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Positive solutions for autonomous and
non-autonomous nonlinear critical elliptic
problems in unbounded domains

Sergio Lancelotti and Riccardo Molle

Abstract.The paper concerns with positive solutions of problems of the
type −Δu+a(x) u = u p−1 +εu 2∗−1 in Ω ⊆  RN , N ≥ 3, 2 ∗ = 2N

N−2 , 2 < p <

2∗. Here Ω can be an exterior domain, i.e. RN \Ω is bounded, or the whole
of RN . The potential a ∈  L N/2

loc (RN ) is assumed to be strictly positive and
such that there exists lim |x|→∞ a(x) := a ∞ > 0. First, some existence
results of ground state solutions are proved. Then the case a(x) ≥ a ∞ is
considered, with a(x) ≡ a ∞ or Ω = R N . In such a case, no ground state
solution exists and the existence of a bound state solution is proved, for
small ε.

Keywords. Schr¨odinger equations, Unbounded domains, Critical
nonlinearity.

1. Introduction and main results
This paper deals with a class of problems of the type

(Pε )

⎧
⎨

⎩

−Δu + a(x) u = u p−1 + εu 2∗−1 in Ω,
u > 0 in Ω,
u ∈  H 1

0 (Ω)

where Ω ⊆  R N , N ≥ 3, and we consider both the case Ω = R N and RN \Ω
bounded with smooth boundary; 2∗ = 2N

N−2 is the critical Sobolev exponent,
ε > 0, 2 < p < 2 ∗ and on the potential we assume

a ∈  LN/2
loc (RN ), lim

|x|→∞
a(x) = a ∞ , a(x) ≥ a 0 > 0 a.e. in RN . (1.1)

Problem (Pε ) has a variational structure: its solutions correspond to the
nonnegative functions that are critical points of the functional Eε : H 1

0 (Ω) → R
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defined by

Eε (u) =
1
2 Ω

( ∇| u|2 + a(x) u 2) dx −
1
p Ω

|u|p dx −
ε

2∗ Ω
|u|2∗ dx.

Problems of the type (P ε ) have been widely studied: it is well known
that they come from problems in Physics and Mathematical Physics like
Schrödinger equations and Klein-Gordon equations, and from other applied
and theoretical sciences.From a mathematical point of view, problems like
(Pε ) present a number of difficulties related to the lack of compactness due
both to the critical exponent and to the unboundedness of the domain. If RN \Ω
is a ball and a is radially symmetric, then a classical feature is to employ the
compactness of the embedding of H1rad (RN ) → L p(RN ), that allows to recover
existence results and qualitative properties of solutions for equations of the
type −Δu + a(|x|)u = f (|x|, u) ([12, 30]).

For exterior domains and potentials without any symmetry, severalpa-
pers treat the subcritical case,i.e. ε = 0 in (P ε ), starting from the seminal
papers [7], concerning the autonomous case, and [5, 6], concerning also the
nonautonomous case; in those papers the authors analyze how the lack of
compactness works.Then, many papers deal with the non autonomous case,
in the subcritical setting (see [15, 17, 25, 26]and references therein). We re-
fer the reader to [3, 4, 9–11, 21, 28] and references therein for related problems
in unbounded domains, with non homogeneous nonlinearities having different
asymptotic behaviour at zero and at infinity.

When ε > 0 it is interesting to study problem (P ε ) because there is an
overlapping between the effects of the subcritical and the critical growth in
the nonlinearity. Actually, if ε > 0, the analysis of the Palais-Smale sequences
done in the subcritical case does not work, so that it is not possible to apply
in a straight way the methods developed in the cited papers. Indeed, some
concentration phenomena can appear,related to the critical nonlinearity. Of
course, if ε is very large the effect of the critical nonlinearity is relevant, as
one can see, for example, in [27]. In [27] the authors prove the existence of
solutions of problems similar to (Pε ), in bounded domains, and point out some
concentration effects as ε → ∞.

Here we want to analyze the problem for small ε, so that we have a
critical perturbation of the subcritical case. Then, besides the analysis of the
lack of compactness as in [7], we make a further study of the Palais-Smale
sequences, that takes into account the concentration phenomena in the spirit
of [8, 14, 24, 29].We emphasize that in the problems considered in this paper,
in order to study the compactness, it is not possible to use only the classical
analysis of the compactness developed in the subcritical case, nor the classica
analysis developed in the critical case,but some delicate estimates involving
both cases need (see Proposition 3.2). The aim of this analysis will be not
only to show that compactness is restored below a “bad energy level”, but also
that it is restored in a suitable range above this “bad level”. This done, we
can recover a result similar to the well known result stated in [6] about the
existence of a bound state solution in the subcritical case.
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The first results we prove concern ground state solutions.

Theorem 1.1.If Ω = R N , a(x) verifies (1.1) and

a(x) ≤ a ∞ a.e. in R N , (1.2)

then there exists ε0 > 0 such that problem (Pε ) has a ground state solution for
every ε ∈  (0, ε0).

In Theorem 1.1 assumption (1.2) allows to apply in a straight way
concentration-compactness arguments. Let us consider now the case in which
at least one of the assumptions of Theorem 1.1 is not true, that is either
a(x) > a ∞ in a positive measure subset of R N , or Ω = R N . Then, the exis-
tence of a ground state solution is not guarantee. To check the existence of
such a solution, the potential a(x) has to be below a∞ in a suitable large region
of Ω, to balance the effect of the boundary of Ω or of the part of R N in which
a(x) has higher values than a ∞ . In order to state a quantitative assumption,
we introduce the problem

(P∞ ) −Δu + a ∞ u = |u| p−2 u in RN ,
u ∈  H 1(RN ).

Then, we denote by w the ground state, positive, radial solution of (P ∞ ) and
we call

wz (x) := ϑ(x) w(x − z), z ∈  RN , (1.3)
where ϑ ≡ 1 if Ω = R N , otherwise ϑ is a cut-off function verifying

ϑ ∈  C∞ (RN , [0, 1]), ϑ(x) = 1 if dist(x, RN \Ω) ≥ 1
ϑ(x) = 0 if x ∈  R N \Ω.

(1.4)

Theorem 1.2.Assume that a(x) verifies (1.1). If there exists z ∈  RN such that

Ω
∇

wz

w z L p (Ω)

2

dx +
Ω

a(x)
wz

w z L p (Ω)

2
dx <

w 2
H 1 (RN )

w 2
L p (RN )

, (1.5)

then problem (Pε ) has a ground state solution for small ε.

We point out that the r.h.s. in (1.5) is a constant independent of the
domain and the potential a(x), and we observe that if a(x) ≡ a ∞ and Ω = R N

then in (1.5) the equality holds for every z in R N .
Consider now a(x) ≥ a ∞ . In Proposition 4.1 we state that if Ω = R N

or a(x) = a ∞ , then a ground state solution for (P ε ) does not exist. In this
setting, to find a solution one has to look at higher energy critical levels and
this is more difficult than the minimizing problem. A first difficulty to be faced
concerns compactness above the ground state of some related limit problems.
By the concentration phenomenon due to the critical nonlinearity, the problem
to be considered is

(CPε ) −Δu = ε|u| 2∗−2 u in RN ,
lim |x|→∞ u(x) = 0,
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while the natural limit problem related to the translations is

(Pε,∞ ) −Δu + a ∞ u = |u| p−2 u + ε|u| 2∗−2 u in R N ,
u ∈  H 1(RN ).

