers such as LQR. In contrast, model-free (and
nonlinear) controllers such as ES are not affected by modeling
errors or uncertainties in the model parameters. Because of these
reasons, model-free control schemes, particularly those based on
data-driven and machine learning approaches, are becoming
increasingly popular in the fluid mechanics community; see, for
example, active flow control32–37 and optimal swimming38 appli-
cations that have utilized deep reinforcement learning (DRL) or
genetic programming (GP) based controllers. Data-driven con-
trollers have also been proposed for WECs recently. Anderlini
and co-workers have developed control strategies using reinforce-
ment learning39–41 and artificial neural networks42 to maximize
power absorption of a WEC device. Another example of a machine
learning-based controller for WECs can be found in the work of
Thomas et al. who considered collaborative learning for arrays of
WECs in their work.43

One of the main drawbacks of model-free control schemes,
particularly those based on DRL, is the high computational cost
associated with first training the model and then ultimately learn-
ing the control policy.38,44 In contrast, model-free ES controllers rely
mostly on perturbation signals, filters, and gradient estimation of
the performance function; these operations have much lower com-
putation overhead, which allows ES to be used as an “online” con-
troller/optimizer. Moreover, ES does not rely on the “offline” simu-
lation dataset to optimize the plant behavior, which is an essential
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requirement of several machine learning or evolutionary strategy
based optimizers. However, modern machine learning controllers
using GP techniques enable finding new control laws directly instead
of optimizing parameters of traditional control schemes. These
developments are relatively recent; see, for example, the work of
Duriez et al. who used GP for controlling turbulent flows.35

The rest of this paper is organized as follows: We begin by stat-
ing the assumptions of ES formulation in Sec. II. Next, in Sec. III,
we define the performance function for a general energy-harvesting
mechanical oscillator and provide a brief overview and working
principle of each ES scheme. The equations of motion for bodies
oscillating in air and in water are described in Sec. IV. For some
cases, the analytical solution to the performance-optimal PTO coef-
ficients is provided. The ES results for a simple mass-spring-damper
system oscillating in air and for cylindrical and spherical buoys heav-
ing in regular and irregular waves are provided in Sec. V. Finally,
conclusions are drawn in Sec. VI.

II. OVERVIEW OF EXTREMUM-SEEKING CONTROL
AND OPTIMIZATION

Extremum-seeking (ES) control is an adaptive optimization
technique that derives and maintains the input and output of the
controlled plant to their respective extrema without requiring an
explicit knowledge of the plant dynamics. ES control can be applied
to both linear and nonlinear systems, in which the extremum of a
performance function is achieved and maintained by obtaining the
gradient information with respect to the control inputs. For the pur-
pose of description, we consider a single-input single-output (SISO)
nonlinear system with the following characteristics:

1. an unknown dynamical plant ẋ = f (x,u), with x ∈ Rn and
u ∈ R;

2. a performance function J = h(x), with J ∈ R; and
3. a state-feedback control law u = α(x, ϑ), with ϑ ∈ R.

Here, x represents the state of the plant, u is the control input,
and J is the performance (cost) metric/function that needs to be
maximized (minimized) over a period of time. The function f (x,u)
governing the evolution of the plant dynamics is not explicitly
required for the ES algorithm. Figure 1 shows a schematic repre-
sentation of the plant with an embedded ES controller. The fol-
lowing assumptions are made for the extremum-seeking controlled
plant:26,45,47,48

● Assumption 1: The control law u = α(x, ϑ) is smooth,
parameterized by ϑ, and stabilizes the plant.

● Assumption 2: There exists a smooth function xeq(ϑ) such
that

ẋ = f (x,α(ϑ, x)) = 0 ↔ x = xeq(ϑ). (1)

● Assumption 3: The functions f : Rn × R Ð→ Rn and h :
Rn Ð→ R are smooth.

● Assumption 4: The static performance behavior of the sys-
tem at the equilibrium point xeq(ϑ) can be expressed by

Jeq = h(xeq(ϑ)) = F(ϑ), (2)

in which F(ϑ) is a smooth function and admits a unique
maximum or minimum at ϑ = ϑ∗.

FIG. 1. Extremum-seeking control scheme for a general SISO nonlinear
system.45,46

● Assumption 5: The parameter ϑ evolves much slower than
the dynamics of the plant; the latter is assumed to be in equi-
librium [Eq. (1)]. Thus, we can omit the dynamics of the
plant while analyzing ES control. Given these operating con-
ditions, we are aiming toward achieving a steady-state opti-
mization of the plant. It then follows that the time derivative
of the performance function of the stabilized plant can be
expressed as

J̇eq =
dJeq

dt
= dJeq

dϑ
dϑ
dt
= dF(ϑ)

dϑ
ϑ̇. (3)

Under the same set of aforementioned assumptions, it is also
possible to extend the ES analysis to a multiple-input single-output
(MISO) system, in which ϑ ∈ Rm. The objective here is to opti-
mize m parameters simultaneously. For the stability analysis of ES
control of a SISO system, we refer the readers to Ref. 9, and for
that of a MISO system, the readers are referred to Refs. 13, 14,
and 49–53.

III. EXTREMUM-SEEKING CONTROL ALGORITHMS
In this work, we use model-free ES (also referred to as black-

box ES) algorithms to enhance the power absorption of periodically
oscillating systems, such as wave energy converter devices. The ES
algorithms used in this work belong to the class of derivative-based
optimization methods, which aim to determine the optimal value
of the performance function J by estimating the derivative dJ/dϑ to
obtain the value ϑ∗ that maximizes (minimizes) the performance
(cost) function. Extremum-seeking control problems are typically
formulated as unconstrained optimization problems, as done in this
work and in prior works that used ES for WECs.22,23 In order to
include inequality constraints on the plant parameters, the perfor-
mance/cost function can be augmented with penalty functions.54,55

However, constraints on the state variables and performance indica-
tors cannot be imposed in general because the state of the plant and
an explicit relationship between plant parameters and performance
indicators is not known a priori. Since a model-free ES algorithm
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is oblivious to the underlying system dynamics, its success depends
upon the definition of the performance function, which the control
designer is free to define. For energy harvesting systems, a natural
choice of performance function is the amount of energy absorbed
by the device over a period of time. An ES algorithm then finds the
maxima of this concave (performance) function with respect to the
PTO parameters.

