
16 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Noise robustness condition for chaotic maps with piecewise constant invariant density / Pareschi, F.; Setti, G.; Rovatti,
R.. - STAMPA. - 4:(2004), pp. V-681-V-684. ((Intervento presentato al convegno 2004 IEEE International Symposium on
Cirquits and Systems - Proceedings tenutosi a Vancouver, BC, can nel May 23-26, 2004
[10.1109/ISCAS.2004.1329095].

Original

Noise robustness condition for chaotic maps with piecewise constant invariant density

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISCAS.2004.1329095

Terms of use:
openAccess

Publisher copyright

©2004 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2850179 since: 2020-10-27T22:22:28Z

Institute of Electrical and Electronics Engineers Inc.



1

This is the author’s version of the article that has been presented at IEEE ISCAS2004
The editorial version of the paper is available at http://dx.doi.org/10.1109/ISCAS.2004.1329095

For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org
Copyright (C) 2004 IEEE. Personal use is permitted.

NOISE ROBUSTNESS CONDITION FOR CHAOTIC MAPS WITH
PIECEWISE CONSTANT INVARIANT DENSITY

Fabio Pareschi, Gianluca Setti ∗

DI – University of Ferrara
Via Saragat 1, 44100 Ferrara – Italy

ARCES – University of Bologna
Via Toffano 2/2, 40125 Bologna – Italy

{fpareschi,gsetti}@ing.unife.it

Riccardo Rovatti

DEIS – University of Bologna
Viale Risorgimento 2, 40136 Bologna – Italy

ARCES – University of Bologna
Via Toffano 2/2, 40125 Bologna – Italy
{rrovatti}@deis.unibo.it

ABSTRACT

Chaotic maps represent an effective method for generating ran-
dom-like sequences, that combines the benefits of relying on sim-
ple, causal models with good unpredictability. Regrettably such
positive features are counterbalanced by the fact that statistics of
true-implemented chaotic maps are generally strongly dependent
on implementation errors and external perturbations. Here we
study the effect of an external, additive, map-independent noise
perturbation in the map model, and present a technique to guaran-
tee, for a quite large class of maps, independence of the first-order
statistics of the noise features.

1. INTRODUCTION

Random-like sources are fundamental for many information tech-
nology applications including communications [1], power conver-
sion [2][3], signal coding and watermarking [4], electronic equip-
ment testing [5], and many other tasks. Recently, very good re-
sults have been achieved in the generation of random sequences
by using chaotic maps [6], thanks to their aperiodic and strong un-
predictable behavior. Additionally, being simple 1-D autonomous
nonlinear discrete-time systems, chaotic maps can easily be imple-
mented with analog hardware.

Here analog implementation is a fundamental issue since no
digital system can exhibit chaotic behavior. Regrettably, imple-
mentations errors, which are unavoidable in any analog circuit im-
plementation, as well as perturbation during operation, may pre-
vent the statistics of the signals generated by the map to align the
desired ones, or even block the possibility to achieve the desired
chaotic behavior [7][8]. As a consequence, map statistical robust-
ness is of great practical concern.

In this paper we discuss on the robustness of 1-D discrete-
time chaotic map when their behavior is perturbed by an external
additive noise [6, chap. 10][8][9] [10]. One of the typical prob-
lems related to this setting is that the presence of an additive noise
superimposed to the state of the map, could drive it out of its def-
inition set. To cope with this, a classical solution [9] is to add
suitably defined “hooks” to the map to assure that the state is rein-
jected into its nominal definition set. This tecnique does not affect
a priori any statistical property of the map since these hooks are
normally not reachable; however due to the presence of the noise
they can influence statistical features of the signals generated by
the map. The main aim of this contribution is present a criterion

∗This work has been supported by MIUR under the FIRB framework.

for constructing the hooks, i.e. to expand a map out from its nom-
inal definition set, in order to make the first order statistic of the
generated signals independent of the noise perturbation.

The paper is organized as follows. In section 2 we present
a simple mathematical model to describe a chaotic map with an
additive noise perturbation. In section 3 we discuss a mathematical
condition to assure statistical robustness to noise for a particular
class of chaotic maps, i.e. maps with piecewise constant invariant
density, such as the so-called Piecewise Affine Markov (PWAM)
maps [11]. Finally, in section 4 we specialize this condition to
some concrete maps and present some practical example.

