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Abstract—In this paper we analyze which are the design
options that would impact a free floating electric car sharing
system performance and costs, studying how the system would
scale with an increase in the intensity of the demand. We consider
the case study of the city of Turin, for which we leverage hundred
of thousands of actual rentals from a (combustion-based) car
sharing system to derive an accurate demand model. Armed
with this, we consider the transition to electric cars and the need
to deploy a charging station infrastructure.

Using a realistic simulator, we present the impact of system
design options, like the number of charging poles, their allotment,
and the number of cars. We first consider performance indicators,
like fraction of satisfied demand and working hours system
has to spend to bring to charge vehicles. Then we map these
figures into revenues and costs, projecting economical indicators.
At last, we investigate the scalability of the whole system, i.e.,
how performance and costs scale when the demand increases.
Our results show that concentrating the charging stations in key
places is instrumental to optimize car distribution in the city
to better intercept the demand. Considering system scalability,
the charging infrastructure must intuitively grow proportionally
with the mobility demand. Interestingly instead, the fleet size can
grow much slower, showing some nice economy of scale gains.

Index Terms—car sharing; scalability; charging infrastructure

I. INTRODUCTION

Today, around 55% of the world’s population lives in urban
areas, a proportion that is expected to increase to 68% by
2050 [1]. Cities face important challenges to manage mobility,
with a mixture of public and private transportation means. The
widespread usage of private cars led to land consume, increase
of air pollution and higher health risk [2]. Private cars are
often chosen by citizens for their flexibility and comfort, with
the burden of higher fixed and variable costs. Recently, the
sharing economy has brought regulators and policy makers
to invest on free floating car sharing (FFCS) systems, car
rental models where the customers can freely pick and drop a
car within an operative area through a mobile app. They pay
only for the time spent driving, usually with minute-based
fares which include all costs. Thus, this combines some of the
benefits of public transport and private cars [3]. Sharing the
same car among different people helps reducing the number
of vehicles and brings benefits for the whole community like
increase of parking availability and reduction of pollution [4].

Moreover, since there are no fixed costs for users, usually
FFCS is economically convenient for users who travel few
thousand kilometers per year [5].

To make another step towards sustainable mobility, the
challenge is to convert FFCS fleet from internal combustion
engine vehicles (ICE) to electric ones (EVs), maintaining the
same service flexibility. This change would further reduce
the noise and pollutant emissions in congested areas [6], but
calls for the creation of a charging infrastructure, and the
management of the additional costs to handle battery charging
operations.

In this work we analyze the feasibility and scalability of
FFCS with electric vehicles. Our goal is to find an economi-
cally sustainable solution that brings benefits to both citizens
(i.e., high availability) and operators (i.e., high profit), with the
economic sustainability being a crucial aspect. For instance in
Italy, the main FFCS operator had revenues around 48 million
euros in 2016, but still losing around 27 millions euros, with
each car burning 4700 C on average [7]. Despite that, car
sharing is estimated to increase from 20% to 40% from 2019
to 2021 [8].

However, the shift to EVs implies not trivial decisions due to
the additional need of deploying and managing the charging
infrastructure. What are its impacts on system performance
and profit?

As a case study, we focus on the city of Turin in Italy. We
leverage hundred of thousands of real FFCS trips [9] to extract
the geo-temporal mobility demand. We use Kernel Density
Estimation (KDE) to catch the demand spatial variability, and
modulated Poisson models for the temporal demand [10]. We
use it to feed a trace-driven flexible simulator that allows us to
study how the design choices and system parameters impact on
performance. We first consider an electric-car sharing system
that has the same number of cars and faces same demand of
the current one in Turin. We observe the impact of different
charging infrastructure design, i.e., the number of poles and
how to spread these are over the city area.

Next, we consider when the intensity of the mobility de-
mand grows. How would the charging infrastructure need to
grow correspondingly? And what is the impact of the fleet
size? Summarizing our contributions, this paper proposes an



answer to these questions making use of the demand model
to project future or different scenarios and the cost-revenue
model to evaluate the profitability of each configuration. We
focus on performance indicators like the fraction of demand
the system can satisfy and the total working hours it has to
spend for the battery charging operations. Then, we project
these into economical figures, observing how the design op-
tions impact on profitability.