The performance/cost function defined for an ES algorithm
should be time-invariant, and remain constant, if the parameter ϑ
remains constant.29 During the steady-state operation of a WEC
device, the absorbed energy is a time-varying periodic function
with a non-zero mean. Therefore, it is important to work with
mean powers rather than instantaneous powers in the performance
function, in order to satisfy assumption 5 given in Sec. II. In this
work, we define the mean of the absorbed power over a couple
of wave periods. There are two advantages of using this defini-
tion: (i) first, it ensures that the device dynamics are much faster
than the performance function variation and (ii) second, ES con-
trol remains adaptive in the presence of changing wave conditions.
The adaptive capability of ES is maintained because typically the
wave climate changes over several hundred wave periods, while
the performance function is (re-)defined over the last few (wave)
periods.

Specifically in this work, the performance function J for ES
algorithms is defined to be a composite function of the instanta-
neous power P(t) absorbed by the PTO unit, as shown in Fig. 2.
The composition consists of (i) a low-pass filter (LPF), (ii) a mov-
ing average defined over last few wave periods, and (iii) a loga-
rithmic function. Depending upon the type of PTO machinery, the

instantaneous power P(t) could be only resistive in nature (resistive
meaning that the PTO absorbs power from the waves and sends it to
the electric grid one way), or it could have both resistive and reactive
(reactive meaning that PTO can also withdraw power from the grid
and inject it into the device at times to invoke optimal phase con-
trol) power components. Irrespective of the PTO type, the power
signal P(t) is characterized by two main frequency types: the first,
which is at a higher value, is characterized by the fast dynamics of
the plant itself and the second, at a lower value, is characterized by
the slow variation of the parameter ϑ provided by ES. The purpose
of the low-pass filter is to eliminate the higher frequency content
from the performance metric, while that of the moving average is
to evaluate the steady-state performance of the plant (see Ref. 29
for more discussion). The signal μ, which is the output of the first
two operators, can be used to assess the device performance as a
function of ϑ parameter. However, the plant or the device could
be operating under wide variability of conditions (such as chang-
ing wave heights or periods), and the resulting power can vary in
different orders of magnitude. As suggested by Ciri et al.,56 the
purpose of the logarithmic function is to limit the variation of the
performance metric drastically, which reduces the sensitivity of the
controller response and avoids re-tuning ES controller parameters
for changing operating conditions of the plant. This can also be
observed in Fig. 2(b), which compares the scale of oscillation of
various functions involved in the performance function estimator
block.

Next, we discuss and describe different ES algorithms used
in this paper and make some recommendations on the controller
parameters of the ES algorithms.

FIG. 2. (a) Block-diagram scheme to obtain the performance function J for ES algorithms using instantaneous power P(t) absorbed by the PTO unit. A first-order low-pass
filter of the form ωL

s+ωL
is used, in which ωL is the cutoff frequency. (b) Representative time evolution of various functions during a WEC operation: P(t), χ(t), μ(t), and J(t).
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A. Sliding mode extremum-seeking control
The basic idea of the sliding mode extremum-seeking control

(SM-ES) is to make the performance function J follow an increasing
function of time q(t), irrespective of the unknown gradient dJ/dϑ via
sliding mode motions. The error signal ε = J(ϑ) − q(t) is then kept at
a constant value by a proper choice of ϑ̇ (via the sliding mode) given
by

ε̇ = dJ
dϑ

ϑ̇ − q̇(t), (4)

ϑ̇ = K tanh(sin(επ/β)), K > 0. (5)

Figure 3 shows a block diagram of the sliding mode ES control
system. Equivalently, the SM-ES can be described by the following
set of equations:

SM-ES =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q̇ = %, % > 0,
ε = J − q,
ξ = tanh(sin(επ/β)), β > 0,
ϑ̇ = Kξ, K > 0.

(6)

For more details on SM-ES, including its stability analysis and rec-
ommendations for tuning its parameters, we refer the readers to
Refs. 26, 27, and 57. Below, we list some key recommendations
followed in this work:

● The ratio βK/2% affects the convergence rate to attain the
performance-optimum value ϑ∗. A value too small slows
down the convergence rate, whereas an extremely large value
can be detrimental to the system stability.

● %/K and β have to be chosen small to ensure the stability and
convergence of the algorithm.

● To satisfy assumption 5 of Sec. II, i.e., the variation of the
parameter ϑ needs to be much slower than the dynamics
of the plant, the controller parameters K and % need to be
smaller than β. Our empirical tests suggest that the ratio
β/% approximately equal to 102 ensures the stability and
convergence of the algorithm.

B. Relay extremum-seeking control
A relay extremum-seeking control27 provides an estimation of

the plant optimum based on the sign of the gradient. This feature is
particularly useful when the controller is applied to a plant operating
under widely varying conditions, which can cause the gradient value

FIG. 3. Block diagram of the sliding mode extremum-seeking control system.26

to vary in different orders of magnitude, as discussed in Sec. III. In
this case, using a logarithmic function in the functional composition
of the performance metric is redundant, and the performance met-
ric μ (instead of J) can be used directly for the relay ES. However, a
drawback of discarding the gradient magnitude is that the parame-
ter ϑ keeps oscillating in the neighborhood of the optimal value ϑ∗,
where the gradient norm is ∣dμ/dϑ∣ϑ∗ ≈ 0. Nevertheless, acceptable
oscillations can be achieved with a proper tuning of the relay ES con-
troller parameters.27 Figure 4 shows a block diagram of the relay ES
control system, which is described by the following set of equations:

Relay ES =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g = δμ
δϑ ,

ξ = ξ0 signum(g), ξ0 > 0,
˙̂ϑ = ξ,
ϑ = ϑ̂ + ap sin(ωpt), ap > 0,

(7)

in which δμ/δϑ is the estimation of the gradient dμ/dϑ obtained using
a least-squares gradient estimation method, and the quantity Δp(t)
= ap sin(ωpt) is a small perturbation/dither added to the parameter
ϑ in order to avoid numerical issues related to the least-squares gra-
dient estimation.28 The gradient g estimation is performed by gen-
erating two buffers of length nbuff, which contain the last nbuff values
of performance metric μ and parameter ϑ, as shown in Fig. 5. Given
these two buffers, it is possible to estimate dμ/dϑ through applying
the least-squares method, as explained in Ref. 28. A proof of stability
for the relay ES method is provided in Ref. 58.

