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Summary

Knowledge Graphs (KGs) have emerged as a core abstraction for incorporat-
ing human knowledge into intelligent systems. This knowledge is encoded in a
graph-based structure whose nodes represent real-world entities, while edges define
meaningful and binary relations between these entities. KGs are gaining atten-
tion from both the industry and academia because they provide a flexible way to
capture, organize, and query a large amount of multi-relational data.

The structured knowledge that shapes KGs can be composed of simple state-
ments, such as “Socrates is a human”, or quantified statements, such as “All humans
are mortal”. Simple statements represent a collection of facts that are arranged as
edges within the KGs, while quantified statements require a more advanced and
expressive form to represent information. Ontologies define a standard formalism
that enables this meaningful representation, specifying the semantics of entities and
relations adopted to label nodes and edges of KGs.

Deductive and inductive reasoning approaches allow extending a KG, improving
its underlying knowledge. Deductive methods employ the simple statements and
the set of rules defined by ontologies to derive additional knowledge. For instance
‘Socrates is mortal”, which is logically interpretable and understandable, combining
“Socrates is a human” and “All humans are mortal”. Inductive techniques involve
simple and quantified statements to create further knowledge and discover and
generalize patterns available in the KG. These patterns can be inferred by applying
statistical learning methods on multi-relational data, which are less interpretable
than deductive approaches. However, they are capable of exploiting latent factors
in the KG that are not directly extracted as quantities in the data, but whose
variations influence every single piece of information we are able to observe.

The most recent implementation of the statistical learning methods includes
representation learning techniques, based on deep architectures of Neural Networks
(NNs). These architectures contributed to reaching unprecedented results in the
prediction and classification tasks of modern Artificial Intelligence (AI) systems.
More specifically, at the time of writing this thesis, NNs natively-built for graph
structures, the so-called Graph Neural Networks (GNNs), are gaining momentum
and empowering the cutting-edge research on graph data.

iii



The thesis’s primary goal is to investigate the role of NN architectures, partic-
ularly the GNNs, to support the publication of KGs. More precisely, this thesis
intends to address two main open problems in the KGs research field: (i) the
mapping of data source schemas to reference ontologies, considering a semantic
modeling perspective. This task represents a key factor for materializing original
data as KG statements or virtualizing the access to the source as a KG; (ii) the
refinement of existing KGs by inferencing soft but consistent knowledge in terms
of new edges (or links). Such new edges are hard to encode into deductive and
logic-based reasoning, but they are beneficial to develop tools on top of KGs, e.g.,
recommendation systems. Furthermore, this thesis reports the results within two
different application domains: public procurement and academic publications.

This thesis illustrates novel contributions to the automatic semantic modeling
with NN architectures in regards to the first open problem. An initial study is con-
ducted applying a simple, but efficient neural language model, such as Word2Vec,
on SPARQL queries performed on different KGs. However, this approach does not
take full advantage of the graph structure for the learning process: SPARQL queries
include a limited number of graph patterns, and Word2Vec treats these patterns as
plain text. Therefore, a more in-depth investigation is conducted, developing a tool
called SeMi (SEmantic Modeling machIne), which employs a novel method based
on GNNs combined with a scoring function, trained on available multi-relational
data repositories. This approach aims to produce a latent representation of the
entities and the relations between these entities, from the graph structure of the
multi-relation data adopted as a training set. This investigation shows that the
adoption of these latent representations increases the accuracy of the computed
semantic models, compared to manually-selected features. SeMi has been adopted
in a real scenario to support the building of a novel KG in the public procurement
domain.

In regards to the second open problem, the thesis reports an approach based on
GNNs to predict new edges within a novel KG developed in academic publications.
In this context, the thesis presents Geranium, a semantic platform for collecting and
organizing the scientific knowledge of the Politecnico di Torino (Polito). The re-
search achievements obtained with Geranium are the following: (i) an academic KG
that semantically connects information on researchers and publications of Polito;
(ii) a semantic search engine that aggregates such information and enables ad-
vanced features for the content exploration; (iii) a recommendation system which
exploits a link prediction mechanism to suggest, for instance, novel collaboration
opportunities between researchers of different disciplines, who worked on the same
topics.

Inductive techniques exploiting neural architectures do not provide human-
understandable insights on how a specific result was achieved. Furthermore, the
application domains such as those analyzed in this thesis — public procurement
and academic publications — are contexts where the impact of NNs is relevant:
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the interpretability of the results is not only a desirable property, but it is a funda-
mental requirement for the involved stakeholders. Nevertheless, most of the avail-
able approaches to implement an eXplainable Artificial Intelligence (XAI) focus
on technical solutions usable only by experts able to understand and manipulate
the computational architectures of NNs. A complementary approach could incor-
porate deductive methods, which can exploit the symbolic representation of KG
for inference new logic-based knowledge. The final part of this thesis presents new
research trajectories in the field, proposing neural-symbolic integration as a cor-
nerstone to design an AI which is closer to non-insiders comprehension. Within
such a general direction, the thesis proposes three specific challenges for future
research—knowledge matching, cross-disciplinary explanations, and interactive ex-
planations.
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Chapter 1

Introduction

Knowledge Graphs (KGs) [79] have emerged as a core abstraction for incorpo-
rating human knowledge into intelligent systems. This knowledge is encoded in a
graph-based structure whose nodes represent real-world entities, while edges define
meaningful and binary relations between these entities. KGs are gaining attention
from both the industry [116] and the academia [53], because they provide a flexible
way to capture, organize, and query a large amount of multi-relational data.

The structured knowledge that shapes KGs can be composed of simple state-
ments, such as “Socrates is a human”, or quantified statements, such as “All humans
are mortal”. Simple statements represent a collection of facts that are arranged as
edges within the KGs, while quantified statements require a more advanced and
expressive form to represent information. Ontologies define a standard formalism
that enables this meaningful representation, specifying the semantics of entities and
relations adopted to label nodes and edges of KGs.

Deductive and inductive reasoning approaches allow extending a KG, improving
its underlying knowledge. Deductive methods employ the simple statements and
the set of rules defined by ontologies to derive additional knowledge. For instance
‘Socrates is mortal”, which is logically interpretable and understandable, combining
“Socrates is a human” and “All humans are mortal”. Inductive techniques involve
simple and quantified statements to create further knowledge and discover and
generalize patterns available in the KG. These patterns can be inferred by the
application of statistical learning methods on multi-relational data, which are less
interpretable than deductive approaches. However, they are capable of exploiting
latent factors in the KG that are not directly extracted as quantities in the data, but
whose variations influence every single piece of information we are able to observe.

The most recent implementation of the statistical learning methods includes
representation learning techniques, based on deep architectures of Neural Networks
(NNs) [63]. These architectures contributed to reaching unprecedented results in
the prediction and classification tasks of modern Artificial Intelligence (AI) sys-
tems. More specifically, at the time of writing this thesis, NNs natively-built for
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Introduction

graph structures, the so-called Graph Neural Networks (GNNs) [48], are gaining
momentum and empowering the cutting-edge research on graph data.

The thesis’s primary goal is to investigate the role of NN architectures, partic-
ularly the GNNs, to support the publication of KGs. More precisely, this thesis
intends to address open research problems (RP) in the KG research field: (RP1)
the automatic mapping of data source schemas to reference ontologies, considering
a semantic modeling perspective. This task represents a key factor for materializing
original data as KG statements or virtualizing the access to the source as a KG
[149] [160] [176] [21]; (RP2) the automatic refinement of existing KGs by inferenc-
ing soft, but consistent knowledge in terms of new edges (or links) [119] [138]. Such
new edges are hard to encode into deductive and logic-based reasoning, but they
are beneficial to develop tools on top of KGs, e.g., recommendation systems. Fur-
thermore, this thesis reports the results within two different application domains:
public procurement and academic publications.

1.1 Research Problems and Questions
RP1 - Mapping data source schemas to reference ontologies is a tedious task

requiring a significant manual effort and domain knowledge expertise, due to the
potential variety of data available on the Web and private data repositories. For
this reason, automatic techniques are fundamental to scale the semantic mapping
process. This thesis proposes a semantic model perspective on the mapping prob-
lem, which requires two steps: (i) the Semantic Type Detection (STD) or semantic
labeling, whose goal is to annotate the attributes of the source; (ii) the Semantic
Relation Inference (SRI), whose goal is to reconstruct the intended meaning of the
data source, predicting the connections between these annotated attributes. The
thesis focuses on the automation of the SRI task, and the first research question
addressed in this work is the following:

• RQ1 - Which is the contribution of NN to improve the accuracy of automatically-
inferred semantic relations between the source attributes?

RP2 - Predicting new statements in the form of new links within an existing
KG is also a well-known problem in literature [119] [138]. Most of the current
methods for link prediction employ scoring functions to measure the plausibility of
the KG statements. The goal of these methods is to learn the latent representation
of entities and relations - also known as embeddings - to ensure that the true state-
ments obtain a high score, while false statements obtain a low score. However, the
inference of the correct statements or, from another perspective, the reconstruction
of the correct edges in the KG, does not take full advantage of the graph structure,
which is not directly encoded in the scoring function. Nevertheless, recent devel-
opments on GNN architectures are focusing on different approaches to produce the

2



1.2 – Research Contributions

latent representation of nodes, which embed the local graph structure, including
the neighborhood features. Therefore, the second research question addressed in
this thesis is the following:

• RQ2 - Which is the impact of GNNs in the prediction of new edges within a
KG, in the context of recommendation systems?

1.2 Research Contributions
For answering RQ1, the thesis illustrates novel contributions to the SRI task

with NN architectures. An initial study [59] is conducted applying a simple, but
efficient neural language model, such as Word2Vec [108], on SPARQL queries per-
formed on different KGs. The goal of this study is to learn the latent representa-
tions of SPARQL variables, which are included in specific triple patterns within the
query. Variables with a similar latent representation are then labeled with the most
common relations available in the set of the triple patterns. Then, the syntactic
closeness between such labeled variables and the attributes is exploited to create
a mapping between these elements. Consequently, the correct semantic relations
between the data source attributes is assigned. The main limitation is that such
approach does not take full advantage of the graph structure for the learning pro-
cess: SPARQL queries include a limited number of graph patterns and Word2Vec
treats these patterns as plain text. Considering these limits, a deeper investigation
is conducted, developing a tool called SeMi (SEmantic Modeling machIne) [57],
which employs a novel method based on GNNs combined with a scoring function,
trained on available multi-relational data repositories. The goal of this approach is
to produce a latent representation of the entities and the relations between these
entities, from the graph structure of the multi-relation data adopted as training
set. The results of this investigation show that the adoption of these latent rep-
resentations increases the accuracy of the SRI within a data source, compared to
manually-selected features [157]. SeMi has been adopted in a real scenario to sup-
port the building of a novel KG in the public procurement domain. This KG allows
to overcome the existing fragmentation of public procurement data and it creates
fruitful conditions for deeper data quality analysis. The achieved results [58] show
that integrating contracts data into a KG enables to detect consistency issues within
the information released by the Italian public administrations. The most relevant
consistency issues are: (i) business entities with more than one business name; (ii)
unique ids that identify more than one contract; (iii) incoherent payments among
different versions of an ongoing contract.

For answering RQ2, the thesis reports an approach based on GNNs, for predict-
ing new edges within a novel KG developed in the field of academic publications.
In this context, the thesis presents Geranium, a semantic platform to collect and
organize the scientific knowledge of the Politecnico di Torino (Polito). The research
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achievements obtained with Geranium are the following: (i) an academic KG that
semantically connects information on researchers and publications of Polito; (ii)
a semantic search engine that aggregates such information and enables advanced
features for the content exploration; (iii) a recommendation system which exploits
a link prediction mechanism to suggest, for instance, novel collaboration opportu-
nities between researchers of different disciplines, who worked on the same topics.

1.3 New Research Trajectories
Inductive techniques exploiting neural architectures do not provide human-

understandable insights on how a specific result was achieved. Furthermore, the
application domains such as those analyzed in this thesis — public procurement
and academic publications — are contexts where the impact of NNs is relevant: the
interpretability of the results is not only a desirable property, but it is a fundamen-
tal requirement for the involved stakeholders. Nevertheless, most of the available
approaches to implement an eXplainable Artificial Intelligence (XAI) [141] focus
on technical solutions usable only by experts able to understand and manipulate
the computational architectures of NNs. A complementary approach could incor-
porate deductive methods, which can exploit the symbolic representation of KG
for inference new logic-based knowledge. The final part of this thesis presents new
research trajectories in the field, proposing neural-symbolic integration as a corner-
stone to design an AI which is closer to non-insiders comprehension [56]. Within
such a general direction, the thesis proposes three specific challenges for future
research—knowledge matching, cross-disciplinary explanations, and interactive ex-
planations.

1.4 Structure of the Thesis
The remainder of this work is organized as follows. Chapter 2 lays the foun-

dations of the concepts addressed in the whole thesis. It includes the definitions
of KGs and ontologies, it discusses the methodologies for enriching and refining
KGs, and it explains the main principles behind NN architectures applied to KGs.
Chapter 3 provides an overview of the recent work related to these open research
problems. Chapter 4 describes context details on the application scenarios re-
lated to the public procurement and the academic publication domains. Chapter
5 depicts a novel approach for predicting semantic relations within a data source,
based on the training of a neural language model with SPARQL queries. Chapter
6 presents an innovative method to automatically compute semantic relations be-
tween annotated attributes, which are predicted by exploiting GNNs. Moreover,
this chapter discusses the generation of a novel KG in the public procurement sce-
nario. Chapter 7 reports details on the adoption of the GNNs for the automatic
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inference of new knowledge within a novel academic KG. Chapter 8 presents new
research trajectories on the integration of deductive and inductive mechanisms for
a more comprehensible AI to non-insiders. The thesis ends with Chapter 9, with a
synthesis of the research contribution and future work.
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Chapter 2

Background

This Section provides the conceptual background required for understanding
the rest of this thesis. It introduces the notions of Knowledge Graphs (KGs) and
ontologies, it discusses the methodologies for enriching and refining KGs, and it
describes KGs inference mechanisms enabled by inductive approaches.

2.1 KGs and Ontologies
KGs are labeled and directed multigraphs that encode information in the form

of entities and relations relevant to a specific domain or organization. KGs are
effective tools for capturing and organizing a large amount of structured and multi-
relational data that can be explored employing query mechanisms. Considering
these features, KGs are becoming the backbone of Web and legacy information
systems in different research fields and industrial applications. The capability of
KGs to manage information effectively is based on a twofold perspective: (i) the
graph-based perspective allows us to perform graph and inductive learning algo-
rithms on KGs; (ii) the semantic-based perspective provides a formal framework
for the interpretation of the data, which is essential to perform deductive learning.

This twofold perspective is reflected in the notation adopted in this thesis, which
defines a KG as follows: G = {E, R, T}, where G is a labeled and directed multi-
graph and E, R, T are the set of nodes, edges, and triples respectively. Each triple
is formalized as (u, e, v) ∈ T , where u ∈ E is the head node, v ∈ E is the tail
node, and e ∈ T is the edge connecting u and v. In the semantic regime, a triple
is formalized as a fact in which (u, e, v) corresponds to (s, r, o), where s and o are
two entities, the subject and the object of the fact respectively, while r is the re-
lation that connects s and o. To clarify this aspect, please consider the following
example statement: "Socrates influenced Plato." From the graph perspective, the
triple includes Socrates and Plato as two nodes of the graph, while influence is an
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edge between these two nodes. From the semantic perspective, the simple state-
ment includes Socrates and Plato as two entities, while influence is the relation
between these two entities. Entities and relations can also be defined as terms of
the statement.

2.1.1 Defining Simple Statements: the RDF Data Model
The Resource Description Framework (RDF) [94] is a core technology of the

Semantic Web (SW) [20] for implementing the twofold representation of KGs. The
purpose of SW is to realize a Web-scale data infrastructure readable and under-
standable by machines. To accomplish this vision, which is only partially imple-
mented, Web technologies such as Uniform Resource Identifiers (URIs) [19] and the
HyperText Transfer Protocol (HTTP) [54] protocol are adopted. RDF reflects a
simple graph-based data model exploiting Web technologies and provides a formal
notion of meaning (semantics) that set up the basis for founded deductions. An
RDF graph can be serialized in different formats, including N-Triples [16], N3 [18],
Turtle [16], JSON [150], and XML [15]. The example "Socrates influenced Plato"
can be translated into RDF and serialized in N-Triples as follows:

<http://dbpedia.org/resource/Socrates>
<http://dbpedia.org/ontology/influenced>
<http://dbpedia.org/resource/Plato> .

Other types of serialization, such as Turtle, enable a more compact declaration
of RDF facts employing the so-called prefixes. The example can be rewritten as
follows1:

@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix dbr: <http://dbpedia.org/resource/> .
dbr:Socrates dbo:influenced dbr:Plato .

From the SW point of view, the terms dbr:Socrates, dbo:influenced, and dbr:Plato
are also known as resources, and a relation between two different resources - in this
case dbo:influenced - is also known as predicate or property. This example directly
comes from an existing open KG known as DBpedia, whose goal is to provide the
information included in the Wikipedia infoboxes in the form of a collection of RDF
triples. This collection can also be denoted as RDF graph.

The running example shows that URIs can be adopted as unique ids for both
entities s to o and r. RDF allows us to represent relations between entities, but
also specific information related to a single entity. In the RDF statement

1RDF statements reported in this thesis adopt N-Triples and Turtles interchangeably, some-
times omitting the prefixes when not necessary for the statement’s intelligibility.
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dbr:Socrates dbo:birthDate -469-0-0^^xsd:date .

the object is not an entity but a literal value, with a specific datatype defined
using the XML Schema Datatypes (XSD) [161]. From a graph perspective, a literal
value is considered a leaf node of the KG. Starting from the RDF representation,
quantified statements are added to denote the semantics of entities and relations.

2.1.2 Defining Quantified Statements: RDFS and OWL
RDF Schema (RDFS) [26] and OWL (Web Ontology Language) [104] are two

different language models that enable the construction of quantified statements
in the form of RDF graphs. RDFS is one of the most prominent standards for
defining a semantic schema for RDF graphs. OWL is the most popular ontology
language used in practical cases, incorporating and extending RDFs. RDFS and
OWL specify large vocabularies to denote peculiar conditions for using RDF nodes
and edges, introducing coherency and specific datatypes to support logic reasoning.
Moreover, they indicate how terms are interrelated and impose a structure to define
the semantic interpretation’s constraints.

RDFS

RDFS provides mechanisms to define classes for aggregating entities with similar
features. In order to define classes, RDFS provides two different terms:

• the rdf:type property defines the "type" of a subject node; the object of this
property must be a class. In RDF, rdf:type can be also replaced with a;

• the rdfs:Class is used to aggregate similar entities.

In the running example, the following statements can be defined to extend the
information related to Socrates:

ex:Human rdf:type rdfs:Class .
dbr:Socrates rdf:type ex:Human .

RDFS allows also to define class hierarchies with the rdfs:subClassOf property.
Therefore, the collection of facts can be expanded as follows:

ex:Human rdf:type rdfs:Class .
dbr:Socrates rdf:type ex:Human .
ex:Mortal rdf:type rdfs:Class .
ex:Human rdfs:subClassOf ex:Mortal .

RDFS also defines specific terms to extend the semantics of properties. These
terms include:
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• rdf:Property: it is the rdf:type of any terms used as predicate.;

• rdfs:domain and rdfs:range: they define the domain and the range of the
property. Domain and range are categorized as rdfs:Class;

• rdfs:subPropertyOf: it specifies hierarchies of properties.

Therefore, the information related to the dbo:influenced property can be ex-
pressed as follows:

dbo:influenced rdf:type rdf:Property ;
rdfs:range ex:Human ;
rdfs:domain ex:Human .

Other classes and properties defined by RDFS are out of this thesis’s scope, but
further information is available in the RDFS W3C Recommendations [26].

OWL

OWL is a language model for describing ontologies. OWL documents, known
as ontologies, incorporate the terms defined by RDFS and add further structures
to address its limits. For instance, OWL makes explicit the relations of identity
or unlikeness between different entities. It supports more expressive class defini-
tions, including union, complement, disjointness, specifying cardinality restrictions.
Moreover, it includes more expressive property definitions, enabling the distinction
between object and datatype properties. OWL also allows us to define transi-
tive, functional, symmetric, and inverse properties, indicating value restrictions.
The statements which describe the relation between classes and properties are also
known as axioms. These statements are categorized as true in the reference domain
and are fundamental to enable deductive reasoning.

The running example can be extended with OWL as follows:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix ex: <http://example.com/> .
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefic wkd: <https://www.wikidata.org/wiki/> .

# RDF
dbr:Socrates dbo:influenced dbr:Plato .
dbr:Socrates dbo:birthDate -469-0-0^^xsd:date .
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# RDFS
dbr:Socrates rdf:type ex:Human .
ex:Human rdf:type rdfs:Class ;

rdfs:subClassOf ex:Mortal .

dbo:influenced rdf:type rdf:Property ;
rdfs:range ex:Human ;
rdfs:domain ex:Human .

# OWL
dbr:Socrates owl:sameAs wkd:Q913 .
dbo:influenced rdf:type owl:ObjectProperty .
dbo:birthDate rdf:type owl:DatatypeProperty .
rdfs:subClassOf rdf:type owl:TransitiveProperty .

This example establishes quantified statements such as "All humans are mortal."
Consequently, it also allows us to infer a new fact through deductive reasoning:
"Socrates is mortal" derived from the fact that ex:Human is a subclass of ex:Mortal.
In the same example, OWL statements allows us to declare that dbo:influenced and
dbo:birthDate are two different types of properties, an object property and a data
property respectively. Moreover, using OWL it is possible to define the axiom
according to which rdfs:subClassOf is a transitive property. Other OWL terms and
axioms are available within the OWL W3C recommendations [104].

2.1.3 Querying KGs
A practical language known as SPARQL (SPARQL Protocol and RDF Query

Language) [69] has been developed in the SW context to perform queries on KGs.
This structured query language’s core is based on the graph pattern, which follows
the same RDF graph model. In addition, SPARQL introduces the use of variables
as valid terms. Therefore, graph patterns are divided into constants, represented by
resources such dbr:Socrates, and variables such as ?philosopher, which are identified
using question marks. During the querying process, the graph pattern is evaluated
against the RDF graph. This process generates a mapping between the graph
patterns’ variables and the resources in the RDF graph. These variables are then
replaced with the RDF resources that satisfy the graph patterns included in the
query. Here is available an example of SPARQL query:

@prefix dbr: <http://dbpedia.org/resource/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
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SELECT ?philosopher
WHERE {

dbr:Socrates dbo:influenced ?philosopher .
}

Considering our running example, the ?philosopher variable is replaced with the
resource dbr:Plato. Advanced SPARQL features, including relational operator and
path expressions, are out of this thesis’s scope and are available in the SPARQL
W3C recommendations [69].

2.2 Methodologies for Enriching and Refining KGs
This Section describes the main characteristics of two methodologies, and the

related open problems, in the field of KGs. The first methodology consists of
mapping from structured sources to KGs, which is fundamental for enriching KGs
by integrating data provided by heterogeneous sources. The second methodology is
related to the refinement of a KG, based on already-existing facts. The goal is to fill
the missing edges that were not encoded during the generation or the enrichment
stages.

2.2.1 Mapping from Structured Sources to KGs
Publishing data into KGs is a complex process because it requires extracting

and integrating information from heterogeneous sources. The goal of integrating
these sources is harmonizing their data and leading to a coherent perspective overall
information. Heterogeneous sources range from unstructured data, such as plain
text [60] [61] [27] [101], to structured schemes, including table formats such as
CSVs and relational databases, and tree-structured data, such as JSONs and XMLs
[72] [34] [31]. The thesis’s research contributions are specifically related to the
publishing of data into KGs from structured data sources. In fact, these types of
sources play a fundamental role in the data ecosystem because much of the legacy
information within organizations and on the Web is available as structured data.
Unlike other sources, such as plain texts, structured information can be mapped
to KGs through a semantic integration process. The common strategy adopted by
the SW community to apply this process is adopting reference ontologies as global
schemas. Then, mappings are constructed to describe the relationships between
the global schema and the local schema of the target data source. From a data
integration perspective, this approach is classified as Global-As-View (GAV)[43].
According to this perspective, the data integration performance is based on the
consistency and expressiveness of the ontology adopted as a global schema. In
order to clarify the mapping process in a real scenario, this subsection introduces
a novel running example in the public procurement domain. Public procurement
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refers to the process by which public authorities and administrations purchase goods
or services from companies. In this process, the public authority announces a call
for tenders, companies participate in this call with a specific tender, and the public
authority shall award one of these tenders.

Suppose we have a target data source ds, which includes a set of attributes
ds{a1, a2, a3, ...}. In public procurement, this target data source is a JSON file
representing the information on a specific public contract (see Listing 1). The JSON
(JavaScript Object Notation) is a language-independent data interchange format.
It employs human-readable text to store and transfer data objects characterized by
attribute–value pairs and any serializable datatype, including arrays.

{
"contract_id": "Z4ADEA9DE4",
"contract_object": "MANUTENZIONE ORDINARIA MEZZI DI TRASPORTO",
"proponent_struct": {

"business_id": "80004990927",
"business_name": "Ministero dell'Interno"

},
"participants": [

{
"business_id": "08106710158",
"business_name": "CAR WASH CARALIS"

}
]

}

Listing 1: JSON file including data related to a public contract

This JSON describes the following data:

• contract_id includes the identifier of the required service (“Z4ADEA9DE4");

• contract_object includes the description of the service (“MANUTENZIONE
ORDINARIA MEZZI DI TRASPORTO");

• business_id and business_name, nested in the proponent_struct include the
identifier (“80004990927") and the name (“Ministero dell’Interno") of the pub-
lic body, which proposes the tender, respectively;

• business_id and business_name, nested in the participants include the iden-
tifier (“Z4ADEA9DE4") and the name (“CAR WASH CARALIS").
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The mapping process requires a reference ontology O as global schema. The
Czech OpenData.cz initiative releases one of the most common ontologies adopted
in public procurement and it is available on GitHub2. The running example con-
siders only a subset of this ontology’s axioms, while an extensive description is
available in Chapter 4. The axioms involved in the mapping process can be repre-
sented in Turtle format as follows:

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix gr: <http://purl.org/goodrelations/v1#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix pc: <http://purl.org/procurement/public-contracts#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

#######
####### Classes
#######

pc:Contract a owl:Class .
gr:Offering a owl:Class .
pc:Tender a owl:Class ;

rdfs:subClassOf gr:Offering .