A proof of the existence of a ground state solution of (P ε,∞ ), for small ε, is
proved in [1]. Looking for least energy solutions of (P ε,∞ ), the minimization
problem to deal with is

mε := inf
N ε,∞

Eε,∞ , (1.6)

where

Eε,∞ (u) =
1
2 RN

( ∇| u|2 + a∞ u2) dx −
1
p RN

|u|p dx −
ε

2∗ RN

|u|2
∗

dx

and
N ε,∞ = u ∈  H 1(RN )\{0} : Eε,∞ (u)[u] = 0 .

Testing the functional E ε,∞ on a concentrating sequence of least energy solu-
tions of (CP ε ), in Proposition 2.3 we show that for all ε > 0

mε ≤ 1
N

SN/2 1
ε

N−2
2

, (1.7)

where S is the best Sobolev constant. We observe that the value1
N

SN/2 1
ε

N−2
2

in (1.7) is the ground state level of the solutions of problem (CP ε ), that is

1
N

SN/2 1
ε

N−2
2

= min
1
2 RN

∇| u|2dx −
ε

2∗ RN

|u|2
∗

dx : u ∈  D1,2 (RN ),

RN

∇| u|2dx = ε
RN

|u|2
∗

dx (1.8)

(see Proposition 2.3). So, the compactness cannot hold at the level 1
N

SN/2

1
ε

N−2
2 neither for problem (Pε ) nor for problem (P ε,∞ ), by the concentration

phenomenon described.Here we give an alternative proof of the existence of
solutions of (1.6), that will be useful in the paper. As a consequence of that
proof, we get that actually m ε < 1

N
SN/2 1

ε

N−2
2 , for small ε (see Theorem

2.2 and Corollary 2.4). Nevertheless, neither unicity nor nondegeneracy of the
positive solution of (Pε,∞ ) are known. Hence, it is not possible to obtain a
complete picture of the lack of compactness,as in the purely subcritical or
critical case. Anyway, a local Palais-Smale condition can be restored for small
ε by using the solutions of (P ∞ ). This done, we can prove the existence of a
solution both for the autonomous and for the non autonomous problem, in RN

or in exterior domains.
In [1] the authors consider problem (P ε ) in the autonomous case a(x) ≡

a∞ and they found a solution assuming that R N \Ω is contained in a small
ball. That result here is improved, because we have no assumption on the size
of RN \Ω. In order to find a solution for every exterior domain, a fundamental
tool is a fine estimate of the interactions of “almost minimizing” functions.
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Indeed, this estimate allows us to work in a suitable compactness range (see
Lemma 4.4).

Our result is the following

Theorem 1.3.Assume that a(x) verifies (1.1) and

a(x) ≥ a ∞ ,
RN

(a(x) − a ∞ )|x| N−1 e2
√

a∞ |x| dx < ∞, (1.9)

then there exists ε > 0 such that for any 0 < ε < ε problem (P ε ) has at
least one positive solution, that is a bound state solution when Ω = RN or
a(x) ≡ a∞ .

Remark 1.4.If both Ω = R N and a ≡ a ∞ hold, problem (Pε ) is nothing but
(Pε,∞ ) and Theorem 1.3 coincides with Theorem 2.2.

The paper is organized as follows: in Sect. 2 we introduce some notations
and recall some known facts we use; Sect. 3 deals with ground state solutions;
in Sect. 4 the proof of Theorem 1.3 is developed, moreover we report some
remarks that describe the asymptotic shape of the solution given by Theorem
1.3 and some ways to use it to get multiplicity results (see Remarks 4.12 and
4.13).

2. Notations and preliminary results
Without any loss of generality we may assume a∞ = 1, up to a rescaling, and
0 ∈  R N \Ω if Ω = R N . Throughout the paper we make use of the following
notation:

• H 1(RN ) is the usual Sobolev space endowed with the standard scalar
product and norm

(u, v) :=
RN

(∇u∇v + uv)dx; u 2 :=
RN

∇| u|2 + u 2 dx. (2.10)

We shall use also the equivalent norm

u 2
a :=

Ω
∇| u|2 + a(x)u 2 dx.

• H −1 denotes the dual space of H1(RN ).
• D 1,2 (RN ) is the closure of C∞

0 (RN ) with respect to the norm u D :=

RN ∇| u|2dx
1
2 .

• L q(O), 1 ≤ q ≤ ∞, ⊆O  R N a measurable set, denotes the Lebesgue
space, the norm in L q(O) is denoted by | · | L q (O) when O is a proper
measurable subset of RN and by | · |q when O = R N .

• For u ∈  H 1
0 (Ω) we denote by u also the function in H 1(RN ) obtained

setting u ≡ 0 in R N \Ω.
• S denotes the best Sobolev constant, namely

S = min
u∈D 1,2 (R N )\{0}

RN ∇| u|2dx

|u|22∗
.
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• For any ρ > 0 and for any z ∈  R N , Bρ(z) denotes the ball of radius
ρ centered at z, and for any measurable set ⊂ O  R N , |O| denotes its
Lebesgue measure.

• c, c , C, C , Ci , . . . denote various positive constants.
When ε = 0, (P ε ) becomes

(P )

⎧
⎨

⎩

−Δu + a(x) u = u p−1 in Ω,
u > 0 in Ω,
u ∈  H 1

0 (Ω)

and the related action functional is E : H 1
0 (Ω) → R defined by

E(u) =
1
2 Ω

( ∇| u|2 + a(x) u 2) dx −
1
p Ω

|u|p dx.

Furthermore, we denote by E∞ , Eε,∞ : H 1(RN ) → R the functionals related
to (P ∞ ) and (P ε,∞ ) respectively, defined by

E∞ (u) =
1
2 RN

( ∇| u|2 + u 2) dx −
1
p RN

|u|p dx,

Eε,∞ (u) =
1
2 RN

( ∇| u|2 + u 2) dx −
1
p RN

|u|p dx −
ε

2∗ RN

|u|2
∗

dx.

In a standard way, we consider the following Nehari manifolds:
N = u ∈  H 1

0 (Ω)\{0} : E (u)[u] = 0 ,

N ε = u ∈  H 1
0 (Ω)\{0} : Eε (u)[u] = 0 ,

N∞ = u ∈  H 1(RN )\{0} : E∞ (u)[u] = 0 ,

N ε,∞ = u ∈  H 1(RN )\{0} : Eε,∞ (u)[u] = 0 .

Remark that there exists c > 0 independent of small ε such that
u ≥ c ∀u ∈  Nε,∞ , u a ≥ c ∀u ∈  Nε , (2.11)

indeed
0 = u 2 − |u| p

p − ε|u| 2∗
2∗ ≥ u 2 − c1u p − c1εu 2∗ , ∀u ∈  Nε,∞ ,

0 = u 2
a − |u| p

p − ε|u| 2∗
2∗ ≥ u 2

a − c2u p
a − c2εu 2∗

a , ∀u ∈  Nε .

Straight computations allow to state the following

Lemma 2.1.Let u ∈  H 1
0 (Ω)\{0} and v ∈  H 1(RN )\{0}, then:

• tu ∈  N if and only if t =
u 2

a

|u|p
p

1
p−2

;

• tv ∈  N ∞ if and only if t =
v 2

|v|pp

1
p−2

;
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• tu ∈  N ε if and only if u 2
a = t p−2 |u|p

p + εt 2∗−2 |u|2
∗

2∗ ;
• tv ∈  N ε,∞ if and only if v 2 = t p−2 |v|pp + εt 2∗−2 |v|2∗

2∗ .