Our results show that the charging station placement is
fundamental if poles are placed in areas with high demand,
as cars get located where customers need them. This allows
the system to naturally intercept the customers demand, thus
to maximize the satisfied demand, and revenues. Considering
system scalability, as expected the charging infrastructure must
grow proportionally to the mobility demand. Interestingly
instead, the number of vehicles can grow much slower, show-
ing economy of scale savings which make the system likely
profitable if well designed.

The paper is organized as follows: In Section II we discuss
our work in light of past literature for FFCSs and their
economical aspects. After reporting the details about the
dataset and demand model in Section II, and our simulator
in Section IV, we present results in Section V before drawing
conclusions in Section VI.

II. RELATED WORK

While first FFCS are operative since 2008 in Europe [11],
the research on this topic has only recently flourished, es-
pecially for EVs. A common problem in transportation is to
define models to optimize the fleet management and system
design in general. For example, the authors of [12] proposed
a Mixed Integer Problem (MIP) to maintain and organize fleet
distribution in short term considering a stochastic demand.
In the recent work [13] authors showed how to analytically
model customers’ probability to use car sharing. Other studies
include more complex phenomena in their works, like [14]
where the authors consider a non-linear charging function and
detailed power lines constraints to optimally design one-way
car sharing system (using a MIP).

Another strategy to study FFCS is to simulate how users
interact with it. For example, the authors of [15] proposed (but
did not implement) an agent simulator approach to measure
how FFCS can be scaled on the entire Swiss traffic. The
authors of [4] present a study of two-ways car sharing growth,
with the help of an event-based simulator that measures if and
how charging stations produce profits. Similarly, [16] proposes
an open-source multi-agent simulator able to replicate travel-
ling people’s habits. In particular, it focuses on the realistic
replication of users’ behavioral model relying on multinomial
distribution of modal choice.

Recently, the availability and abundance of data helped
shaping FFCS users’ behaviour. Considering this, some works
like [17] and [9] scraped data from real ICE FFCS, charac-
terized their services and proposed model generalizations. Big
Data approaches helped researchers to improve the simulation
fidelity. In particular, authors of [18] used data to predict the
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Fig. 1: Number of rentals per day in Turin, from June 2017
to January 2018. Some data is missing.

shareability of an urban ride, finding that this a property city-
invariant. On the same optic, the authors of [19] use data from
several American cities to optimize the position of the charging
stations of a one-way car sharing, finding that the optimal
results place the stations in high-demand areas. We confirmed
this result in [20] and [21] where we used a simulation based
approach to measure the impact of different design options of
an EVs FFCS system. Here use big data to derive realistic
demand models to feed accurate simulations. We move one
step forward - showing that this is beneficial also as a proxy
of relocation, i.e., cars get naturally relocated to high demand
zones.

The economic sustainability is another key aspect of car
sharing - especially with EVs. Authors of [22] studied the eco-
nomic sustainability of one way electric car sharing systems
finding out that charging station should have an amortization
period of at least 5 years to produce profits. The authors of [23]
compared how FFCS with EVs and ICE can produce profits,
observing the best compromises with ICE fuelled with cheap
and cleaner fuel like ethanol. Another study [24] concerning
the city of Lisbon found out that switching to EVs would
cost more than ICE and would lead to a negative profit of
about one million per year. This is largely due to the higher
cost of electric cars and of the charging infrastructure. In our
work we explore which are the most efficient and economically
sustainable combinations of fleet size, charging infrastructure
design, also in light of demand growth.

To the best of our knowledge, our work is among the first to
study the scalability of a FFCS system with electric vehicles,
exploring key parameters like number of poles, fleet size and
increase in demand can affects economic and performance of
the system.

III. DATASET AND DEMAND MODEL

In this work we leverage the data collected in our previous
work [9] capturing real trips performed by car2go users. These
data let us model the users’ mobility demand in time and in
space. From this, we derive a demand model that generalize the
users’ demand observed in the real data. We use it to generate
realistic traces describing possible user trips and feed them to
our event-based simulator to derive performance figures.



TABLE I: Main characteristics of our dataset, recorded in
Turin from October to December 2017. Rental time and rental
distance report both median (Med) and average (Avg) values.

Rentals Fleet Rental Rental
ZonesSize Time [min] Dist. [km]

Avg Med Avg Med
180k 400 21 20 3.96 3.36 279
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Fig. 2: Average number of rentals per hour during weekdays
(WD) and weekends (WE).