#######
####### Relations (or Object Properties)
#######

pc:contractingAuthority a owl:FunctionalProperty, owl:ObjectProperty ;
rdfs:domain pc:Contract ;
rdfs:range gr:BusinessEntity .

pc:tender a owl:ObjectProperty ;
rdfs:domain pc:Contract ;
rdfs:range pc:Tender .

pc:awardedTender a owl:FunctionalProperty, owl:ObjectProperty ;
rdfs:subPropertyOf pc:tender .

pc:bidder a owl:ObjectProperty ;

2The Public Contracts Ontology: https://github.com/opendatacz/
public-contracts-ontology
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rdfs:domain pc:Tender ;
rdfs:range gr:BusinessEntity .

#######
####### Datatype properties
#######

dcterms:identifier a owl:DatatypeProperty ;
rdfs:domain pc:Contract ;
rdfs:domain gr:BusinessEntity ;
rdfs:range rdfs:Literal .

rdfs:label a owl:DatatypeProperty ;
rdfs:domain pc:Contract ;
rdfs:domain gr:BusinessEntity ;
rdfs:range rdfs:Literal .

rdfs:description a owl:DatatypeProperty ;
rdfs:domain pc:Contract ;
rdfs:range rdfs:Literal .

The entire mapping process includes two main steps. The first step is creating a
map between the local schema of the target data source and the reference ontology.
The second step is materializing the source’s data as KG statements or virtualizing
the access to the source, defining a graph-based view over the legacy information.
Materialized statements can be directly published into KGs, while a graph-based
and virtualized access allows us to retrieve and explore data of the target data source
like it is a KG. The widest-adopted approaches for the mapping step are based on
the so-called custom mappings. These approaches exploit customizable documents
written with declarative languages to perform the map generation step. Declarative
languages exploit the SW formalism to describe the relationships between the local
and the global schemas. The most prominent language adopted by the research
community is R2RML [37], which expresses customized mappings written in RDF
between relational databases to KGs. An extension of this language, known as
RML [40], is a more generic mapping language, whose applicability is extended to
other types of tables, such as CSV files, and tree-structured schemes. Other types
of languages, such as TARQL [35] and JARQL [143], adopt the SPARQL syntax
to create mappings for specific formats, such as CSV and JSON files respectively.
An example of JARQL describing the mapping between the ds and O is available
below:

@prefix dcterms: <http://purl.org/dc/terms/> .
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@prefix pc: <http://purl.org/procurement/public-contracts#> .
@prefix gr: <http://purl.org/goodrelations/v1#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

CONSTRUCT {
?BusinessEntity0 dcterms:identifier ?proponent_struct__business_id ;

rdf:type gr:BusinessEntity.
?BusinessEntity1 dcterms:identifier ?participants__business_id ;

rdf:type gr:BusinessEntity .
?Tender0 pc:bidder ?BusinessEntity1 .
?Contract0 dcterms:identifier ?contract_id ;

rdf:type pc:Contract ;
pc:contractingAuthority ?BusinessEntity0 ;
pc:tender ?Tender0 .

}

WHERE {
?root a jarql:Root.
OPTIONAL { ?root jarql:contract_id ?contract_id . }
OPTIONAL { ?root jarql:proponent_struct ?proponent_struct . }
OPTIONAL { ?proponent_struct jarql:proponent_struct__business_id
?proponent_struct__business_id . }
OPTIONAL { ?root jarql:participants ?participants . }
OPTIONAL { ?participants jarql:participants__business_id
?participants__business_id . }
BIND (URI(CONCAT('http://purl.org/procurement/public-contracts/contract/',
?contract_id)) as ?Contract0)
BIND (URI(CONCAT('http://purl.org/goodrelations/v1/businessentity/',
?proponent_struct__business_id)) as ?BusinessEntity0)
BIND (URI(CONCAT('http://purl.org/goodrelations/v1/businessentity/',
?participants__business_id)) as ?BusinessEntity1)
BIND (URI(CONCAT('http://purl.org/procurement/public-contracts/tender/'
?contract_id + + '_' participants__business_id)) as ?Tender0)

}

This JARQl file includes 3 main parts, the first one is included in the CON-
STRUCT section, while the others are included in the WHERE section. The CON-
STRUCT section describes the graph patterns that encode the semantic types, such
as “?BusinessEntity0 dcterms:identifier ?proponent_struct__business_id” and the
semantic relations, such as “?Contract0 pc:contractingAuthority ?BusinessEntity0”.
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The first segment of the WHERE section, which includes the OPTIONAL opera-
tors, describes the way to parse the JSON for extracting the data required to create
the KG facts. For instance, the pattern “?proponent_struct jarql:proponent_struct__business_id
?proponent_struct__business_id” indicates that the variable ?proponent_struct__business_id
has to be replaced with the proponent_struct__business_id attribute of the JSON.
The second segment of the WHERE section, which includes different BIND op-
erators, declares how to generate the entity URIs for the data extracted from
the JSON. The line BIND (URI(CONCAT(’http://purl.org/procurement/public-
contracts/contract/’, ?contract_id)) as ?Contract0) indicates the URIs contract en-
tities are built combining the http://purl.org/procurement/public-contracts/contract/
URI and the value extracted from the values that replace the ?contract_id variable.

Language-driven engines have to goal to materialize or virtualize KG statements,
following the instructions of the mapping documents written using declarative lan-
guages. These engines perform two different tasks: the first task is to link the the
target data source fields to a class or a property defined by the reference ontol-
ogy. Once this link has been created, these engines materialize or virtualize the
URIs and the KG statements, retrieving the legacy information included in the
data source. The JARQL file describing the link between the set of attributes
ds{a1, a2, a3, ...} and the global schema represented by O allows to materialize the
following statements:

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix pc: <http://purl.org/procurement/public-contracts#> .
@prefix gr: <http://purl.org/goodrelations/v1#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix contract: <http://purl.org/procurement/public-contracts/contract/> .
@prefix be: <http://purl.org/goodrelations/v1/businessentity/> .
@prefix tender: <http://purl.org/procurement/public-contracts/tender/> .

# ?BusinessEntity0 dcterms:identifier ?proponent_struct__business_id ;
# rdf:type gr:BusinessEntity .

be:08106710158 dcterms:identifier 08106710158 ;
rdf:type gr:BusinessEntity .

# ?BusinessEntity1 dcterms:identifier ?participants__business_id ;
# rdf:type gr:BusinessEntity .

be:08106710158 dcterms:identifier 08106710158 ;
rdf:type gr:BusinessEntity .

# ?Tender0 pc:bidder ?BusinessEntity1 .
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tender:Z4ADEA9DE4-80004990927 pc:bidder be:08106710158 .

# ?Contract0 dcterms:identifier ?contract_id ;
# rdf:type pc:Contract ;
# pc:contractingAuthority ?BusinessEntity0 ;
# pc:tender ?Tender0 .

contract:Z4ADEA9DE4 dcterms:identifier Z4ADEA9DE4 ;
rdf:type pc:Contract ;
pc:contractingAuthority 80004990927 ;
pc:tender tender:Z4ADEA9DE4-80004990927 .

In order to clarify the transformation process enabled by the JARQL file, this
example reports as comments the graph patterns included in its CONSTRUCT
section. One of the main reasons for using JARQL as declarative language is its
capacity to create URIs, combining data located at different levels of the JSON
tree structure. In the running example, the Tender’s URI is built combining the
id of the contract (Z4ADEA9DE4), located at the JSON’s root level, and the id of
the business entity (80004990927), located in a nested structure of the JSON.

Mapping Automation: the Semantic Model Approach

Mapping data source schemas to reference ontologies is a tedious task requir-
ing a significant manual effort and domain knowledge expertise. For this reason,
automatic techniques are fundamental to scale the mapping process. The research
contributions described in this thesis to automatize the mapping adopt a graph-
based approach to the mapping problem. According to this approach, proposed for
the first time by Knoblock et al. [89], the result of the mapping can be seen as
a graph, known as semantic model, which is able to express the links between the
local schema, represented by the attributes of the target data source, and the global
schema, represented by the reference ontologies. A semantic model is a powerful
tool for representing the mapping for two main reasons. In the first place, it frames
the relations between ontology classes as paths in the graph. Secondly, it enables
the computation of graph algorithms to detect the correct mapping.

The implementation of the semantic model approach requires that ontology ax-
ioms are represented in a graph structure. The ontology O can be seen as a directed,
typed, labeled, and multi-relational graph depicted in Figure 2.1. The graph nodes
represent the classes defined by the ontology. The edges represent the different
types of property in terms of object properties, depicted with black arrows, data
properties, depicted with the grey-dashed arrows, and subclass relations, depicted
with grey arrows.
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Figure 2.1: Ontology graph describing the public procurement domain.

The mapping can be framed into the semantic model sm(ds). The semantic
model is a directed and labeled graph, whose leaf nodes represent the attributes of
ds, while other parent nodes and edges derive from the properties defined in O. In
the running example, the correct semantic model is depicted in Figure 2.2.

The graph depicted in Figure 2.2 corresponds to CONSTRUCT section of the
JARQL file introduced in Subsection 2.2.13. One of the main limits of the semantic
model provided by Knoblock et al. is that it does not provide features for building
URIs. The URI generation is not a research focus of this thesis. Nevertheless,
one of the approaches presented in this thesis (see Chapter 6) addresses this issue
implementing specific solutions.

The automatic generation of the semantic model is based on two main steps.
The first step is the Semantic Type Detection (STD) or semantic labeling, where
each attribute of ds is annotated with a pair of an ontology class and a datatype
property: sl1(a1) = ⟨ca1 , pa1⟩. From a graph-based perspective related to the run-
ning example, the attribute node “contract_id" (a1) is connected to the class node
“pc:Contract" (ca1) through the datatype property “dcterms:identifier" (pa1) (Fig-
ure 2.3). The second step is the Semantic Relation Inference (SRI), whose goal
is to identify the connections between the annotated attributes within the target
data source. In the simplest case, this relation is represented by an object property,

3The ontology namespaces have been removed from the graphical representation of the ontology
graph to improve clarity
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Figure 2.2: Sample of semantic model describing the semantics of the JSON data.

Figure 2.3: Semantic types annotating the attributes of the JSON structure.

sr1(sl1, sl2) = ca1
po1−−→ ca2 , and the length of the relation (or path) is equal to 1. In

the running example, the classes “pc:Contract" and “gr:BusinessEntity" that an-
notate the attributes “contract_id" and “proponent_struct**business_id" are con-
nected with the property “pc:contractingAuthority" (Figure 2.4). In more complex
situations, the path includes different ontology classes and properties, sr1(sl1, sl2) =
ca1

po2−−→ c1
po3−−→ ca2 , and its length is longer than 1. In the public procurement

domain, this type of semantic relation is includes the class nodes “pc:Contract",
“pc:Tender", and “gr:BusinessEntity". “pc:Contract" and “pc:Tender" are con-
nected by the object property “pc:tender", while “pc:Tender" and “gr:BusinessEntity"
are connected by the object property “pc:bidder" (Figure 2.5). This example
demonstrates that inferencing the correct semantic relation is a complex task. In
fact, many plausible semantic relations of different lengths can be plausibly correct
for building the semantic model of the target source. Figure 2.6 shows an example
of an incorrect semantic model for the target source.

As introduced in Chapter 1, this thesis intends to address the research problem
of inferencing the correct semantic relations between annotated attributes and pro-
poses inductive techniques based on representation learning (see Chapters 5 and
6). The main principles behind these techniques are discussed in Section 2.3.
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Figure 2.4: Semantic relation with length equals to 1.

Figure 2.5: Semantic relation with length equals to 1.

2.2.2 Refinement of KGs
KGs are able to continuously aggregating new information, incorporating data

through the mapping procedure. Despite this aggregation process, KGs are in-
evitably characterized by incompleteness. The refining (or completion) task in a
KG aims at filling the missing edges that were not encoded during the generation
process. The task of predicting new edges (also known as link prediction) can be
applied to 3 different classes of link: (i) type links, involving edges that indicate the
type of an entity; (ii) identity links, involving edges corresponding to the property
owl:sameAs, which indicates nodes referring to the same entity; (iii) general links
involving arbitrary labels for the edges. For the thesis’s purpose, which intends to
focus on recommendation purposes, general links are the preferred to be predicted.
As mentioned in Section 2.1, deductive reasoning allows us to combine simple and
quantified statements for inferencing new facts. Such new facts are logically un-
derstandable and contribute to the KG completion in a semantic regime. However,
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Figure 2.6: Incorrect semantic model of the target source.

deductive inference does not allow us to predict new facts that can be useful for
application-based systems, such as recommendation tools. Inductive techniques can
be adopted to define the likelihood of correctness of a new (semantic-valid) fact. To
understand the impact of inductive approaches for predicting general links, please
consider the following example in academic publications. This running example is
built starting from real data available on the publications repository of the Politec-
nico di Torino, which is called IRIS4. The RDF statements involved in the example
are created in the Geranium project context, whose details are discussed in Chapter
7.

@prefix ger: <http://geranium-project.org/> .
@prefix aut: <http://geranium-project.org/authors/> .
@prefix pub: <http://geranium-project.org/publications/> .
@prefix jou: <http://geranium-project.org/journals/> .
@prefix key: <http://geranium-project.org/keywords/> .
@prefix onto: <http://geranium-project.org/ontology/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

aut:rp31513 a ger:Author ;
rdfs:label "Daniela De Luca" .

pub:11583/2680251 a ger:Publication ;

4https://iris.polito.it/
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dcterms:title "District data management,
modelling and visualization via interoperability" ;
dcterms:subject key:DataManagement ;
dcterms:contributor aut:rp31513 .

aut:rp12842 a ger:Author ;
rdfs:label "Antonio Vetrò" .

pub:11583/2381987 a ger:Publication ;
dcterms:title "Linked Data approach for
selection process automation in Systematic Reviews" ;
dcterms:subject key:DataManagement ;
dcterms:contributor aut:rp12842 .

These statements describe information related to two different publications:
pub:11583/2680251 and pub:11583/2381987. They also declare the corresponding
contributors, which are Daniela De Luca and Antonio Vetrò respectively. In the
IRIS repository, these two researchers have never been co-authors of the same pa-
pers. However, a recommendation system built on top of these data, could suggest
a collaboration opportunity between Antonio Vetrò and Daniela De Luca, because
their articles address the same research topics (key:DataManagement). Predicted
edges can connect, for instance, a researcher with a publication that does not be-
long to him. However, a high score assigned to this prediction can be interpreted
according to a recommendation perspective. For instance, the recommendation
system can suggest the topics related to this publication, which may still be unex-
plored by the researcher. Moreover, the publication’s authors could be suggested
as collaboration opportunities if the researcher has never worked with them.

can be predicted by inductive techniques. Section 2.3 introduces the application
of these techniques focused on the representation learning.

2.3 Inference in KGs with Representation Learn-
ing

According to deductive learning, the knowledge acquired by machines has to
be hard-coded in the system exploiting formal languages, such as ontologies. Con-
sequently, the system can reason on the simple and the quantified statements ex-
pressed in these formal languages through logical inference rules. From an opposite
perspective, the main principle behind inductive methods indicates that machines
are able to derive their own knowledge on the data, discovering and generalizing
patterns within a set of input observations. Machines prove this capability, known
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as machine learning, by means of statistical learning approaches. The performance
of machine learning algorithms strictly depends on the representation of the data,
which is traditionally achieved by defining a hand-designed set of features. However,
in many learning tasks such as computer vision, these features’ manual detection
is not an easy and effective process.

Representation learning [17] is an approach that improves the machine learning
performance in these types of situation, deriving the set of features for representing
data without human intervention. Namely, a representation learning algorithm’s
goal is to automatically infer latent - or hidden - features of the data. These fea-
tures are represented as dense and low-dimensional vectors, known as embeddings,
which are not directly extracted as quantities in the data, but whose variations in-
fluence every single piece of information we are able to observe. The key algorithm
for the embeddings learning is the back-propagation [135]. The goal of the back-
propagation is to efficiently compute the gradient of the loss function with respect
to the weights, or parameters, of a model. Through this gradient computation, it
is possible to update the weights and obtain the embeddings to minimize the loss
value. As a consequence, the learning process can be reduced to an optimization
problem, finding a function that produces the minimal loss. Such methodologi-
cal advances, in combination with the increasing of computational resources and
the availability of large datasets, make the modern representation learning tech-
niques very powerful in being trained without supervision, extracting patterns and
regularities from the input data.

2.3.1 Knowledge Graph Embeddings
Knowledge Graph Embeddings (KGEs) are the result of specific representation

learning models applied to KGs. The goal of KGE models is to embed the KG
components - entities and relations - into a continuous and low-dimensional vector
space. The latent factors projected into KGEs have an essential role in analyzing
and mining additional soft-knowledge in KGs. In fact, for each entity pair s, o ∈
E and any relation r ∈ R, it is possible to determine if a statement (s, r, o) is
true according to the embeddings learnt by KGE techniques. In this thesis, the
latent feature representations of s, r, o are defined with their related bold face
s, r, o. The KGE approaches define a scoring function fsco (s, r, o) for each KG
statement (s, r, o). In general KGs comprises only true statements, while non-
existing statements can be consider either missing or false. For these reasons, a
closed-world assumption is deemed to address this ambiguity in categorizing non-
existing statements (see Section 2.1 for further details). As a consequence, the
scoring function fsco (s, r, o) returns a higher score for existing statements and a
lower score vice-versa. For the scope of this thesis, we consider KGE models which
formalize the training goal as a binary classification problem. Therefore, the entity
and the relation embeddings are learnt by minimizing the cross-entropy loss:
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L = − 1
(1 + neg)|T̂ |

∑︂
ŷϵT,T ′

y log ŷ + (1− y) log(1− ŷ) (2.1)

, where

• neg is the number of negative samples obtained corrupting each true fact
included in the training set;

• T̂ is the subset of all existing facts that are included in the training set;

• T ′ = E×R×E×−T includes the set of non-existing facts obtained corrupting
entities and relations available in the existing ones;

• ŷ = σ(fsco (s, r, o)), where σ is the logistic sigmoid function, which map any
values into a real number between 0 and 1 (a necessary step for the binary
classification purpose).

In the most recent literature review on KGs [79], three different types of KGE
techniques have been proposed: (i) linear or translational models [24] [], which
formulate the relations between two entities as a linear transformation, projecting s
into o; (ii) bilinear or factorization models, where r is encoded within a matrix and
combine s and o by a multiplication. This multiplication can be seen, from another
perspective, as a factorization method to decompose the relational data for the
representation learning purpose; (iii) neural models, which are more flexible than
the previous techniques, due to the multiple parameters enclosed in their network
structure. The following subsections describe specialized neural architectures for
the embedding generation, which are able to exploit sequence structures, such as
Neural Language Models (NLMs), and graph structures, such as Graph Neural
Networks (GNNs).

2.3.2 Neural Language Models and Word2Vec
Neural Language Models (NLM) are popular methods for learning word em-

beddings (WE). These real-valued representations are able to convey a distributed
semantics of the words available in a text corpus used for training the model. The
seminal paper of Mikolov et al. [108] proposes a simple, but efficient NLM known
as Word2Vec, which is implemented in two specific variants: Continuous Bag-Of-
Words (CBOW) and Skip-Gram 2.7.

The CBOW model’s goal is to predict a word given its context. The latter
is defined as the window of words to the left and the right of a target word in
a sentence. In CBOW, the network has the following structure: (i) the input
layer is characterized by the surrounding words of the target, whose embedding
representations are retrieved from the input weight matrix and projected in the
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Figure 2.7: Architecture of Word2Vec models: CBOW and Skip-Gram

projection layer; (ii) using the output weight matrix between the projection layer
and the output layer, a score for each word in the vocabulary is computed. This
score value is the likelihood of the word being a target word.

More formally, given a sequence of words w1, w2, ..., wT , the objective of CBOW
is to maximize the log probability of the target word:

1/T
T∑︂
t1

∑︂
−m≤j⩽m,j /=0

log p(wt|wt+j) (2.2)

where m is the size of the window context used for the training, which is a
function of target word wt .

To compute the probability p(wt|wt+j), the CBOW formulation employs the
softmax function as follows:

p(wO|wI) =
exp((v′

wO
)⊤vwI

)∑︁W
w=1 exp((v′

w)⊤vwI
)

(2.3)

where wO = wt, wI = wt+j in j-th network propagation related to a specific
context window, vw and v

′
w are the vector representations of w and W is the number

of words in the vocabulary.
As in the case of KGE, WE are learned training the network in a cross-entropy

loss regime, because the softmax represents a non-linear variant of multinomial
logistic regression.
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L = − 1
T

T∑︂
t=1

∑︂
−m≤j⩽m,j /=0

log p(wt|wt+j) (2.4)

The Skip-Gram model’s goal is the opposite of CBOW because it predicts the
context words from the target word. The network has the following structure: (i)
the input layer is constituted by the target word, whose vector representation is
retrieved from the input weight matrix and projected in the projection layer; (ii)
using the output weight matrix between the projection layer and the output layer
characterized by the surrounding words of the target, a score for each word in the
vocabulary is computed. This score value is the probability of the word being a
context word.

More formally, given a sequence of words w1, w2, ..., wT , the objective of Skip-
Gram is to maximize the log probability of the target word:

1/T
T∑︂
t1

∑︂
−m≤j⩽m,j /=0

log p(wt+j|wt) (2.5)

To compute the probability, the Skip-Gram formulation adopts the softmax
function of CBOW declared in Equation 2.3 and the only difference is that wO =
wt+j, while wI = wt. In a similar way, in the loss function indicated in Equation
2.4 the probability definition has to be replaced with log p(wt|wt+j.

Specific methods in the context of KGs have been inspired by Word2Vec to
learn node (or entity) embeddings. RDF2Vec [130] is one of the most prominent
approaches in this context. In its original version, RDF2Vec exploits random walks
within KGs in order to create sequences of KG entities. Then, these sequences are
used as input for the Word2Vec algorithm. RDF2Vec proved to be very powerful
in generating entity embeddings for different purposes, from data mining tasks to
recommender systems [131].

Considering the promising results in employing NLM for entity embeddings,
this thesis presents an initial study that presents an approach where Word2Vec
has been trained with SPARQL queries, whose graph patterns are adapted as in-
put sequences of the model. This approach assigns a vector representation to the
SPARQL variables, it aggregates such variables in clusters, which are labeled with
the most common relation extracted from the related graph patterns. It then
employs these semantic relations to connect the attributes of the data source, ex-
ploiting their syntactic closeness to the SPARQL variables. Further details on the
implementation and the results are available in Chapter 5.

2.3.3 Graph Neural Networks
KGE techniques and neural language models encode the interactions between

entities and relations through models that are not natively built for encoding graph
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structures. However, a novel family of neural architectures has been proposed to
address this limitation. In this context, Graph Neural Networks (GNNs) are be-
coming the key framework for learning the latent representation of graph-structured
data.

The operating principle behind GNNs is based on the analogy between NNs
and graphs. In fact, neural architectures are formalized as weighted and directed
graphs, whose nodes define the computational units - or artificial neurons - and
edges are the weighted connections between these units. Nevertheless, the topology
of traditional NNs is a priori structured for a specific purpose. For instance, the
feed-forward architectures provide a fully-connected and homogeneous sequence of
layers: each node of the previous layer is linked by a weighted edge to all the
nodes in the next layer. On the contrary, the graph data structure is heterogeneous
because the topology is directly driven by the edges defined between the nodes.
GNNs are based on neural architectures designed following graph data topology,
where the weighted connections of the NN match the edges available in the graph
structure.

The most-adopted class of GNNs is known as Graph Convolutional Networks
(GCNs). The goal of the GCNs is to update the representation of nodes from one
layer to the other on the basis of the following transformation: hl+1

i = fagg(hl
i,

{︂
hl

j

}︂
j∈Ni

),
in which:

• hl ∈ Rn×d is the hidden representation of the nodes in the l-th layer;

• hl+1 ∈ Rn×d is the hidden representation of the nodes in the l + 1-th layer;

•
{︂
hl

j

}︂
j∈Ni

includes all the hidden representations of the neighbors Ni of the
node i in the l-th layer.

• fagg is an aggregation function, which establishes how to accumulate the rep-
resentations of Ni into the node i.

This type of transformation has proven to be very powerful in aggregating and
encoding features of the nodes in the graph and led to a significant advance in
graph-based tasks, such as node classification [88]. On the basis of this powerful
model, the forward propagation step can be defined as a recursive neighborhood
diffusion and formalized according to the following Equation:

hl+1
i = σ

⎛⎝hl
i W l

1 +
∑︂

j∈Ni

hl
j W l

2

⎞⎠ , (2.6)

where σ is a non-linear activation function such as ReLU and W l
1, W l

2 ∈ Rd×d

are two weight (or parameter) matrices. The key idea behind Equation 2.6 is
that the representation of a node in the graph is updated with the features of its
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neighbors, through the convolution operation computed with shared parameters (or
weights) across the local structure. This computation is performed in parallel for
all nodes at each network update and, by stacking up several layers, it is possible
to capture and encode the relations between nodes across multiple hops in the
graph. A graphical representation of this propagation model is reported in Figure
2.8. Stacking a single GCN layer, the representation of the central node depicted
in orange is updated with the features of 1-hop neighbor nodes depicted in blue
(see the left area of Figure 2.8). Stacking an additional layer, its representation is
further updated with the the features of 2-hop neighbor nodes depicted in green
(see the central area of Figure 2.8). As shown in the right area of Figure 2.8, the
updated features of the central node aggregate the representation of its local graph
structure.