Moreover, tu > 0 such that t u u ∈  N is characterized as the unique real value
such that

E(t u u) = max
t>0

E(tu)

and u → t u is a continuous map from H 1
0 (Ω)\{0} in R + . Analogous results

hold if we consider E∞ , E ε and Eε,∞ respectively on N∞ , N ε and N ε,∞ .

Let us define:
m = inf

N ∞

E∞ , mε = inf
N ε,∞

Eε,∞ . (2.12)

We denote by w the unique positive solution, up to translations, of the problem
(P∞ ); it is well known that w ∈  C ∞ (RN ), w is radially symmetric about the
origin, and

w(|x|) e|x| |x| (N−1)/2 → c as |x| → +∞, (2.13)
w (|x|) e|x| |x| (N−1)/2 → −c as |x| → +∞, (2.14)

with c > 0; moreover w ∈  N ∞ and E ∞ (w) = m, namely w is the ground
state solution of (P∞ ) (see [12, 22, 23] and also (2.19), (2.20) in [6] for a precis
estimate of c in (2.13) and (2.14)).

For the limit problem (P ε,∞ ) the following existence result holds.

Theorem 2.2.There exists ε0 > 0 such that for any ε ∈  (0, ε0) problem (Pε,∞ )
has a positive radially symmetric ground state solution wε .

Proof. We first observe that m ε ≤ m, ∀ ε > 0. Indeed let τ ε > 0 be such that
τεw ∈  Nε,∞ , then

mε ≤ E ε,∞ (τ εw) ≤ E ∞ (τ ε w) ≤ E ∞ (w) = m. (2.15)
As shown in [30], by Schwartz symmetrization, in order to solve the min-

imization problem for m ε we can restrict our considerations to
H 1

r (RN ) = {u ∈  H 1(RN ) : u radially symmetric}, N r = N ε,∞ ∩ H1
r (RN ).

Let {u n } n in N r be a minimizing sequence, that is
u n

2 = |u n |pp + ε|u n |2
∗

2∗ , (2.16)

Eε,∞ (un ) =
1
2

− 1
p

u n
2 +

1
p

− 1
2∗

ε|un |2
∗

2∗ = m ε + o(1).

(2.17)
Inequalities (2.15) and (2.17) imply that

u n
2 ≤ 1

2
− 1

p

−1
mε + o(1) ≤

1
2

− 1
p

−1

m + o(1). (2.18)

Observe that from (2.16), (2.11), (2.18) and the Sobolev embedding Theorem
it follows the existence of ε0 > 0 such that, for all n ∈  N,

|un |pp ≥ u n
2 − c εu n

2∗ ≥ const > 0 ∀ε ∈  (0, ε0). (2.19)
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Now, since H1
r (RN ) embeds compactly in L p(RN ) (see [30]) we deduce

the existence of wε ∈ H 1
r (RN ) such that, up to a subsequence,

un
n→∞−−−−→ wε

strongly in L p(RN )
weakly in H 1(RN ) and in L 2∗ (RN ), (2.20)

moreover by (2.19) wε = 0. By Ekeland’s variational principle the minimizing
sequence {un } n in N r can be chosen such that

Eε,∞ (un )[v] = λ n G (un )[v] + o(1)v ∀v ∈  H1
r (RN ) (2.21)

where, for all n ∈  N, λn ∈ R is the Lagrange multiplier and G(u) = E ε,∞ (u)[u].
By definition of N ε,∞ , G(u n ) = 0 for all n ∈  N, so using (2.21), we deduce

0 = G(u n ) = E ε,∞ (un )[un ] = λ n G (un )[un ] + o(1)u n . (2.22)
Hence, taking into account that u n  is bounded and that G (un )[un ] ≤ c < 0
on N r , we get λn = o(1). Choosing v = w ε in (2.21), by (2.20) and standard
arguments it follows that w ε ∈ Nε,∞ .

Using again (2.20), we get

mε ≤ E ε,∞ (wε ) ≤ lim inf
n→∞

1
2

− 1
2∗

u n
2 − 1

p
− 1

2∗
|un |pp = m ε ,

that is w ε is the minimizing function we are looking for. Thus, w ε solves

− Δu + u = |u| p−2 u + ε|u| 2∗−2 u in R N . (2.23)
In order to verify that w ε is strictly positive we just observe that |w ε |

too is a minimizer of Eε,∞ constrained on N ε,∞ , so we can assume wε ≥ 0.
Furthermore, since wε solves (2.23), wε > 0 as a consequence of the maximum
principle.

Proposition 2.3.The following estimate holds:

mε ≤ 1
N

SN/2 1
ε

N−2
2

∀ε > 0. (2.24)

Sketch of the proof. Since the computations that prove (2.24) are classical, we
only sketch them. First we verify (1.8). Observe that for every u ∈  D1,2 (RN )\{0}
the function tu verifies RN ∇| (tu)| 2dx = ε RN |tu| 2∗dx if and only if t =

1
ε

RN ∇| u| 2 dx

RN |u| 2∗dx

1
2∗−2

, and

1
2 RN

∇| (tu)| 2dx −
ε

2∗ RN

|tu| 2∗dx =
1
2

− 1
2∗

t2

RN

∇| u|2dx

=
1
N

1
ε

2
2∗−2

RN ∇| u|2dx
2

2∗−2 +1

RN |u|2∗dx
2

2∗−2

=
1
N

1
ε

N−2
2

RN ∇| u|2dx

|u|2
2∗

N
2

≥ 1
N

1
ε

N−2
2

SN/2 . (2.25)
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So we obtain (1.8) by (2.25), taking into account that the equality in (2.25) is
attained by choosing u as a minimizing function for the Sobolev constant (see
[2, 20, 31]).

Now, let Ū ∈  D 1,2 (RN ) be a fixed radial function that realizes the mini-
mum in (1.8), for example considerŪ(x) = C

(1+|x| 2 )
N−2

2
, where C is a normaliz-

ing constant. In order to prove (2.24), we consider the concentrating sequence
of functions v n (x) = ζ(|x|) n N−2

2 Ū (nx), n ∈  N, where ζ ∈  C∞
0 (R+ , [0, 1]) is a

cut-off function such that ζ(s) = 1, for s ∈  [0, 1]. Then we test the functional
Eε,∞ on the sequence of functions un := t n vn , n ∈  N, where tn is such that
un ∈ Nε,∞ , that is

∇| vn |22 + |v n |22 = t p−2
n |vn |pp + εt 2∗−2

n |vn |2
∗

2∗ . (2.26)

Well known estimates provided in [13] ensure that

|vn − n N−2
2 Ū (nx)|2∗

n→∞
−−−−→ 0, (2.27)

∇| vn ∇− (n
N−2

2 Ū (nx))|2
n→∞
−−−−→ 0, (2.28)

vn
n→∞
−−−−→ 0, in L 2(RN ). (2.29)

From (2.29) and the boundedness of {vn } n in L 2∗ (RN ) we obtain also vn → 0
in L p(RN ), by interpolation. Hence, tn → 1 follows from (2.26) – (2.29) and
so

E ε,∞ (un ) − 1
2 RN

∇| (n
N−2

2 Ū (nx))| 2dx −
ε

2∗ RN

|n
N−2

2 Ū (nx)| 2∗dx n→∞
−−−−→ 0.

Since
1
2 RN

∇| (n
N−2

2 Ū (nx))|2dx −
ε

2∗ RN

|n N−2
2 Ū (nx)|2

∗

dx

=
1
N

1
ε

N−2
2

SN/2 , ∀n ∈  N,

then (2.24) is proved.