A. Dataset

Our data consist in actual rentals performed by car2go users
in Turin. Each observed rental has precise geo-spatial coordi-
nates for trip origin and destination, and accurate timestamps.
In Figure 1 we summarize the number of daily rentals from
June 2017 to January 2018 in Turin, our reference dataset1.
Despite the fact that rentals are non-stationary, especially
during periods like August and Christmas holidays, the service
usage follows a hourly and weekly pattern, not showing any
particular growth. From this data, we select three months -
from October 1st to December 31st. Table I outlines the main
characteristics of this data. 400 cars were available, traveling
on average less than 4 km in each trip, for an average rental
time of 21 minutes.

To catch customers’ habits, in Figure 2 we detail the aver-
age number of rentals per hour, separately per working-days
(Monday to Friday) and per weekends. The weekdays hourly
profile reflects the commuting pattern, with two clear peaks
in the morning and evening rush hours. Conversely, during
the weekends the number of night rentals is higher, likely
due to more nightlife, while the morning peak is drastically
smoothed. Not shown here for lack of space, our data allow
us to observe the spatial diversity, with different origin and
destination areas over the city. This shows how fundamental
is to use actual data to build realistic scenarios for accurate
system analysis.

B. Demand Model

While we could directly use the original trace to observe
system performance, we need a model to observe what-if sce-
narios, e.g., to observe the impact of a growth in the demand.
For this, we use the data at our disposal to create a generalized
demand model. We follow the approach we presented in [10].

1For some periods we did not record data due to server failures.

In a nutshell we model the demand in time by using modulated
Poisson processes - a common accepted model for independent
service requests of a very large population [25]. To capture the
spatial heterogeneity, we generalize the traces using Kernel
Density Estimation (KDE) [26]. KDE gives us the possibility
to smooth the real data over a multi-dimensional space while
maintaining the origin/destination correlation. In more details,
for the request arrival time process we assume that the inter-
arrival time of trips follows an exponential distribution with
rate depending on the type (weekend or working day) and hour
of the day. We consider 24 time bins of 1 h each - 48 periods
in total. In each time/day bin, the Poisson arrival rate matches
the average rate of requests in that time bin in the original
dataset as shown in Figure 2. This temporal model allows to
scale the overall demand by introducing a global scaling factor
λ as a multiplier of the request rate of each time bin.

To model the spatial diversity of the demand, we divide the
city in a set Z of contiguous 500 m x 500 m zones, obtaining
in total 279 zones. Each couple of spatial coordinates in the
city area (x, y) maps to one and only one zone. Since each
trip i departs from a certain zone (origin Oi, described by
two coordinates) and arrives to another zone (destination Dj ,
described by two coordinates), it is therefore characterized
by two couples of coordinates, that can be represented as 4
scalars. For each time bin, we derive an origin and destination
matrix counting how many trips were originated from a given
zone O and destined to a given zone D. Thus, in order
to model the OD matrix in each temporal slot, we fit a 4-
dimensional KDE based on the aforesaid coordinates. For each
of these matrices, we compute a KDE model, using Gaussian
kernels, with bandwidth equal to 1. Not reported here for the
sake of brevity, we compare the number of trips generated
from the model and the ones presented in the original trace.
As expected, there is a very good match with low residuals.
We refer the reader to [10] for details.

Notice that we employ a single global scaling factor λ
directly the temporal model to keep the spatial distribution
of trips unchanged while increasing the request rate.

IV. SIMULATOR AND SYSTEM PARAMETERS

Armed with the generalized demand model, we design and
implement an event driven simulator to study the EVs FFCS
system. Here we detail the simulation model, the simulator
assumptions, the performance metrics, and the cost model used
to project system performance into economic figures.

A. Simulator and assumptions

We consider a fleet F of electric cars. As before, we divide
the city into a set Z of zones of 500 m x 500 m each, where
cars can be parked, rented, charged and returned. Car char-
acteristics are the same as MY2018 electric Smart ForTwo,
namely B = 17.6 kWh battery capacity and 15.9 kWh/100 km
energy efficiency. Each car is characterized by its location,
status (i.e., available, rented, under charge) and battery State of
Charge (SoC). At simulation startup, cars are randomly placed



in zones, with initial SoC uniformly distributed in [0.5B,B],
and marked as available.