Since the gradient estimation of the performance function is
performed without a dither signal (as done in classical perturb and
observe ES methods), the convergence speed of relay ES does not
depend on the time scale of the external perturbation signal, which
potentially allows for a faster convergence of relay ES systems. The
signum function in Eq. (7) is defined as

signum(g) = {1 if g ≥ 0
−1 if g < 0.

(8)

The above definition of the signum function implies that the algo-
rithm keeps oscillating in the neighborhood of the optimal value ϑ∗,
as discussed earlier. Therefore, the choice of the controller param-
eter ξ0 is important; ξ0 should be selected large enough to grant an
appreciable variation of the parameter ϑ, which helps accelerate the

FIG. 4. Block diagram of the relay extremum-seeking control system.27
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FIG. 5. Least-squares gradient estimation for relay ES.

convergence of the algorithm. However, an extremely large value of
ξ0 causes excessive oscillations and possibly numerical instabilities.
Hence, a suitable value of ξ0 should be found empirically.

In our empirical testing, we observed that adopting an exces-
sively small buffer size makes the controller more reactive but
also much more sensitive to the selection of controller parame-
ters (empirical test data not shown). On the contrary, using large
buffer size makes the controller less reactive and leads to a poor
estimation of the gradient. The size of the buffer also depends on
the time step size adopted for acquiring data; if the step size is
extremely small, the buffers need to be larger and vice versa. In
our tests, we maintain a buffer size sufficient enough to store the
history of system performance over the last few (typically two)
wave periods. We remark that for the algorithm to converge dur-
ing the initial phase of the simulation, we initialize ϑ-buffer with
some non-constant values and keep the controller inactive. The μ-
buffer is filled as the simulation proceeds forward within this initial
phase.

The controller parameters ap and ωp of the sinusoidal pertur-
bation should be set such that the time scale of the perturbation is
larger than the time scale of the plant; ωp must be chosen small
enough for this reason. The perturbation amplitude ap is also kept
small to preserve the stability of the ES algorithm, as well as to
reduce the oscillations around the performance-optimal value ϑ∗.
In contrast, if the ap value is too small, then inaccuracies stemming
from the least-squares gradient estimation can cause a numerical
instability.

C. Least-squares extremum-seeking control
The least-squares gradient estimation-based extremum-seeking

control algorithm (LSQ-ES) is an extension of the relay ES, in which
both the sign and magnitude of the gradient of the performance
function estimate dJ/dϑ is used to derive ϑ to its performance-
optimal value. A block diagram of the LSQ-ES control system is
shown in Fig. 6. The algorithm is equivalently described by the
following set of equations:

LSQ-ES =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g = δJ
δϑ ,

˙̂ϑ = Kg, K > 0,
ϑ = ϑ̂ + ap sin(ωpt), ap > 0,

(9)

FIG. 6. Block diagram of the least-squares gradient estimation-based extremum-
control system.28

in which δJ/δϑ is the least-squares gradient estimation of the perfor-
mance function dJ/dϑ, as described in Ref. 28. Here, we use J instead
of μ as a performance metric, for reasons discussed previously.

The stability analysis of LSQ-ES performed in Ref. 28 shows
that the parameter KT affects the algorithmic performance; KT
should be chosen small enough to guarantee the convergence and
stability of the algorithm. Here, the controller parameter K is the
gain of the integrator as written in Eq. (9), and T is the time period
over which the input and output signals are stored in the data
buffers. Therefore, K should be adjusted according to the duration
of the time period T. As LSQ-ES is based on the relay ES algo-
rithm, the remaining controller parameters should be selected as per
Sec. III B.

D. Self-driving extremum-seeking control
A self-driving extremum-seeking control scheme, such as the

sliding mode extremum-seeking control, does not require pertur-
bations to estimate the gradient of the performance function. As
no perturbations are used, the algorithm avoids the time scale
associated with the perturbations, which may potentially allow for
a faster convergence toward the optimum. Although self-driving
systems were part of the ES algorithms surveyed by Sternby59 in
1980, they have since not gained much popularity compared to the
perturbation-based ES methods. However, lately, they are receiv-
ing a renewed attention in the literature; see Ref. 29 and references
therein. Here, we follow Haring to present a block diagram of a self-
driving ES control system, as shown in Fig. 7. The controller can be
equivalently described by the following set of equations:

Self-driving ES =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṁ1 = η(J −m1), η > 0,
ṁ2 = ηQ1Q2(J −m1 −Q1m2) − σηQ2m2, σ ≥ 0,
Q̇1 = −ηQ1 + ϑ̇,
Q̇2 = ηQ2 − ηQ2

1Q
2
2 − σηQ2

2,
ϑ̇ = ληm2, λ > 0.

(10)

Succinctly, the observer block estimates the gradient of the per-
formance function, m2 ≈ dJ/dϑ, and the optimizer block steers the
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FIG. 7. Block diagram of the self-driving extremum-seeking control system.29

parameter ϑ toward the performance-optimal value ϑ∗. A peculiar-
ity of this approach is that, instead of using perturbation/dither
signals, the self-driving ES method uses three auxiliary functions
Q1, Q2, and m1 to estimate the gradient of the performance func-
tion. As discussed in Ref. 29, if m2(t = 0) and Q1(t = 0) are equal
to zero, the parameter ϑ will remain constant, and not converge
to the optimal value. In our simulations, we initialize m2(0) and
Q1(0) with O(1) values and evolve them for a sufficiently long
period of time, during which the controller is kept inactive. In addi-
tion, to accelerate the convergence rate, higher values of the con-
troller parameters λ and η should be chosen. However, if these
are excessively high, stability issues may occur. Numerical insta-
bilities may also arise due to high values of Q2 during the sim-
ulation; it is recommended to regularize Q2 through a non-zero
σ value, as shown in the set of equations (10). Since larger val-
ues of σ can compromise the accuracy of the performance-optimal
ϑ∗, we set σ ≈ 10−11 in our simulations. For details on the work-
ing principle of a self-driving ES method, we refer the readers to
Ref. 29.