Corollary 2.4.For ε small the following estimate holds:

mε < 1
N

SN/2 1
ε

N−2
2

. (2.30)

Indeed, in the proof of Proposition 2.3 we have exhibited a sequence {vn } n of
radial functions in N ε,∞ that converges weakly to 0 in L2∗ (RN ) and such that
Eε,∞ (vn ) → 1

N
1
ε

N−2
2 SN/2 . But in the proof of Theorem 2.2 we have proved

that for small ε every minimizing sequence of radial functions converges weakly
to a nonzero minimizing function of Eε,∞ on Nε,∞ , up to a subsequence. Hence
(2.30) must hold, for small ε.

Let us give another estimate of mε , more precise for small ε, and analyze
its asymptotic behaviour.
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Lemma 2.5.For all ε > 0 the relation m ε ≤ m holds and

lim
ε→0

mε = m.

Proof. Inequality m ε ≤ m has been shown in (2.15).
Now, for ε ∈  (0, ε0) let w ε be the minimizing function whose existence is

stated in Theorem 2.2 and t ε > 0 be such that t ε wε ∈ N∞ , namely

tε =
w ε

2

|wε |pp

1
p−2

. (2.31)

Observe that w ε  is bounded, uniformly with respect to ε ∈  (0, ε 0), because

Eε,∞ (wε ) =
1
2

− 1
p

w ε
2 +

1
p

− 1
2∗

ε|wε |2
∗

2∗ = m ε ≤ m.

Moreover, |wε |pp ≥ c > 0 follows from (2.19). As a consequence, tε is bounded
by (2.31) and

m ≤ E ∞ (t εwε ) = E ε,∞ (t ε wε ) +
ε

2∗ RN
(t εwε )2∗dx (2.32)

≤ E ε,∞ (wε ) +
ε

2∗ RN
(t εwε )2∗dx

= m ε + o(1). (2.33)
Inequality (2.32) completes the proof.

3. Existence of a ground state solution
In this section we prove Theorems 1.1 and 1.2, which provide some cases in
which a least energy solution ū of (P ε ) exists, that is ū ∈  Nε verifies

Eε (ū) = min
N ε

Eε .

A basic tool to prove the existence of a ground state is the analysis of the Palai
Smale sequences at a levelc ((PS)c-sequences for short) below the minimum
of the limit problem (P ε,∞ ). We start with the following lemma.

Lemma 3.1.Let c ∈  R and let {u n } n be a (PS)c-sequence for Eε , then {u n } n

is bounded and c ≥ 0.

Proof. From
Eε (un )[un ] = u n

2
a − |u n |pp − ε|u n |2

∗

2∗ = o(1)u n

we infer

Eε (un ) =
1
2

− 1
p

u n
2
a + ε

1
p

− 1
2∗

|un |2
∗

2∗ + o(1)u n  = c + o(1),

that implies our claims.

Proposition 3.2.Assume that a(x) verifies (1.1). Let ε > 0 and {u n } n be a
(P S)c-sequence for Eε constrained on Nε . If c < m ε then {u n } n is relatively
compact.
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Proof. First, let us observe that the sequence {u n a} n is bounded away from
0, by (2.11), and that it is bounded above, by the argument developed in
Lemma 3.1.

Then, arguing exactly as in (2.21) and (2.22), we get that {u n } n is a
(P S)c-sequence also for the free functional Eε , namely ∀ v ∈  H1

0 (Ω)

Ω
∇un ∇· v dx+

Ω
aun v dx−

Ω
|un |p−2 un v dx−ε

Ω
|un |2

∗−2 un v dx = o(1)v.

(3.34)
From now on, we denote by {un } n not only the sequence {un } n but also

its subsequences.
Since {un } n is bounded in H1

0 (Ω), there exists a function ū ∈  H 1
0 (Ω) such

that

un
n→∞
−−−−→ ¯u

⎧
⎨

⎩

weakly in H 1
0 (Ω) and in L 2∗ (Ω)

strongly in L
p
loc (RN ) and in L 2

loc (RN )
a.e. in RN .

(3.35)

By (3.35) and (3.34), ū is a weak solution of (P ε ), hence

¯u 2
a = | ū|pp + ε| ū|2

∗

2∗ . (3.36)

We have to prove that un → ū in H 1(Ω). Assume by contradiction that un u
in H 1(Ω), so the sequence vn := u n − ū verifies v n  ≥ ˆ c > 0, ∀n ∈  N. By
(3.35) and the Brezis-Lieb Lemma,

Eε (un ) = E ε (ū) + E ε (vn ) + o(1) (3.37)
and, since ū is a solution of (P ε ), {v n } n turns out to be a (PS)-sequence for
Eε . We claim that

|vn |2
∗

2∗ ≥ c̃ > 0. (3.38)
If this is not the case, un → ū in L 2∗ (Ω) and by interpolation in L p(Ω), because
{u n } n is bounded in L 2(Ω). So, from u n

2
a = |u n |pp + ε|u n |2

∗

2∗ and (3.36) we
get

lim
n→∞

u n
2
a = | ū|pp + ε| ū|2

∗

2∗ = ¯ u 2
a

which implies un → ū in H 1(Ω), contradicting our assumption.
Let {y i } i = Z N and let us decompose RN in the N -dimensional hyper-

cubes Qi with unitary sides and vertices in y i . Since vn ∈ L 2∗ (RN ), we can
define

dn = max
i∈N

|vn |L 2∗ (Q i ) ∀n ∈  N.

By (3.38) and the boundedness of {un } n in H 1(Ω)

0 < c̃ ≤ |v n |2
∗

2∗ =
∞

i=1

|vn |2
∗

L 2∗ (Q i )

≤ d 2∗−2
n

∞

i=1

|vn |2L 2∗ (Q i )
≤ c d2∗−2

n

∞

i=1

v n
2
H 1 (Q i )

≤ c d2∗−2
n , (3.39)
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and, then, dn ≥ γ > 0 ∀ n ∈  N, where γ > 0.
Now, let us call zn the center of a hypercube Qi n such that

|vn |L 2∗ (Q i n ) = d n

and put
wn (x) = v n (x + z n ).

Since {vn } n is a (PS)-sequence, {wn } n is a (PS)-sequence, too.
Setting Q0 = − 1

2
, 1

2
N

, one of the following two cases occurs:

(a) Q 0
|wn (x)| pdx ≥ c > 0

(b) Q 0
|wn (x)| pdx n→∞

−−−−→ 0.
(3.40)

Assume first that (3.40)(a) holds. Then |zn | → ∞ because vn → 0 in L
p
loc (RN ),

so, since {un } n is a (P S)-sequence and ¯u is a solution of (P ε ), we get

RN

∇wn ∇· φ dx+
RN

wn φ dx−
RN

|wn |p−2 wn φ dx − ε
RN

|wn |2
∗−2 wn φ dx

=
RN

[1 − a(· + zn )]wn φ dx + o(1)φ = o(1)φ, ∀φ ∈  C∞0 (RN ).

(3.41)
The sequence {wn } n is bounded in H 1(RN ), so w̄ ∈  H 1(RN ) exists such that

wn
n→∞
−−−−→ w̄

⎧
⎨

⎩

weakly in H 1(RN ) and in L 2∗ (RN )
strongly in L

p
loc (RN ) and in L 2

loc (RN )
a.e. in RN .