Figure 2.8: Propagation model in GCNs

In the isotropic formulation of GCNs, the nodes receive an equal contribution
from each neighbor, obtaining the same weight values, in this case W l

2, along each
“direction” defined by each edge. The most popular isotropic GCNs is the Vanilla
GCNs [88], in which the node representations are updated via the isotropic average
computation over the features of neighbor nodes.

hl+1
i = ReLU

⎛⎝hl
i W l

1 + 1
degi

∑︂
j∈Ni

hl
j W l

2

⎞⎠ , (2.7)

where degi is the in-degree of node i. If necessary, the features of the central
node hi can be included in the update operation by means of self-loops.

2.3.4 Graph Auto-Encoder Framework
As mentioned in subsection 2.3.1, KGE techniques are not able to encode the

graph structure: the embeddings representing entities and relations are directly
optimized during the training process. On the other hand, GNN models are

29



Background

natively-built to encode the local neighborhood structure into the node (or en-
tity) representation. Considering their respective characteristics, GNN models and
KGE techniques can be incorporated into an end-to-end architecture, also known as
Graph Auto-Encoder (GAE). Goodfellow et al. [63] describe the auto-encoders as a
quintessential example of the representation learning algorithms. An auto-encoder
combines two different components: (i) an encoder, whose goal is to transform the
input data into a different representation, typically for feature learning and di-
mensionality reduction tasks; (ii) a decoder, whose objective is to employ this new
representation to reconstruct the original data. In the domain of this thesis, the
GNN models play the role of the encoder, which produces an enriched represen-
tation of all entities within the KG, accumulating the neighborhood features; the
KGE techniques play the role of the decoder, exploiting this enriched representa-
tion to reconstruct the edges within the KG. Based on the notation adopted in this
thesis, the real-valued vector of the subject entity corresponds to the representation
of the i-th node: s = hL

i , where hL
i is the latent representation at the last-stacked

layer of the GNN. The real-valued vector of the object entities corresponds to the
latent representation of Ni are: o = hL

j . The scoring function introduced in Sub-
section 2.3.1 can be update as follows: fsco

(︂
hL

i , r, hL
j

)︂
. The cross entropy loss 2.1

is computed per edge and allows us to obtain valuable embeddings for the link
prediction task. A schematic representation of the GAE is represented in Figure
2.9.

Figure 2.9: Graph Auto-encoder Architecture

The effectiveness of the GAE architecture has been fully demonstrated by
Schlichtkrull et. al [144]. Thus, the thesis proposes a novel mapping approach
in the procurement domain based on the GAE framework (see Chapter 6). This
approach supports the generation of semantic models of data sources, particularly
in the automatic inferences of semantic relations between the source’s annotated
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attributes. Moreover, the same framework is adopted in a more traditional ap-
plication context, such as link prediction. However, the GAE is employed in a
completely new domain, such as the academic publications, for building a recom-
mendation system useful in a real scenario (see Chapter 7).
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Chapter 3

Related Work

This Chapter provides a comprehensive overview of the research contributions
related to the open problems described in Section 2.2. The discussed open prob-
lems are related to the publication of high-quality KGs and are focused on: (i)
the automatic mapping of data source schemas to reference ontologies for the KG
generation or enrichment from structured data; (ii) the automatic KG completion,
through the prediction of new statements based on the existing facts.

3.1 Mapping of Structured Sources to KGs
The automatic mapping of data sources to KGs is challenging for different rea-

sons, including the lack of metadata, incompleteness, and noisy data. In addition,
different types of source, such as CSV, XML, JSON files, and relational databases,
have different features that can be taken into consideration during the mapping
process. Therefore, this Section describes the full landscape of approaches related
to the mapping problem, including (i) the mapping from structured data to KGs;
(ii) the mapping from relational databases to KGs; (iii) the subset of approaches
that frame the mapping problem in a semantic model perspective, considering both
structured sources and relational databases. This landscape analysis shows that the
adoption of the inductive learning method based on NNs is not yet fully explored
and developed. This circumstance spotlights the novelty of the thesis contribu-
tions, which adopts Neural Language Models (NLMs) and Graph Neural Networks
(GNNs) to address this open problem.

Despite the significant amount of work to address the mapping problem from
structured data to KGs, there is a lack of a common framework to perform a
systematic evaluation of different approaches. For this reason, very recent initia-
tives (2019) such as the “SemTab: Semantic Web Challenge on Tabular Data to
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Knowledge Graph Matching1” aims at filling this gap, providing an environment to
enable this systematic comparison between the state-of-the-art systems. However,
the thesis’s evaluation process covers a full-grown context, such as the mapping
from relational databases to KGs. This research field provides sophisticated tools,
including RODI [122], which provide a common framework to compare different
systems. Moreover, considering the specificity of the semantic model perspective
on the mapping problem, an in-depth analysis is conducted comparing SeMi (see
Chapter 6) with other tools producing semantic models as output. As mentioned in
Subsection 2.2.1, semantic models explicitly shape complex relations, which char-
acterize real scenarios such as the public procurement domain discussed in Section
4.1.

3.1.1 From Structured Data to KGs
The simplest formulation of the mapping consists in annotating the elements

of a structured source, such as a CSV, an XML, or a JSON file with semantic
tags. These semantic tags include KG and ontology components, such as classes,
properties, and entities. In the context of tabular data that include CSV files, the
most relevant tasks identified by the proposed Semantic Web challenges3 require
to: (i) assign a semantic type (e.g., an ontology class) to a column; (ii) assign an
ontology property to the relation between two columns; (iii) matching a table cell
to a KG entity. In the case of tree-structured data that include XML and JSON
files, the relevant tasks are analogous to those of the tabular data. However, the
detection of the correct KG class or the KG property requires to traverse different
tree structures and to identify relations between elements at different levels of the
tree.

Currently, much of the available work is focused on tabular data. Most of the ap-
proaches exploit the background knowledge for driving the annotation of columns
and the inference of the properties between these columns. A seminal approach
proposed by Mulwad et al. [112] describes an extensible, domain-independent ap-
proach to encode a table as RDF data. Their framework incorporates the semantic
knowledge of a background KG in the message passing algorithm adopted for the
joint inference in a probabilistic graphical model. Syed et al. [153] describe a
technique to automatically-infer the semantic description of a table, employing
both table headers and the values stored in the table cells. Similarly to [112],
this method exploits Web-based knowledge bases, such as Wikitology [154]. The
method introduced by Venetis et. al [165] exploits a wide coverage, but noisy
database of class labels and properties automatically extracted from the Web. This

1Further information available at: 2

3Further information available at: http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
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database is exploited by a reasoning-based system, which is able to identify suf-
ficient evidence for the column annotation, or the property detection, of unseen
tables. The technique presented by Kruit et. al [92] exploits a background KG to
infer all possible label assignments exploiting a probabilistic graphic model. Such
model assigns a score based on the label similarities and then updates this score
to maximize the entity coherence across different rows by means of a loopy belief
propagation algorithm. The goal of specific approaches is to improve scalability is-
sues. For instance, Takeoka et al. [158] present a computationally-efficient method
that employs a probabilistic model for the table annotation, combined with multi-
label classifiers. This approach supports the annotation of different types of data,
including numerical values. Tableminer+ [181] is an efficient system whose annota-
tion task is supported by various types of contextual information as features for the
detection process.On the one hand, it exploits available features both inside and
outside tables, and on the other hand it adopts an incremental and iterative pro-
cess to reach the optimal annotation for the entire table. Ramnandan et al. [128]
adopt a different perspective for semantic labeling, that consider an holistic view
of the data values corresponding to a semantic label. The goal of this approach is
to capture the features of data instances that are related to a semantic type as a
whole. Their classifier assigns a semantic label to each attribute of the target data
source: the algorithm predicts candidate semantic types by computing the cosine
similarity 4 between the TF-IDF5 vectors of the labeled values in the training data,
and the unlabeled values coming from an attribute of a new target source. In SeMi
(Chapter 4) the method proposed by Ramnandan et al. [128] is implemented to
detect semantic types. This approach has the following advantages: (i) efficiency
and scalability: the method is about 250 times faster than methods that use other
algorithms such Conditional Random Fields; (ii) accuracy in different fields: the
approach improves accuracy of competing methods on a plethora of diverse sources;
(iii) generality: the method is agnostic in terms of ontology and schema for the se-
mantic labeling purpose. At the end of the semantic labeling process, SeMi suggests
a ranking of semantic labels for each attribute of the source, to be validated by the
user or by the domain expert. Promising results come from methods that intend to
avoid the adoption of background knowledge to support the mapping process. One
of the most recent work in this direction is MantisTable developed by Cremaschi et.
al [34], that provides a fully-automatic semantic table interpretation. MantisTable
is based on an unsupervised approach that allows to annotate tables, including the
labeling of columns and the relations between them, possibly without exploiting

4Cosine similarity is a measure of similarity between two vectors, obtained computing the
cosine of the angle between them

5The term frequency-inverse document frequency (TF-IDF) reflects how important a word is
to a document from a collection or corpus
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the header row or other external data. Considering the large amount of available
knowledge included within Linked Open Data and in other semantically-structured
form, the contributions of these thesis exploit semantic information as background
knowledge, including SPARQL queries and existing KGs.

The mapping of tree-structured data to KGs is traditionally performed by
general-purpose tools, which are also able to transform tabular data into KGs. One
of the most prominent tools is Open Refine[166] that allows to clean, transform,
and enrich messy data. It enables a semi-automatic reconciliation step against
a SPARQL endpoint or any database exposing a Web service, which meets the
specifications related to the Reconciliation Service API. The tool provides multiple
entity candidates that can be manually refined by the user. Moreover, an ontology
class restriction can be applied at the same level of the tree structure to narrow
the the number of plausible matches. Other Open Refine functionalities can be
enabled installing different extensions. Among general-purpose systems is worth
to mention Karma, which enables users to integrate data from a variety of data
sources, including tabular and tree-structured data. Karma is able to learn the an-
notation of the attribute source to ontology classes and then exploit ontologies to
propose a semantic model that connect together these classes. This semantic model
is then exploited to generate RDF data ready to be published or to be stored in a
database. Further details on the approaches integrated in Karma for the semantic
model generation are discussed in Subsection 3.1.3.

Recent works begin to explore embedding-based approaches for the mapping
purpose. Efthymiou et. al [49] developed and analyzed three different unsupervised
methods. The first method exploits the context included in Web tables, to support
a lookup-based method to identify the corresponding entity within a KG. The
second technique uses Word2Vec embeddings derived from the entity context in
a KG to discover Web table entities. Finally, the third method is based on an
ontology matching procedure, which combines schema and instance information of
entities from both the Web table and the KG. Other research work fully employ
neural architectures. Ruemmele et al. [133] developed three different learning-
based approaches for the detection of semantic types: a classification model based
on a manual feature engineering process and two deep learning models that exploit
the Convolutional Neural Network and the Multi-Layer Perceptron architecture
respectively. ColNet [31] is a neural network based framework focused on type
annotation and entity column detection. ColNet integrates deductive reasoning
and machine learning, in order to embed the semantics of a column in the vector
space and predict the semantic type with a set of candidate KG classes. These
approaches shows that the research work exploring NNs is currently focused on
the column annotation with semantic types, while less attention is given to the
semantic connections between these annotated classes. The contributions provided
by this thesis intends to mainly address the issue of the semantic relation inference.
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3.1.2 From Relational Databases to KGs
The generation or the enriching of KGs with data from relational databases

(RDB) is a well-known problem in literature and an active field of research. This
transformation process, also known as RDB2RDF, intends to make data hosted in
relation databases accessible to the Semantic Web. The goal is to convert relational
data into RDF or virtually exposing relational data, so they can be queried through
the SPARQL language.

Structured data and relational databases present different features. Relational
schemas are optimized for specific workflows (and workloads) and the data are
distributed among different tables to reach this purposes. Structured data instead
tend to be self-consistent and provide to the user the access to unique file containing
the data. In some cases, relational databases are optimized for update-intensive
workloads and the information is spread over different tables using many-to-many
(n:m) relationships. In other cases, the goal is to optimize read-intensive workloads
and the data covering different entities tend to be aggregated in the same table of
the relational database. Foreign keys, which do not exist in structured data such
as CSV or JSON files, act as cross references between tables, pointing to the their
primary keys.

The most recent works for the RDB2RDF process include framework for map-
ping relational database system to RDF, in order to provide advanced semantic
query capabilities [118]. Considering the computational perspective, some works
are focused on the scalability issues of the mapping process. For instance, the
work proposed by Kamal et. al [1] proposes a semi-automatic technique, which
obtains valuable performances in mapping data from multiple relational databases.
Other works exploit different intermediate artifacts and systems to perform the
RDB2RDF. Malik et al. [102] propose a method that employs the XML standard
as a transitional language between relational databases and KGs. Yu et. al [179]
instead use R2RML, SPARQL, and the Jena framework to conduct a data fusion
operation into RDF graphs.

Among the most prominent tools in the field, it is worth to mention BootOX [84]
and IncMap [124]. BootOX does not exploits declarative languages, but is based
on a direct mapping step6: every table in the database is mapped into a class of
the ontology, data attributes are mapped on data properties, and foreign keys to
object properties. IncMap instead runs in two phases: firstly, it uses lexical and
structural matching and, secondly, it represents with a meta-graph the ontology
and the schema of the input dataset in order to preserve their structure. It is
important to remark MIRROR [105] and D2RQ [23]. Both tools do not necessarily

6For more details, see: “A Direct Mapping of Relational Data to RDF”, W3C Recom-
mendation 27 September 2012. More information available at: https://www.w3.org/TR/
rdb-direct-mapping/.
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exploit an existing domain ontology, but they can generate an ontology on-the-fly
based on the input data schema. In details, MIRROR produces R2RML mappings
exploiting the morph-RDB7 engine. D2RQ, instead, uses its own native language
to define the mappings.

These prominent tools (BootOX [84], IncMap [124], MIRROR [105], and D2RQ [23])
have been included in a benchmark suite known as RODI ([122]). RODI compares
the results of the SQL queries performed on relational databases against the re-
sults of SPARQL queries performed on KGs generated by the tools. The reasoning
behind RODI is twofold: (i) R2RML encourages developers to comply with a stan-
dard, however many tools such as D2RQ adopt an internal mapping language; (ii)
the mapping process is useful and effective for the specific task at hand. For these
reasons, the mapping accuracy can be evaluated considering the results of a query
workload posed against the generated KGs. Taking into account the wide range of
tools that can be systematically evaluated with RODI, the contribution presented
in Chapter 6 of this thesis is included in this benchmark and evaluated against
different systems.

3.1.3 Semantic Modeling Systems
The formulation of the mapping as a semantic modeling problem extends the

requirements defined by the challenges mentioned in the case of structured data (see
Subsection ). Semantic types allow to annotate the column of a table or the at-
tribute of a JSON file, combining an ontology class and an ontology data property.
However, a full semantic interpretation of the data source requires to understand
how the data source attributes are tied. In their influential works focused on the
semantic modeling perspective [155] [156] [157] Taheriyan et al. indicate that re-
search efforts in semantic modeling focused so far mainly on the Semantic Type
Detection (STD), while less attention has been given to the automatic Semantic
Relation Inference (SRI). This trend is also observed in approaches which employ
NNs for the mapping purpose (see Subsection ). The motivation has to be found in
the complexity of the second step: in fact, even when semantic labels are manually
annotated, inferring the relations through an automatic mechanism is not trivial
and it is still an open issue in research. In addition, in more complex (but not un-
usual) situations, which are not fully covered by traditional approaches, semantic
types can be connected through multiple paths that include different sequences of
ontology classes and object properties.

Most of the approaches focused on semantic models exploit a background knowl-
edge to support the mapping process. In many cases, they employ existing semantic

7The GitHub repository of the engine is available at: https://github.com/oeg-upm/
morph-rdb
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models for similar sources, to learn the semantics of the target source. In this con-
text, the work of Vu et al. [168] employs probabilistic graphical models to identify
the most plausible semantic model of a data source within a combinatorial space.
Among the advantages offered by this approach, the authors mention the robust-
ness against noisy information and a straightforward method for taking advantage
of relations within the data. Taheriyan et al. [156] propose a system that exploits
existing semantic models and an ontology to build a weighted graph that includes
all plausible semantic models for the target source. Then, on the basis of the
assigned weight, the system computes a ranked list of candidate semantic models.
The main limitation of both approaches is that accuracy is hugely dependent on the
availability of semantic models. However, in many domains existing semantic mod-
els are not available and manually create them is a very expansive process. Among
other approaches proposed in the literature to address the semantic modeling prob-
lem, and in particular the relation inference, a promising one is the exploitation of
Linked Data (LD) repositories as background knowledge. As demonstrated by the
work of Taheriyan et al. [157], the results of this learning process are helpful to
select a path representing the correct semantic interpretation of the target source.
The main contribution of this thesis to address the mapping problem (Chapter 6)
takes inspiration from this work to integrate a novel mechanism for inferring se-
mantic relations using background LD. The most important difference between the
thesis contribution and the work of Taheriyan et al. [157] is that the latter adopts
a manual extraction of features (e.g., complex graph patterns to represent seman-
tic relations of different lengths), while the approach explained within the thesis
automatically learns latent features for entities and properties, encoding them in
a vector space. These features are learnt by a Graph Auto-encoder, exploiting the
local neighborhood structures within the LD graph.

3.2 Refinement of KGs
The result of building a KG is never be completely accurate. One the one hand,

it is not able to reach full coverage and include all possible statements related to
a specific entity. One the other hand, some errors risk being introduced during
the construction process, preventing the KG from being fully correct. For these
reasons, the KG refinement is an active and discussed research field. Paulheim
[119] describes three different orthogonal dimensions for classifying KGs refinement
approaches. These methods can be distinguished considering their overall goal, i.e.,
correction against completion of the KG; the refinement target, i.e., entity types,
relations between two different entities, or between an entity and a liter value;
the data exploited by the method, which include the KG itself, or other external
sources. The link prediction mechanism of the Geranium platform (Chapter 7)
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in the academic publications domain can be classified according to these orthog-
onal dimensions. It is focused on the KG completion task: its goal is to suggest
new statements, representing interesting opportunities of collaborations between re-
searchers. As a direct consequence, the target of the completion task is connected
to the relation between two entities. Finally, the data exploited by the contribution
involve the KG itself, without considering further sources. The refinement employ-
ing external sources can be partially framed into the mapping problem of structured
sources that is already discussed in Section 3.1. This Section provides an overview
of the tools that can be categorized according to the dimensions which characterize
the thesis’ contribution. A specific focus is dedicated to KG embeddings, which
become the state of the art for completions tasks, predicting new links within a
KG.

3.2.1 Completion Approaches with KG Embeddings
The completion task aims at increasing the coverage of a KG. In the most

recent literature review on KGs [79], three different types of KGE techniques have
been proposed to reach this purpose: (i) linear or translational models, which
formulate the relations between two entities as a linear transformation, projecting
s into o; (ii) bilinear or factorization models, where r is encoded within a matrix
and combine s and o by a multiplication. This multiplication can be seen, from
another perspective, as a factorization method to decompose the relational data
for the representation learning purpose; (iii) neural models, which are more flexible
than the previous techniques, due to the multiple parameters enclosed in their
network structure.

Translational models encode statements as transformation from subject nodes
to object nodes by means of the labeled edge. The most simple formulation is
represented by TransE [24], which learns the embeddings of s, r, and o, making
sure that s + r is close as possible to o. On the contrary, if the edge is negative
example, TransE tends to consider o away from s + r. Many variants of TransE
have been proposed to improve this simple formulation. TransH [173] intends to
distinguish different relations employing different hyperplanes. As a result, s is
initially projected onto the hyperplan of r before considering the translation to o.
A generalization of this approach is provided by TransR [99], in which s and o
are both projected into a general vector space related to r. TransD [83] associates
entities and relations with secondary vectors, which are then exploited to project
the entity into a relation-defined vector space.

The main idea that unifies all factorization methods is based on the fact that
a tensor can be decomposed into tensors of lower orders, also known as factors.
In this perspective, these factors are able to capture latent features underlying
the information encoded in the original tensor. Therefore, the original tensor can
be approximately recomposed through a sequence of basic operations, including
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bilinear maps. In the context of KGs, such factors are represented by entity and
relational embeddings. The seminal method to compute these embeddings with a
factorization approach is represented by DistMult [178]. In this specific case each
entity and relation is associated with a vector and the related scoring function
computes the following operation: s ∗ r ∗ o. The goal of the learning process is to
maximize the probability of existing edges and to minimize the probability of non-
existing edges. Other approaches such as RESCAL [115] replaces the relation vector
with a matrix in order to exploit a multiple dimension to encode the direction of
the edge. HolE [114] introduces the so-called circular correlation operator in order
to combine entities and relation vectors. As happen in the case of RESCAL, this
operator is able to capture the direction of the relation. In regards to ComplEx
[163], entity and relation vectors are represented using complex numbers. As a
consequence, the number of parameters to learn is maintained low and the model
is able to compute the direction of the edge.

Neural models are able to learn embeddings adopting non-linear scoring methods
to compute the probability of a statement. Neural Tensor Networks (NTNs) [147]
is one of the initial contributions based on neural networks. The goal in this case
is to compute the outer product between s and o and combine the result with a
network layer representing r, in order to compute the plausibility score. Most recent
approaches involve the adoption of convolutional filters within the models. ConvE
[39] intends to produce a matrix, concatenating the vector representations of s and
r. This matrix is provided as input of multiple convolutional layers of 2 dimensions,
which are able to return a feature map tensor. Such tensor is transformed employing
a linear transformation and the final score is achieved performing a dot product
between the resulting vector and o.
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Chapter 4

Application Scenarios

This Chapter describes the main features of two main application scenarios,
which are characterized by the research problems discussed within this thesis. The
first scenario is represented by Open Government Data (OGD) released by Italian
Public Administrations (PAs) in the context of public procurement. In this specific
situation, each PA is responsible for publishing information related to its public
contracts, following specific legal guidelines. However, considering the fragmenta-
tion of the systems and the processes adopted by different PAs, it may happen that
data sources with different structures are published. As a consequence, tools for
the automatic generation of semantic models can be incorporated into a pipeline
for the generation of KGs from structured sources. The analysis of this KG and
the adoption of its related technologies can enable to detect and partially resolve
quality data problems related to inconsistency issues. The second scenario is re-
lated to the Open Data (OD) in the context of academic publications released by
the Politecnico di Torino (Polito). The available search engine1 built on top of such
information does not allow to explore the implicit, but useful connections between
researchers. Building a search engine based on a KG integrating publications data
enables advanced search features and allows us to predict new links that can be
interesting for recommendation purposes.

4.1 Integration Public Procurement Data into a
KG

Public Procurement (PP) information, made available as OGD, leads to tangi-
ble benefits to identify government spending for goods and services. Nevertheless,

1IRIS: https://iris.polito.it/
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making data freely available is a necessary, but not sufficient condition for im-
proving transparency. Fragmentation of OGD due to diverse processes adopted
by different administrations and inconsistency within data affect opportunities to
obtain valuable information. This Section describes a solution based on KGs and
linked data to integrate existing datasets and to enhance information coherence. It
presents an application of such principles through a semantic layer built on Italian
PP information available as OGD. As result, the approach overcomes the fragmen-
tation of data sources and it increases the consistency of information, enabling new
opportunities for analyzing data to fight corruption and for raising competition
between companies in the market.

This Section has the following structure. Subsection 4.1.1 reports a domain
analysis in the field of public procurement and spending information published ac-
cording to linked data principles. Subsection 4.1.2 describes the context and the
role of PP information and gives an overall view of public data made available by
Italian administrations. Subsection 4.1.3 explains current problems in terms of data
quality of such data. Subsection 4.1.4 illustrates the approach for processing, trans-
forming, and publishing procurement information as linked data. Subsection 4.1.5
reports results of the analysis on data quality issues. Subsection 4.1.6 presents a
discussion on obtained results.

4.1.1 Analysis of the Domain
This Section reports contributions of procurement and spending data trans-

formed and published according to linked data principles. This domain has already
been addressed by several research projects, however a comprehensive work on Ital-
ian procurement data is not addressed yet. Furthermore, at the best of our knowl-
edge, an analysis on procurement data consistency exploiting semantic technologies
to improve transparency has not yet been accomplished.

One of the most important contributions in this domain is the LOD2 project,
since it systematically addresses many phases of procurement linked data pro-
cessing [152]. There are several other notable initiatives: the TWC Data-Gov
Corpus [41], Publicspending.gr [106], The Financial Transparency System (FTS)
project [103], Linked Spending [78], LOTED [164] and MOLDEAS [6].

In particular, the TWC Data-Gov Corpus gathers linked government data on US
financial transactions from the Data.gov project2. This project exploits a semantic-
based approach in order to incrementally generate and enhance data via crowd-
sourcing. Publicspending.gr has the objective of interconnecting and visualizing
Greek public expenditure with linked data to promote clarity and enhance citizen
awareness through easily-consumed visualization diagrams. The FTS project of the

2Data.gov project website: https://www.data.gov/
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European Commission contains information about grants for EU projects starting
from 2007 to 2011, and publishes such data as linked data. Exploring this dataset,
users are able to get an overview on EU funding, including data on beneficiaries as
well as the amount and type of expenditure. Linked Spending is a project for the
conversion to linked data of information published by the OpenSpending.org, an
open platform that releases public finance information from governments around
the world. The project uses the DataCube vocabulary3 to model data in order
to represent multidimensional statistical observations. LOTED4 is focused on ex-
tracting data from single procurement acts and aggregating it over a SPARQL
endpoint. Finally, MOLDEAS presents some methods to expand user queries to
retrieve public procurement notices in the e-Procurement sector using linked data.