Through our empirical tests done for the cases studied in this
work, we find that the self-driving algorithm as is described in this
section does not converge well for MISO systems. However, for SISO
systems, the convergence toward the optimum solution is reasonably
fast and free of oscillations.

E. Perturbation-based extremum-seeking control
Perturbation-based extremum-seeking control is historically

the first ES control algorithm. In 1922, Leblanc first applied a
perturbation-based ES to maximize the power transfer from an over-
head electrical transmission line to a tram car.24 The method under-
went several extensions and modifications until 1960s, after which
it had lost popularity in lieu of other control schemes at that time.
This was mainly because of the difficulty to generalize the algo-
rithm for a large class of plants. In 2000, Krstić and Wang9 proved
the stability of the perturbation-based extremum-seeking control
scheme for a generic plant satisfying certain properties, as listed in
Sec. II. This publication has reignited the interest of the research
community in ES methods, and since then, many variants and appli-
cations based on extremum-seeking control algorithms have been
considered—some of which were discussed in Secs. III A–III D. Fig-
ure 8 shows a block diagram of the perturbation-based ES control

FIG. 8. Block diagram of the perturbation-based extremum-seeking control sys-
tem.45 First-order low-pass and high-pass filters of the form ωL

s+ωL
and s

s+ωH
,

respectively, are used.

system. The scheme can be equivalently described by the following
set of equations:

Perturbation-based ES =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

η̇ = ωH(J − η), ωH > 0,
ξ̇ = ωL((J − η) sin(ωpt) − ξ), ωL > 0,
˙̂ϑ = Kξ, K > 0,
ϑ = ϑ̂ + ap sin(ωpt). ap > 0.

(11)

An intuitive working principle of perturbation-based ES can
be explained as follows. A perturbation signal Δp(t) = ap sin(ωpt) is
added to the current estimate of the parameter ϑ and passed into
the plant. The plant’s performance J is measured/calculated for the
updated parameter. If the output signal J can be linearized around
the current estimate of ϑ, then the change in J due to the perturbation
signal can be obtained using a Taylor series expansion

J − η ≈ dJ
dϑ

Δp, (12)

in which η is the DC component of the signal that can be subtracted
from J by passing it through a high-pass filter (HPF) of cutoff fre-
quency ωH. The change in the performance function due to the
added perturbation is then multiplied by another perturbation signal
to yield the following quantity:

(J − η)Δp ≈
dJ
dϑ

Δ2
p. (13)

The resultant of this operation is passed through a low-pass fil-
ter (LPF) of cutoff frequency ωL, which extracts the (slowly vary-
ing) performance gradient ξ ≈ dJ/dϑ with the correct sign. (As
Δ2

p is a positive quantity, the sign of the signal is decided by the
gradient of the performance function dJ/dϑ.) Following the gradi-
ent estimation, an integrator with gain K updates the ϑ parame-
ter, and the optimization process is repeated until convergence is
obtained.

The amplitude ap of the perturbation and the gain K of the inte-
grator should be chosen small enough to guarantee convergence, as
discussed in Refs. 9 and 60. Moreover, the smaller value of ap reduces
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oscillation of ϑ in the neighborhood of the performance-optimal
value ϑ∗. The angular frequency ωp of the dither signal should be
lower than the plant frequency, in order to satisfy assumption 5
given in Sec. II.

IV. EQUATIONS OF MOTION
In this section, we describe the equations of motion of energy-

harvesting mechanical oscillators operating in air and in water envi-
ronments. A mechanical oscillator working in air is also referred to
as a “dry” oscillator in the wave energy literature.61 Although the
objective of the current work is to maximize the power extraction of
point absorber devices using extremum-seeking control, an analyti-
cal solution to the dry oscillator problem is available, which can be
used to validate the optimal solution obtained using ES. Moreover,
there is a direct equivalence between the performance optimal PTO
coefficients of a dry oscillator and a WEC subject to regular waves,
which further justifies considering the dry oscillator problem first.

A. Bodies oscillating in air
The equation of motion of a single degree of freedom spring-

mass-damper system oscillating in air and subject to an external
periodic force of frequency ω reads as

mẍ(t) + cẋ(t) + kx(t) = fe(t) + fPTO(t), (14)

in whichm is the mass of the oscillator, c is the damping coefficient, k
is the spring stiffness coefficient, and x is the upward heaving direc-
tion; see Fig. 9(a). The external periodic force f e and the control force
f PTO applied through the power take-off unit are taken to be of the
form

fe(t) = f0 sin(ωt), (15)

fPTO(t) = −Kx(t) − Cẋ(t), (16)

in which f 0 is the amplitude of the external force, and a proportional-
derivative (PD) control law is used for the control force. [It is also
possible to have an inerter integrated into the PTO system so that
fPTO(t) = −Kx(t)−Cẋ(t)−Aẍ, in which A is the inertance coefficient

TABLE I. Sea states.

Regular sea ID T (s) H (m) Irregular sea ID Tp (s) Hs (m)

Reg.1 0.625 0.01 Irreg.1 0.625 0.01
Reg.2 0.8 0.02 Irreg.2 0.8 0.02
Reg.3 1.0 0.0075 Irreg.3 1.0 0.0075

of the PTO; see Ref. 62.] Using impedance-matching or complex-
conjugate control analysis, it can be shown that the average-power

P̄ = 1
T ∫

t+T

t
Cẋ2 dt (17)

extracted from the system over a time period T = 2π/ω is maxi-
mal, when the system is in resonance with the external forcing. In
other words, when the natural frequency of the system ωn equals
the external frequency ω, the extracted power is maximized. Since
it is inconvenient or often times impossible to change the inherent
characteristics of the system (m, c, k), the PD control law allows the
control designer to adjust the reactive and resistive PTO coefficients,
K and C, respectively, to optimize the system performance for vary-
ing external forces and disturbances. The energy-maximizing PTO
parameters (in the absence of disturbances) can be found analytically
as63

Kopt = ω2m − k, (18)

Copt = c. (19)

In Sec. V A, we make use of Eqs. (18) and (19) to verify the optimal
solutions K(ϑ∗1 ) and/or C(ϑ∗2 ) obtained using ES.

We remark that in some other optimal control formulations,
for example, in model predictive control of converters,31 the objec-
tive is to find the energy-maximizing control force f PTO directly.
The average-power extracted by the system over a time period T is
expressed as

FIG. 9. Schematic of an energy-
harvesting (a) mass-spring-damper
system and (b) a fully submerged point
absorber wave energy converter.
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TABLE II. Mass-spring-damper parameters.