(3.42)

Now, from (3.40)(a), (3.41), (3.42) we deduce that w̄ is a nonzero solution of
(Pε,∞ ). Then {w n − w̄} n is a (P S)-sequence for Eε,∞ and Eε,∞ (wn − w̄) ≥ o(1)
can be deduced arguing as in Lemma 3.1. Hence, applying the Brezis-Lieb
Lemma, we get

c = E ε (un ) + o(1) = E ε (ū) + E ε,∞ ( w̄)
+E ε,∞ (wn − w̄) + o(1) ≥ E ε,∞ ( w̄) + o(1) ≥ m ε + o(1)

contrary to the assumption c < m ε and proving that (3.40) (a) can not be
true.

To conclude the argument, we assume that (3.40) (b) holds and show tha
a contradiction arises again. Remark that in this case we can also assume that

d̃n = max
i∈N

|vn |L p (Q i ) = max
i∈N

|wn |L p (Q i )
n→∞
−−−−→ 0. (3.43)

Indeed, if it is not true, we can argue by substituting Q i n with a cube Q ĩ n

such that |v n |L p (Q ĩ n ) ≥ c 1 > 0 and then proceed as in case (3.40)(a). So, let
us assume (3.43). Then, rewriting the inequalities in (3.39) with the L p-norm
in place of the L 2∗ -norm and d̃n in place of dn , we obtain

|vn |p = |w n |p
n→∞
−−−−→ 0. (3.44)

Notice that (3.44) implies
wn

n→∞
−−−−→ 0 in L 2

loc (RN ). (3.45)
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Now, assume that {zn } n is bounded, so that in our argument we can consider
zn = 0, ∀n ∈  N. Let R > 0 be such that |a(x) − 1| < η ∀ x ∈  R N \B R (0),
where η is a suitable small constant to be fixed later. Consider the functionals
f̂ , f̂ ∞ : D1,2 (RN ) → R defined by

f̂ (u) =
1
2 RN

∇| u|2dx +
1
2 B R (0)

(a(x) − 1)u 2dx −
ε

2∗ RN

|u|2
∗

dx,

f̂ ∞ (u) =
1
2 RN

∇| u|2dx −
ε

2∗ RN

|u|2∗dx.

Then, (3.34), (3.44), and (3.45) imply that {w n } n is a (PS)-sequence also for
f̂ . So, Theorem 2.5 of [8] applies: there exist a number k ∈  N\{0}, k sequences
of points {y j

n } n , 1 ≤ j ≤ k, k sequences of positive numbers {σ j
n } n , 1 ≤ j ≤ k,

with σ j
n → 0 because of (3.45), such that

wn (x) =
k

j=1

(σ j
n )− N−2

2 Uj
x − y j

n

σj
n

+ ϕ n (x),

with ϕ n → 0 in D 1,2 (RN ) and U j nontrivial solutions of

− ΔU (x) = ε|U (x)| 2∗−2 U (x) x ∈  RN ; (3.46)

moreover,

f̂ (wn ) =
k

j=1

f̂ ∞ (Uj ) + o(1). (3.47)

By the estimate of the ground state level of the solutions of (3.46) given in
(1.8), we get

f̂ ∞ (Uj ) ≥
1
N

SN/2 1
ε

N−2
2

. (3.48)

Finally, by (3.37), (3.47), (3.44), (3.48) and Proposition 2.3 we have
Eε (un ) = E ε (ū) + E ε (vn ) + o(1)

≥ E ε (ū) + f̂ (wn ) −
η

2
|wn |22 − 1

p
|wn |pp + o(1)

≥ E ε (ū) +
k

j=1

f̂ ∞ (Uj ) − ĉη + o(1)

≥ 1
N

SN/2 1
ε

N−2
2

− ĉη + o(1) (3.49)

≥ m ε − ĉη + o(1)
> c

for η small and large n. So a contradiction arises because of the assumption
Eε (un ) → c.

Finally, let us consider |zn | → ∞. In such a case, the argument developed
in the case {zn } n bounded can be repeated in an easier way. Indeed by (3.35),
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(3.44) and (3.45) we can simply consider the functional̂f ∞ in place of f̂ and get
a contradiction with E ε (un ) → c < m ε as in (3.49). So the proof is completed.

Proof of Theorem 1.1. By Remark 1.4 we may assume that a(x) ≡ 1. We claim
that

inf
N ε

Eε < m ε . (3.50)

Since Ω = R N , we can consider the minimizing function w ε introduced in
Theorem 2.2 and t > 0 such that tw ε ∈ Nε . Then

inf
N ε

Eε ≤ E ε (tw ε ) < E ε,∞ (tw ε ) ≤ E ε,∞ (wε ) = m ε .

By (3.50) and Proposition 3.2 the existence of a minimizing function ū for the
functional E ε constrained on Nε follows. Arguing as in the proof of Theorem
2.2 one can verify that ū is a constant sign function, which can be chosen
strictly positive.

Proof of Theorem 1.2. Let z ∈  RN be such that (1.5) holds and tε > 0 be such
that t ε wz ∈ N ε . In order to obtain the statement, it is enough to prove that
for small ε

Eε (t εwz ) < m ε . (3.51)
Indeed, once (3.51) is proved, inf N ε

Eε < m ε follows and we can argue as in
the proof of Theorem 1.1.

Let s > 0 be such that sw z ∈ N , namely s = wz
2
a

|w z |p
p

1
p−2 . We claim that

(1.5) implies
E(sw z ) < m. (3.52)

Let us evaluate

E(sw z ) =
1
2

− 1
p

sw z
2
a =

1
2

− 1
p

 
w z

2
a

|wz |pp

2
p−2

w z
2
a

=
1
2

− 1
p

wz

|wz |p

2

a

p
p−2

. (3.53)

Observe that, by (1.5),
wz

|wz |p

2

a

<
w 2

|w|2
p

(3.54)

and that, since w is the ground state of (P ∞ ),

w 2 = |w| p
p and E∞ (w) =

1
2

− 1
p

w 2 = m. (3.55)

Then, putting (3.54) in (3.53) and using (3.55), we get (3.52).
Finally, remark that t ε → s, as ε → 0, because w z

2
a = t p−2

ε |wz |pp +
εt 2∗−2

ε |wz |2
∗−2

2∗ , and that m ε → m as ε → 0, by Lemma 2.5, so for small ε
(3.51) follows from (3.52).
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4. Existence of a bound state solution
In this section we construct the tools for the proof of Theorem 1.3 and prove
it. We assume Ω = R N or a(x) ≡ 1. First we prove that no ground state
solution can exist, then we show that, in spite of the difficulties due to the
few information about the solutions of (Pε,∞ ), a local compactness can be
recovered in some interval of the functional values.

Proposition 4.1.Assume ε ∈  [0, ε0). Let a(x) ≥ 1 and suppose that at least
one assumption between Ω = RN and a(x) ≡ 1 holds true, then

inf
N ε

Eε = m ε (4.56)

and the minimization problem (4.56) has no solution (here we mean E 0 =
E, N 0 = N , m0 = m, . . .).

Proof. Let u ∈  N ε and tu ∈ R be such that tu u ∈  Nε,∞ . Since a(x) ≥ 1 a.e. in
RN , we have

mε ≤ E ε,∞ (t u u) ≤ E ε (t u u) ≤ E ε (u).

Hence inf
N ε

Eε ≥ m ε . Let us prove that inf
N ε

Eε ≤ m ε .

First, assume Ω = RN . In order to exhibit a sequence {u n } n in N ε such
that E ε (un ) → m ε , we define u n = t n [ϑ(·) wε (· − ne 1)], where wε is the
minimizing function introduced in Theorem 2.2, e 1 is the first element of the
canonical basis of RN , ϑ is the cut-off function introduced in (1.4) and t n > 0
is such that u n = t n [ϑ(·) wε (· − ne1)] ∈  N ε .