4.1.2 Study Context
This Subsection presents an overview on PP data, a description of the Italian

legislative context according to which procurement data is published by public
bodies, and an analysis of the key characteristics of such data.

Public Procurement as Open Data

Open Data on PP, namely the procurement of goods or services on behalf of
a public authority, is a specific area of the OGD characterized by big potential
for increased openness of government information and incentives for supporting
business activities. As reported by the Organisation for Economic Co-operation
and Development (OECD), around US$ 9.5 trillion of public money is spent each
year by governments procuring goods and services for citizens5. Furthermore, PP
transparency is a crucial toolset to identify problems that arise from corruption,
promoting competition and growth: according to the Transparency International
Slovakia initiative6 “reforms in procurement that included contract publication led
to an increase in bids from an average of 2.3 per public tender in 2009 to 3.6
in 2013”. In other words, as argued by Svátek [152], PP information is able to
unify public needs and commercial offers: it enables a lively context to increase the
interoperability between data models7, methodologies, and sources independently

3DataCube vocabulary information: https://www.w3.org/TR/vocab-data-cube/
4LOTED project website: http://www.loted.eu/
5More details available in the OECD blog post “Transparency in public pro-

curement, moving away from the abstract”: http://oecdinsights.org/2015/03/27/
transparency-in-public-procurement-moving-away-from-the-abstract/

6For more information, see: http://www.transparency.sk/
7The ISA initiative of the European Commission represents a landmark for understanding

different levels of data interoperability. More information available at http://ec.europa.eu/
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designed within the two sectors.
Despite the tangible benefits that come with the publication of PP informa-

tion as OGD, making data available does not automatically produce transparency.
As underlined by Janssen [82], providing data alone is not sufficient: deep in-
sights into the working of mechanisms to ensure that information can be easily
accessible, processed, and interpreted are necessary to create transparency. Such
reflections emerge from a conceptual framework called Big and Open Linked Data
(BOLD), proposed by Janssen himself, that identify categories, dimensions, and
sub-dimensions that influence transparency [82].

An obstacle to a comprehensive implementation of transparency through OGD
is related to the fragmentation of existent open government datasets, in particular
in the domain of procurement data8. KGs and linked data principles can be a
modular and scalable solution to overcome the fragmentation in government data,
increasing citizen awareness of government functions and enabling administrations
to work more efficiently.

The Italian Legislative Context

The Italian Legislative Decree n. 33/2013 (DL33/2013) of March 14th, 20139

re-ordered obligations of disclosure, transparency, and dissemination of information
by public administrations. According to specific requirements defined by the decree
(Article 9 - DL33/2013), each body is required to create a specific section on its
website called “Amministrazione Trasparente” (Transparent Administration). In
this section, administrations provide details related to public procurement, with
particular emphasis on procedures for the award and execution of public works,
services, and supplies (Article 37 - DL33/201310). Such data is published on the

isa/documents/isa_annex_ii_eif_en.pdf
8Only 1/5 of total public expenditure on goods and services is published with rules complying

with the EU Directives, for an estimated value of €420 billion. It means that “the bulk of
total public expenditure on goods, services, and works is not organised in accordance with EU
procurement legislation”. See http://ec.europa.eu/internal_market/publicprocurement/
docs/modernising_rules/executive-summary_en.pdf

9See: http://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:
2013-03-14;33!vig=. Notice that DL33/2013 has been recently amended by D.Lgs. 25 maggio
2016, n. 97 (DL97/2916), with a general tendency toward a more centralized publication of data
- see, in particular, Article 9-bis - but no immediate impact on the publication requirements dis-
cussed in the paper at hand. See below footnote 10 for additional comments. Last visit on Nov.
2016

10Following the aforementioned amendments by DL97/2016, a National Public Contracts Data
Base -the BDNCP- is forthcoming, as described in the new Annex B of DL33/2013, but its creation
will face all the problems described in the paper at hand - and possibly benefit from the suggested
approach
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basis of a precise XML Schema Definition11 (XSD) provided by ANAC - Autorità
Nazionale Anticorruzione (Italian National Anti-Corruption Authority)12, which
has supervisory duties. After the publication on their websites, administrations
transmit the link of the dataset to ANAC via certified mail. ANAC, at this point,
performs a preliminary check and releases an index file (in JSON format), containing
details related to the availability of data13.

Source Data

Public bodies can publish and transmit to ANAC two types of XML files. The
first type contains the actual data on contracts until the publication date (January
31st of each year). In order to facilitate the consistency of publications and the
comparison of information, the structure of the document is defined by a precise
XSD Schema14. The main structure of the XML file includes a section with the
dataset metadata and a section containing multiple contracts, each of whom can
be identified by the XML tag “lotto”. The metadata section lists some information,
including the first publication date and the last update of the dataset, the business
name15 of the contracting authority that spreads the dataset, the url of the dataset,
and the license. The section containing data on contracts includes the following
information: the identification code of the tender notice or CIG (that stands for
Codice Identificativo Gara), the description of the tender, the procedure type for
the selection of the beneficiary, the identification code and the business name of
bidders (tender participants), the identification code and the business name of the
beneficiary, the awarded amount, the paid amount, the dates of commencement
and completion of works.

The second type of XML, instead, is an index that collects links to other XML
files containing actual public procurement data16.

11XSD is a W3C recommendation that specifies how to describe an XML document
12See: http://www.anticorruzione.it/
13The JSON index is available at https://dati.anticorruzione.it/l190, by clicking on the

“Esporta” (Export) button
14A representation of the XSD schema is available at http://dati.anticorruzione.it/

schema/datasetAppaltiL190.xsd
15A pseudonym used by companies to perform their business under a name that may differs

from their legal name
16A representation of the XSD schema is available at http://dati.anticorruzione.it/

schema/datasetIndiceAppaltiL190.xsd
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4.1.3 Data Quality Problems
As described in Section 4.1.2, public contracts information is generated and

spread on Italian public bodies websites. Due to diverse processes and tools adopted
by administrations, the quality of PP data is extremely variable depending on the
single case and it is impaired in terms of accuracy, completeness, and consistency17.

Accuracy is defined as the degree to which a data value conforms to its actual
or specified value. This metric is divided in syntactical accuracy and semantic
accuracy, which are defined in the following way:

• Syntactical accuracy is defined as the closeness of the data values to a set of
values defined in a domain considered syntactically correct.

• Semantic accuracy is defined as the closeness of the data values to a set of
values defined in a domain considered semantically correct.

The definition of completeness is dependent on the perspective used:
• Computer system’s point of view: completeness is the extent to which all

necessary values have been assigned and stored in the computer system.

• End-user point of view: completeness is the extent by which the data con-
sumer’s need is met.

Consistency refers to the absence of apparent contradictions within data. Incon-
sistency can be verified on the same or different entities. In the context of XML
data that refers to a schema, integrity constraints are properties that must be sat-
isfied by all instances of a database schema. Although integrity constraints are
typically defined on schemas, they can at the same time be checked on a specific
instance of the schema that presently represents the extension of the database.

Interdependence between quality metrics

Although there are different metrics to assess the quality of data as shown in the
previous Subsection, such metrics are closely interdependent. In the procurement
domain, for instance, a contract could present issues like bad comma position in
a payment value (accuracy) or the lack of the payment field (completeness). Both
errors have a direct impact on the consistency of information: contradictions in-
evitably occur when it is analyzed the total amount of expenditure resulting by
several XML files that report data of an ongoing contract.

For these reasons, although the focus of the study concerns the consistency of
the information, Subsection 4.1.5 proposes also a comprehensive analysis of the
data quality in terms of accuracy and completeness.

17Such data quality metrics are defined by the International Organization for Standardization:
ISO/IEC 25012
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Focus on Data Consistency

Certain types of consistency problems directly emerge analyzing contracts data
collected in a single XML file. Here are reported 3 examples of such inconsistencies:

• contracts in which the beneficiary is more than one;

• contracts in which the amount of money is paid, but no recipient is present
in the data;

• contracts in which the sum reported as paid is greater than the sum initially
awarded to the beneficiary.

Other types of inconsistencies manifest themselves only after merging data con-
tained in different sources. The following cases are real examples of inconsistencies
with Italian PP data:

• business entities with more than one business name;

• CIGs that identify more than one contract;

• incoherent payments among different versions of an ongoing contract.

The aforementioned issues represent a significant barrier to achieve transparency,
because the results obtained by querying the dataset are likely to be inconsistent
and misleading. For example, consider a citizen trying to access the effective busi-
ness name of a contracting authority identified by the id “00518460019” (this is
VAT number of the “Politecnico di Torino”). If the data quality in terms of seman-
tic accuracy is poor, such id could be associated with wrong business names like
“Politecnico di Milano” and/or “Politecnico di Bari”. So, when the citizen performs
a search using the business name as search key, he obtains an inconsistent result.
The same problem happens when he wants to get details of a contract identified
by a CIG: in this case, he is likely to get discordant values. Moreover, incoherent
values of payments are not deductible from a single XML file, because errors emerge
by analyzing the evolution of the contract data published in different years.

4.1.4 Applying the KG and the Linked Data Approach
In this Section all stages of the approach to publish Italian PP according to

linked data principles are shown. Each stage is accomplished by means of different
software components and resources that are shown in Figure 4.1.
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Figure 4.1: Architecture for processing and publishing Italian PP as linked data

Harvesting of XML Files

The task of data harvesting is assigned to the Downloader component (3), that
exploits the index file provided by ANAC18 (1). On the basis of URLs contained in
this file, the data fetching process from public bodies’ websites (2) is able to manage
two different cases. In the first case, the component gets XML files containing
PP data and store them locally (4). Download metadata and the local path of
each XML are stored in a MongoDB NoSQL database (5), in order to facilitate
accessibility to such information and keep track of any duplicate file. In the second
case, in which the XML contains links to other XML files, the component is able
to cross the links chain19 and performs the download process shown in the first
case. When the component is not able to recognize the expected XML schema (as
actual procurement data or as index) the file is stored in a dedicated directory of
the file system for a later manual check. This problem occurs when the resource
is not published according to an accepted format (e.g., it is a PDF file). In the

18The index file provided by ANAC is available at http://dati.anticorruzione.it
19In some cases an index points to another index that finally might point to a file, or to another

index
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worst cases, XML indexes are recursive, since they contain URLs that reference
to the XML index itself. For these reasons, some features are implemented in
order to manage this critical issue that threatens to undermine the entire pipeline.
Moreover, during the download operation, a lot of servers do not reply: more than
10 different HTTP responses have been collected, which reveal how the quality of
service over the 15,000 infrastructures of the Italian public administration might
not be reliable. Results of the download process are reported in Section 4.1.5.

Cleaning of Procurement Data

The next step to the data harvesting is performed by the Cleaner (6). During
this stage procurement information is extracted from XML files and each contract is
processed and stored as unique document in an instance of the MongoDB database
(7). Analyzing such data the magnitude of data quality in terms of accuracy,
completeness, and consistency is evaluated (results of such evaluation are available
in Section 4.1.5).

When new errors are detected, the Cleaner component is progressively improved.
Every time a specific fix is applied on data regarding to a contract, new metadata
are included into the related MongoDB document: the original data is preserved
and a specific field called “errors” is compiled with the identified issue. For in-
stance, encountering a bad format for the date value (dd-mm-yyyy), such value is
transformed in the correct format according to ISO 8601 (in our case yyyy-mm-dd),
preserving the original data and saving in the “errors” field the following string:
“bad date format” (Section 4.1.5 reports adopted solutions for the most common
procurement data quality issues).

Public Contracts Ontology

In order to publish Italian public procurement according to linked data princi-
ples, the Public Contracts Ontology (PCO) is adopted. This ontology is developed
in the context of the Czech OpenData.cz initiative20. According to its authors,
this ontology describes “information which is available in existing systems on the
Web” and “which will be usable for matching public contracts with potential sup-
pliers” [42]. Therefore, the goal of the PCO is to offer a generic model for describing
public contracts, without providing details of the public procurement domain, that
are specific to fields and countries.

In the PCO domain, a call for tenders is submitted for the award of a public
procurement contract. Therefore, XML fields and data described in Section 4.1.2
are mapped into entities, classes, and relations provided by the PCO. Figure 4.4

20The Public Contracts Ontology is available on GitHub platform at: https://github.com/
opendatacz/public-contracts-ontology
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shows the data model adopted for publishing Italian PP as linked data. Although
there is a significant degree of overlap between the XSD that describes the schema
of source data and the PCO, additional elements are introduced to better describe
our domain. For instance, the concept of tender was not fully expressed in the data
model adopted in XML files, since there are only information about participants,
but not details related to offering services and prices. Nevertheless, the tender is
one of the most important entity in the PCO to link participants to the public
contract. For these reasons, during the conversion to linked data (Section 4.1.4),
tender entities are created using as identifier the id code of the participant and the
CIG of the contract.

Figure 4.2: Schema that describes Italian PP in the linked data domain

Triplification and Interlinking

After the cleaning stage, contracts data stored in the MongoDB instance are
converted into RDF using the N-Triples serialization21. The component that per-
forms this task is called RDF converter (10), that maps fields and data values of
the contracts into properties, entities, and literals defined by the PCO.

21More information available at: https://www.w3.org/TR/n-triples/

52

https://www.w3.org/TR/n-triples/


4.1 – Integration Public Procurement Data into a KG

The triplification process is a trivial task for contracts extracted from XML files
that are compliant with the schema defined by the Italian law (see Subsection 4.1.2).
However, not all downloaded XMLs are valid, due to errors in the management and
the publication of data. To address this issue, SeMi has been exploited to integrate
potential valuable data from sources with invalid schema. A detailed description
of the results of SeMi in this application domain are reported in Chapter 6.

Before completing the triplification process, the Entity matcher component (9)
performs the so-called interlinking stage. For the application, to improve the con-
sistency of the information, public bodies listed in Italian PP are interlinked to
public bodies gathered from the SPCData database22, provided by the Agenzia per
l’Italia Digitale (8), that contains the index of Italian public administrations. The
matching between entities are created using the identification code contained in
both datasets. After the interlinking step, the final RDF file (11) is pushed into a
Triple Store that exposes data via a SPARQL endpoint (14).

As shown in Figure 4.1, the RDF file is also published in a Lucene23 index (12)
to enable full-text search features and data published within the endpoint can be
queried by a Web server (13) to populate a Web interface24 (15).

4.1.5 Application Results
This Section reports results obtained with stages described previously in order

to reduce data fragmentation and to improve data quality, in particular the consis-
tency of information. Moreover, this Section reports preliminary results achieved
introducing the GAE, compared to results obtained with the initial steiner tree
detection, for the task of semantic relation inference.

Harvesting Results

With the approach described in Section 4.1.4, information coming from more
than 300,000 XML files published by 15,000 public bodies are integrated. Table 4.1
reports details of the harvesting phase (see Section 4.1.4) that was accomplished in 4
different periods, starting from May 201525. The download process has been carried
out at different times for two reasons. The first reason is that ANAC releases the
index file containing references to XML files in February of each year. The second
reason is related to problems about servers uptime, which inevitably impacts on the

22More information available at: http://spcdata.digitpa.gov.it/index.html
23Apache Lucene is a high-performance, full-featured text search engine library written entirely

in Java. More information available at: http://lucene.apache.org/core/
24The ContrattiPubblici.org project developed by Synapta Srl aims at demonstrating the op-

portunities for transparency and business of public procurement spread according to linked data
25Some information is missing because in 2015 the number of requested URLs were not stored
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availability of XML files. In order to tackle the last problem, on each harvesting
cycle the download of all XMLs is performed, generating the duplication of files,
that are managed during the data cleaning process.

Table 4.1: Number of downloaded XML files of procurement data in different peri-
ods of time

May 2015 Nov 2015 Feb 2016 Nov 2016
URL requested - - 207.674 271.664
downloaded files 205.415 184.738 201.451 252.246
valid XMLs 199.341 180.609 197.338 247.881

Quality Problems Addressed

During the cleaning phase of PP (see Section 4.1.4), each contract is stored as
single document within a MongoDB instance, enabling a first level of analysis on
quality issues in terms of accuracy, completeness, and consistency of data. Table 4.2
shows, for each field of the contract, the type of data quality issue, the occurrence
of such issue (in percent), the adopted solution (where available). The 41,65%
of all contracts (almost 6 million in total) presents at least one of these issues.
The analysis of data inconsistency issues mentioned in Subsection 4.1.3 shows that
contracts in which the beneficiary is more than one correspond to 1.78% of all
contracts; contracts in which the amount of money is paid, but no recipient is
present in the data correspond to 4.30% of all contracts; contracts in which the
sum reported as paid is greater than the sum initially awarded to the beneficiary
correspond 5.96% of all contracts.

Exploiting semantic principles, a KG on procurement data is created to reduce
fragmentation and to identify further inconsistencies. The dimension of the dataset
built according to linked data principles is available in Table 4.3. Such dataset
is published using the Virtuoso Triple Store26 and can be queried via SPARQL
endpoint27.

4.1.6 Discussion on Inconsistency Issues
As explained in Subsection 4.1.3, there are some inconsistencies that are visible

only after completing a data integration process, that includes manual approaches
and automatic techniques. Three different cases are reported in this study:

26More information available at: https://virtuoso.openlinksw.com/
27The SPARQL endpoint on public procurement data is available at: https://

contrattipubblici.org/sparql
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Table 4.2: Accuracy, completeness, and consistency degree in PP data

Field Error Occ. (%) Solution
Completeness

Start date missing 12.25 nothing
End date missing 21.61 nothing
Agreed price missing 0.06 nothing
Payment missing 0.20 nothing
Procedure type missing 0.11 nothing
Business Entity ID missing 1,05 hash value

Accuracy
Identifier syntactic errors 0.96 string cleaned

semantic errors 5.83 hash value
Start date semantic errors 1.36 nothing
End date semantic errors 2.00 nothing
Agreed price syntactic errors 0.94 string cleaned

semantic errors 0.23 nothing
Payment syntactic errors 0.76 string cleaned

semantic errors 0.65 nothing
Procedure type syntactic errors 2.81 optimal string match
Business Entity ID semantic errors 1,08 hash value

Consistency
Start date non standard format 5.63 uniformed to ISO 8601
End date non standard format 5.20 uniformed to ISO 8601
Beneficiary more than one beneficiary 1.78 nothing
Payment payment without winner 4.30 nothing

greater than awarded price 5.96 nothing

Table 4.3: Characteristics of KG built integrating Italian procurement information

Dimension Value
RDF triples 168,961,163
entities 22,436,784
contracts 5,783,968
public bodies 16,593
companies 652,121
links to external datasets 13,486

• business entities with more than one business name;

• CIGs that identify more than one contract;

• incoherent payments among different versions of an ongoing contract.
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The first of this case can be detected with the SPARQL query available in
Listing 2:

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
2 PREFIX gr: <http://purl.org/goodrelations/v1#>
3

4 SELECT (COUNT(DISTINCT ?be)) WHERE {
5 {
6 SELECT DISTINCT(?be) WHERE {
7 ?be rdfs:label ?label .
8 ?be a gr:BusinessEntity .
9 }

10 GROUP BY ?be HAVING (count(*)>1)
11 }
12 }

Listing 2: SPARQL query SQ4 to retrieve business entities with more than one
business name

This issue can be fixed exploiting the most important feature of linked data,
namely the interlink among different datasets. In fact, a unique business name on
a subset of business entities (in our case the contracting authorities) is obtained
building links to the Italian public administration index of SPCData, shown in
Section 4.1.4. From this dataset, exposed as linked data, the official business name
of contracting authorities are retrieved, using as primary key their identification
code (in our domain the VAT number of the contracting authority). In this way,
the consistency of information is improved for a subset of business entities, enabling
the opportunity to obtain valuable results.

The second case consists in the duplication of CIG for different contracts and
can be detected with the SPARQL query available in Listing 3:

The solution to this issue is generating a hash value, avoiding ambiguity due to
duplicate CIGs, to build contracts URIs. In this way, different contracts, misidenti-
fied by the same CIG, are separated in different entities: the URI is created through
a hash value generated combining the identity code of the contracting authority,
the awarded amount, and the procedure type mentioned in the contract. The user
is therefore able to detect this kind of error and he can semantically distinguish
different contracts identified by the same CIG. Nevertheless, more context infor-
mation is necessary to establish which is the correct CIG attribution for a specific
contract.

The last problem is tracking incoherent payments published in different XML
files of ongoing contracts. This problem is currently not solvable with the current
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1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
2 PREFIX gr: <http://purl.org/goodrelations/v1#>
3

4 PREFIX dcterms: <http://purl.org/dc/terms/>
5 PREFIX pc: <http://purl.org/procurement/public-contracts#>
6

7 SELECT (COUNT(DISTINCT ?contract)) WHERE {
8 {
9 SELECT DISTINCT(?contract) WHERE {

10 ?contract dcterms:identifier ?CIG .
11 ?contract a pc:Contract .
12 }
13 GROUP BY ?contract HAVING (count(*)>1)
14 }
15 }

Listing 3: SPARQL query SQ5 to retrieve CIGs that identify more than one con-
tract

approach, because of the lack of information on provenance and the reliability of
different sources.

4.2 Semantic Search and Recommendation Sys-
tems in Academic Publications

This Section presents Geranium [167], a semantic platform to collect and or-
ganize the scientific knowledge of the Politecnico di Torino (Polito). The research
achievements obtained with Geranium are: (i) a novel academic Knowledge Graph
(KG) that semantically connects information on researchers and publications of
Polito; (ii) a semantic search engine that aggregates such information and enables
advanced features for the content exploration; (iii) a recommendation system which
suggests, for instance, novel collaboration opportunities between researchers of dif-
ferent disciplines, who worked on the same topic.

The remainder of this Section includes the following parts. Subsection 4.2.1
presents an analysis of the semantic KGs in the academic publication domain.
Subsection 4.2.2 describes the main components of the Geranium architecture, in
regards to the KG generation and the content exploration and visualization. Sub-
section 4.2.3 includes details on the implementation of each module of the Geranium
architecture.

57



Application Scenarios

4.2.1 Analysis of the domain
In the last years there has been a growing interest in scientific KGs, both from

academic institutions and private organizations. Some of the most recent scholarly
KGs are Semantic Scholar [7], CORE [90], AIDA [9], and OpenCitation [120]. In
regards to the most used domain ontologies in the domain, it is worth to mention
SWRC28, BIBO 29, BiDO 30, SPAR [121], CSO [139], SKGO [fathalla2020].

A notable example is the Open Academic Graph31 (OAC), built by merging
together the Microsoft Academic Graph32 and AMiner33. OAC has been publicly
released to allow the study of citation networks and paper contents. Released in
2017, its first version has been obtained linking the matched publications from the
above-mentioned KGs, collecting more than 3 hundred millions of publications. At
the beginning, OAC included only the authors and the journals as entities, while
the other metadata have been collected as data attributes. In January 2019, the
second version of OAC has been released, including further publications. However,
the biggest change of this new version was the inclusion of authors and venues as
entities, instead of being data attributes of the publication. Unlike the PKG, the
OAC does not contain publication topics as entities, because the keywords chosen
by the authors suffer of the same limitations of IRIS: they are not explicitly related
to semantic topics.

Among the tools similar to Geranium, which employ KGs to build a search
engine on scholarly data, the Wiser research project [32] is noteworthy. Wiser is
a search tool developed by the University of Pisa and publicly released at the be-
ginning of 2019. The KG adopted by Wiser is composed of approximately 1.500
authors, 65.000 publications, and 35.000 topics. The system has proven to be
particularly effective, representing a strategic tool and being actively used by the
Technological Transfer Office of the University of Pisa to easily find expertise pro-
files in a given research field.

One of the main components of the PKG pipeline is TellMeFirst (TMF) [132],
a system used to automatically extract the scientific topics from the publications
abstracts. By automatically extracting the topics, TMF allows to add them as
entities in the PKG, so that each publication is directly linked to its main topics,
and each topic is linked to all the publications of which it is a subject. Other tools,
such as the CSO Classifier [140], are able to extract the subjects of a publication.

28http://ontoware.org/swrc
29http://bibliontology.com
30http://purl.org/spar/bido
31https://www.openacademic.ai/oag/
32https://academic.microsoft.com/
33https://www.aminer.cn/
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This Classifier is able to automatically classify a research paper according to the
Computer Science Ontology34 (CSO), an automatically generated ontology of re-
search topics in computer science. The fact that the CSO Classifier relies on a
predefined ontology has some disadvantages with respect to TMF. For instance,
the Computer Science Ontology is restricted to the computer science field, while
TMF uses DBpedia as its source of knowledge and it is able to extract topics re-
garding different research fields. However, the approach of CSO Classifier has also
its advantages: considering that the ontology is more focused on a specific domain,
the classification could be more accurate, and the structure of the ontology itself
may be tailored for such classification task.

4.2.2 Approach and Methodology
The approach adopted for the development of the Geranium platform is based

on a pipeline architecture. This architecture, available in Figure 4.3, is composed
of the following modules:

1. The Builder : it creates an initial version of the Polito KG (PKG), which
includes: (i) basic metadata on scientific publications and researchers; (ii)
semantic topics, which are automatically extracted from the publication ab-
stracts.

2. The Enhancer : it builds the training dataset and exploits Graph Neural
Network (GAE) techniques to predict unseen facts within the PKG.