2. MATHEMATICAL MODEL

In the following we consider the 1-D chaotic map defined as

xk+1 = ϕ (xk) , ϕ : I → I (1)

where the interval I =
[
I−, I+

]
⊂ R and ϕ is an appropriate non-

invertible function. Let us assume that ϕ is exact and indicate with
P its Perron-Frobenius operator (PFO), defined as [6]

Pf (x) =

∫

I

δ (ϕ (ξ)− x) f (ξ) dξ

where δ(·) is the Dirac’s generalized functions. With this, if we
assume that an initial condition x0 is randomly drawn according
to a probability density function (pdf) ρ0 : I 7→ R+, we know
that, for large k, the k-th iterate of the map ϕk(x0) approximately
distributes according to ρ independently of the density ρ0, where
ρ is the invariant density of the map since it satisfies the condition
ρ = Pρ [6].

Let us then consider a map-independent noise, modeled as a
discrete-time stochastic process with samples νk ∈ N, ∀k, where
N =

[
N−, N+

]
3 0 ⊂ R, and distributed according to the pdf

ρν . By referring to additive perturbation, the system model (1),
will be changed in

xk+1 = ϕE (xk + νk) , ϕE : J → I (2)

where J =
[
I−+N−, I++N+

]
, and where ϕE is an extension

on ϕ in J , i.e. ϕE (x) = ϕ (x) , ∀x ∈ I . System (2) cannot be
studied with chaotic map theory; for example, while the behavior
of (1) is assured by the exactness of ϕ, certainly exist ϕE and ρν
such that (2) has not a chaotic behaviour. A treatment on these
systems can be found in [6, cap. 10]. For our purposes it is only
necessary that, with the considered noise density ρν , ϕE is such
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Fig. 1. A possible extension of Bernoulli shift map (a) and W-map (b) and their first order density (c), (d) obtained through numerical
simulation in the perturbed and unperturbed case, with I = [−1, 1] and with noise uniformly distributed in N =

[
− 1

2
, 1

2

]

that system (2) can be studied through densities. Indicating with
PE the PFO associated to ϕE 1 and cosidering that the pdf of the
sum of two independent random variabiles is the convolution of
their respective pdfs, we require that for large k symbols xk are
distributed according to the density ρ̃, which is the unique density
that solves

ρ̃ (x) = PE [ρ̃ ∗ ρν ] (x) (3)
and where ∗ is the usual convolution operator. Since this condition,
certainly true for a quite large set of ρν and ϕE , it is very difficult
to deal with, it will be taken as an assumption.

We say that the extended map ϕE is noise robust when ρ̃ = ρ
for any choice of ρν , i.e. when its invariant density is independent
of the noise density and, of course, is equal to the unperturbed
system invariant density.

Figures 1 (a) and (b) show a possible extension for the Bernoulli
shift and W-map respectively [11], while (c) and (d) report the cor-
responding simulated invariant densities in the ideal and perturbed
case, for an additive uniformly distributed noise . As shown, it
can be seen that both maps with such a perturbation maintain a
chaotic behaviour with a stationary invariant density, which is for
the Bernoulli map equal to the the ideal invariant density ρ. It
is also worthwhile to notice that the proposed extended Bernoulli
shift map is noise robust for N =

[
− 1

2
, 1

2

]
. In fact, if we de-

fine χ[a, b] as the indicator function of interval [a, b], PE can be
expressed as

PEf(x)=

[
f

(
x−3

2

)
χ[0, 1](x) + f

(
x−1

2

)
χ[−1, 1](x)

+ f

(
x+1

2

)
χ[−1, 1](x) + f

(
x+3

2

)
χ[−1, 0](x)

]

and with it we can verify that (3) is solved by ρ (x)= 1
2
χ[−1, 1](x)

PE[ρ∗ρν ](x)=
1

4

[∫ x−1
2

x−5
2

ρν (ξ)dξ χ[0,1](x)+

∫ x+1
2

x−3
2

ρν (ξ) dξ χ[−1,1](x)

+

∫ x+3
2

x−1
2

ρν (ξ) dξ χ[−1, 1](x) +

∫ x+5
2

x+1
2

ρν (ξ) dξ χ[−1, 0](x)

]

1It is easy to see that P is the restriction of PE to densities whose
support is I . Also, like P, PE is a linear operator

=
1

4

[∫ x+3
2

x−5
2

ρν (ξ)dξ +

∫ x+1
2

x−3
2

ρν (ξ) dξ

]
χ[0,1](x)

+
1

4

[∫ x+5
2

x−3
2

ρν (ξ) dξ +

∫ x+3
2

x−1
2

ρν (ξ) dξ

]
χ[−1, 0](x)

By simply noting that for every point in the corresponding in-
dicator function all the last integrals are computed over intervals
greater than N , we have that ρ̃ = ρ, ∀ρν , i.e. the proposed map is
noise robust.