Let us fix r > 1 such that R N \Ω ⊂  B r−1 (0), then

|ϑ(·) wε (· − ne1) − w ε (· − ne1)|p
p =

B r (0)
|(ϑ(x) − 1) w ε (x − ne 1)|p dx

≤
B r (0)

|wε (x − ne 1)|p dx =
B r (−ne 1 )

|wε (z)|p dz = o(1).

Hence |ϑ(·) wε (· − ne1)|p
p → |wε |pp. Analogously we have |ϑ(·) wε (· − ne1)|2∗

2∗ →
|wε |2

∗

2∗ and ϑ(·)w ε (· − ne1) 2
a → w ε

2.
Taking into account u n = t n [ϑ(·) wε (· − ne1)] ∈  N ε and Lemma 2.1, we

have

ϑ(·)w ε (· − ne1) 2
a − t p−2

n |ϑ(·)wε (· − ne1)|p
p − ε t 2∗−2

n |ϑ(·)wε (· − ne1)|2∗
2∗ = 0,

(4.57)
so that

tp−2
n |ϑ(·)wε (· − ne1)|p

p + ε t 2∗−2
n |ϑ(·)wε (· − ne1)|2∗

2∗

= ϑ(·)w ε (· − ne1) 2
a = w ε

2 + o(1).

Hence {tn } n is bounded and, up to a subsequence, tn → t. Getting n → ∞ in
(4.57) we obtain

w ε
2 − t p−2 |wε |pp − ε t 2∗−2 |wε |2

∗

2∗ = 0,
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namely tw ε ∈ N ε,∞ . Since wε ∈ N ε,∞ , we deduce that t = 1. It follows
that u n

2 → w ε
2, |un |pp → |w ε |pp and |u n |2

∗

2∗ → |w ε |2
∗

2∗ . Then E ε (un ) →
Eε,∞ (wε ) = m ε and we can conclude inf

N ε

Eε ≤ m ε .

If Ω = R N , then we set u n = t n wε (· − ne 1) and the same argument
developed in the case Ω = RN shows that E(u n ) → m ε , so that inf

N ε

Eε ≤ m ε

holds again.
Now, let us prove that mε is not attained in N ε . By contradiction, assume

that u ∈  N ε verifies Eε (u) = m ε .
First, assume Ω = RN . Let t > 0 be such that t u ∈  N ε,∞ , then

mε ≤ E ε,∞ (tu) ≤ E ε (tu) ≤ E ε (u) = m ε ,

i.e. t u is a minimizing function for E ε,∞ on N ε,∞ . But then the arguments
developed in the proof of Theorem 2.2 show that |t u| > 0, contrary to u ≡ 0
in R N \Ω.

Now, assume Ω = RN and a ≡ 1. Again, let t > 0 be such that tu ∈  Nε,∞ ,
then

mε = E ε (u) ≥ E ε (tu) > E ε,∞ (tu) ≥ m ε ,

that is a contradiction, and the proof is complete.

About the compactness, in the subcritical case we remind an almost
classical result (see f.i. [7]).

Proposition 4.2.Let {v n } n be a (P S) c-sequence of E, let c belong to the
interval (m, 2m), then {v n } n is relatively compact and, up to a subsequence,
converges to a nonzero function v̄ ∈  H 1

0 (Ω) such that E( v̄) ∈  (m, 2m).

Here we prove:

Proposition 4.3.To every δ ∈  (0, m/2) there corresponds ε δ > 0 having the
following property: ∀ε ∈  (0, εδ), ∀c ∈  (m + δ, 2m − δ), if {u n } n is a (P S) c-
sequence of Eε constrained on Nε , then un  ¯ u = 0 weakly in H1(Ω). Moreover
ū is a critical point of E ε on N ε and Eε (ū) ≤ c.

Proof. As in the proof of Proposition 3.2, we deduce that every (PS)c-sequence
for the constrained functional is also a (PS) c-sequence for the free functional,
and its weak limit is a critical point. Moreover, by Lemma 3.1 every (PS)-
sequence is bounded in H1(RN ), so it has a weak limit in H 1(RN ). Arguing
by contradiction, then we can assume that there exist̄δ ∈  (0, m/2), a sequence
{cn } n in (m + δ̄, 2m − δ̄), a sequence {εn } n in (0, +∞), with ε n → 0, and, for
every n ∈  N, a sequence {unk } k in H 1

0 (Ω) such that

Eεn (un
k )

k→∞−−−−→ cn , Eεn (un
k )

k→∞
−−−−→ 0,

un
k

k→∞
−−−−→ 0 weakly in H 1(Ω).

Since p is subcritical, we can also assume

un
k

k→∞
−−−−→ 0 in L

p
loc (RN ).
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Now, up to a subsequence, cn → c̄ ∈  [m+ δ̄, 2m−δ̄] and by a diagonal argument
we build a sequence {vn } n := {u n

kn
} n such that

Eεn (vn )
n→∞
−−−−→ ¯c, Eεn (vn )

n→∞
−−−−→ 0, vn

n→∞
−−−−→ 0 in L

p
loc (RN ).

(4.58)
Furthermore

Eεn (vn ) =
1
2

− 1
p

v n
2
a +

1
p

− 1
2∗

εn |vn |2
∗

2∗ = c̄ + o(1) (4.59)

implies {v n a} n bounded. Hence we obtain

E(v n ) = E εn (vn ) +
εn

2∗ Ω
|vn |2

∗

dx n→∞
−−−−→ ¯c

E (vn ) H −1 ≤ E εn (vn ) H −1 + C ε n v n
2∗−1 n→∞

−−−−→ 0,

so that {v n } n is a (P S)c̄ -sequence of E, with c̄ ∈  (m, 2m). Then, by Proposi-
tion 4.2, v̄ ∈  H 1(Ω), v̄ = 0, exists such that v n → v̄, contrary to (4.58).

Finally, if {u n } n is a (PS) c-sequence for Eε , constrained on N ε , and
un  ¯ u, then E ε (ū) ≤ c by (4.59) with ε n ≡ ε and c in place of c̄.

4.1.Energy estimates
Here we first construct some test functions to explore some sublevels of the
functional Eε and we prove some basic estimates on the action of these test
functions. Later, we introduce a barycenter map to analyse some features of
the sublevels.

Let us set Σ = ∂B 2(e1), where e1 is the first element of the canonical
basis of RN , and for any ρ > 0 define the map ψ ρ : [0, 1] × Σ −→ H 1

0 (Ω) by
ψρ[s, y](x) = ϑ(x) [(1 − s)w(x − ρe 1) + sw(x − ρy)] ,

where w is the ground state solution of (P∞ ) and ϑ is the cut-off function
defined in (1.4). Let us denote by t ρ,s,y and τ ρ,s,y the positive real numbers
such that t ρ,s,y ψρ[s, y] ∈  Nε and τρ,s,y ψρ[s, y] ∈  N .

Lemma 4.4.There exists ρ > 0 and ∈ A  (m, 2m) such that for any ρ > ρ and
for any ε > 0

A ε,ρ = max {E ε (t ρ,s,y ψρ[s, y]) : s ∈  [0, 1], y ∈  Σ} < A < 2m.

Before proving Lemma 4.4, let us recall two technical lemmas. We refer
the readers to [18] for the proof of Lemma 4.5 while the proof of Lemma 4.6
is in [5] (see also Lemma 2.9 in [16]).