3. The Viewer : it allows to query, visualize, and explore the PKG built in the
previous steps.

The Builder

The Builder takes as input the data from IRIS35, which is the system adopted
by Polito to store and spread the scientific papers written by its researchers. The
database dump adopted to build the PKG includes information on publications
that are released in a period of ten years, from 2008 to 2018. The goal of the
Builder is to translate the data contained in the dump in a set of semantically
coherent RDF facts. To reach this purpose, an ontology that describes the do-
main of the IRIS scholarly data has been defined, exploiting existing vocabularies
available on the Web. The Builder analyzes each record in the JSON dump and
maps the information contained in the record with the concepts and the properties

34https://cso.kmi.open.ac.uk/home
35https://iris.polito.it/
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Figure 4.3: Schema of the pipelined software architecture developed to build, en-
hance and visualize the PKG. The legend is showed in the bottom left corner of
the Figure. The circled numbers are used to identify the steps in the pipeline.

defined by the ontology. For instance, considering a publication including more
than one contributor, the ontology allows to distinguish the main author and the
other co-authors employing different predicates (or object properties). The Builder
exploits also automatic techniques to extract semantic topics from the publication
abstracts. To reach this purpose, the Builder exploits TellMeFirst (TMF) [132], a
tool for the automatic extraction of semantic topics from texts. These topics are
uniquely identified by URIs derived from the DBpedia KG. DBpedia is a research
project that includes facts that are semi-automatically extracted from Wikipedia
[96]. The semantic topics extracted with TMF are add as new entities in the PKG
and linked to the publications. The output of the Builder is an initial version of the
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PKG, which includes a coherent description of uniquely identified and semantically
connected authors, publications, journals, and semantic topics.

The Enhancer

The Enhancer has the goal to prepare the dataset for the the training phase,
performed by the GAE, in order to predict new facts withing the KG. The Enhancer
includes three main components: (i) the Dataset Builder, (ii) the Model Trainer,
(iii) the Link Evaluator.

The Dataset Builder is in charge of translating the PKG into a usable dataset
for the Model Trainer, because the RDF facts can not be directly used as input
data for the link prediction mechanism. Therefore, the dataset is splitted into three
disjoint36 sets: (i) the training set, (ii) the validation set, (iii) the test set.

The Model Trainer is a GAE that uses these three sets to train, validate, and
test the link prediction model. The training set is used to train the model at each
epoch, while the validation set is used to evaluate which model parameters to keep,
identifying the best epoch. The test set is used to evaluate the accuracy of the
model, loaded with the best epoch parameters, upon unseen facts.

The Link Evaluator loads the best model found during the training phase and
uses it to evaluate unseen facts, according to a specific score. The predicted facts
which can be added to the PKG must comply two specific constrains: (i) they
receive a high score from the link prediction mechanism; (ii) they are semanti-
cally correct according to the domain and the range defined by the ontology for
the object property included in the fact. These facts are added to the PKG, in
order to obtain an enhanced version of the PKG. This enhanced version includes
missing topics, similar author or journal profiles, that can be used to empower the
recommendations for the Polito researchers.

The Viewer

The Viewer allows to explore the scientific publications of PoliTO and to visu-
alize suggested recommendations for Polito researchers. The Viewer is composed of
a triplestore, an API layer, and a Web application. The triplestore stores the PKG
and exposes a SPARQL endpoint. The API layer allows to retrieve the information
contained in the KG and translates the response obtained from the triplestore in a
JSON file, which is sent back to the client. The Web application is the entry point
for the user, implementing the functionalities of a modern search engine. It allows
to query and visualize the data contained in the KG through the use of a friendly
interface. The user can search for a topic of interest and obtain as result the list
of all the publications, authors and journals that are linked to such topic. The

36Two sets are said to be disjoint if they have no elements in common.
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predictions are used to add suggestions to the results: searching for an author, the
Web application shows its actual research interests, but also other topics in which
she may interested in, or researchers with similar profiles who have never been her
co-authors.

4.2.3 Implementation Details
This Section reports the implementation details of the Geranium architecture.

Building the initial PKG

The goal of the Builder (Subsection 4.2.2) is to create the PKG from the data
and metadata available in the IRIS database and from the semantic topics extracted
by TMF. The IRIS dump is a JSON file that currently includes 23.268 records, for
the time period 2008-2018. The metadata adopted in the IRIS platform are useful
to manage the publication process. Considering this aspect, only a subset of the
IRIS metadata is selected for the KG generation:

1. The publication identifier.

2. The title.

3. The abstract.

4. The author name, surname, and identifier.

5. The contributors and co-authors names, surnames, and identifiers (if present).

6. The date of publication.

7. The journal title and ISSN (if present).

8. The keywords entered by the authors to tag the publication.

The publication identifier is a unique code associated to each paper. Authors
and co-authors, which are part of the Polito staff, are also uniquely identified by an
id in the IRIS management system. External researchers, that can be contributors
or co-authors of a publication are identified using their name and surname. The
metadata of the papers that are published in a journal include its title and its ISSN
identifier. On the other side, if the paper is included within a conference proceeding,
there are no unique identifiers, while the name of the conference is available. Other
information related to the publication, such as the title, the abstract, and the
keywords are reported as strings among the metadata. Considering the semantics
of the metadata, the ontology adopted to construct the facts includes the following
classes:
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1. The Publication.

2. The Author.

3. The Journal.

4. The AuthorKeyword.

5. The TMFResource.
Data and object properties defined in RDFS [93], FOAF[65], and DCMI[174] are

used to semantically connect instances of the previous classes. Figure 4.4 depicts
the schema of the PKG.

Figure 4.4: Schema of the PKG. The external ontologies used to define the structure
are shown in the prefixes table.

The Graph Builder

The Graph Builder is the main component fo the Builder module and it is im-
plemented as a Python command-line script. This script uses the rdflib37 library

37https://github.com/RDFLib/rdflib
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Table 4.4: Number of entities and edges in the Polito Knowledge Graph.

Polito Knowledge Graph

Number of entities per-class

Publication Author Journal TMFResource AuthorKeyword
23,268 34,886 3,211 16,988 41,807

Number of edges per-property

Creator Contributor Publisher Subject (TMF) Subject (Keywords)
23,268 80,819 11,243 107,093 77,492

to create and manage an in-memory RDF representation of the KG. The script
takes as input the path to the JSON dump of IRIS and the ontology. In order to
increase the performance of the KG generation process, the script creates a Thread-
PoolExecutor to enable an asynchronous execution of the functions, according to
a predefined number of threads. Each thread asynchronously executes a function
that processes a single record of the dump, matching the record data with the
classes and the properties of the ontology, and creating the entities and the facts
that populate the PKG. The internal representation created by rdflib is serialized
and exported as an XML file that contains the definition of all the RDF facts in-
cluded in the initial version of the PKG. The second step performed by the Builder
is the extraction of semantic topics from the public abstracts, by means of TMF.
These topics are added to the KG as TMFResource entities, and are linked to the
publication by means of the dc:subject relation. Also in this case, the multi-thread
implementation of the code reduces the processing time, parallelizing the requests
to the RESTful APIs of TMF.

Table 4.4 summarizes the PKG features after the topic extraction performed
by TMF. It reports the size of the KG, showing the number of entities categorized
under each class, and the number of edges for each relation type.

The AuthorKeyword class represents the keywords freely added by the authors
to label the publication. These keywords are included in the PKG, however they
are not part of a controlled vocabulary and for this reason they are not useful to
connect publications focused on the same topics. On the other side, TMF allows
to extract the relevant semantic topics from the publication abstracts, allowing to
link the papers to the same unique and unambiguous semantic entities.

Enhancing results

The goal of the enhancement process is to exploit the provide new recommen-
dations based on the link prediction method based on the GAE. Qualitative and
quantitative results of this specific task are discussed in Chapter 7.
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Visualizing Search Results

The Viewer allows to explore the scientific publications of PoliTO and to visu-
alize suggested recommendation for Polito researchers. The Viewer is composed of
a triplestore, an API layer, and a Web application. The triplestore is a specialized
DBMS for storing and retrieving RDF facts. It stores an online copy of the PKG
and exposes a SPARQL endpoint that allows to perform query on it. The API
layer exposes a RESTful service that allows to retrieve the information contained
in the KG, hiding the SPARQL-logic complexity. It accepts HTTP requests with
URL-encoded parameters and proceeds to perform the query against the SPARQL
endpoint exposed by the triplestore, by matching the parameters upon some pre-
defined queries. Then, it translates the response obtained from the triplestore in
a JSON file, which is sent back to the client. The Web application is the entry
point for the user, implementing the functionalities of a modern search engine. It
allows to query and visualize the data contained in the KG through the use of a
friendly interface. For example the user, who should typically be a researcher of
the Politecnico di Torino, can search for a topic of interest and obtain as result
the list of all the publications, authors, and journals that are linked to such topic.
A screenshot on the results obtained searching for the publications on “Carbon
Nanotube” is available in Figure 4.5. The interface presents an overview of the
publication information, including the title, the authors, the other research topics
extracted from the abstract. In the upper-right area there is a bar graph that can
be exploited to filter the publication per year.

Predicted facts can be used to obtain insights and recommendations that can be
shown by the Viewer Module in the search results. Leveraging such predictions, the
recommendation system can suggest unexplored research topics to the researchers,
scientific journals that have published papers related to their field of research, or
the profiles of other researchers who share the same research interest, but that come
from different departments or disciplines. The predictions of the GAE model are
used to add interesting recommendations to the results. Considering the researcher
page, the system suggests new topics which are not directly covered by the author
and other researchers with similar profiles. A screenshot of the suggested topics
and researchers on the author page is available in Figure 4.6.
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Figure 4.5: Screenshot of the results obtained searching for publications on the
Carbon Nanotube research topic

66



4.2 – Semantic Search and Recommendation Systems in Academic Publications

Figure 4.6: Screenshot of the the suggested topics and researchers the author page.
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Chapter 5

Building Semantic Models with
Word2Vec and SPARQL

This Chapter illustrates the initial research study conducted on semantic mod-
eling. The study proposes a semi-automatic approach for constructing semantic
models, based on the training of a Neural Language Model (NLM), i.e. Word2Vec
[108], exploiting SPARQL queries performed on Knowledge Graphs (KGs) as train-
ing set. The graph patterns included in the body of SPARQL queries incorporate
semantic information expressed through ontologies. As a matter of fact, consider
the following pattern:

<http://dbpedia.org/resource/Alessandro\_Manzoni>
<http://dbpedia.org/ontology/birthPlace>
?birthPlace

It allows the user to retrieve the Alessandro Manzoni’s place of birth. This
query is particularly suitable to become a sentence for training a simple NLM for
two reasons: (i) articles, conjunctions, adverbs, and prepositions are not present;
(ii) the vocabulary used is limited, but rich in explicit semantics: properties like
dbo:birthPlace1 are defined by an ontology. The method assigns by means of the
NLM a vector representation (word embedding) to SPARQL variables included in
the graph pattern. A clustering technique aggregates SPARQL variables character-
ized by a closer vector representations, and each cluster is manually labeled with
the proper semantic type and semantic relation. For instance, the cluster includ-
ing the ?birthPlace, ?bp, and ?birth_place variables are labeled with the semantic

1Hereafter abbreviated versions for URIs are adopted for brevity reasons. In case of resources
such as <http://dbpedia.org/resource/Alessandro_Manzoni>, dbpedia:Alessandro_Manzoni is
used, while in case of ontology properties such as <http://dbpedia.org/ontology/birthPlace>,
dbo:birthPlace is used
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type “Place:name” and the semantic relation “dbo:birthPlace”. The approach is
evaluated according to the semantic accuracy metric, defined by the ISO standard
25012 [127] as the closeness of the data values to a set of values defined in a domain
considered semantically correct.

This Chapter is structured as follows. Section 5.1 describes the key ideas behind
the adopted approach for reconstructing the semantics of the data source. Section
5.2 describes implementation details. Section 5.3 reports details on the evaluation
process, the preliminary results, and the limitation of this approach.

5.1 Approach
This Section reports: (i) a detail description on the adoption of Word2Vec

to assign embeddings to SPARQL variables; (ii) an explanation of the syntactic
similarities between the SPARQL variables and the attributes of a data source, in
order to reconstruct the semantics of the latter; (iii) a definition of the concept of
semantic model serialization.

5.1.1 Embedding Representation of SPARQL Variables
Graph patterns mentioned in SPARQL queries like “?person dbo:birthPlace

?birthPlace” are assertions characterized by a subject, a predicate, and an object.
For such reason, they can be considered as natural language sentences, in which
the words correspond to the elements of the triples.

Furthermore, variables mentioned in such triples, for instance ?birthPlace, have
two peculiar features: (i) they contain a well defined semantic type (a place in our
case); (ii) they have specific relationships with other entities in the KG (someone’s
birthplace in our case).

To better understand such peculiarities, consider the 2 following examples of
SPARQL query bodies:

?person dbo:birthPlace ?birthPlace .
?birthPlace dbp:latitude ?lat .
?birthPlace dbp:longitude ?long .

?person dbo:birthPlace ?bp .
?bp dbp:longitude ?lat .
?bp dbp:longitude ?long .

In this case the variables ?birthPlace and ?bp are characterized by a similar
context: they are preceded by either dbo:birthPlace and ?person, while they are
followed by dbp:latitude and ?lat.
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As explained by Ristoski and Paulheim [130], the goal of a NLM like Word2Vec
is “to estimate the likelihood of a specific sequence of words appearing in a cor-
pus, explicitly modeling the assumption that closer words in the word sequence
are statistically more dependent”. Therefore, NLMs are able to generate word em-
beddings that express semantic similarities. According to these principles, in our
specific case variables like ?birthPlace and ?bp are characterized by a similar vector
representation.

5.1.2 SPARQL Variables and Data Attributes
The approach exploits potential syntactic similarities between attributes of a

data source and SPARQL query variables. The assumption is that traditional
problems related to the name conflicts [122] between traditional data sources and
ontologies are mitigated. For instance, users tend to write short names also in
SPARQL variables than long speaking names. In other cases, users tend to use
plural instead of singular expressions, where more than a single result is expected:
in a SPARQL query that retrieves all actors of a specific movie, users are inclined
to use ?actors instead of ?actor.

5.1.3 Semantic Model Serialization
The graph representation of semantic models has to be serialized using a map-

ping language. Assuming that the table reported in Fig. 5.1 is published in the
CSV format with the name “authors.csv”, the RML file that describes the seman-
tic model on the basis of the ontology of Fig. 5.2 includes RDF statements reported
in Fig. 5.3.

Figure 5.1: Example of semantic model on a table source
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Figure 5.2: Example of ontology

Figure 5.3: Example of RML file

5.2 Implementation Details
This Section illustrate all stages to generate a semantic model, exploiting SPARQL

queries as training sentences for a NLM. Each stage is performed by different soft-
ware modules that are shown in Fig. 5.4
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Figure 5.4: Modules and components of the pipeline for the generation of the
semantic model

5.2.1 SPARQL Extractor
The SPARQL Extractor module (1 in Fig. 5.4) conducts a pre-processing stage

in order to prepare a set of SPARQL queries as input of the NLM. To accomplish
such goal, it uses three software components: the SPARQL Importer, the SPARQL
Parser, and the SPARQL Enricher.

The SPARQL Importer downloads SPARQL queries made available by the LSQ
project. Such SPARQL queries are published according to a specific ontology and
can be retrieved from an endpoint available on the Web2. The download process is
performed through a pipeline of 3 different queries to retrieve:

1. all properties mentioned in the body of stored queries. The result of the query
provides the URIs of properties (e.g., dbp:birthPlace);

2. all URIs of queries data that contain such properties. For instance, the
URI http://lsq.aksw.org/res/DBpedia-q135894 describes a query that

2The LSQ SPARQL endpoint is available at: http://lsq.aksw.org/sparql.
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contains the property dbp:birthPlace in the WHERE and in the OPTION
clauses3;

3. the body of each query identified by a URI. Considering http://lsq.aksw.
org/res/DBpedia-q135894, it is possible to obtain the entire text of the
query, exploiting the property http://spinrdf.org/sp#text defined by the
LSQ ontology.

The SPARQL Parser component extracts triples from text of queries retrieved by
the SPARQL component. Such triples are located inside the WHERE and the OP-
TION clauses, for instance “dbpedia:Alessandro_Manzoni dbo:birthPlace ?birth-
Place”. Triple patterns like this compose the training set for the NLM (see Section
4.2). The SPARQL Parser component is developed by means of the SPARQL.js
library4.

Finally, the goal of the SPARQL Enricher is to harmonize the context of SPARQL
variables that express the same semantics. To clarify the behaviour of this compo-
nent, please consider the following triple examples:

dbpedia:Alessandro_Manzoni dbo:birthPlace ?birthPlace .

dbpedia:Walter_Scott dbo:birthPlace ?birthPlace .

?person dbo:birthPlace ?birthplace .

In this case, the context of ?birthPlace and ?birthplace are not very simi-
lar, because the first one is included in sentences with different subjects: dbpe-
dia:Alessandro_Manzoni, dbpedia:Walter_Scott. The third one, instead, is in-
cluded in a sentence where ?person is the subject. Nevertheless, Alessandro Man-
zoni and Walter Scott are all entities categorized under the DBpedia class Person
(http://dbpedia.org/ontology/person).

The SPARQL Enricher component retrieves the label of the highest-level classes
of the concepts mentioned in the SPARQL queries (in this case the label of the class
http://dbpedia.org/ontology/person is “person”) and adds a new triple for each
concept. In this case, 2 new triples in the form ?person dbo:birthPlace ?birthPlace,
are added to the training set.

3Including triples mentioned in the OPTION clause, it is possible to extend the training set.
4The GitHub repository of the tool is available at https://github.com/RubenVerborgh/

SPARQL.js/
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5.2.2 Neural Language Engine
The goal of the Neural Language Engine module (2 in Fig. 5.4) is to assign an

embedding representation to variables included in triples retrieved by the SPARQL
Extractor. To perform this task, the module uses two software components: the
Sentence Generator and the Neural Language Model (NLM).

The Sentence Generator component takes as input SPARQL triples and trans-
form them in sentences to train the NLM. In details, the triple “dbpedia:Alessandro_Manzoni
dbo:birthPlace ?birthPlace”, for instance, is treated as a sentence made of different
words: (i) dbpedia:Alessandro_Manzoni; (ii) dbo:birthPlace; (iii) ?birthPlace.

The NLM component generates the vector representation of the SPARQL vari-
ables, taking as input the sentences produced by the Sentence Generator. In this
context, variables like ?birthplace and ?bp share a similar context and therefore
they can be aggregate in the same cluster as it is described in the following stage.
The NLM is an implementation of the Skip-Gram variation of Word2Vec, which is
introduced discussed in Section 2.3.2.

5.2.3 Cluster Manager
The objective of the Cluster Manager module (3 in Fig. 5.4) is to assign a RML

template5 to clusters built on the embedding representation of SPARQL variables.
Unlike previous software modules that work fully automatically, the Cluster Man-
ager needs user intervention to correct the results of the clustering process and
the definition of the RML template. To achieve its goal, such module exploits two
software components: the Embedding Cluster and the Cluster Labeler.

The Embedding Cluster component aggregates vectors representing SPARQL
variables located in a close proximity, according to the cosine similarity6. The
algorithm used for the clustering is a combination between DBScan and K-means.
At this stage, the user can adjust through a GUI the results of the clustering process
in case of a wrong variables grouping.

The Cluster Labeler component provides to the user another GUI through which
he can assign the RML templates according to the clusters generated by the previous
component.

Here is available an example of how the Cluster Manager module works. Con-
sider the following example of different clusters of SPARQL variables created by
the Embedding Cluster component:

5An RML template has essentially the same contents of the RML file available in Figure 5.3,
except that some parts of the code are replaced by parameters whose content is filled by the
Cluster Manager itself and by the Mapper Coordinator module described in the next Section

6Cosine similarity is a measure of similarity between two non-zero vectors of an inner product
space that measures the cosine of the angle between them.

75



Building Semantic Models with Word2Vec and SPARQL

• Cluster 1: ?person, ?p, ?people.

• Cluster 2: ?birthplace, ?birthPlace, ?bp, ?birth_place.

On the basis of these clusters, the RML template is composed by 3 elements
(see Fig. 5.5):

• #[1] (in blue in Fig. 5.5) assigns the semantic type dbpedia:Person_name to
SPARQL variables ?person, ?p, ?people.

• #[2] (in red in Fig. 5.5) assigns the semantic type dbpedia:Place_name to
SPARQL variables ?birthplace, ?birthPlace, ?bp, ?birth_place.

• #[3] (in green in Fig. 5.5) assigns the relation dbo:birthPlace between the
just mentioned semantic types.

SPARQL variables are included in the RML template and they are directly
linked with the reference element (in bold in Fig. 5.5). The next module adds
further information to the RML template that finally contribute to reconstruct the
semantics of a data source.

5.2.4 Mapper Coordinator
The Mapper Coordinator module generates the semantic model (in the form of

RML template) between the data source and the domain ontology. To reach this
result, the module makes use of 2 different software components: the Attributes
Reconciler and the Mapper Generator.

The Attributes Reconciler takes two inputs: (i) the RML template generated by
the Cluster Manager module; (ii) the data source for which a semantic reconstruc-
tion is needed. The goal of such component is to reconcile the variables mentioned
in the RML template and the attributes of the data source, considering syntactic
similarities. To map the single attribute to the correct cluster of variables a score
is computed, comparing the median value of the normalized Levenshtein distances
[180] between the attribute and each element of the cluster. According to the
highest value of this score, the component proceeds with the assignment.

To clarify this step, consider the table in Figure 5.1, with the two columns
“person” and “birthPlace” as a CSV file entitled “authors.csv”. The Attribute Rec-
onciler component compares the word “person” with all the variables mentioned in
the RML templates: in our example case, it is compared with the Cluster 1 (?per-
son, ?p, ?people) and the Cluster 2 (?birthplace, ?birthPlace, ?bp, ?birth_place)
defined in the previous Section. The attribute author is assigned to the first el-
ement of the RML template (#[1] (in blue in Fig. 5.5) with a specific score (see
sm:score value in Fig. 5.5). The same process is executed for the “birth_place”
attribute, that is assigned to the second element of the RML template (#[2] (in
blue in Fig. 5.5) with a specific score (see sm:score value in Fig. 5.5).
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Figure 5.5: Example of RML template

5.3 Evaluation
This Section reports details on the evaluation design and the obtained results.

5.3.1 Design
The goal of the experiment is to measure the semantic accuracy of the semantic

models generated with the described approach. As mentioned in previous Sections,
the semantic accuracy can be defined as the closeness of the data values to a set
of values defined in a domain considered semantically correct. For this reason,
the semantic model generated by the system is compared with a semantic model
produced by a domain expert on a specific field of knowledge. Assuming that the
RML file of the semantic model produced by the domain expert is identified by
DSM and the RML file of the semantic model generated by the system is identified
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by SSM, the precision is computed considering the intersection between the triples
mentioned in the two RML files and the number of triples in the RML file created
by the domain expert.

precision = triples(DSM) ⋂︁
triples(SSM)

triples(DSM)
The precision assumes a value between 0 and 1. For the evaluation of the

semantic accuracy, it is considered only the precision and not the recall metric,
because domain experts can add much more RML triples to define the semantic
model than a semi-automatic system, even if these are not specified in the original
data source. For instance, they can include triples related to the description of an
entity, using the property http://dbpedia.org/ontology/description of the DBpedia
ontology. Nevertheless, this new assertion includes additional information which is
not strictly related to semantic accuracy, even though it may be useful to the user
to better understand the meaning of a specific resource.

To reach their goal, human experts and the system share some details in order
to avoid differences in RML triples that are not strictly related to the semantic
mapping process. In particular, (i) they share knowledge about the ontology as
starting point to create the semantic model, (ii) they share the root of the URI in
order to create resources of concepts mentioned in the data source. To clarify this
second point, assume that for identified entities in the data source: both the domain
expert and the system have to use the URI http://mydomain/entities/_NAME_,
where _NAME_ is the value of the attribute of the data source. In this way, it is
avoided to create differences in terms of RML triples not related to the semantic
mapping process, that can lead to a decrease in the value of precision.

5.3.2 Results and Discussion
The training set is composed of SPARQL queries published by the LSQ project.

Such project provides SPARQL queries performed on endpoints of different re-
search projects: DBpedia7, Linked Geo Data8, Semantic Web Dog Food9, British
Museum10. From SPARQL queries retrieved from LSQ, 427.186 triples have been
extracted. Each of this triple constitutes a training sample for the Word2Vec model.

For the semantic model generation task, only the DBpedia ontology11 is chosen,

7Project website: http://dbpedia.org
8Project website: http://linkedgeodata.org
9Project website: http://data.semanticweb.org

10Project website: http://bm.rkbexplorer.com
11More information on the DBpedia ontology is available at: http://wiki.dbpedia.org/

services-resources/ontology.
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whose properties are the most used in the SPARQL queries.
To show the potential of the approach, we the semantic modeling process is

tested with 3 different data sources, that cover the same data using different at-
tributes:

1. The Wikipedia infobox template for a person12.

2. Web tables of the Famous Birthdays website13.

3. Web tables of the Biography.com website14.

All these data sources include the data attributes available in Table 5.1.