The charging infrastructure considers np Level-2 chargers,
with 3.7 kW nominal power and 92% charging efficiency.
Charging stations are spread around the city zones. We place
poles in those zones having the highest probability of being
destination zones. This results in a good strategy to maximize
system performance [20], [21]. In details, we sort zones z ∈ Z
by the total number of parkings tot park(z) observed in
the original trace. We then consider the top zp fraction of
zones, and place a number of poles in each proportionally to
np · tot park(z)/

∑
z tot park(z).

At t = 0, the simulator generates the first rental request
event, extracting origin and destination coordinates according
to the KDE model of the current hour/day slot, and schedules
the next rental request event according to the modulated
Poisson process. Events are then processed as follows:

Car request event. When a rental requests fires, a customer
looks for a car within the origin zone and in 1-hop neighbour-
ing zones. If at least one car with enough SoC to reach the
desired destination exists, the car gets rented, and a car release
event is scheduled after the time to reach the destination that is
proportional to the distance, considering both orography and
road network shape [21]. If more than one such cars exists
we choose the closest one, and, if need be, we choose the one
with highest SoC. If no car is suitable for this ride, the trip
does not occur and the request is marked as unsatisfied.

Car release. When a car release event fires, the simulator
updates the car SoC decreasing it proportionally to the trav-
elled distance. If the updated SoC is above a threshold α, the
car is parked in the user’s arrival zone, and marked available
for other rentals.

If instead the SoC is below α, the car battery needs to be
charged. The system handles the charging event by moving the
car to the nearest-free charging pole. The simulator schedules
a charge complete event which accounts for both the time to
reach the pole and the time to bring the SoC to 100%2.

Charge complete. When a charge complete event fires, the
car is marked as available, and customers can rent it again. The
charging pole is released as well. Notice that we assume the
car is released in the same zone where it was being charged,
i.e., the system does not implement any relocation policy after
charging.

B. Performance metrics

In this work, we focus on the following performance metrics
to compare different design options:

Unsatisfied Demand: it is the fraction of requests that are
not satisfied because there is no car with enough SoC in the
origin and neighbouring zones. It is an indicator of the quality
of the service in terms of car availability for user requests, and
shall be minimised.

2For simplicity, we assume there are infinite workers to handle the battery
charge events so that a car gets serviced immediately. In case all poles are
busy, the car gets placed in a queue of the closest charging station, and gets
serviced when the first pole is freed.

TABLE II: Summary of parameters and economic cost as-
sumed for Turin.

Parameters used for the simulations
Param Description Range
|F | Fleet size [80, 2000]
|Z| Number of 500 m x 500 m zones 279
B Battery capacity - Electric Smart ForTwo 17.6 kWh
np Number of charging poles - 3,7kW each [8, 300]
zp Fraction of zones with charging poles [0.003, 0.20]
α SoC charging threshold 0.25
λ Rental demand rate scaling factor [1, 5]

Cost and revenue parameters with values for Turin
Clease Yearly electric Smart ForTwo vehicle lease cost 4000 C/yr/vehicle [27]
Cpole Material cost of a level-2 charging pole 1700 C/pole [28]
Clabor Labor cost to install a charging pole 2200 C/pole [28]

Csetup
Make-ready infrastructure cost per charging
station 1500 C/station [28]

plife
Charging station and pole lifetime - amortization
period for Cpole, Clabor and Csetup

10 yr [24]

Cmaint Yearly pole maintenance cost 500 C/yr/pole [28]
Cground Yearly ground occupation tax 355 C/yr/pole [29]
Cenergy Energy cost for kWh 0.19 C/kWh [30]
Cdrivers Hourly labour cost to bring the cars to charge 23 C/h [31]
Cdisinf Disinfection and interior cleaning cost 15 C/charge [32]
Cwash Cost to wash the car 8 C/100 rentals [32]
Rrental Average revenue per rental minute (exl. VAT) 0.20 C/min [33]

Total charging handling time: it measures the monthly
time spent by the system to bring cars to the charging stations.
It is the sum of the driving time spent by workers to drive
the cars to the nearest-free pole. It gives an indication of the
goodness of the charging infrastructure. Being it a cost, it shall
be minimized (see the operating costs described below).