Parameter Value

m (kg) 18.55
k (N/m) 200
c (N s/m) 15
T (s) 0.5
f 0 (N) 10

Kopt (N/m) 2729
Copt (N s/m) 15

P̄ = 1
T ∫

t+T

t
−fPTO ẋ dt. (20)

For a PD control law, Eq. (20) is equivalent to Eq. (17),

P̄ = 1
T ∫

t+T

t
−fPTO ẋ dt

= 1
T ∫

t+T

t
(Kx + Cẋ)ẋ dt

= 1
T ∫

t+T

t
K

d
dt
(x

2

2
)dt +

1
T ∫

t+T

t
Cẋ2 dt, (21)

FIG. 10. Optimization of the reactive coefficient K at a fixed value of resistive coefficient C = Copt for the mass-spring-damper system using (a) sliding mode, (b) self-driving,
(c) relay, (d) LSQ, and (e) perturbation-based ES algorithms. The optimal Kopt = 2729 N/m value is indicated by the dashed line in the plots.
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FIG. 11. Optimization of reactive and resistive coefficients, K and C, respectively, for the mass-spring-damper system using (a) sliding mode, (b) relay, (c) LSQ, and (d)
perturbation-based ES algorithms. The optimal Kopt = 2729 N/m and Copt = 15 N s/m values are indicated by dashed lines in the plots.

as the first term in Eq. (21) vanishes under the time-periodic
motion of the device. Appendix A numerically verifies that the
inclusion of the reactive component of power in the perfor-
mance function does not affect the final optimized values of
PTO coefficients using ES. Therefore, we use only the resistive
component of power or Eq. (17) for defining the performance
function.

B. Bodies oscillating in water
The equation of motion of a fully submerged point absorber

with a single degree of freedom [see Fig. 9(b)] reads as

mẍ(t) = fw(t) + fr(t) + fv(t) + fPTO(t), (22)
in whichm is the mass of the point absorber, f w is the wave excitation
force (Froude–Krylov and diffraction), f r is the radiation force, f v

FIG. 12. Extracted power P(t) during reactive coefficient optimization using (a) perturbation-based ES and (b) sliding mode ES.
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FIG. 13. Frequency-dependent added-mass A(ω) and radiation damping B(ω) for
the two-dimensional cylindrical buoy. The coefficients are obtained using BEM-
based ANSYS AQWA software.

is the viscous drag force, and f PTO is the PD control force applied
by the PTO mechanism, as given in Eq. (16). The physical origin of
radiation force stems from the energy dissipation mechanism of a
moving body that emanates waves during its motion in water. Using

the Cummins equation,64 the radiation force is expressed as

fr(t) = −A∞ẍ − ∫
t

0
hr(t − τ)ẋ(τ)dτ, (23)

in which A∞ is the infinite-frequency added mass and hr(t) is the
radiation impulse response function that contains the fluid-memory
effect. The radiation force can also be obtained from the inverse
Fourier transform of Hr(jω),

Hr(jω) = B(ω) + jω(A(ω) − A∞), (24)

hr(t) =
1
π ∫

∞

0
Hr(jω)ejωt dω, (25)

in which the frequency-dependent added mass A(ω), and the
frequency-dependent radiation damping B(ω), can be obtained
using boundary element method (BEM)-based codes such as
WAMIT65 or ANSYS AQWA.66 For computational efficiency, as
well as for representational convenience, the radiation convolution
integral in Eq. (23) can be approximated by an equivalent state-space
formulation67,68

kr(t) = ∫
t

0
hr(t − τ)ẋ(τ)dτ

≃ {ζ̇r(t) =Arζr(t) + Brẋ(t), Ar ∈ Rnr×nr , ζr ∈ Rnr×1

kr(t) = Crζr(t), Cr ∈ R1×nr ,
(26)

in which Ar,Br, and Cr are the state-space matrices and nr is the
approximation-order of Hr(jω) in the frequency-domain or hr(t)
in the time-domain. In this work, we also follow the state-space

FIG. 14. Power vs PTO coefficient reference-to-output map for a two-dimensional cylinder subject to regular waves. The optimal PTO coefficients are (a) Kopt = 3720 N/m
and Copt = 18 N s/m; (b) Kopt = 2290 N/m and Copt = 34 N s/m; and (c) Kopt = 1530 N/m and Copt = 30 N s/m.
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TABLE III. Optimal PTO coefficients for a two-dimensional cylindrical buoy subject
to regular waves using impedance-matching control theory and through a brute-force
search. Units: T is in s, H is in m, K is in N/m, and C is in N s/m.

Sea state ID T H Kopt,map Copt,map Kopt,analytical Copt,analytical

Reg.1 0.625 0.01 3720 18 3717 9
Reg.2 0.8 0.02 2290 34 2302 20
Reg.3 1 0.0075 1530 30 1534 21

approach to approximate the radiation convolution integral. Com-
bining Eqs. (22) and (26), the system of equations for the fully
submerged point absorber heaving in the x-direction reads as

(m + A∞)ẍ(t) + Crζr(t) = fw(t) + fv(t) − Kx(t) − Cẋ(t), (27)

ζ̇r(t) =Arζr(t) + Brẋ(t). (28)

The viscous drag force in Eq. (27) is modeled using a Morrison
formulation as

fv(t) = −
1
2
ρwCdSx∣ẋ∣ẋ, (29)

in which ρw = 1025 kg/m3 is the density of sea water, Cd is the drag
coefficient, and Sx is the planar cross-sectional area normal to the
force.