Wikipedia Famous Birthdays.com Biography.com
name NONE name

birth_date birthday birth date
birth_place birthplace place of birth
death_date death date death date
death_place NONE place of death

Table 5.1: Attributes of data sources reported in Wikipedia, Famous Birth-
days.com, Biography.com

Here are available the precision values of the semi-automatic mapping generation
process on the three specific cases:

• Wikipedia: 1

• Famous Birthday.com: 0.3

• Biography.com: 0.6

In the case of Wikipedia, there is a complete overlap between the RML triples
generated by the system and by the domain expert. The issue with FamousBirth-
days.com is that the name of the subject entity is not directly reported in the Web
table, but it is reported in another section of the Web page. In the case of Biogra-
phy.com, the low of precision is related to the strings “place of birth” and “place of
death”, because they are never used as variables in SPARQL queries and the mod-
ule that exploits the normalized Levenshtein distance was not able to recognize
the semantic affinity with other expressions like “birth_place” and “death_place”

12More information at: https://en.wikipedia.org/wiki/Template:Infobox_person
13More information at: https://www.famousbirthdays.com
14More information at: https://www.biography.com
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syntactically very distant. Considering this issue, the adoption of lexical databases,
such as Wordnet, can contribute to expand the vocabulary of SPARQL variables.
Moreover, this approach does not take full advantage of the graph structure for the
learning process: SPARQL queries include a limited number of graph patterns and
Word2Vec treats these patterns as plain text. More advanced techniques based on
the structure of the graph, described in Chapter 4, are able to address these specific
issues.
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Chapter 6

SeMi: Building Semantic Models
with Graph Neural Networks

This Chapter presents SeMi (SEmantic Modeling MachIne), a system that pro-
vides a modular pipeline to reconstruct the semantic model of a data source. SeMi
covers the entire process of semantic modeling: (i) it provides a semi-automatic step
to detect semantic types; (ii) it exploits a novel approach to inference semantic rela-
tions, based on a Graph Auto-Encoder (GAE) trained on background linked data.
The approach developed within SeMi takes inspiration from the work of Taheriyan
et al. [157]. In this article the authors describe a method that exploits linked
data as background knowledge to infer semantic relations within a data source.
They perform a manual extraction of features from linked data with SPARQL
[46] queries. These features include various types of complex graph patterns, that
represent semantic relations of different lengths. The extraction of these patterns
requires a compound feature engineering process, it is not scalable as the length
of the semantic relation increases, and it requires prior knowledge of the linked
data structure. On the contrary, the SeMi method to extract features from linked
data is automatic. The proposed approach is based on a GAE that automatically
learns latent features from the local neighborhood structures of the linked data
graph. These latent features are aggregated into entity and property embeddings,
which are employed to predict the semantic relations within the target source. The
adoption of the embeddings increases the accuracy in reconstructing the correct
relations in complex data sources, compared to manually-selected features. Fur-
thermore, the GAE training is a more scalable procedure than the extraction of
increasingly complex graph patterns through SPARQL queries.

The remainder of this Chapter includes the following sections. Section 6.1 pro-
vides details on the system goal of SeMi and its main architectural requirements.
Section 6.2 introduces the pipeline components for the semantic model generation,
whose implementation details are reported in Section 6.3. Details on the evaluation
method, driven by the analysis of the generated semantic models, and the results
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obtained by SeMi against the state of the art are described in Section 6.4. Further
results achieved by SeMi with a different validation procedure, driven by a query-
based analysis, are reported in Section 6.5. Section 6.6 reports the performance of
SeMi in the public procurement scenario, adopting also in this case. a query-based
analysis.

6.1 Goal and Main Architectural Requirements
The goal of the SeMi tool is to produce a semantic model, given a data source, a

domain ontology, and a background linked data as input. To achieve such a general
goal, two architectural requirements have been identified:

• A flexible and modular pipeline: the first requirement consists in the devel-
opment of a pipeline where each component can be individually improved or
replaced, for a variety of purposes, such as tailoring the tool to a very specific
domain, or injecting user input in an intermediate step. In the current imple-
mentation of SeMi , only the semantic labeling step enables the possibility of
user-based refinements.

• A GAE model included in a production pipeline: the implementations of GAEs
in research literature (i) show results in comparison to other models (ii) on
available benchmarks and (iii) according to specific evaluation metrics. Never-
theless, the usage of these models in a data pipeline to reach a specific purpose
is a complex task. According to this requirement, a re-engineered version of
an existing GAE has been purposed for the semantic relations inference.

6.2 SeMi Pipeline Components
The pipeline to produce semantic models includes five main components (Figure

6.1):

• Semantic Type Detector (STD);

• Multi-Edge and Weighted Graph Generator (MEWGG);

• Semantic Model Builder (SMB);

• Link Predictor (LP);

• Semantic Model Refiner (SMR).
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Figure 6.1: Pipeline components of SeMi

6.2.1 Semantic Type Detector
The STD component takes a data source and an ontology as input. The goal of

the STD is to assign a semantic type (also called semantic label) to each attribute
of a data source. Such semantic label consists of a combination of an ontology class
and an ontology data property.

6.2.2 Multi-Edge and Weighted Graph Generator
The MEWGG component receives the semantic types produced by the STD

and the domain ontology. The goal of the MEWGG is to build a multi-edge and
weighted graph that includes all plausible semantic models for the target source.
More specifically, MEWG reconstructs all possible semantic relations between all
the semantic types, according to the object properties of the domain ontology. The
weights assigned to these object properties are only based on the structure of the
ontology (see Section 6.3.2).
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6.2.3 Semantic Model Builder
The SMB component takes the graph produced by the MEWGG as input. The

goal of the SMB is to select an initial semantic model, among all plausible semantic
models, which encompasses the minimum cost path on the graph that connects all
semantic types. The detection of this path in the graph can be considered a steiner
tree problem [81]. To resolve the steiner tree problem, the approach provided by
Kou et al. [91] has been adopted. In this case, the classes of the semantic types
are the steiner nodes and the generated semantic model describes the target source
in terms of classes and properties of the domain ontology. The detection of the
steiner tree in the graph produced by the MEWGG has the following limit: the
object property weights are based only on the structure of the ontology and they
do not necessarily reflect the correct semantic interpretation of the target source.

6.2.4 Link Predictor
The LP component is characterized by an offline and online stage. In the offline

stage, the input of the LP are RDF facts from background linked data repositories.
This background knowledge covers data belonging to the same domain of the target
source, it adopts a subset of the properties declared in the ontology, and it includes
instances of classes of the domain ontology. Linked Data is adopted for training the
GAE model, whose output are the embeddings of entities and object properties of
RDF facts seen during the training process. In the online stage, these embeddings
are used to score the unseen RDF facts, resulting from all plausible semantic models
produced by the MEWGG. In details, the RDF fact scores are properly used to ad-
just the weights assigned to the graph by the MEWGG, incorporating information
from the background knowledge provided by linked data. The intuition behind this
refinement is that properties used by other people to semantically describe data
in a domain are more likely to represent the semantics of the target source in the
same domain.

The adoption of the LP component represents a step towards in the semantic
modeling process. In fact, in the work of Taheriyan et al. [157] the weights of the
semantic relations derived from complex graph patterns are assigned through an
inverse relation of their frequency in the background knowledge. SeMi adopts latent
information embodied in the background knowledge, which are not the result of a
manual features extraction from the linked data, but it is automatically extracted
by means of the GAE (see implementation details in subsection 6.3.4).

6.2.5 Semantic Model Refiner
The SMR component receives the initial semantic model built by the SMB, the

embeddings to score unseen RDF facts, and all plausible semantic models included
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in the MEWGG. The SMR computes the aggregation of the RDF score facts that
refer to the same semantic relation. Comparing such aggregated values, the SMR
replaces (or confirms) the semantic relations that link semantic types classes and
performs a new steiner tree detection. Therefore, the goal of the SMR is to provide
a new semantic model that describes in a more accurate and rich way the semantics
of the target source.

6.3 Implementation Details
This Section discusses the implementation of the SeMi current release.

6.3.1 Semantic Type Detection querying Indexes
To assign a semantic label, the STD measures the similarity [107] between the

data values of unlabeled attributes of the target source and the the data values
of sources with labeled attributes. Such labeled data sources are stored within
an Elasticsearch [64] Lucene index: therefore, the STD composes and performs a
Lucene query to obtain a ranking of scored semantic types for each attribute of the
target source. After this ranking, the user can select which semantic types correctly
label the attributes of the target source.

The current implementation of the STD is available in Node.js, because it is
suitable to interact with RESTful services provided by Elasticsearch.

6.3.2 Incremental Generation of the Multi-Edge and Weighted
Graph

The MEWGG component incrementally creates a graph G through the following
steps (see Algorithm 1 for more details):

• Addition of semantic types (lines 2-6 of Algorithm 1): for each semantic
type the algorithm creates and adds to G the following graph structures: (i)
a class node, (ii) a data node, (iii) a weighted edge between the two nodes.
Then, it assigns a weight of 1 to this edge. In the public procurement scenario,
if pc:Contract_dcterms:identifier is the semantic type of the source attribute
pc, the algorithms creates the following graph structures: (i) a class node
labeled as pc:Contract; (ii) a data node labeled as pc; (iii) a weighted edge
labeled as dcterms:identifier from the pc:Contract class node to the pc data
node (Figure 6.2).

• Addition of closure nodes (lines 7-10 of Algorithm 1): for each class node
in G the algorithm performs a SPARQL query [46] to get the related ontology
classes. Such classes are added as new class nodes (closures) to G .
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Figure 6.2: Multi-edge and weighted graph including all semantic types in the
public procurement domain.

• Addition of edges between class nodes (lines 11-22 of Algorithm 1):
object properties (see Section 6.2) connecting all class nodes in G are retrieved
from the ontology through a SPARQL query. Such properties are added to
G as new edges.

• Assignment of a weight to each new edge: different types of object
property p can connect the class nodes cu and cv in G :

– direct properties (lines 15-16 of Algorithm 1): p is a direct property
between cu and cv if they are respectively defined as domain and range
of the p in the ontology. The algorithm assigns a weight of 100 to edges
corresponding to direct properties;

– inherited properties (lines 17-18 of Algorithm 1): p is an inherited prop-
erty between cu and cv if its domain contains one of the super classes
of cu and its range contains one of the super classes of cv. The algo-
rithm assigns a weight of 100 + ϵ to edges corresponding to inherited
properties;

– subclass properties (lines 19-20 of Algorithm 1): p is a subclass property
between cu and cv if they are linked by a special property in the ontology
called rdfs:subClassOf. The algorithm assigns a weight of 100/ϵ to edges
corresponding to subclass properties.

Figure 6.3 shows the generated multi-edge weighted graph including new
nodes and edges.

This component is implemented in Node.js, because it is suitable to manage the
response of SPARQL queries in an asynchronous way.
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Figure 6.3: Multi-edge and weighted graph including all plausible semantic models
in the public procurement domain.
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Algorithm 1: Generate the Multi-Edge and Weighted Graph
Input: Semantic Types STs{class, data_prop, source_attr}
Input: Domain Ontology O{classes, object_props}
Output: Graph G

1 for loop on STs do
2 G.add_class_node(ST{class});
3 G.add_data_node(ST{source_attr});
4 G.add_edge(ST{class}, ST{source_attr}, ST{data_prop}, w = 1);
5 end
6 closures← sparql_closure(O{classes});
7 for loop on closures do
8 G.add_class_node(closure);
9 end

10 cus← get_class_nodes(G);
11 cvs← get_class_nodes(G);
12 for loop on cus do
13 for loop on cvs do
14 direct_props← sparql_direct(cu, cv, O{object_props});
15 G.add_edges(cu, cv, direct_props, w = 100);
16 inherited_props← sparql_inherited(cu, cv, O{object_props});
17 G.add_edges(cu, cv, inherited_props, w = 100 + ϵ);
18 subclass_props← sparql_subclass(cu, cv, O{object_props});
19 G.add_edges(cu, cv, subclass_props, w = 100/ϵ);
20 end
21 end

6.3.3 Semantic Model Definition through Steiner Trees and
SPARQL Syntax

The detection of the of the shortest path within the graph that connects the
class nodes of the semantic types is a steiner tree problem. The time complexity of
the steiner algorithm (see Section 6.2.3) is equal to O(|Nd||Nc|2) in which Nd is the
set of data nodes and Nc is the set of class nodes in G . Considering the dataset
adopted in the experimental evaluation (see Subsection 6.4.1 for more details), the
time complexity for this step is negligible compared to other steps, for instance
the training time of the GAE. However, it can be an indicator for other users that
intend to adopt SeMi for building their own KGs. Figure 6.4 shows the semantic
model automatically generated through the detection of the steiner tree (in orange
color). In this case, the “contractingAuthority” object property that connects the
contract and the business entity in the right side of the graph is wrongly inferred
with respect to the semantics of the input data source.
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Figure 6.4: Automatically generated semantic model achieved applying the steiner
tree detection on the multi-edge and weighted graph.

The detected steiner tree represents, in the form of a graph, the initial semantic
model. Nevertheless, the semantic model needs to be converted using the syntax of
a mapping language for the statement generation. SeMi adopts a specific SPARQL
syntax that can be processed by the JARQL library [143] (theoretical details on
the mapping step are available in Section 2.2.1). The source code that converts the
graph representation of the semantic model in SPARQL is implemented in Node.js,
while JARQL is implemented in JAVA within an external library.

6.3.4 GAE Architecture for Link Prediction
The LP is based on a GAE architecture. The encoder component is an extension

of the isotropic formulation of the Vanilla GCN (see Subsection 2.3.3), which is
known as Relational Graph Convolutional Networks (R-GCNs), which take into
considerations multiple relations between nodes. Recalling equation 2.7:
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i = ReLU
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,

the R-GCN propagation formula is equal to:
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where r ∈ R introduces node aggregation of i neighbours under the relation r.
As happen for the Vanilla GCN, the computation of Equation 6.1 is performed

in parallel for all nodes at each network update. By stacking up several layers, it is
possible to capture and encode the relations between nodes across multiple steps.

The decoder employs the DistMult factorization method [178], as done by
Schlichtkrull et al. [144]. DistMult associates each relation r with a diagonal
matrix Rr, and the score for a given candidate fact is computed as follows (line 12
of Algorithm 2):

f(s, r, o) = eT
s Rreo (6.2)

The model is trained with background linked data with negative sampling: for
each training sample, a set of negative samples is generated by randomly corrupting
either the subject or the object of the fact. The model is optimized so that the
positive facts are scored higher than the negative ones.

To include the LP in the semantic model pipeline the implementation of [144]
has been modified, in order to produce embeddings that are used by the next block
to score RDF facts generated by the plausible semantic models of the target source.
The LP is implemented in Python adopting the Deep Graph Library [171] based
on the PyTorch framework.
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Algorithm 2: Link prediction with the GAE
Input: complete_set, train_set, valid_set, test_set, adj_matrix
Output: entity_embs, property_embs

1 entity_dict← create_entity_dict(complete_set);
2 property_dict← create_property_dict(complete_set);
3 entity_embs← initialize_embs(entity_dict);
4 property_embs← initialize_embs(property_dict);

/* Forward: aggregate and update entity embeddings using the
local neighborhood structure */

5 entity_embs← update_features(entity_embs, adj_matrix);
/* Backward: computing gradients and update entity and

property embeddings to reconstruct the facts */
6 s_trid, p_trid, o_trid ← extract_ids(train_set);
7 s_vaid, p_vaid, o_vaid ← extract_ids(valid_set);
8 s_teid, p_teid, o_teid ← extract_ids(test_set);
9 for epochs do

10 grads← compute_grads(emb(s_trid) ∗ emb(p_trid) ∗ emb(o_trid));
11 entity_embs, property_embs← update_weights(grads);
12 model←

best_on_validation(emb(s_vaid), emb(p_vaid), emb(o_vaid));
13 end

/* Evaluation: evaluate the best model on the test set and
return computed embeddings */

14 fact_scores← evaluate(emb(s_teid), emb(p_teid), emb(o_teid), model);

6.3.5 Semantic Model Refinement Based on Fact Scores
The SMR determines whether to refine or validate the initial semantic model.

The weight (cost) of each edge included within the semantic relation are updated
according to the aggregated scores of the related RDF facts according to the equa-
tion 6.3

cost(ri) = 1
1

|τ |
∑︁

s,ri,o
σ(f(s, ri, o)) (6.3)

On the basis of this new weights, the algorithm performs a new steiner tree
detection and propagates any changes to the initial semantic model. Figure 6.5
shows the refined semantic model in orange color, and the wrong semantic relation
from the initial semantic model depicted with the red color.

This component is implemented in Python.
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Figure 6.5: Refined semantic model obtained with the link prediction mechanism.

6.4 Evaluation Based on the Semantic Model
The objective is to investigate the capability of SeMi in inferencing accurate se-

mantic relations within a target source. This Section describes the dataset adopted
for the evaluation and reports details on the validation procedure, discussing the
obtained results.

6.4.1 Evaluation Dataset
The evaluation dataset includes 15 target sources available in JSON format

on the advertising domain. The domain ontology is an extension of Schema.org
[67], which contains 736 classes and 1081 properties. To prepare the background
knowledge for each target source the leave-one-out setting has been employed. In
practice, if k is the number of sources in our dataset, the background linked data
assigned to each target source is created from the RDF facts obtained by the other
k − 1 sources. In other words, each background knowledge includes RDF facts
which come from all the sources, except those obtained from the target source. The
leave-one-out setting guarantees that the background knowledge does not contain
the facts related to the semantic relations within the target source, that have to
be predicted in the experiment. Nevertheless, RDF facts from the target source,
specifically related to the semantic types, have been included. This step has no
impact on the performance of semantic relation inference, because semantic type
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facts are not considered during the experimental evaluation. However, additional
facts derived from semantic types are required within the training process, because
the GAE has to learn the latent features of all entities, including the target source
entities, in order to execute the link prediction task. To ensure the quality of linked
data repositories adopted as background knowledge, the RDF facts are generated
using the ground-truth semantic models.

The original dataset, including the target sources, the ontology, and the ground-
truth semantic models are available in the Taheriyan GitHub repository1. The eval-
uation has been performed on this specific dataset, because it represents the case
in which the approach of Taheryan et al. [157] obtained the best performance. The
background linked data for training the GAE are novels and constructed specifically
for this experiment. To simplify the access to all data employed in the evaluation,
two folders have been created in the SeMi GitHub repository: (i) input sources,
ontologies, and background linked data are available at https://github.com/
giuseppefutia/semi/tree/master/data/taheriyan2016/task_04; this folder in-
cludes also the semantic models generated by the SeMi tool. The ground truth
semantic models and the semantic models computed by baseline algorithms (see
Subection 6.2.2 for more details) are available at https://github.com/giuseppefutia/
semi/tree/master/evaluation/taheriyan2016/task_04. Details on the input
sources (number of attributes), on the background linked data (number of entities
and object properties), and on ground-truth semantic models (number of nodes and
semantic relations) are reported in Table 6.1.

6.4.2 Evaluation Procedure and Results
The evaluation procedure relies on two different steps: (i) the validation of the

GAE; (ii) the validation of the semantic relation inference task.

Validation of the GAE

The first step of the evaluation procedure consists in the validation of the LP
mechanism, based on the GAE trained with background linked data. Each back-
ground linked data assigned to a target source has been splitted into three different
datasets: the training set, the validation set, and the test set. Then, these datasets
are taken as input by the GAE and used to perform the LP. To measure the per-
formance of the LP, the standard Mean Reciprocal Rank (MRR) [33] has been em-
ployed. The MRR provides an insight on the correctness of the facts reconstructed
by the GAE, exploiting the learned embeddings of entities and object properties.
For each background linked data, Table 6.2 reports: (i) details on the number of
facts included in the training set, the validation set, and the test set respectively;

1https://github.com/taheriyan/iswc-2016/blob/master/weapon-ads.zip
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Sources #attrs
Background LD Ground-Truth SMs

#entities #facts #nodes #links

alaskaslist 8 3396 6954 12 3

armslist 20 3396 6793 15 4

dallasguns 15 3379 6940 23 7

elpasoguntrader 8 3396 7044 13 4

floridagunclassifieds 16 3396 6904 23 6

floridaguntrader 10 3396 6774 15 4

gunsinternational 10 3396 6945 19 4

hawaiiguntrader 7 3396 7122 11 3

kyclassifieds 10 3396 6945 14 3

montanagunclassifieds 9 3396 7104 14 4

msguntrader 11 3375 7086 16 4

nextechclassifieds 20 3396 6198 32 11

shooterswap 11 3396 7041 15 3

tennesseegunexchange 14 3396 7104 21 6

theoutdoorstrader 12 3396 6784 18 5

Table 6.1: Details on target sources, background linked data, and ground truth
semantic models

(ii) the resulting MRR on the test dataset. An overview of the most significant
hyperparameters used to train the GAE is available in Table 6.3.

To understand the effectiveness of the GAE on our background linked data,
the obtained results have been compared with the MRR values obtained by the
GAE on FB15-k237[162], one of the most well-known dataset for benchmarking
KG completion tasks. These MRR values reported in literature [144] are:
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Sources
Background LD - #Facts Mean Reciprocal Rank (MRR)

training validation testing Raw Hits @1 Hits @3

alaskaslist 6264 345 345 0.202556 0.171014 0.221739

armslist 6123 335 335 0.189313 0.156716 0.214925

dallasguns 6250 345 345 0.222723 0.201449 0.233333

elpasoguntrader 6344 350 350 0.175496 0.135714 0.198571

floridagunclassifieds 6214 345 345 0.213165 0.191304 0.224638

floridaguntrader 6104 335 335 0.207233 0.174627 0.229851

gunsinternational 6264 345 345 0.205095 0.188406 0.211594

hawaiiguntrader 6412 355 355 0.208059 0.180282 0.223944

kyclassifieds 6255 345 345 0.191376 0.163768 0.207246

montanagunclassifieds 6394 355 355 0.233740 0.212676 0.245070

msguntrader 6386 350 350 0.209148 0.188571 0.222857

nextechclassifieds 5588 305 305 0.204046 0.177049 0.216393

shooterswap 6341 350 350 0.226965 0.205714 0.241429

tennesseegunexchange 3694 355 355 0.203350 0.180282 0.214085

theoutdoorstrader 6114 335 335 0.185680 0.159701 0.205970

Table 6.2: Number of facts in the training, the validation, and the testing set and
the MRR values obtained by the GAE on each background linked data

• MRR Raw: 0.158

• Hits 1: 0.153

• Hits 3: 0.258

MRR values obtained on background linked data (Raw and Hits 1) are higher
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Hyperparameters Values

Dropout 0.2

Hidden Layers 2

Hidden Neurons 100

Learning Rate 1e-2

Epochs 6000

Regularization 0.01

Edges Sample Size 1000

Negative Sampling 10

Table 6.3: GAE hyperparameters

than the MRR values obtained on FB15-k237, therefore the GAE performed very
well on the background linked data. In practice, this means that entity and object
property embeddings encode in a proper way the local neighborhood structure of
the background knowledge. As a consequence, these embeddings can be suitable
to score facts derived from all plausible semantic relations in the target source,
identifying the most accurate ones. To further explore the effectiveness of this
approach, Table 6.4 shows the differences in terms of MRR values between GAE
and the DistMult scoring function (without the GNN). Observing the achieved
MRR values (Raw, Hits 1, and Hits 3 always outperform), GAE always outperforms
DistMult.

Validation of the Semantic Relation Inference Task

The second step of the experimental evaluation investigates if SeMi performs
better than the approach of Taheriyan et al. [157], that is currently implemented
in Karma [89]. Furthermore, SeMi has been compared with two different base
lines: (i) a method exploiting only the frequency of semantic relations of length 1
within linked data (no heuristics to extract and rank complex the graph patterns,
as done by Taheriyan et al. [157]); (ii) a method based on the detection of a
steiner tree on a multi-edge and weighted graph, whose weights are assigned using
only the ontology structure (no background knowledge). The evaluation procedure
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Sources
MRR - DistMult MRR - GAE

Raw Hits @1 Hits @3 Raw Hits @1 Hits @3

alaskaslist 0.136027 0.086957 0.166667 0.202556 0.171014 0.221739

armslist 0.118453 0.064179 0.150746 0.189313 0.156716 0.214925

dallasguns 0.125863 0.071014 0.155072 0.222723 0.201449 0.233333

elpasoguntrader 0.119025 0.061429 0.155714 0.175496 0.135714 0.198571

floridagunclassifieds 0.095586 0.042029 0.128986 0.213165 0.191304 0.224638

floridaguntrader 0.121979 0.065672 0.156716 0.207233 0.174627 0.229851

gunsinternational 0.126867 0.073913 0.163768 0.205095 0.188406 0.211594

hawaiiguntrader 0.117694 0.066197 0.145070 0.208059 0.180282 0.223944

kyclassifieds 0.110949 0.060870 0.130435 0.191376 0.163768 0.207246

montanagunclassifieds 0.060563 0.146479 0.208451 0.233740 0.212676 0.245070

msguntrader 0.111692 0.062857 0.128571 0.209148 0.188571 0.222857

nextechclassifieds 0.103477 0.054098 0.132787 0.204046 0.177049 0.216393

shooterswap 0.103645 0.057143 0.128571 0.226965 0.205714 0.241429

tennesseegunexchange 0.160429 0.108451 0.198592 0.203350 0.180282 0.214085

theoutdoorstrader 0.087652 0.032836 0.117910 0.185680 0.159701 0.205970

Table 6.4: Number of facts in the training, the validation, and the testing set and
the MRR values obtained by the GAE on each background linked data

focused on the semantic relation inference, therefore the correct semantic types
were already available. The accuracy of semantic models has been computed in
terms of precision and recall, by comparing them with the ground-truth semantic
models. If the correct semantic model of the source s is denoted as sm and the
semantic model computed by the system is denoted as sm′, precision and recall are
defined by Taheriyan et al. [157] as follows:
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precision = rel(sm) ∩ rel(sm′)
rel(sm′) (6.4)

recall = rel(sm) ∩ rel(sm′)
rel(sm) (6.5)

where rel(sm) is the set of triples (u, v, e): e is an object property from the
ontology class u to the ontology class v. Table 6.11 reports the results in terms of
precision and recall obtained by: (i) the SeMi system; (ii) the approach of Taheriyan
et al. [157]) (Tahe in the Table); (iii) the baseline exploiting only the frequency
of semantic relations of length 1 (Occs in the Table); (iv) the baseline using the
steiner tree performed on a weighted graph based on the ontology structure (Stei
in the Table).