C. Cost model

While performance indexes are useful to explore design
options, the FFCS operator is ultimately interested in the
economic sustainability of a solution. For this, we derive a cost
model based on yearly projections. We then consider revenues
by projecting the number of rental and their duration. Armed
with both, we estimate profit. Here we consider:

Vehicle cost. We assume cars are leased to include all costs,
namely registration, tax, insurance, ordinary and extraordinary
maintenance, and roadside assistance. We assume electric cars
do not pay for parking on street and for accessing limited
traffic areas. Given the yearly car lease Clease and the number
of vehicles, we easily derive the total yearly fleet cost.

Charging infrastructure cost. Here we refer to actual
use cases as defined in [28]. Pole installation costs account
for material and labor cost. Material cost Cpole includes
hardware cost for Level II chargers. Labor cost Clabor is
highly dependent on the city, region and country. We need
also to consider the make-ready infrastructure cost Csetup
that represents the cost for a charging station setup. It does
not depend on the number of charging poles per station,
but depends only on the number of charging zones zp · |Z|.
It represents a highly variable cost since it depends on the
location and the electric distribution infrastructure already in
place. In fact, the expenses of trenching and laying conduit
can add thousands of Euros to costs. All these costs are one-
time costs. We assume these costs have an amortization period
equal to the average charging station and pole lifetime plife.
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Fig. 3: Unsatisfied demand with respect to different number
of poles per vehicle. Curves show performance with different
demand factor λ and fleet size |F |, with zp = 0.05.

Next, we consider pole maintenance costs Cmaint, which we
derive from variable site-specific parameters. In some cities,
we need also to consider the per vehicle ground occupation
tax Cground, that usually depends on the surface for dedicated
charging spot. Due to the small size of Smart ForTwo, charging
spots are assumed to be 4,50 m x 2,30 m, for each pole.

Operating costs. For this we take into account the Cenergy
cost for the energy to charge the vehicles; the hourly cost
for workers Cdrivers who have to handle the charge events; a
cost Cdisinf to clean and disinfect the car any time the worker
brings it to charge. Finally, we assume exterior car washing
every 100 rentals, each costing Cwash.

Rental Revenue We consider a simple average cost-per-
minute Rrental. This allows us to transform the total rental
minutes into the total revenues.

Top part of Table II summarizes the parameters that define
the scenarios used in the simulations. Bottom part shows the
cost we consider for the Turin use case. Given a scenario,
we run a simulation to collect performance indexes. We next
post-process the simulation results to derive the monthly cost
and revenue figures. The custom simulator used is written in
Python and based on SimPy library.3 The cost-revenue model
is implemented in Python too and it is available online. The
cost model allows one to interactively observe what happens
by changing the cost values.4

V. RESULTS

Given the multiple system design parameters, here we pro-
ceed by steps. First we analyse the impact on performance in
order to select good design options. We then project the results
through the cost figures to gauge the economic implications
of these choices.

We consider as starting parameters the ones referring to
the current FFCS running in Turin based on ICE cars, i.e., a
fleet size |F | = 400 and demand scaling factor λ = 1. We
explore the charging infrastructure design options, namely its
size np and extensiveness zp. We fix α = 0.25 corresponding

3SimPy is a discrete-event simulation library. Documentation is available
at: https://simpy.readthedocs.io/en/latest/contents.html.

4The code and data for cost and profit evaluation are available at: https:
//smartdata.polito.it/on-scalability-of-electric-car-sharing-in-smart-cities/.
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Fig. 4: Unsatisfied demand with respect to the fraction of
zones with charging poles zp. Curves show performance with
different demand factor λ and fleet size |F |, with np/|F | =
0.06.

to the minimum energy needed to perform the longest trip
in Turin [20]. We also check the impact of increasing the
demand up to λ = 5. Correspondingly, we increase the fleet
size |F (λ)| = 400 · λ by the same factor. Each simulation
considers three months of virtual time, corresponding to more
than 200 000 rental requests for λ = 1.

A. Impact of infrastructure design options

Focus first on the impact of the number of poles per vehicles
np/|F | on the unsatisfied demand - reported in Figure 3.
Consider λ = 1 first. Here zp = 0.05 (14 charging zones).
We observe two working regions: on the right - the charging
infrastructure has enough capacity to supply the energy to
support all customers’ trips - resulting in a constant unsatisfied
demand. On the left, system charging capacity goes below
a minimum threshold (highlighted by the red area). Here
the charging infrastructure cannot supply enough energy and
unfeasible trips grow linearly with the lack of energy. Consider
now a demand factor that doubles (λ = 2, and |F | = 2 · 400).
The energy supply must grow by a factor of 2 to supply twice
the number of trips. As such the minimum threshold in terms
of number of poles per vehicles remains the same. The same
holds for higher λ. Interestingly, the number of poles to supply
the energy to cope with the mobility demand is quite small: a
pole every 20 cars results enough.