3. NOISE ROBUSTNESS CONDITION

In order to introduce a general noise robustness condition, we need
to prove the following

Lemma 1. Let ϕ : I → I be a chaotic map, and ϕE its extension
in J; let also be ρ the unperturbed system invariant density and
∆ρε(x) = ρ (x) = ρ (x− ε) the difference between shifted and
non-shifted invariant density. The extended map ϕE is robust to
any noise if and only if

PE∆ρεT = 0, ∀ε ∈ N (4)

Proof. For the necessary condition, it is enough to consider the
linearity of PE and a constant noise perturbation, i.e. a delta-like
noise density ρν . For the sufficient, if we introduce the shifted
invariant density ρεT = ρ (x− ε), we know from the linearity of
PFO that PEρ = PEρ

ε
T ∀ε ∈ N , and then, since PEρ = ρ, (3) is

verified by ρ, namely

PE [ρ ∗ ρν ] (x) = PE

[∫

N

ρν (ξ) ρ (x− ξ) dξ
]

=

∫

N

ρν (ξ)PEρ
ξ
T (x) dξ =

∫

N

ρν (ξ) dξ ρ (x) = ρ (x)

Although of general applicability, condition (4) is relatively
difficult to use in practical, since it does not explicitly depend on
the map structure. To obtain simple robustness conditions we will
here restrict to the class of map with piecewise constant ρ. Al-
though particular, this class is of great practical concern since it
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Fig. 2. Examples of 3-constant piece invariant density robust maps

include the PWAM maps family, that has already been widely em-
ployed in several practical application (see [7][11] and references
therein). Our main result is stated in the following

Theorem 1. Let ϕ : I → I be a chaotic map with a piecewise
constant invariant density that can be expressed as

ρ =

m∑

k=1

βkχ[I−k, I
+
k ](x) (5)

where, for k = 1, . . . ,m,
[
I−k, I

+
k

]
is an arbitrary partition of I

and βk are suitable coefficients. The extended map ϕE is noise
robust in N if and only if

m+1∑

k=1

(βk− βk−1)

∫

[0, ε]

δ
(
ϕE
(
I−k + ξ

)
− x
)
dξ = 0, ∀ε ∈ N (6)

where β0 = βm+1 = 0 and I−m+1 = I+m.

Proof. From (5) we can write

∆ρε (x) =

m+1∑

k=1

(βk− βk−1)χ[I−k , I
−
k
+ε](x)

where we have assumed that ε > 0 (the case ε < 0 can be treated
similarly). Hence, (4) can be rewritten

∫

J

δ (ϕE (ξ)− x)

m+1∑

k=1

(βk− βk−1)χ[I−k , I
−
k
+ε](ξ) dξ =

m+1∑

k=1

(βk− βk−1)

∫

[I−k , I
−
k
+ε]

δ (ϕE (ξ)− x) dξ = 0

which yields to (6) with a simple change of variable.

Let us briefly comment on the significance of the above theo-
rem. Though a necessary condition simpler than (6) in the general
case cannot be found, a sufficient condition can easily be obtained.
If βk = βk−1 for some k, the corresponding integral terms in the
sum of (6) gives no contribution. Note that this correspond to com-
pute (5) with respect to the coarsest partition, i.e. the partition
with the smallest number of elements. Being the simplest case, we
will make such an assumption from now on. Then, supposing that

βk 6= βk−1 ∀k, if exist p, q for which ϕE is a periodic function
with period Π = I−p − I−q , i.e. ϕE

(
I−p + x

)
= ϕE

(
I−q + x

)
,

the complessive contribute of the two corrispondig integral terms
in (6) will vanish if βp − βp−1 = βq−1 − βq . More generally, if
we can group all integral terms of (6) in sets which vanish through
map periodicity and coefficients’ compensation, (6) is verified.