In the evaluation experiment SeMi always obtained a better accuracy in terms
of precision and recall, compared to: (i) the baseline that captures the frequency
of semantic relations of length 1; (ii) the baseline of the steiner tree built on the
graph weighted according to the ontology structure. The experiment employed the
dataset in which the Taheriyan et al. [157] approach obtained the best results.
The results show that SeMi outperformed the state of the art in case of the fol-
lowing data sources: “dallasguns”, “floridagunclassifieds”, “gunsinternational”, and
“shooterswap”. These sources have the most complex structure in terms of num-
ber of nodes and links in the ground-truth semantic models (see Table 6.1 for more
details). The accuracy improvement in these specific cases can be explained consid-
ering the different levels of features extraction. The system of Taheriyan identifies
the best semantic relation considering two metrics: (i) cost and (ii) coherence. The
cost of the semantic relation derived from a graph pattern is computed according
to an inverse function of its popularity. As a consequence, computing the minimum
cost is equivalent to select the most frequent semantic relation. On the other side,
the coherence gives priority to longer semantic relations. From a different perspec-
tive, SeMi assigns to each plausible semantic relation a cost, aggregating the scores
obtained by each RDF fact of the semantic relation. This score is computed by the
DistMult factorization method (see Subsection 5.4) that takes as input the embed-
dings of the subject, the predicate, and the object of the RDF fact. Embeddings
represent more granular and latent information that incorporate hidden regularities
in the data that can not be detected adopting a manual approach for the extraction
of features. For many other data sources, SeMi reached the accuracy in terms of pre-
cision and recall of the state of the art [157]. Therefore, SeMi is able to distinguish
very well the correct relation, exploiting the neighborhood structure of the graph.
On the other side, the performance of SeMi in terms of precision drastically lowed
in presence of many data attributes within sources that are characterized by the
same semantic type (see “elpasoguntrader” and “nextechclassifieds”). For instance,
the “nextechclassifieds” source includes 5 different attributes that are labeled with
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Sources
Precision Recall

SeMi Tahe Occs Stei SeMi Tahe Occs Stei

alaskaslist 1 1 0.667 0 1 1 0.667 0

armslist 0.750 0.750 0.500 0 0.750 0.750 0.500 0

dallasguns 0.667 0.570 0.500 0 0.570 0.570 0.428 0

elpasoguntrader 0.500 1 0.500 0.250 0.500 0.750 0.500 0.250

floridagunclassifieds 0.833 0.800 0.167 0 0.833 0.670 0.167 0

floridaguntrader 1 1 0.750 0 1 1 0.750 0

gunsinternational 0.750 0.600 0.250 0 0.750 0.750 0.250 0

hawaiiguntrader 1 1 1 0 1 1 1 0

kyclassifieds 1 1 0.333 0.333 1 1 0.333 0.333

montanagunclassifieds 0.750 1 0.500 0 0.750 1 0.500 0

msguntrader 0.670 0.670 0.667 0 0.500 0.500 0.500 0

nextechclassifieds 0.454 1 0.182 0 0.454 0.360 0.182 0

shooterswap 1 0.750 1 0 1 1 1 0

tennesseegunexchange 0.667 1 0.500 0.167 0.667 1 0.500 0.167

theoutdoorstrader 0.800 0.830 0.200 0.200 0.800 1 0.200 0.200

Table 6.5: Results of the semantic relation inference in terms of precision and recall

the ontology class “schema:Offer”. According to the ground-truth semantic model
of this source, the class of the semantic type “schema:Offer1” is linked to the other
4 entities classes with the object property “schema:relatedTo”. Nevertheless, this
type of graph structure represents an anomaly because it never appears in the
semantic models of the other sources, that have been exploited for creating the
background knowledge of “nextechclassifieds”. Including in the background linked
data analogous graph structures, the performance of SeMi should increase.
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To further understand the impact of GNN in SeMi , a specific analysis is con-
ducted removing the GNN component from the GAE, performing the SRI task
with the DistMult factorization method. Table 6.6 reports the results in terms
of precision and recall of SeMi with GAE and SeMi with DistMult. The results
show that in most cases SeMi with GAE performs better than SeMi with DistMult.
In the case of the “elpasoguntrader” SeMi with DistMult outperforms SeMi with
GAE. The main reason is related to the structure of this source which is not so
common in the other datasets, so the GNN is not able to recognize this specific
graph pattern in the background linked data.

Regarding the scalability issues, in their work, Taheriyan et al. [157] underlines
that performing a single SPARQL query on Virtuoso [51] repository with more
than three million of triple requires approximately one hour for the graph patterns
of length five (Mac OS X System, 2.3 GHz Intel Core i7 CPU, 16 GB of RAM).
This time is expected to grow exponentially as the dimension of semantic relations
increase. The training of the GAE is the operation performed by SeMi , that
specifically involves the background linked data, as the SPARQL queries performed
by Taheriyan et al [157]. The training execution time is less than 30 minutes and
does not encounter issues related to the growing of semantic relations complexity.
The training step has been performed on a Centos 7 - OpenHPC 1.3 System, nVidia
Tesla V100 SXM GPU, 32 GB of memory, 5120 cuda cores.

6.5 Evaluation based on the Relational-To-Ontology
Mapping

The evaluation method described in this Section has been performed with RODI
[122], benchmark suite for comparing SeMi against tools that map schemata of re-
lational databases to ontologies. This method exploited the results achieved by a
campaign of queries performed on a reference data source and a test data source.
In details, RODI compares the results of the SQL queries performed on relational
databases (the reference source) against the results of SPARQL queries performed
on KGs generated by the tools of the benchmark and our tool (collectively con-
sidered the test source). SQL and SPARQL queries defined for the evaluation are
semantically equivalent, as they intend to retrieve the same results. Within this
evaluation procedure, SeMi has been compared against other systems for relational-
to-ontology mapping, namely: Bootox [84], D2RQ [23], MIRROR [105], and On-
top [28].

The evaluation driven by query results has two main advantages. Firstly, it
allows the inclusion of systems that generate KGs, exploiting so different languages
and standards to describe semantic models of data sources. For instance, tools such
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Sources
Precision Recall

SeMi (GAE) SeMi (DM) SeMi (GAE) SeMi (DM)

alaskaslist 1 1 1 1

armslist 0.750 0.750 0.750 0.750

dallasguns 0.667 0.500 0.570 0.428

elpasoguntrader 0.500 0.750 0.500 0.750

floridagunclassifieds 0.833 0.833 0.833 0.833

floridaguntrader 1 0.500 1 0.500

gunsinternational 0.750 0.750 0.750 0.750

hawaiiguntrader 1 1 1 1

kyclassifieds 1 1 1 1

montanagunclassifieds 0.750 0.500 0.750 0.500

msguntrader 0.670 0.670 0.500 0.500

nextechclassifieds 0.454 0.367 0.454 0.367

shooterswap 1 1 1 1

tennesseegunexchange 0.667 0.500 0.667 0.500

theoutdoorstrader 0.800 0.600 0.800 0.600

Table 6.6: Results in terms of precision and recall obtained by SeMi with GAE and
DistMult

as MIRROR [105] adopt the R2RML mapping language2, the D2RQ [23] platform
relies on its own native language to define semantic models, while SeMi exploits
a formalization based on the syntax of SPARQL (see Section 6.3.3). Secondly,

2A detailed description of R2RML is available at: https://www.w3.org/TR/r2rml/
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mappings that correctly satisfy user needs -encoded as queries- are directly usable
for a variety of purposes, as also stressed by Pinkel et al. [122]3.

Therefore, the evaluation approach described in this Section is based on the
principle of utility of semantic modeling (as in [122]) rather than comparing gener-
ated semantic models directly to a reference semantic model4. The idea of utility
is related to the practical reasons for which data engineers model the semantics of
data sources: they are not interested in the analysis of semantic models, but they
want to evaluate the resulting KGs, because these are the artifacts necessary for
the end users’ purposes.

6.5.1 Evaluation Procedure and Results
This Subsection describe the comparison of SeMi against other systems, with

respect to relational-to-ontology mapping challenges. Such challenges are related to
the structural differences between relational schemata and ontology and they have
a direct impact in the generation of semantic models. Below are described which
differences determine the main consequences for the semantic relation inference
task:

1. Artifacts Normalization: in some cases relational schemata are optimized for
update-intensive workloads and do not aggregate information at the ontology
conceptual level. For this reason, semantic relations between two semantic
types can be spread over different tables in relational schemata using many-
to-many (n:m) relationships.

2. Artifacts Denormalization: in opposite cases schemata are optimized for read-
intensive workloads. In this context, semantic relations between different
semantic types are included in the same table of relational schemata.

3. Key Conflicts: identifiers in relational databases are usually implemented
using primary keys and unique constraints, while ontologies use URIs. Ac-
cording to this principle, semantic relations are implemented in relational
schemata using foreign keys.

Table 6.7 summarizes the challenges, reporting the relational schemata patterns
causing them and the specific hurdles in building the semantic model.

3Pinkel et al. [122, p. 2]: “[w]hat matters at the end of the day in practice is whether the
generated mappings are usable and useful for the task at hand. We therefore consider mapping
quality as mapping utility with relation to a query workload posed against the mapped data”

4This method has been adopted in Section 6.4 for a better comparison with the state of the
art
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Challenge type Relational database pattern Specific difficulty
Artifacts Normalization 1:n relation JOIN to relate entity IDs

n:m relation 3-way JOIN to relate entity IDs
Indirect n:m relation

(using additional
intermediary tables)

k-way JOIN to relate entity IDs

Artifact Denormalization Correlated entities (in shared table) Filter condition

Key conflicts
Missing references

(no foreign key where relevant
relations exist)

Unconstrained attributes
as references

Table 6.7: Table of mapping challenges. Relational database patterns are also
reported with specific difficulties in mapping challenge

Before providing details in the design of this evaluation procedure, the follow-
ing Subsection describes how the RODI suite has been developed to measure how
different systems address the above-mentioned challenges.

The RODI Benchmarking Suite

The RODI suite provides the so-called benchmarking scenarios to evaluate the
capability of the systems to address relational-to-ontology challenges. Each scenario
is composed of:

• a domain ontology as target of the semantic modeling process;

• a relational database where Pinkel et. al [122] injected specific adjustments
reflecting relational-to-ontology challenges;

• a set of query pairs: a SPARQL query for KG generated from the domain
ontology (test source) and a SQL query for the relational database (refer-
ence source). Each query pair is labeled with categories that summarize the
high-level goal of the query in terms of semantic modeling. For instance, if
a query pair is categorized with the labels “path-1” and “path-2”, it investi-
gates whether the system is able to detect the correct semantic relation di-
rectly joining two tables (single JOIN) or using one intermediate label (double
JOIN). Table 6.8 includes all query categories and the link with the mapping
challenges.

For the evaluation purposes, the following changes have been introduced in the
RODI benchmark suite:

• test sources expansion, including the KGs produced by SeMi ;
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Category ID Meaning Mapping challenges

path-0 Semantic relation match that finds both related
entities in the same table (1:1 or denormalized) Artifacts Denormalization

path-1, path-2
Semantic relation match that finds related entities

in two tables that can be directly joined (single JOIN)
or joined through one intermediate table (two JOINs)

Artifacts Normalization,
Artifacts Denormalization

path-n
Semantic relation match that requires
n JOINs (n >2) to connect the tables

that define entities on both sides
Artifacts Normalization

path-X Additional tag for all queries that are tagged path-n,
with any n >1 (denotes multi-hop JOIN of any length) Artifacts Normalization

denorm Type filtering required due to denormalization Artifacts Denormalization
no-fk JOINs without leading foreign keys Key Conflicts

Table 6.8: Category labels used for each query pair with a link to the relevant
challenge

• query pairs improvement, to increase the robustness of the evaluation;

• RODI’s report fix, because the benchmaking tool reported only the number
of rows contained in the queries output 5. However, this type of result is not
compatible with the scoring function and the metric defined below.

Scoring Function and Evaluation Metric

The scoring function reflects the utility of semantic models. This function com-
pare the results of queries performed on a test source against the results of queries
performed on a reference source. Based on this principle, a per-query F1 score is
computed and defined as the harmonic average of precision and recall:

F1 = 2 ∗ precision ∗ recall

precision + recall
(6.6)

F1 score assumes a value between 0 and 1 and its computation needs to satisfy
the structural equivalence [123] of the results. To clarify how the F1 score is com-
puted, below is available an example of possible result sets obtained by a SPARQL
query (the reference result set is obtained with a reference SQL query):

• Reference result set: municipality01, municipality02.

5A sample of queries included in RODI is available in the GitHub repository of Pinkel et.
al [122]: https://github.com/chrpin/rodi/tree/master/data/cmt_mixed/queries. Indeed,
most of the queries in RODI are written with the COUNT function that returns the number of
rows that matches a specified criteria
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• Result set A: municipality01, municipality02.

• Result set B: municipality01.

• Result set C: municipality01, municipality02, municipality03.

Computing values of precision and recall, the following results are achieved:

• Result set A (Precision: 1.0 - Recall: 1.0 - F1: 1.0). It is structurally equiva-
lent to the reference result set.

• Result set B (Precision: 1.0 - Recall: 0.5 - F1: 0.6). It is equivalent only to a
subset of the reference results, because it does not include municipality02.

• Result set C (Precision: 0.666 - Recall: 1.0 - F1: 0.8). It lists all expected con-
tracting authorities, but municipality03 is mistakenly classified as contracting
authority by the tool.

According to this example, the tool A performs better than C and B in the
semantic relation inference task.

Goal

The goal of the evaluation procedure is to compare by means of RODI the perfor-
mance of SeMi against the following tools: Bootox [84], D2RQ [23], MIRROR [105],
Ontop [28].

Data

RODI data employed for the evaluation procedure come from the domain of
conferences. This domain has been selected for three main reasons:

• it is understandable also by non-domain experts;

• it is complex enough for testing systems in realistic cases;

• it has been successfully used also in other benchmarks [2].

The benchmark scenarios of this domain include 26 relational databases which
vary in size and complexity. Each scenario runs between 6 and 10 query pairs.
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Ontology Number
of classes

Number of data
properties

Number of object
properties

CMT 36 10 49
SIGKDD 49 11 17

Conference 38 23 13

Table 6.9: Target ontologies for the semantic modeling process

Ontologies

The ontologies included in the benchmark scenarios are provided by the Ontol-
ogy Alignment Evaluation Initiative [2] (OAEI) and are developed by the OntoFarm
project [151]. Within the conference domain, 3 different ontologies have been se-
lected:

• CMT;

• SIGKDD;

• CONFERENCE.

As explained by Pinkel et. al [122] these ontologies are modeled on various
views of the domain and their differences are based on different criteria: variation
in size and modeling style, information cardinality (in particular, functionality of
relationships), and the expressive power of the ontology language used. Table 6.9
shows the dimension of each ontology in terms of number of classes, number of data
properties, and number of object properties.

Design

The evaluation is conducted by executing the following steps for each RODI
scenario:

1. each tool is called by RODI to create the semantic model on the relational
database, considering the target ontology;

2. each tool produces the KG based on the semantic model generated in the
previous step;

3. SPARQL queries are performed against the KG (test source);

4. SQL queries are performed against the relational database (reference source);

5. the results are compared using the scoring function (see Section 6.5.1) for
each query pair and then they are aggregated by means of the average in the
light of different query categories.
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At the end of this process, the RODI tool generates a report that includes the
following results in terms of F1 score, precision, and recall:

• the result of each query pair;

• the average of the results of query pairs, grouped according specific categories
(see Section 6.5.1);

• the average of the results of all query pairs.

An example of report produced by RODI for a specific scenario is available in
Table 6.10.

F1 Precision Recall
Q42 1.0 1.0 1.0
Q43 1.0 1.0 1.0
Q46 0 0 0

path-3 (AVG) 0.5 0.5 0.5
All (AVG) 0.5 0.5 0.5

Table 6.10: Example of report generated by the RODI benchmarking suite. For
each scenario, the report shows results of queries comparison in terms of F1 score,
precision, and recall showing also aggregated results according to the average di-
mension

Figure 6.6 shows the results obtained through the RODI benchmark. SeMi ob-
tained better results with respect to other systems in queries categorized as path-n
and path-X. On the other hand, Bootox exceeded the results of SeMi in queries cat-
egorized as path-0 and path1, path26. Therefore, SeMi performed better in cases
of normalized artifacts, where semantic relations are spread among different tables
in a relational database. This means that, respect to other tools, the number of
multiple JOINs does not affect on the inference of the correct semantic relations. In
fact, once the semantic types have been detected, the semantic relations are estab-
lished according to the the score computed by the DistMult factorization method
(Section 6.3.4), that is independent from the structure of the input data source.
On the other hand, Bootox performed better than SeMi in case of denormalized ar-
tifacts where semantic relations between different entities are included in the same
table. The features of Bootox, that exploit lexical and structural matching, are
more suitable in tackling this condition. In general, the F1 values are quite low
in the inference of semantic relations, and results underline the complexity of this
task in the context of relational databases. In fact, systems such as MIRROR and
Ontop never infer the correct semantic relation.

6The data is available on GitHub at https://github.com/giuseppefutia/semi/tree/master/data/rodi
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Figure 6.6: F1 scores obtained by evaluated systems in RODI among different query
categories

6.6 Evaluation in Public Procurement Scenario
This evaluation procedure investigates the results of the introduction of the

GNN for the refinement of the initial semantic model in the field of public pro-
curement domain. The analysis compares results of SPARQL queries performed
on different KGs. The reference source is a KG generated through ground-truth
semantic models constructed by domain experts from data of public contracts. On
the other side, the test sources include the KG generated through semantic mod-
els built by the Semantic Model Builder (SMB) (see Subsection 6.2.3) and SeMi
, which refines the initial semantic models produced by the SMB employing the
GNN. The scoring function and the metric adopted for the comparison are de-
scribed in Subsection 6.5.1. This evaluation method follows the same principles
reported in Section 6.5. In fact, the aim of the evaluation process follows the main
idea defined for the RODI benchmarking suite [122]. Such idea is focused on the
utility of semantic modeling, rather than comparing semantic models directly to a
reference semantic model. The idea of utility is related to the practical reasons for
modeling the semantics of data sources: the main interest is not tied to analysis of
semantic models, but it is focused on the evaluation of the resulting KGs, because
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they contain the useful information for user purposes.
The experiment is based on the following steps: (i) KG generation (ii) SPARQL

queries definition; (iii) F1 score computation.
The input sources for the KG generation step are represented by 20 JSON files.

These files are created from XML files, which are not compliant with the standard
schema of Italian public procurement data (for more details see the Subsection
4.1.2). For each file, 3 different semantic models are built:

1. GT-SM : the ground-truth semantic model of the target source created by
domain experts;

2. SMB-SM : the automatically-built semantic model of target source obtained
from the initial semantic model, which is generated by the SMB;

3. SeMi-SM : the automatically-refined semantic model of the target source,
which is generated by SeMi .

Exploiting these 3 semantic models built on input data sources, 3 different KGs
are produced:

1. GT-KG: the ground-truth KG generated with the GT-SM of the 20 JSON
files;

2. SMB-KG: the KG generated with the SMB-SM of the 20 JSON files;

3. SeMi-KG: the KG generated with the SeMi-SM on the 20 JSON files.

The following SPARQL queries have been performed against these 3 different
KGs:

• SPARQL Query 1 (SQ1 - See Listing 4): it retrieves all business entities that
have the role of contracting authority in all contracts within each KG;

• SPARQL Query 2 (SQ2 - See Listing 5): it retrieves all business entities that
have the role of bidder of a tender for each contract within each KG7;

• SPARQL Query 3 (SQ3 - See Listing 6): it retrieves all business entities that
have the role of bidder of the awarded tender for all the contracts.

Table 6.11 reports F1 values obtained comparing the information retrieved per-
forming these 3 SPARQL queries, which allow to understand the behaviour of the
systems for the inference of specific semantic relations.

7This SPARQL query is performed for each contract within each KG, to verify the correct
assignment of the pc:bidder relationship for each contract. If all contracts are globally consid-
ered, there is the risk to obtain an high precision value also in cases where pc:bidder relation is
erroneously assigned
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1 PREFIX pc: <http://purl.org/procurement/public-contracts#>
2 SELECT ?businessEntity {
3 ?contract pc:contractingAuthority ?businessEntity .
4 }

Listing 4: SPARQL query SQ1 to retrieve all contracting authorities in the KG

1 PREFIX pc: <http://purl.org/procurement/public-contracts#>
2 SELECT ?businessEntity {
3 ?contract pc:tender ?Tender .
4 ?Tender pc:bidder ?businessEntity .
5 }

Listing 5: SPARQL query SQ2 to retrieve all business entities that have the role
of bidder of a tender for each contract

1 PREFIX pc: <http://purl.org/procurement/public-contracts#>
2 SELECT ?businessEntity {
3 ?contract pc:awardedTender ?Tender .
4 ?Tender pc:bidder ?businessEntity .
5 }

Listing 6: SPARQL query SQ3 to retrieve all business entities that have the role
of bidder of the awarded tender for all the contracts

Table 6.11: F1 values obtained comparing SPARQL results with the GT-KG

SPARQL SMB SeMi
SQ1 0.62 0.43
SQ2 0.34 0.78
SQ3 0.38 0.66
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Chapter 7

Predicting New Links with GNNs:
a Recommendation System
Perspective

The goal of this Chapter is to measure the performance of the link prediction
mechanism and understand its role for recommendation purposes.

7.1 Building the Dataset: Training, Validation,
and Test Sets

The adoption of the GAE for the link prediction requires to prepare the dataset
for the training and the evaluation phases, starting from the initial version of the
PKG. In order to avoid noisy data that can potentially lead to wrong predictions,
the first step is to remove from the PKG the facts that include entities that are
characterized by ambiguous information, for instance the author keywords or the
external contributors, that are identified by their name and surname. The following
list includes the entities that are actually adopted to train and evaluate the model.

1. The publications, that are identified by the IRIS ID.

2. The authors, that are identified by the Polito internal ID.

3. The journals, that are identified by their ISSN.

4. The topics extracted by TMF, that are identified by the DBpedia URIs.

The Dataset Builder is implemented as a Python command-line script that
assigns an integer (or index) representation to entities, classes, and properties of
the KG. This step is necessary to obtain a numerical representation of the graph
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data, which can be processed by the GAE. After this step, the script prepares the
following input data for the Model Trainer:

1. The number of nodes that corresponds to the number of RDF entities in the
graph.

2. The number of different object properties that link together the graph entities.

3. The number of node labels, where each label is referred to a class of the KG
ontology.

4. A list of edges, represented as tuples composed of three elements: the node
index of the subject, the node index of the object, and the index of the
predicate.

5. A list of node-specific normalization constants.

To build such data structures starting from the RDF graph, the Dataset Builder
leverages some look-up hash tables (implemented as Python dictionaries) that are
created starting from the RDF statements and the ontology. Such tables, whose
details are available below, are accessed by URIs, and allow to retrieve the corre-
sponding entity or property index.

1. The nodes table is populated by assigning to each entity a unique and in-
creasing integer index. Such index identifies the entity when building the list
of edges. Only the entities that are instances of the classes that have been
selected as part of the dataset are added to the table.

2. The property table is built starting from the PKG ontology, assigning to each
property inside the graph a corresponding integer id.

The obtained list of edges is then splitted into three separate and disjoint sets
that are used to train, evaluate, and test the GAE model. The splitting process
has to ensure that the training set includes at least one edge for every kind of
property: once such initial sampling has been done, the remaining training edges
are randomly taken. This is mandatory to obtain meaningful embeddings, because
the GAE model learns the vector representations of the nodes on the basis of
their neighbours features. As a consequence, it is crucial to have a neighborhood
structure in the training set which is similar to the one in the entire dataset. The
percentage of tuples used to create the three sets is an hyperparameter that can
be chosen in advance. However, an initial test showed that picking less then 70%
of nodes for training does not allow to maintain a representative neighborhood for
each node: the results are potentially inaccurate link predictions. To solve this
issue, the edges list is splitted in approximately 90% of the tuples for train, 5% for
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Table 7.1: Statistics of the dataset produced by the Dataset Builder.

Dataset

Number of nodes Number of classes/labels Number of relations Total number of edges
47,996 4 4 170,593

Number of train, evaluation and test samples

Train edges Evaluation edges Test edges
153,531 8,528 8,534

the validation and 5% for testing. The three sets are serialized and stored, in order
to mantain the same edges that are randomly picked during the training phase.

Table 7.1 summarizes the details on the dataset obtained by the Dataset Builder.
Comparing the size of this dataset with the dimension of the initial PKG, whose
details are reported in Table 4.4, more than half of the nodes have been removed.
This nodes referred to the author keywords and to the external co-authors and con-
tributors, which do not have unique identifiers within the IRIS system. Removing
these entities prevent the inclusion of noisy data in the training process.

7.2 Training the GAE Model
The training edges are used to build a training graph, which is actually used

for learning the node and property embeddings. The features used for the node
are only based on the local neighborhood structure. Moreover, to increase the
performance of the training, the node features are initialized on the basis of the
node degree. Considering the size of the full graph, the training is performed in
batches. At each training epoch, the Model Trainer randomly samples a subset
of the training edges and, as a consequence, multiple epochs are required to train
over all the nodes in the training graph. The training step is performed using the
negative sampling approach. Each edge resulting from the sample process is a fact
considered as a positive example. For each positive example, a certain number of
negative samples is generated, corrupting the subject and the object with a random
node index. This node index must not assume a value corresponding to a positive
examples, in order to avoid that corrupted samples are considered positive example.
This preparation phase is necessary, because the link prediction task is considered
a binary classification problem, in which facts extracted from the training graph
are considered as positive example, while corrupted facts are consider as negative
examples for the training. The ratio defined for the number of negative samples,
for each positive fact, is an hyperparameter of the GAE model. The results of this
training process are the node and the property embeddings. In order to identify
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the best parameters, represented by the embeddings, a separate validation set is
evaluated during the training. The validation step is not performed at every epoch
due to computation time constraints, and its frequency is an hyperparameter of
the model. During the validation step, the best model is confirmed or replaced
according to the obtained level of accuracy. At the end of the training process, the
best model is loaded from memory and its accuracy is evaluated against the test
set. The embeddings produced by the best model are directly used for the link
prediction. Within the training process, the current bottleneck is represented by
the sampling phase, that in the current implementation can not be perform on a
GPU, because it is coded as single thread using Numpy [117].