We use linear potential flow theory to compute the wave exci-
tation force f w on the submerged point absorber. Both regular and
irregular sea states are considered in this work. The regular waves
are characterized by a single wave frequency ω or time period
T = 2π/ω, wave height H or amplitude a = H/2, and wavelength λ
or wavenumber κ = 2π/λ. The wave frequency and the wavenumber
satisfy the dispersion relation69

ω2 = gκ tanh(κd), (30)

in which g = 9.81 m/s2 is the acceleration due to gravity and d is the
mean depth of water. In contrast, an irregular sea state consists of a
large number of regular wave components, each having its own wave
amplitude ai, angular frequency ωi [or equivalently, wavenumber κi
obtained from the dispersion relation given by Eq. (30)], and ran-
dom phase θi that is uniformly distributed in the range [0, 2π]. The
linear superposition of regular wave components implies that the
energy carried by an irregular wave is the sum of the energy trans-
ported by individual wave components. When the number of wave
components tends to infinity, a continuous wave spectral density
function S(ω) is used to describe the energy content of the wave com-
ponents in an infinitesimal frequency bandwidth dω. In this work,
we use a JONSWAP70 spectrum to generate the irregular sea state.
The JONSWAP spectrum is characterized by two statistical param-
eters: significant wave height Hs and peak period Tp. The amplitude
of each wave component is related to the spectral density function

FIG. 15. Optimization of reactive and resistive coefficients, K and C, respectively, for the cylindrical buoy in regular sea state “Reg.1” using (a) sliding mode, (b) relay, (c)
LSQ, and (d) perturbation-based ES algorithms. The optimal Kopt = 3720 N/m and Copt = 18 N s/m values are indicated by dashed lines in the plots.
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by

ai =
√

2 ⋅ S(ωi) ⋅ Δω. (31)

In a regular sea state, the point absorber system is mathemat-
ically equivalent to the mechanical oscillator of Sec. IV A, if one
replaces the damping coefficient c with the radiation damping B(ω),
the mass of the oscillator m with the total mass (m + A(ω)), and
the spring stiffness k with the hydrostatic stiffness khydro, which is
zero for a fully submerged body. Therefore, using the impedance-
matching control theory, the energy-maximizing PTO parameters
can be found as

Kopt = ω2(m + A(ω)), (32)

Copt = B(ω). (33)

We remark that if an additional viscous drag force is included in the
equations of motion, as done in this work, then the optimal PTO
resistive coefficient Copt would be higher than B(ω) as shown by
Beatty et al..71 We make use of Eqs. (32) and (33) to verify the results
of ES algorithms.

For an irregular sea state, the optimal PTO parameters can-
not be found analytically as multiple frequencies are present in the
point absorber velocity ẋ (and other state variables), which is used
to evaluate the P̄ expression in Eq. (17). Therefore, to verify the
optimal solution obtained from ES algorithms, we create a perfor-
mance map of the system using a brute-force search of parametric
space.

1. Device and wave characteristics
Motivated by our prior work on numerical modeling of a

fully submerged axisymmetric point absorber device,72 we simu-
late a two-dimensional cylindrical and a three-dimensional spher-
ical buoy to perform extremum-seeking control simulations. Both
devices have the same diameter D = 0.16 m and a homogeneous
mass density of ρs = 922.5 kg/m3. Their depth of submergence is
taken to be ds = 0.25 m, and the mean depth of water is taken
as d = 0.65 m. Table I tabulates the regular and irregular sea
states simulated in this work. These wave characteristics are cho-
sen based on the scale of the device; see Ref. 72 and Ref. 73 for
discussion.

FIG. 16. Optimization of reactive and resistive coefficients, K and C, respectively, for the cylindrical buoy subject to changing sea states using (a) sliding mode, (b) relay, (c)
LSQ, and (d) perturbation-based ES algorithms. The optimal Kopt and Copt values in three different sea states from Table III are indicated by dashed lines in the plots.
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TABLE IV. Optimal PTO coefficients for a two-dimensional cylindrical buoy subject to
irregular waves using impedance-matching control theory and through a brute-force
search. Units: Tp is in s, Hs is in m, K is in N/m, and C is in N s/m.

Sea state ID Tp Hs Kopt,map Copt,map

Irreg.1 0.625 0.01 3440 32
Irreg.2 0.8 0.02 2170 44
Irreg.3 1 0.0075 1480 40

V. RESULTS
In this section, results are presented for energy-maximizing K

and C PTO coefficients using different ES schemes. For each consid-
ered system, we present the results for a two-parameter optimization
problem, in which both K and C parameters are simultaneously
optimized. In some cases, the results for a single-parameter opti-
mization problem, in which either K or C is optimized, are also
presented.

A. Mass-spring-damper system
The mass-spring-damper system of Sec. IV A is consid-

ered here using the parameters tabulated in Table II. The
table also lists the optimal values of Kopt and Copt coefficients,

obtained analytically. We begin with single-parameter optimiza-
tion of either reactive coefficient K or resistive coefficient C by
keeping the other fixed at its optimal value. The optimization
results for K with different initial values are shown in Fig. 10.
As can be seen in the figure, all ES algorithms converge to
the theory-predicted optimal value. Similar trends are obtained
for the optimization results for C, which are shown in Fig. 20
in Appendix B.

Next, we perform simultaneous optimization of both PTO coef-
ficients. The results are shown in Fig. 11 for four ES algorithms;
the self-driving ES method did not converge reliably for the two-
parameter optimization problem (divergent data not presented).
Based on the results obtained in this section, we make some remarks
about different algorithms:

● The sliding mode ES proved quite robust and did not require
re-tuning of parameters for varying conditions such as the
frequency and/or amplitude of the external force. More-
over, the number of parameters to tune is relatively small.
A drawback of the scheme is that the steady-state solu-
tion oscillates near the optima, as shown in Fig. 10(a).
This, however, results in a negligible variation in the PTO
power, as shown in Fig. 12, which compares the extracted
power as a function of time using perturbation-based and
sliding mode ES methods. The former controller produces
negligible oscillation in the steady-state solution of the K
coefficient.

FIG. 17. Optimization of reactive and resistive coefficients, K and C, respectively, for the cylindrical buoy operating in the irregular sea state “Irreg.1” using (a) sliding mode,
(b) relay, (c) LSQ, and (d) perturbation-based ES algorithms. The optimal Kopt = 3440 N/m and Copt = 32 N s/m values are indicated by dashed lines in the plots.
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● The self-driving ES achieves convergence to the optimal
value without steady-state oscillations. It is relatively robust,
but the main drawback includes tuning of a large number of
parameters. In addition, it did not converge reliably for the
multi-parameter optimization problem using the algorithm
described in Sec. III D.

● The relay ES is also relatively insensitive to the frequency
and/or amplitude variation of the external force. It is sim-
ple to tune as well. However, it also results in steady-state
oscillations in the solution.