There is still a 5-7% of unsatisfied demand which results
from the mismatch between zones with available cars, and
zones with demand. We now check the impact of zp on this.
Figure 4 fixes np/|F | = 0.06, and shows the impact of
concentrating or spreading them on few or more zones. On the
leftmost case, we have the “charging hub” scenario, meaning
that all poles are located in a single zone where all cars must
be brought for charging. This solution creates a surplus of
cars in the zone where the hub is, and a lack of cars in other
zones. Unsatisfied demand then grows, calling for relocation
policies. Increasing zp has the benefit of spreading cars in the
city5. Having opted to place poles in top park zones, cars get

5For λ = 1 we can equip np = 24 zone maximum (zp = 0.09), after
which results do not change. Differences are due to simulation randomness.
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naturally located there, facilitating customers that look for a
car in those high-demand zones. This reduces the percentage
of unsatisfied demand significantly, questioning the need of
costly relocation policies. Performance-wise, the higher the
fraction of zones with poles, the better.

Focus now on the time the system has to spend to bring
cars to the closest charging pole, reported in Figure 5 for
zp = 0.20. Notice that if the system cannot supply enough
energy to satisfy the demand (np/|F | < 0.055 in this case),
the charging handling cost decreases. Likely not a good design
choice being this due to loss of satisfied demand. Consider the
region np/|F | ≥ 0.055, where the system has enough charging
capacity. If there are just enough poles, most of them results
busy, and the workers need to drive cars to far away free poles.
This results in an increase of handling time up to 1600h for
λ = 5. By increasing np/|F |, we increase the probability of
finding a nearby free pole, shortening handling time down to
1000h per month for λ = 5. As expected, the higher λ, the
higher the time to handle charging events – with an almost
perfect linear increase.

This highlights a trade-off between infrastructure costs and
management costs. To better gauge this, Figure 6 compares
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number of vehicles |F | = 400, and large enough charging
infrastructure (np = 120).

a more concentrated system with zp = 0.05 with a more
distributed system with zp = 0.20. We plot the ”additional
satisfied demand” (black curve) and the saving in charging
handling time (red curve) for increasing demand factor λ
and fleet size |F | (fixing np/|F | = 0.06). In all cases,
zp = 0.20 results in higher satisfied demand and lower cost
than zp = 0.05, with benefits that increase with increasing
demand. In a nutshell, distributing the same number of poles
among more zones improves system performance and reduces
charging handling time. Clearly this needs to be weighted by
the additional cost of installing a more distributed charging
infrastructure.

B. Impact of fleet size

We now explore the impact of the number of cars when
the demand increases. For this, we scale λ, but keep the fleet
size constant to |F | = 400. For simplicity, we consider a
charging infrastructure capacity that can cope with the highest
demand, i.e., np = 120. We consider two cases, zp = 0.05
and zp = 0.20. We plot results in Figure 7. Interestingly, the
same number of vehicles can sustain a sizeable increase in
λ without a significant impact the unsatisfied demand. For
instance, |F | = 400 vehicles can cope with a factor λ = 3
increase in the demand, just losing 2.5% of customer requests.
This would result in a significant saving in the cost of vehicles.
Given there are no differences in concentrating or spreading
the charging poles in few or more zones, we fix zp = 0.20
from now on.

To observe how the unsatisfied demand would be impaired
by further reducing the number of cars and/or the number
of poles, we present contour maps in Figures 8(a) and Fig-
ure 8(b), for λ = 1 and λ = 5, respectively. Interestingly, the
two design parameters seem to affect unsatisfied demand in
almost independent manner. On the one hand, reducing the
number of cars has limited impact until we reach very small
values. For instance, halving the fleet size down to |F | = 200
would increase the unsatisfied demand by 6-8% only. On the
other hand, increasing np brings no benefit - provided there
are enough poles (cfr. Figure 3).