7.3 The Link Evaluator
The Link Evaluator leverages the output of the trained GAE, in particular the

entity and the property embeddings, in order to predict new and valuable facts
that are not present in the PKG. The first step of the Link Evaluator is to generate
a set of all the graph nodes, resulting by the merge of the training, the validation
and the test sets. Then it creates the set of all possible facts by constructing,
for each node, all the possible links to every other node in the graph. This is
done by taking for each source node (subject) all the possible permutations of
relations (predicates) and destination nodes (objects). However, the majority of
such automatically generated facts is semantically invalid. For instance, among
the permutations there are facts which connect together two publications using as
predicate the relation dc:subject. These type of facts are is clearly meaningless,
because they state that the main topic of a publication is another publication. For
this reason, the facts that are not semantically valid with respect to the constraints
of the ontology are immediately discarded. Once the invalid facts are removed, the
remaining edges could be scored by applying the DistMult factorization. Then,
the scored facts are grouped by subject and relation and sorted by their score in
descending order. The facts with the highest score can be added to the PKG, in
order to enrich its knowledge.

7.4 Evaluation and Results
The method adopted for the evaluation stage is performed on the test set and

measure the accuracy according to which the facts are correctly scored. The metrics
adopted to measure the accuracy level are the following:

1. The Reciprocal Rank (RR), which is computed for a single evaluated edge
(si, pi, oi) as 1/rank(si,pi,oi)
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2. The Mean Reciprocal Rank (MRR), which is the average of the RR of all
the evaluation edges. The obtained value defines the accuracy of the entire
model.

3. The Hits-at-N (HITS@N), which is the number of facts for whom the com-
puted rank is between 0 and N .

To clarify this metrics, consider the following example. A triple ranked in the
tenth position of the sorted list of scores obtain a RR value of 0.1. If the facts in the
evaluation set are 100, with half of them ranked in first position and the other half
in the tenth, the obtained MRR is 1

100
∑︁100

i=1
1

rank(si,ri,oi)
= 0.55, while the HITS@1

is equal to 50, and the HITS@10 is equal to 100. The evaluation stage has been
performed in batches.

7.4.1 Hyperparameters Validation
Table 7.2 shows the evaluation results in terms of the MRR metric of the GAE

model, adopting different hyperparameters. In particular, different combinations
of the learning rate and the regularization have been adopted to obtain the best
MRR value. According to the results, the best values of MRR are obtained with
0.001, for the learning rate, and 0.5 for the regularization. In the round brackets of
the table including results on the validation test are reported the results obtained
only with DistMult. These results demonstrate that the GNNs play a fundamental
role to improve the accuracy of traditional link predictions.

The high value of the regularization parameter, compared to the value that is
traditionally adopted in literature for the adopted GAE model (which corresponds
to 0.01), is particularly interesting. The motivation of this result is that the PKG
is characterized by a small number of different relations, compared to other graphs,
that are usually adopted for benchmarking tasks of GAE models. This implies a
less variety in the features used to generate the embeddings. In this regard, the
regularization parameter helps the model to differentiate the embeddings obtained,
even if there are few relations, and limits the overfitting on common features.

Regarding the MRR value obtained for the best model, it can be interpreted as
the fact that, in average, the evaluated facts are ranked in the eleventh position.
The MRR available in literature corresponds to 0.158 over the FB15k-237 dataset,
which is commonly used as benchmark for the evaluation of link prediction model.
The MRR obtained in this case correspond to a ranking that, in average, localized
the correct facts in the sixth or seventh position. Therefore, the obtained result for
the PKG is comparable with the results obtained over the benchmarking dataset.

Moreover, considering the number of nodes in the PKG dataset, the result
obtained is particularly noteworthy, given that the model is able to rank (in average)
the true triple in the eleventh position, among 47,995 corrupted facts, while in
FB15k-237 for each true fact only 14,951 corrupted ones are generated.
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Table 7.2: Evaluation of different combinations of learning rate and regularization
parameters using as benchmark the MRR value. The first table shows the MRR of
the best model found during the training phase. The second table shows the MRR
obtained by the best model over the test set.

(a) MRR of the best model found during training.

Learning Rate

MRR 0.05 0.01 0.005 0.001 0.0005

R
eg

ul
ar

iz
at

io
n

1.0 0.0623 0.0504 0.0823 0.0793

0.5 0.0677 0.0718 0.0924 0.0865

0.1 0.0004 0.0703 0.852 0.0764 0.0706

0.05 0.0707 0.0763 0.0673

0.01 0.062 0.0725

(b) MRR obtained when evaluating the best model over the test set.

Learning Rate

MRR 0.05 0.01 0.005 0.001 0.0005

R
eg

ul
ar

iz
at

io
n

1.0 0.0611 0.0497 0.081 0.079

0.5 0.0662 0.0723 0.0882(0.008) 0.0818 (0.006)

0.1 0.0002 0.0693 0.0827(0.001) 0.0726 0.0666

0.05 0.0687 0.0726 0.0654

0.01 0.0589 0.07

The Figure 7.1 shows how the facts within the test set are distributed over the
possible ranking values. As can be saw, the GAE model was able to correctly assign
an high rank to most of the correct facts.

7.4.2 Validation with Different Number of Research Topics
Large part of the entities included in the PKG are represented by research top-

ics, which correspond to the TMFResource instances, connected to the publications
by means of the dc:subject property. Table 4.4 shows that almost a third of the
PKG edges connects a publication to a topic extracted by TMF. Considering the
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Figure 7.1: Number of facts for each ranking position obtained by evaluating the
best model found over the test set. The ranking positions range from 1 to 47,995.

potential impact of the number of these entities in the link prediction mechanism,
a second experiment has been conducted to evaluate the impact of different num-
ber of research topics within the PKG. Three different versions of the PKG have
been created, which include for each publication three, seven, and fourteen topics
respectively. The experiment employs the same learning rate and regularization
hyperparameters, which obtain the best results in the previous experiment.

Table 7.3: Impact of the number of topics present in the RDF graph on the accuracy
of the trained model.

Number of topics extracted per-abstract 3 7 14
Number of TMFResource entities in the graph 9.591 16.988 26.541
Number of dc:subject edges 45.423 107.093 212.226
MRR over test data 0.103 0.0882 0.0671
HITS@15 31.5% 27.9% 20.3%
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Table 7.3 shows that the best results are obtained within the PKG which include
only 3 topics. According to this result, decreasing the number of topics seems to
obtain an improvement in the evaluation result. However, this not directly lead to
a better link prediction model. In fact, the better ranking is a consequence of the
less complex graph structure. This version of the PKG includes almost half of the
topic entities and, as a consequence, it is an easy task for the model ranking the
correct facts in a higher position. Moreover, due to the low number of topics and
the features of TMF, there is a high number of publications that share the same
topics. Therefore, it is not difficult for the model predicting facts that include such
topics during the evaluation stage, over the test set. On the other side, increasing
the number of topics within the PKG lead to a degradation of the MRR values.
This behaviour is a consequence of the more complex graph structure. Moreover,
increasing the number of facts (and edges) which include the predicate dc:subject
has an impact on the neighborhood representation encoded by the GAE model.
This bias in the neighborhood structure determines closer values in the embedding
representation of the nodes and can conduct to more inaccurate prediction during
the evaluation phase of the link prediction.

7.4.3 Results of a Sample-Based Validation
A sample-based validation confirms that the model is able characterize the graph

entities and predicting meaningful facts. Consider, for instance, the publication en-
titled “Real-Time Tools for Situational Awareness and Emergency Management in
Transport Infrastructures”1. The GAE model predicts a new edge, which connects
this publication with the DBpedia research topic http://dbpedia.org/resource/
List_of_software_reliability_models, through the predicate dc:subject. This
topic is not recognized by TMF during the building of the initial version of the
PKG, however it looks an appropriate topic suggestion for the publication. More-
over, the GAE model is able to predict another edge that connects this publication
to a researcher, whose main interest is focused on circuits integration for aircraft
application. Also in this case, the prediction can be considered valid and potentially
useful for the researcher.

1This publication is available in the Geranium Web application at: https://geranium.
polito.it/results/paper/11583-2584393
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Chapter 8

On the Integration of Knowledge
Graphs into Neural Networks for
an eXplainable AI

This Chapter presents a review of the main eXplainable Artificial Intelligence
(XAI) approaches existing in the literature, underlying their strengths and lim-
itations, and propose neural-symbolic integration as a cornerstone to design an
AI which is closer to non-insiders comprehension. Most of the approaches devel-
oped in this field, in fact, require very specific technical expertise to manipulate
the algorithms at the roots of the modern implementation of Neural Networks
(NNs). Moreover, understanding this algorithmic scaffolding is not enough to get
insights into internal working models. In fact, in order to be more understandable,
neural-based systems should be able to emit and manipulate symbols, enabling user
explanations on how a specific result is achieved [45]. In the context of symbolic
systems, Knowledge Graphs (KGs) [50] and their underlying semantic technologies
are a promising solution for the issue of understandability [145]. In fact, they pro-
vide a useful backbone for several reasoning mechanisms, ranging from consistency
checking [30], to causal inference [113]. These reasoning procedures are enabled
by ontologies [66], which provide a formal representation of semantic entities and
properties relevant to a specific sphere of knowledge. Considering these features,
the implementations of symbolic systems based on semantic technologies are suit-
able to improve explanations for non-insiders. Input features, hidden layers and
computational units, and predicted output of neural models can be mapped into
entities of KGs or concepts and relationships of ontologies (knowledge matching).
Traditionally, these ontology artifacts are the results of conceptualizations and prac-
tices adopted by experts from various disciplines, such as biology [47], finance [13],
and law [29]. As a consequence, they are very comprehensible to people with ex-
pertise in a specific domain (cross-disciplinary explanations), even if they do not
have skills in AI technologies. Moreover, in the context of semantic technologies,
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KGs and ontologies are natively built to be queried and therefore they are able to
provide answers to user requests (interactive explanations) and to provide a sym-
bolic level to interpret the behaviour and the results of a NN. A schematic graph
that summarises the role of semantic technologies for XAI is available in Figure 8.1.

This Chapter includes the following sections. Section 8.1 outlines the tech-
nical issues related to traditional methods of XAI, describing current solutions
that require expertise on NN techniques. Section 8.2 provides details on the
three promising research challenges (knowledge matching, cross-disciplinary ex-
planations, and interactive explanations) enabled by the integration of KGs and
ontologies into NN models.

Figure 8.1: Schematic representation of a XAI system that integrates KGs and
ontologies into NN models.

8.1 Explanations for AI Experts: Technical Is-
sues and Solutions

The goal of an explainable system is to expose intelligible explanations in a
human-comprehensible way, and keeping the human in the loop is a determinant
aspect. Nevertheless, as clearly demonstrated in the literature survey conducted
by Adadi et al. [3], the human factor impact is not adequately considered XAI.
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Concordantly, Miller et al. [110] argue that most of the existing methods focus on
the perspective of technicians rather than the viewpoint of the intended users.

This condition creates a gap of expectations of the layman in terms of ex-
plainable systems, because the term “explanation” has been re-purposed by the
connectionist community to address specific technical issues. Instead, other disci-
plines collectively considered as “explanation sciences” [111], from cognitive science
to philosophy, are rarely included in the current XAI research.

The following subsections discuss the technical issues related to XAI, and pro-
vide a brief overview of the typical approaches adopted by AI experts for the ex-
planation task.

8.1.1 Technical Issues in a Connectionist Perspective
This subsection synthesize the technical issue related to the explainability as

follows: (i) complexity; (ii) multiplicity; (iii) opacity degree.
Complexity: NN techniques are difficult to examine, because of their structure

and the way they are working. As reported by Adadi [3], since NN algorithms are
based on high-degree interactions between input features, the disaggregation of such
functions in a human understandable form and with human meaning is inevitably
more difficult.

Multiplicity: considering the complex network architecture of NN techniques,
these techniques might produce multiple accurate models from the same training
data. Hall and Gill [68] define this issue as “multiplicity of good models”. In fact,
the internal paths through the network are very similar, but not the same, and con-
sequently the related explanations can change across different models. This issue
clearly emerges in case of knowledge extraction techniques [85, 136]. The explana-
tion in this case consists in the knowledge acquired and encoded as the internal
representation of the network during the training.

Opacity Degree: a well-known problem in the AI research field is the trade off
between interpretability and accuracy. As underlined by Breiman [25], achieving
high accuracy often requires more complex prediction methods, and vice versa
simple and interpretable functions do not provide accurate predictors. Considering
this issue, the traditional approach is to construct complex models to reach a high
accuracy and then adopt reverse engineering techniques to extract explanations,
thus without the necessity of knowing in details the inner works of the original
model [3].

8.1.2 Explainable Systems for AI Experts
Considering the technical issues mentioned in the previous subsection, two main

explanation methods from literature are identified: transparency and post-hoc [111]
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explanations. Techniques included in these methods can support AI experts in
sensitive conditions.

Transparency Explanations: these types of methods are focused on how
a model work internally and, as underlined by Lepri et al. [97], the explanation
can be rendered at three different levels: (i) the entire model, (ii) the individual
components (e.g., parameters) of the model, (iii) the specific training algorithm.
For each level, Mittelstadt et al. [111] recognize respectively the following notions
in terms of explanation:

1. Simulatability: checking through a heuristic approach whether a human
reaches the mechanistic understanding of how the model functions, and conse-
quently if he is able to simulate the decision process. In this context, within a
user study [55] that involved thousand participants, Friedler et al. measured
human performance in operations that mimic the definition of simulatability,
using as evaluation metric the runtime operation count.

2. Decomposability: in this case each component of the model, including a
single input, parameter, and computation has to be clearly interpretable. In
a recent work, Assaf et al. [10] introduce a Convolutional Neural Network
(CNN) to predict multivariate time series, in the domain of renewable energy.
The goal is to produce saliency maps [4] to provide two different types of
explanation on the predictions: (i) which features are the most important in
a specific interval of time; (ii) in which time intervals the joint contribution
of the features has the greatest impact.

3. Algorithmic transparency: for techniques such as linear models there is
a margin of confidence that the training will converge to a unique solution,
so the model might behave in an online setting in an expected way. At the
opposite, NN models cannot provide guarantees that they will work in the
same way on new problems. Datta et al. [38] designed a set of Quantitative
Input Influence (QII) for capturing the joint influence of the inputs on the
outputs of an AI system, with the goal to produce transparency reports.

Post-hoc Explanations: these methods do not seek to reveal how a model
works, but they are focused on how it behaved and why. Lipton [100] detects dif-
ferent post-hoc approaches that include natural language explanations, interactive
visualizations, local explanations, and case-based explanations. Natural language
explanations are based on qualitative artifacts that describe the relationships be-
tween the features of the input data and the outputs (e.g., predictions or classi-
fications) of the model [129]. Interactive visualizations show relative influence of
features or provide graphical user interfaces to explore visual explanations [159].
Local explanations intend to identify the behavior of a NN model on a particular
prediction in two different ways—a simple and local fitting around a particular
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decision [129], and variables perturbations to understand the changes in the predic-
tion [5]. Case-based explanations consist in the exploitation of the trained model
to identify which samples of the training data are the most similar to the prediction
or the decision to be explained [87].

Despite this variety of approaches to address technical issues related to the ex-
plainability, these methodologies are not intended to capture the full behavior of the
system, but rather to provide approximations of the system behavior. As stressed
by Mittelstadt et al. [111], these approximations can be offered to AI experts both
for “pedagogical purposes” and to provide reliable predictions on the system behav-
ior over a restricted domain. Nevertheless, technical approximations are not enough
and can be misleading when presented as an explanation to the non-insiders on how
the model works.

8.2 Explanations for Non-insiders: Three Research
Challenges with Symbolic Systems

In his prominent work, Miller [110] defines explanations as social conversation
and interaction for transfer knowledge. A fruitful exchange implies that who ex-
plains must be able to recognize the mental model of who receives the information.
To enable this process, a representation of the world through symbols is a crucial re-
quirement. Furthermore, Miller articulates that this social exchange can be enabled
in the XAI only if human sciences, such as philosophy, psychology, and cognitive sci-
ences are injected within the development of new XAI approaches. The final aim
is in fact is to produce explanations that allow “affected parties, regulators and
more broadly non-insiders to understand, discuss, and potentially contest decisions
provided by black-box models” [3]. Considering these requirements, symbolic sys-
tems open opportunities in three different human-centric challenges: (i) knowledge
matching, (ii) cross-disciplinary explanations and (iii) interactive explanations.

The identification of these three challenges is based on the analysis, synthesis
and elaboration of the most recent advances in the field of incorporating KGs
features into NN models. This corpus of evidence is revised in accordance with
the aim of building AI systems able to provide comprehensible explanations for
non-insiders, through manipulation of symbols. For each challenge, recent research
works representing the most promising references are reported. Therefore, further
work along these tracks should be encouraged and supported.

Knowledge Matching: Seeliger et al. [145] identify the matching of input
features or internal neurons of the models to classes of an ontology or entities of a
KG as an important challenge to be addressed by the research community of XAI.
Interesting works in this sense have been proposed by Sarker et al. [142], in which
objects within images are mapped to the classes of the Suggested Upper Match On-
tology. On the basis of the classification output of the NN, a description logic (DL)
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learner is adopted to create class expressions that work as explanations. In a recent
work, Angelov et al. [8] introduce a novel neural architecture for image classifica-
tion, that includes an hidden semantic layer, called "Prototype layer", to provide a
clear explanation of the model. This intermediate semantic layer receives training
data samples, defined as prototypes, that are characterized by local peaks in the
data distribution. Each prototype is then exploited to generate logical rules to pro-
vide natural language explanations. From a different perspective, Selvaraju et al.
propose a method to learn a map between neurons weight to semantic domain
knowledge [146]. In a work more focused on unsupervised learning, Batet et al. [14]
exploit WordNet [109] and its taxonomic knowledge to compute semantic similari-
ties that conduct to more interpretable clusters. In the context of transfer learning,
Geng et al. [62] exploit two external KGs in a neural architecture for the follow-
ing purposes: (i) provide explanations to understand the transferability of features
learned by a CNN between different domains; (ii) justify new classes predicted by
a Graph Convolutional Network (GCN), that were unseen by the CNN.

Cross-disciplinary Explanations: ontologies and KGs are able to represent
domains by means of symbols, whose manipulation produces transparent inferences
of new information. Both implementations are able to outline different areas of
human knowledge according to characteristics and expertise of the related users.
Moreover, it is worth mentioning that the concept of ontology is adopted by in-
formation science and philosophy. The stretch in common within the two different
disciplines is the attempt to define ideas and entities within a precise system of
categories, that explicit interdependent properties and relationships. Therefore,
applied ontologies can be considered a technical application to prior work in phi-
losophy. In a work entitled “The Knowledge Graph as the Default Data Model for
Machine Learning”, Wilcke et al. [175] describe how decades of work have been de-
voted to the development of vast and distributed KGs to represent various domains
of knowledge. Potentially, the usage of this form of interlinked and structured data
enables the training of NN models from different domains and from the perspective
of different disciplines. In this context, Sopchoke et al. [148] developed a method
for explainable rules in recommendation systems related to different domains, using
relational learning techniques on semantic statements.

Interactive Explanations: in a human-centered vision of explainable tools,
AI systems should be able to offer user interaction features rather than static expla-
nations. Wang et al. [172] developed a NN that extracts image contents as KG facts
that are interlinked with the DBpedia repository [96], and questions provided by
the user are translated in SPARQL (SPARQL Protocol and RDF Query Language)
queries that are run over this enriched knowledge base. Liao et al. [98] propose
a recommendation system that enable user-feedback on human-interpretable do-
main concepts. More in general, in recommendation systems the ontology is able
to provide information that is implicit in the data used to perform inference and
consequently to create rules which limit the number of plausible recommendations.
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For future developments, Sarker et al. [142] envision their explanation tool for im-
age classification to be used in an interactive system where a human can monitor
and fix algorithmic decisions based on the given explanations.
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Chapter 9

Conclusions and Future Work

Knowledge Graphs (KGs) are labeled and directed multigraphs that encode
information in the form of entities and relations relevant to a specific domain or
organization. KGs are practical tools for capturing and organizing a large amount
of structured and multi-relational data to explore employing query mechanisms.
Considering these features, KGs are becoming the backbone of Web and legacy
information systems in different research fields and industrial applications. The
structured knowledge that shapes KG can be supported by deductive and inductive
reasoning approaches. Deductive methods employ simple statements and quanti-
fied statements to derive additional knowledge. Inductive techniques involve simple
and quantified statements to create further knowledge and discover and generalize
patterns available in the KG. These patterns can be inferred by applying statis-
tical learning methods on multi-relational data, which are less interpretable than
deductive approaches. However, they are capable of exploiting latent factors in the
KG that are not directly extracted as quantities in the data, but whose variations
influence every single piece of information we are able to observe. Graph Neural
Networks (GNNs) are representation learning techniques, which are natively-built
for encoding graph structures and are enabling cutting-edge research on graph data.

The thesis’s primary goal is to investigate the role of neural architectures, par-
ticularly the GNNs, to support the publication of KGs. More precisely, this thesis
intends to address open research problems (RP) in the KG research field: (RP1)
the automatic mapping of data source schemas to reference ontologies. The map-
ping step is framed into the generation of semantic models, which includes the
detection of semantic types and the semantic relation inference between these an-
notated attributes; (RP2) the automatic completion of existing KGs by inferencing
soft, but consistent knowledge in terms of new edges (or links). Such new edges are
hard to encode into deductive and logic-based reasoning, but they are beneficial
to develop tools on top of KGs, e.g., recommendation systems. Considering these
open problems, the contributions reported in this thesis addressed the following
research questions:
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• RQ1 - Which is the contribution of NN to improve the accuracy of automatically-
inferred semantic relations between the source attributes?

• RQ2 - Which is the impact of GNNs in the prediction of new edges within a
KG, in the context of recommendation systems?

For answering RQ1, the thesis illustrated two main contributions. The first con-
tribution is an initial study [59] that applies a simple, but efficient language model
such as Word2Vec, on SPARQL queries performed on different KGs. This study
aims to learn the latent representations of SPARQL variables, which are included
in specific triple patterns within the query. Variables with a similar latent repre-
sentation are then labeled with the most common relations available in the triple
patterns set. Then, the syntactic closeness between such labeled variables and the
attributes is exploited to create a mapping between these elements. Consequently,
the correct semantic relations between the data source attributes are assigned. The
main limitation is that such an approach does not take full advantage of the graph
structure for the learning process: SPARQL queries include a limited number of
graph patterns and Word2Vec treats these patterns as plain text. Considering these
limits, a more in-depth investigation has been conducted, developing a tool called
SeMi (SEmantic Modeling machIne) [57], which employs a novel method based on
a Graph Auto-Encoder (GAE), trained on available multi-relational data reposito-
ries. The GAE’s encoder component is a GNN, while the decoder component is a
factorization technique for KG embedding (KGE) generation. The achieved results
show that SeMi outperforms the state-of-the-art approach [157] based on manually-
selected features within the SRI task. Furthermore, the study shows that the GNN
plays a fundamental role in this task because it outperforms the results obtained
only with the KGE techniques. SeMi has been adopted to support the publication of
large-scale KGs in the context of public procurement domain. The results achieved
in this scenario show that the integration of public contracts data enables to detect
and address consistency issues within the information released by public adminis-
trations. The most relevant inconsistencies are related to: (i) business entities with
more than one business name; (ii) CIGs that identify more than one contract; (iii)
incoherent payments among different versions of an ongoing contract. These issues
can be fixed by exploiting the peculiar feature of KGs, overcoming the fragmenta-
tion which characterizes the public procurement information. For answering RQ2,
the thesis illustrated a contribution that analyzes the GAE’s adoption to predict
new links, which can be useful in the context of recommendation systems in the
field of academic publications. This approach supported the development of Gera-
nium, a semantic platform to collect and organize the scientific knowledge of the
Politecnico di Torino (Polito). The research achievements obtained in this frame
are the following: (i) a novel academic KG that semantically connects information
on researchers and publications of Polito; (ii) a semantic search engine that aggre-
gates such information and enables advanced features for the content exploration;
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(iii) a recommendation system which suggests collaboration opportunities between
researchers of different departments.

Future developments for the contributions presented in this thesis are related to
implementing new encoder/decoder architecture within the GAE, exploiting more
complex GNNs as encoders and other types of KGE techniques as decoders. Further
work will be dedicated to the computation of semantic models or the prediction
of new links in the context of constant evolution of the KG. This feature can be
particularly useful in real-world situations, in which new data sources are included
in a continuous integration and enrichment process. A further indication for future
development concerns developing an interactive user interface that enables users to
intervene in each step of the semantic model construction or the link prediction.
For this issue, a valuable solution is presenting a list of candidates as output of each
block, instead of the most plausible output from the implemented algorithms. In re-
gards to developing new research trajectories, this thesis analyzed the opportunities
in combining deductive and inductive techniques for emergent research fields, such
as the eXplainable AI (XAI) [56]. Indeed, the application domains such as those
analyzed in this thesis — public procurement and academic publications — are
contexts where the impact of neural architectures is relevant: the interpretability
of the results is not only a desirable property, but it is a fundamental requirement
for the involved stakeholders. Nevertheless, most of the available approaches to
implement XAI focus on technical solutions usable only by experts, which are able
to understand and manipulate the computational architectures of NNs. A com-
plementary approach could incorporate deductive methods, which can exploit the
symbolic representation of KG for inference new logic-based knowledge. Within
such a general direction, the thesis proposes three specific challenges for future
research—knowledge matching, cross-disciplinary explanations, and interactive ex-
planations. Further work along these tracks should be encouraged and supported
to make explanations of AI systems outputs more inclusive and effective.
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