● The LSQ-ES proved more robust than the relay ES, hav-
ing roughly the same number of parameters to tune. It also

results in less oscillations in the steady-state solution com-
pared to the relay ES, although they are not completely
eliminated.

● Perturbation-based ES is one of the more popular ES
schemes used in the literature. The main advantage of this
method is its stability, although the choice of cutoff fre-
quencies of the filters largely dictates its performance. The
method can achieve a controlled amount of oscillation in
the converged solution, as shown in Figs. 10(e), 20(e), and
11(d). The rate of convergence of this method also depends
upon the frequency of the external perturbation signal used
to estimate the gradient.

FIG. 18. Optimization of reactive and resistive coefficients, K and C, respectively, for the spherical buoy operating in regular and irregular sea states “Reg.1” and “Irreg.1”
using sliding mode [(c) and (d)] and perturbation-based [(e) and (f)] ES algorithms. For sea state “Reg.1,” the optimal PTO coefficients are Kopt,map = 310 N/m and Copt,map
= 6 N s/m; see (a). The optimal PTO coefficients for sea state “Irreg 1” are Kopt,map = 290 N/m and Copt,map = 4 N s/m; see (b).
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B. Cylindrical point absorber
1. ES performance in a regular sea state

Next, we consider a two-dimensional cylindrical buoy of
Sec. IV B 1 subject to regular waves. Three regular waves of different
heights and time periods are considered (Table I). Figure 13 plots the
frequency-dependent added mass A(ω) and frequency-dependent
radiation damping B(ω) for the two-dimensional cylinder; the plot-
ted values can be used to estimate the optimal reactive and resistive
coefficients of the PTO mechanism, using Eqs. (32) and (33), respec-
tively. Since the theoretical formula ignores the viscous drag force,
we perform a brute-force search of the parametric space to find the
optimal values of the resistive coefficient. Figure 14 plots the power
vs coefficient reference-to-output map, and Table III lists their opti-
mal values for three different sea states. The tabulated values con-
firm that the theoretical estimates of the optimal reactive coeffi-
cients are quite accurate, whereas the optimal resistive coefficients
are under-predicted.

Figure 15 shows the convergence history of K and C
coefficients using four ES algorithms for the regular sea state
“Reg.1.” As can be seen in the figure, all four algorithms con-
verge to the optimum values of the PTO coefficients. Moreover,
their convergence behavior is similar to the mechanical oscilla-
tor problem of Sec. IV A. Similar to the mass-spring-damper
case, the self-driving ES method did not converge for the two-
parameter optimization problem. However, oscillation-free steady-
state solutions are obtained, when self-driving ES is used to opti-
mize either K or C. The single-parameter optimization results
obtained using the self-driving ES method are shown in Fig. 21
in Appendix C.

Next, we test the adaptive capability of ES algorithms. Starting
with sea state “Reg.1,” the wave conditions for the cylindrical buoy
are changed to “Reg.2” and then subsequently to “Reg.3.” Figure 16
shows that all four ES algorithms can reliably adapt to the chang-
ing wave conditions and adjust the PTO coefficients automatically
to achieve optimal performance in each sea state. The results also
confirm that extremum-seeking control algorithms do not require
any wave forecasting/prediction information to attain the optimum.
Indeed, the performance function used in the extremum-seeking
algorithm requires only on-board instrumentation to estimate the
absorbed PTO power. Thus, ES can be used as a causal controller for
WECs.

2. ES performance in an irregular sea state
A WEC device subject to irregular waves has multiple fre-

quencies in its dynamics. Consequently, a closed-form solution for
energy-maximizing PTO coefficients is difficult to obtain analyt-
ically. To verify the controller results, we perform a brute-force
search of the parametric space to find the optimal values of the PTO
coefficients for three irregular sea states. Figure 22 in Appendix D
plots the power vs PTO coefficient reference-to-output map, and
Table IV lists their optimal values.

Figure 17 shows the convergence history of K and C coefficients
using four ES algorithms for the sea state “Irreg.1.” From the fig-
ure, it can be seen that the sliding mode and perturbation-based ES
methods outperform the relay and LSQ-ES algorithms. The latter
two methods display large oscillations in the steady-state solution.

Between the relay and LSQ methods, the former has a better con-
vergence rate. This can be attributed to the fact that the relay ES
algorithm does not use the magnitude of the performance gradient,
which is noisier compared to its regular sea state counterpart when
computed through data buffers. However, for regular waves, LSQ-
ES convergence is better compared to the relay ES scheme because
a more accurate gradient is available in this case; see Fig. 15. Simi-
lar results are obtained for sea states “Irreg.2” and “Irreg.3” and are
shown in Figs. 23 and 24, respectively, in Appendix D.

C. Spherical point absorber
Intuitively speaking, as we employ model-free ES schemes to

optimize mechanical oscillators in this work, a particular device
geometry should not matter for the algorithmic success. However, to
verify that the model-free ES algorithms also converge for a different
device geometry (and consequently, for a different hydrodynamical
system), we perform ES optimization of a spherical buoy described
in Sec. IV B 1. Sea states “Reg.1” and “Irreg.1” are considered for the
sliding mode and perturbation-based ES algorithms.

Figure 18 shows the convergence history of PTO coefficients
K and C using sliding mode ES (middle row) and perturbation-
based ES (bottom row) algorithms. As can be seen in the figure,
steady-state convergence toward the performance-optimal solution
is achieved with both algorithms (convergence data not shown for
relay and LSQ schemes for brevity). The optimal values obtained
from the ES optimization can be confirmed from power vs PTO
coefficient reference-to-output maps (top row).

VI. CONCLUSIONS
In this study, we systematically investigated the feasibility of

ES control optimization for wave energy converters to improve
their conversion efficiency. Five different ES schemes were tested
for heaving WECs: (i) sliding mode ES, (ii) relay ES, (iii) least-
squares gradient ES, (iv) self-driving ES, and (v) perturbation-based
ES. The optimization problem of wave energy absorption in WECs
was formulated in terms of finding the optimal PTO coefficients.
Alternatively, the ES optimization problem can also be formu-
lated in terms of finding the optimal PTO force directly, as typi-
cally done in model predictive control (MPC) of WECs.31 Direct
optimization of PTO force using ES control is deferred to future
endeavors.