The same considerations hold when λ = 5, with a slightly
higher interaction between np and |F | when approaching small
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Fig. 8: Unsatisfied demand varying number of poles np and fleet size |F | with zp = 0.20.
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Fig. 9: Monthly estimated profits varying number of poles np and fleet size |F | with zp = 0.20.

values for both. Observe also a large region with unsatisfied
demand lower than 6% (dark green). The high number of
vehicles allows a high multiplexing gain so that fewer cars
can offer the same service level. For instance, |F | = 800 cars
guarantee about 10% of unsatisfied demand if np > 120. In a
nutshell, the system needs less cars to satisfy the same percent-
age of demand when the demand increases, with significant
economy of scale gain.

C. Impact of costs

To have a clear and complete picture, we now project the
performance indexes into economic figures. Here we compare
the monthly profit an EVs FFCS provider would reach for
different combinations of the number of vehicles and the
number of poles, i.e., its investment in the fleet and charging
infrastructure. All costs included in Table II are considered.

Figure 9(a) shows the results for λ = 1. Green shades
reflect positive profit, while yellow and red shades highlight
loss-making configurations. Interestingly, the zones with the
highest profits tend to be in the leftmost part of the figure, i.e.,
for small number of cars. While this causes a higher unsatisfied
demand - see Figure 8(a) - it looks the only way to reduce the
cost of the fleet so to have a profitable system. The impact of
the charging infrastructure is quite negligible unless when np
becomes too small (i.e., when not enough charging capacity is
present). This is due to the low cost of buying and installing
a charging pole when amortized on plife = 10 years. Recall
that we have seen that the charging infrastructure design calls
for a charging pole every 20 vehicles. As such, the overall

economic impact of the charging infrastructure results quite
negligible compared to the fleet size costs.

The picture improves drastically when λ = 5, shown in
Figure 9(b). Here, we explore scenarios with a 5-fold increase
in both the number of poles (np ∈ [50, 300]), and in the
number of vehicles (|F | ∈ [400, 2000]) with respect to the
λ = 1 scenario. Here, all configurations result in positive
profit. Even more interestingly, by reducing the number of
cars we observe a marginal decrease in the profit, with the
best scenarios being in |F | ∈ [1400, 2000]. This is due to
large multiplexing effect we already observed in Figure 7.
Even when reducing the number of cars to 800, we observe
sizeable profits.

Considering the number of poles, as expected, when np <
120 (the minimum threshold for constant unsatisfied demand
when |F | = 2000, showed in Figure 3) the insufficient
system charging capacity impairs cars availability, increasing
the unsatisfied demand. As seen already, increasing np above
the minimum threshold brings little benefit, but it also has
little impact on the profits (due to the relatively low cost of
pole installation).

In summary, we can conclude that the FFCS provider needs
to carefully evaluate the minimum number of poles when
designing and implementing the charging infrastructure. The
limited cost of pole installation, and the long amortization
time make overprovisioning the charging infrastructure a vi-
able option to make the system robust to demand increase.
Considering the fleet size, when the demand is low, the high
cost of vehicles suggests limiting the number of vehicles.



When instead the demand grows, an economy of scale gain
is possible, making the system even profitable with large fleet
size.

VI. CONCLUSIONS

In this paper we presented a simulation study of free
floating car sharing systems. Armed with a realistic demand,
we studied the performance implications of moving from ICE
FFCS to a EV based solution.

Our study offers several take-away messages: first, the
charging infrastructure must be able to provide enough energy
to cope with the mobility demand. Interestingly, it results to
be quite limited, with just 20 poles able to sustain a system of
400 vehicles. Second, distributing the charging poles in zones
where cars get frequently parked and rented is instrumental
to maximize the demand the system can satisfy, while also
limiting the time workers have to spend to bring cars for
charging. Third, the system exhibits useful economy of scale,
so that the fleet size shall increase sublinearly with respect to
the mobility demand intensity.

At last, when projected into economic figures, the fleet setup
and management represent the main cost factors. Choosing
the right number of vehicles results more fundamental than
optimizing the charging infrastructure costs. For instance, for
the current demand intensity in Turin, the switch to EVs must
be carefully designed to be profitable. Interestingly, when the
demand grows, the margins are much higher, allowing some
nice economy of scale opportunities.

As future direction, we are studying different cities as new
use cases, looking at opportunities of involving users in the
charging process in order to decrease management costs.
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