Lemma 4.5.For all a, b ≥ 0, for all p ≥ 2, the following relation holds true

(a + b)p ≥ a p + bp + (p − 1)(a p−1 b + abp−1 ).

Lemma 4.6.If g ∈  L ∞ (RN ) and h ∈  L 1(RN ) are such that, for some α ≥ 0,
b ≥ 0, γ ∈  R

lim
|x|→∞

g(x)eα|x| |x|b = γ (4.60)
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and

RN
|h(x)|eα|x| |x|bdx < ∞, (4.61)

then, for every z ∈  RN \{0},

lim
ρ→∞ RN

g(x + ρz)h(x)dx eα|ρz| |ρz|b = γ
RN

h(x)e−α x·z
|z| dx.

Proof of Lemma 4.4. In this proof we shall consider r > 1 fixed such that
RN \Ω ⊂  B r−1 (0), if Ω = R N , and any fixed r > 1 if Ω = R N .

Let us set δρ = ρ(N−1)/2 e2ρ −1 and, in order to simplify the notations,
we omit s, y and write t ρ = t ρ,s,y , τ ρ = τ ρ,s,y and ψρ = ψ ρ[s, y]. Being τρ ψρ ∈

N ,

τ ρ ψρ
2
a = |τ ρ ψρ|pp, τρ =

ψ ρ
2
a

|ψρ|pp

1/p−2

hold true, so, for every ε > 0, we have
Eε (t ρ ψρ) ≤ E(t ρ ψρ) ≤ E(τ ρ ψρ)

=
1
2

τ ρ ψρ
2
a − 1

p
|τρ ψρ|pp

=
1
2

− 1
p

τ 2
ρ ψ ρ

2
a

=
1
2

− 1
p

 
ψ ρ

2
a

|ψρ|2p

p
p−2

. (4.62)

So, to get the statement of the Lemma, we need to estimate the ratio in the
last line of (4.62).

Estimate of ψ ρ
2
a : we have

ψ ρ
2
a = ϑ(·) [(1 − s)w(· − ρe 1) + sw(· − ρy)] 2

a

≤
RN
∇| ϑ(x)| 2 (1 − s)w(x − ρe 1) + sw(x − ρy)

2
dx

+ 2
RN

ϑ(x)∇ϑ(x) · [(1 − s)w(x − ρe 1) + sw(x − ρy)] ·

∇·  [(1 − s)w(x − ρe1) + sw(x − ρy)] dx

+
RN

∇ [(1 − s)w(x − ρe1) + sw(x − ρy)]
2

+a(x) (1 − s)w(x − ρe 1) + sw(x − ρy)
2

dx. (4.63)

Let us evaluate the addends in (4.63). By direct computation and since w is a
solution of (P ∞ ), we obtain

RN
∇|  [(1 − s)w(x − ρe1) + sw(x − ρy)] | 2

+a(x)[(1 − s)w(x − ρe 1) + sw(x − ρy)] 2 dx
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= (1 − s)2 + s2 w 2 + 2s(1 − s)
RN

wp−1 (x − ρe1)w(x − ρy) dx

+
RN

(a(x) − 1) (1 − s)w(x − ρe 1) + s w(x − ρy)
2

dx. (4.64)

By Lemma 4.6 there exists c1 > 0 such that

lim
ρ→∞

δ−1
ρ

RN

wp−1 (x − ρe1) w(x − ρy) dx = (4.65)

= lim
ρ→∞

δ−1
ρ

RN
w(x − ρe1) wp−1 (x − ρy) dx = c 1.

Taking into account assumption (1.9) and (2.13), by Lemma 4.6 we have

RN
(a(x) − 1) (1 − s)w(x − ρe 1) + s w(x − ρy)

2
dx

≤ 2
RN

(a(x) − 1) w2(x − ρe1) + w 2(x − ρy) dx = o(δρ).

Hence (4.64) becomes

RN
∇|  [(1 − s)w(x − ρe1) + sw(x − ρy)] | 2

+a(x)[(1 − s)w(x − ρe 1) + sw(x − ρy)] 2 dx

≤ (1 − s)2 + s2 w 2 + 2s(1 − s)c1 δρ + o(δρ). (4.66)

Since ∇ ϑ has support in B r (0) and |y| ≥ 1 ∀ y ∈  Σ, from (2.13) it follows

RN
∇| ϑ(x)| 2 (1 − s)w(x − ρe 1) + sw(x − ρy)

2
dx

≤ 2 ∇| ϑ| ∞
B r (0)

w2(x − ρe1) + w 2(x − ρy) dx = o(δρ).
(4.67)

Taking into account (2.14) and arguing as above we obtain

2
RN

ϑ(x)∇ϑ(x) · [(1 − s)w(x − ρe 1) + sw(x − ρy)] ·

∇·  [(1 − s)w(x − ρe1) + sw(x − ρy)] dx (4.68)

=
1
2 B r (0)

∇(ϑ(x)) 2 ∇·  [(1 − s)w(x − ρe1) + sw(x − ρy)] 2 dx = o(δρ).

By (4.63), (4.66), (4.67) and (4.68) we deduce

ψ ρ
2
a ≤ (1 − s)2 + s2 w 2 + 2s(1 − s)c1 δρ + o(δρ). (4.69)



Page 20 of 28 S. Lancelotti and R. Molle

Estimate of |ψρ|pp: since 0 ≤ ϑ(x) ≤ 1 in R N and ϑ ≡ 1 in R N \B r (0), we
get

|ψρ|pp =
RN

ϑ(x) [(1 − s)w(x − ρe 1) + sw(x − ρy)]
p

dx

≥
RN

(1 − s)w(x − ρe 1) + sw(x − ρy)
p

dx

−
B r (0)

(1 − s)w(x − ρe 1) + sw(x − ρy)
p

dx.

By the asymptotic behaviour of w,

B r (0)
(1 − s)w(x − ρe 1) + sw(x − ρy)

p
dx

≤ 2 p−1

B r (0)
[wp(x − ρe1) + w p(x − ρy)] dx = o(δ ρ).

Therefore, from Lemma 4.5 and (4.65) it follows

|ψρ|pp ≥
RN

(1 − s)w(x − ρe 1) + sw(x − ρy)
p

dx + o(δρ)

≥ [(1 − s) p + sp] |w|pp + (p − 1) (1 − s)p−1 s + (1 − s)s p−1 c1 δρ + o(δρ).
(4.70)

Estimate of (4.62): combining estimates (4.69) and (4.70) and taking
advantage of a Taylor expansion, we obtain for any s ∈  [0, 1] and y ∈  Σ

ψ ρ 2
a

|ψρ |2p
≤ [(1 − s) 2 + s 2 ] w 2 + 2s(1 − s)c 1 δρ + o(δ ρ )

[(1 − s) p + s p ] |w|
p
p + (p − 1) [(1 − s) p−1 s + (1 − s)s p−1 ] c1 δρ + o(δ ρ )

2/p

=
(1 − s)2 + s2

[(1 − s)p + sp]2/p

w 2

|w|2
p

+ γ(s)δ ρ + o(δρ),

where

γ(s) =
2s(1 − s)c1

[(1 − s)p + sp]2/p |w|2
p

1 −
p − 1

p
(1 − s)2 + s2

(1 − s)p + sp (1 − s)p−2 + sp−2 .
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Since p > 2 we have that γ(1/2) < 0, so there exist c > 0 and a neighbourhood
I(1/2) of 1/2 such that for any s ∈  I(1/2) and any y ∈  Σ