The performance function for the ES control was defined as the
energy absorbed by the PTO system over a given period of time,
which could be measured through on-board instrumentation, and
does not require any wave measurements. This implies that the
model-free ES can be used as a causal controller for WECs. The
optimization results were verified against analytical solutions and
the extremum of reference-to-output maps. The numerical results
demonstrate that except for the self-driving ES algorithm, the other
four ES schemes reliably converge for the two-parameter optimiza-
tion problem. The self-driving ES is more suitable for optimizing
a single parameter of the problem or when the objective is to find
the optimal control force directly, rather than to optimize the gains
of the control law. An advantage of the self-driving ES scheme is
that it leads to an oscillation-free steady-state solution. The results
also show that for an irregular sea state, the sliding mode and
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perturbation-based ES schemes have better convergence to the opti-
mum in comparison to the other ES schemes. The least-squares ES
scheme performs better than the relay ES scheme, whenever the
gradient estimation through data acquisition is smooth and accu-
rate. This can be concluded by comparing the convergence history
of LSQ-ES and relay ES for regular and irregular sea states; LSQ
performed better than relay in the case of regular waves, and the con-
verse is true for irregular waves. For all ES schemes, the convergence
of PTO coefficients toward the performance-optimal values is tested
for widely different initial values, in order to avoid bias toward the
extremum. We also demonstrated the adaptive capability of ES con-
trol by considering a case in which the ES controller adapts to the
new extremum automatically amid changes in the simulated wave
conditions.

All extremum-seeking schemes achieve optimum within a sin-
gle simulation. This allows for a possibility of using model-free ES
algorithms within a nonlinear computational fluid dynamics (CFD)
framework to simulate wave–structure interaction of WECs. In the
CFD literature, evolution-based optimization strategies (e.g., genetic

algorithm) are predominantly used for solving optimization prob-
lems. However, such evolutionary strategies typically require a large
number of function evaluations, which can be prohibitively expen-
sive for fully resolved wave–structure interaction problems.73,74 We
shall consider such an approach in the future.
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Miroslav Krstić over the course of this work. A.P.S.B. acknowledges
Nishant Nangia for carefully reading the manuscript and providing
helpful comments.

APPENDIX A: POWER COMPONENTS
IN PERFORMANCE FUNCTION

Here, we numerically verify that including the reactive com-
ponent of power in the performance function does not affect the

FIG. 19. Optimization of reactive and resistive coefficients, K and C, respectively, for the cylindrical buoy in regular “Reg.1” [top row (a) and (b)] and irregular “Irreg.1” [bottom
row (c) and (d)] waves using different power components in the performance function. The optimal Kopt = 3720 N/m and Copt = 18 N s/m values for regular waves and Kopt
= 3440 N/m and Copt = 32 N s/m values for irregular waves are indicated by dashed lines in the plots.
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FIG. 20. Optimization of the resistive coefficient C at a fixed value of reactive coefficient K = Kopt for the mass-spring-damper system using (a) sliding mode, (b) self-driving,
(c) relay, (d) LSQ, and (e) perturbation-based ES algorithms. The optimal Copt = 15 N s/m value is indicated by the dashed line in the plots.

optimal values of the PTO coefficients obtained using an ES con-
trol scheme. We demonstrate this by comparing results in Fig. 19
for the cylindrical buoy subject to regular and irregular waves of the
type “Reg.1” and “Irreg.1,” respectively. The perturbation-based ES

method is used here. As can be seen in the figure, the inclusion of
the reactive power term in the performance function does not affect
the final outcome of the optimization. This was also demonstrated
theoretically in Eq. (21).
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FIG. 21. Optimization of the (a) reactive PTO coefficient K and (b) resistive PTO coefficient C using the self-driving ES algorithm for a cylindrical buoy in the regular sea state
“Reg.1.” The optimal Kopt = 3720 N/m and Copt = 18 N s/m values are indicated by dashed lines in the plots.

FIG. 22. Power vs PTO coefficient reference-to-output map for a two-dimensional cylinder operating in an irregular sea state. The optimal PTO coefficients are (a) Kopt
= 3440 N/m and Copt = 32 N s/m; (b) Kopt = 2170 N/m and Copt = 44 N s/m; and (c) Kopt = 1480 N/m and Copt = 40 N s/m.
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FIG. 23. Optimization of reactive and resistive coefficients, K and C, respectively, for the cylindrical buoy operating in the irregular sea state “Irreg.2” using (a) sliding mode,
(b) relay, (c) LSQ, and (d) perturbation-based ES algorithms. The optimal Kopt = 2170 N/m and Copt = 44 N s/m values are indicated by dashed lines in the plots.

FIG. 24. Optimization of reactive and resistive coefficients, K and C, respectively, for the cylindrical buoy operating in the irregular sea state “Irreg.3” using (a) sliding mode,
(b) relay, (c) LSQ, and (d) perturbation-based ES algorithms. The optimal Kopt = 1480 N/m and Copt = 40 N s/m values are indicated by dashed lines in the plots.
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APPENDIX B: OPTIMIZATION OF DAMPING
COEFFICIENT C FOR MASS-SPRING-DAMPER SYSTEM

Here, we present the optimization results for C at a fixed value
of reactive coefficient K = Kopt for the mass-spring-damper system
using different ES algorithms, as considered in Sec. V A.

APPENDIX C: SELF-DRIVING ES OPTIMIZATION
FOR A CYLINDRICAL POINT ABSORBER IN REGULAR
SEA STATE “REG.1”

Here, the single parameter optimization results obtained using
self-driving ES for a two-dimensional cylindrical buoy operating in
regular sea state “Reg.1” (as considered in Sec. V B 1) are presented.

APPENDIX D: IRREGULAR SEA STATES “IRREG.2”
AND “IRREG.3” FOR CYLINDRICAL POINT ABSORBER

Here, the power vs PTO coefficient reference-to-output map
and optimization results for a two-dimensional cylindrical buoy
operating in an irregular sea state (as considered in Sec. V B 2) are
presented.

DATA AVAILABILITY

The data that support the findings of this study are openly
available in the GitHub repository at https://github.com/amneetb/
extremum-seeking-wecs.
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unstable systems and for autonomous vehicle target tracking without position
measurements,” Automatica 43(10), 1832–1839 (2007).
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