The simplest possible case is when all integral terms coincide,
which yields to





ϕ
(
I−p + x

)
= ϕ

(
I−q + x

)
, ∀p, q = 1 . . .m

∑m+1
k=1 (βk − βk−1) = 0

The second equation is obviously an identity, while the first one re-
quires that the measure of all intervals

[
I−p, I

−
q

]
must be a period

for ϕE . If relations exist between the βk, such a strong periodicity
constraint can be be relaxed. Although it is possible to enumerate
all possible cases (i.e. to take into account all the possible com-
binations of the integral terms in (6)), a complete treatment is out
of the scope of this work. We will therefore limit ourselves to the
simple examples presented in the following section.

4. SOME EXAMPLES OF ROBUST MAPS

As the simplest example, consider a map with uniform invariant
density in I =

[
I−, I+

]
, such as the Bernoulli shift considered in

section 2. In this case ρ(x) = βχ[I−, I+](x) and condition (6) can
be expressed as

β

∫

[0, ε]

[
δ
(
ϕE
(
I−+ ξ

)
− x
)
− δ

(
ϕE
(
I++ ξ

)
− x
)]
dξ = 0

for all ε ∈ N . In this simple case it can be seen that requiring
map periodicity with Π = I+− I− is a necessary and sufficient
condition for noise robustness. The proposed robust extension of
the Bernoulli map satisfies this constraint.

For a map with an invariant density like the W-map in figure 1
(b), this method requires a periodicity of Π = 1/2, and it is not
suitable for the W-map since not even the original map possesses
this periodicity.

For a more complex example let us refer to a map with 3-
constant pieces invariant density:

ρ(x) = β1χ[I−1 , I
+
1 ](x) + β2χ[I−2 , I

+
2 ](x) + β3χ[I−3 , I

+
3 ](x)
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Fig. 3. Simulation of maps of figure 2, where I = [−1, 1] and noise is uniformly distributed in N =
[
− 1
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]

so that the robustness condition (6) becomes
∫

[0, ε]

[
β1δ

(
ϕE
(
I−1+ξ

)
−x
)
+(β2−β1) δ

(
ϕE
(
I−2+ξ

)
−x
)

+

+ (β3−β2) δ
(
ϕE
(
I−3+ξ

)
−x
)
−β3δ

(
ϕE
(
I−4+ ξ

)
−x
)]
dξ=0

We have four possible solutions

i)





ϕE
(
I−1 + ξ

)
= ϕE

(
I−2 + ξ

)

ϕE
(
I−3 + ξ

)
= ϕE

(
I−4 + ξ

)

β2 = 0

ii)





ϕE
(
I−1 + ξ

)
= ϕE

(
I−4 + ξ

)

ϕE
(
I−2 + ξ

)
= ϕE

(
I−3 + ξ

)

β1 − β3 = 0

iii)





ϕE
(
I−1 + ξ

)
= ϕE

(
I−3 + ξ

)

ϕE
(
I−2 + ξ

)
= ϕE

(
I−4 + ξ

)

β1 − β2 + β3 = 0

iv) ϕE
(
I−1 +ξ

)
=ϕE

(
I−2 +ξ

)
=ϕE

(
I−3 +ξ

)
=ϕE

(
I−4 +ξ

)

Case iv) correspond to the absence of particular relations between
the coefficients βk and it give rise to the most restrictive periodic-
ity constraints on ϕE . The other three cases introduce constraints
among the coefficients and require weaker periodicity conditions.
An example of maps satisfying the robustness condition for the
cases i) − iii) is reported in figure 2 where the respective invari-
ant densities in the unperturbed case are also reported. Figure 3
shows the corresponding invariant pdf computed trough numerical
simulation. As can be seen all maps are, as expected, noise robust.

As a final remark, it is interesting to notice that the four case
are not mutually exclusive. We already noticed that case iv) is
compatible with all other cases. Additionally, maps exist with an
invariant density where both β1 − β3 = 0 and β1 − β2 + β3 = 0.
For these maps, both ii) and iii) are admissible and can produce
different robustness constraints on the map structure. In figure 4
is represented an example of this. The two maps present the same
invariant density, and both are noise robust, but they have a com-
pletely different periodicity.
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