Eε (t ρψρ) ≤
1
2

− 1
p

 
ψ ρ

2
a

|ψρ|2p

p
p−2

≤ 1
2

− 1
p

(1 − s)2 + s 2

[(1 − s)p + sp]2/p

w 2

|w|2
p

+ γ(s)δ ρ + o(δρ)

p
p−2

≤ 1
2

− 1
p

 
2

p−2
p

w 2

|w|2
p

p
p−2

− cδρ + o(δρ)

= 2
1
2

− 1
p

|w|p
p − cδρ + o(δρ)

= 2m − cδ ρ + o(δρ),

where we have used w 2 = |w| p
p and E∞ (w) = 1

2
− 1

p
|w|p

p = m.
Similar computations show that for any s ∈  [0, 1]\I(1/2) and y ∈  Σ we

have
lim

ρ→∞
max{E ε (t ρψρ) : s ∈  [0, 1]\I(1/2), y ∈  Σ}

≤ max

⎧
⎨

⎩
(1 − s)2 + s2

[(1 − s)p + sp]2/p

p
p−2

m : s ∈  [0, 1]\I(1/2)

⎫
⎬

⎭< 2m.

Finally, we may conclude that the relation
A ε,ρ = max {E ε (t ρ,s,y ψρ[s, y]) : s ∈  [0, 1], y ∈  Σ} < 2m

holds true for ρ large enough, independent of ε > 0.

Corollary 4.7.There exist ρ, ε > 0 such that for any ρ > ρ and for any ε ∈ 
(0, ε)

A ε,ρ = max {E ε (t ρ,s,y ψρ[s, y]) : s ∈  [0, 1], y ∈  Σ} < 2m ε .

Proof. It is a direct consequence of Lemmas 2.5 and 4.4.

The following definition of barycenter of a function u ∈  H 1(RN )\ {0} ,
has been introduced in [19]. We set

μ(u)(x) =
1

|B1(0)| B 1 (x)
|u(y)|dy x ∈  RN (4.71)

and we remark that μ(u) is bounded and continuous, so we can introduce the
function

û(x) = μ(u)(x) −
1
2

max μ(u)
+

x ∈  RN , (4.72)

that is continuous and has compact support. Thus, we can set β : H1(RN )\{0}
→ RN as

β(u) =
1

|û|1 RN
û(x) x dx.
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The map β has the following properties:

β is continuous in H 1(RN )\{0}; (4.73)
if u is a radial function, then β(u) = 0; (4.74)
β(tu) = β(u) ∀t ∈  R\{0}, ∀u ∈  H1(RN )\{0}; (4.75)
β(u(x − z)) = β(u) + z ∀z ∈  RN ∀u ∈  H1(RN )\{0}. (4.76)

Let us set

C0 = inf{E(u) : u ∈  N , β(u) = 0}, C 0,ε = inf{E ε (u) : u ∈  Nε , β(u) = 0}.

Lemma 4.8.The following facts hold:

(a) C 0 > m;
(b) lim

ε→0
C0,ε = C 0.

Proof. Let us prove inequality a). By Proposition 4.1, C0 ≥ m. Assume by
contradiction that C 0 = m. Let {u n } n be a sequence in N with β(u n ) = 0
such that E(u n ) → m and t n > 0 be such that t n un ∈ N ∞ , ∀n ∈  N. Since
a(x) ≥ 1 a.e. in R N we have

m ≤ E ∞ (t n un ) ≤ E(t n un ) ≤ E(u n ) = m + o(1), (4.77)

that implies that {t n un } n is a minimizing sequence for E ∞ on N ∞ . Hence
there exists a sequence {yn } n in R N such that

tn un (x) = w(x − y n ) + φn (x), φn → 0 strongly in H 1(RN )

(see [7, Lemma 3.1]). By (4.75), (4.76) we have

0 = β(u n ) = β(t n un ) = β(w(· − y n ) + φn ) = β(w + φ(· + y n )) + y n .

From φn → 0 strongly in H 1(RN ) and (4.73), (4.74), it follows that β(w +
φ(· + yn )) → β(w) = 0, because w is radially symmetric. Hence yn → 0 and
tn un → w strongly in H 1(RN ). We shall prove that this is not possible. If
Ω = R N then t n un ≡ 0 in R N \Ω would imply w ≡ 0 in R N \Ω, contrary to
w > 0 in R N . If Ω = R N and a(x) ≡ 1,then, taking into account (4.77), we
have

m = E ∞ (w) < E(w) = lim
n→∞

E(t n un ) ≤ lim
n→∞

E(u n ) = m,

a contradiction. So a) is proved.
Let us prove b). Let ε > 0 be fixed and for every η > 0 let u η ∈ N be

such that β(u η) = 0 and E(u η) ≤ C 0 + η, moreover let sη > 0 be such that
sηuη ∈ Nε . Then

C0,ε ≤ E ε (sηuη) ≤ E(s ηuη) ≤ E(u η) ≤ C 0 + η,

so, by the arbitrary choice of η, we get

C0,ε ≤ C 0 ∀ε > 0. (4.78)



Positive solutions for autonomous and non-autonomous Page 23 of 28

Let v ε ∈ Nε so that β(v ε ) = 0 and E ε (vε ) ≤ C 0,ε + ε, and let t ε > 0 such that
tε uε ∈ N . Then

C0 ≤ E(t εvε ) = E ε (t ε vε ) +
ε

2∗
|t ε vε |2

∗

2∗

≤ E ε (vε ) +
ε

2∗
|t ε vε |2

∗

2∗

≤ C 0,ε + ε +
ε

2∗
t2∗
ε |vε |2

∗

2∗ .

(4.79)

Now, observe that by (4.78)

Eε (vε ) =
1
2

− 1
p

v ε
2
a + ε

1
p

− 1
2∗

|vε |2
∗

2∗ ≤ C 0,ε + ε ≤ C 0 + ε,

that implies that |v ε |2
∗

2∗ is bounded. Moreover, taking into account a(x) ≥ 1
a.e. in RN and vε ∈ Nε , and arguing as in the proof of (2.11), we deduce that
v ε a → 0. Hence, as in (2.19), we conclude that |vε |p → 0 too. Finally, since
tε vε ∈ N , by Lemma 2.1 we have that {t ε } is bounded. So, from (4.79) we
infer lim inf ε→0 C0,ε ≥ C 0 that, combined with (4.78), gives b).

Lemma 4.9.There exists  ε > 0 such that for any ε ∈  (0, ε) the inequality
C0,ε > C0 +m

2
holds.

Proof. The assertion follows combining (a) and (b) of Lemma 4.8.

Lemma 4.10.Let A ε,ρ be as in Lemma 4.4. Then ρ > 0 exists such that C0,ε ≤
A ε,ρ ∀ρ > ρ, ∀ ε > 0.

Proof. We claim that, for ρ large, β ϑ(·)w(· − ρy) · y > 0 ∀ y ∈  Σ. Indeed, by
(4.73)–(4.76) we have

β ϑ(·)w(· − ρy) − ρy = β ϑ(· + ρy) w
ρ→∞
−−−→ 0,

because ϑ(· + ρy)w → w in H 1(RN ) as ρ → ∞. Hence

β(ϑ(·)w(· − ρy)) = ρy + o(1),

that implies the claim. So, for ρ large, the deformation G : [0, 1]×Σ → RN \{0}
given by

G(s, y) = sβ(ψρ[1, y]) + (1 − s) y (4.80)
is well defined. Then, the existence of (sρ, yρ) ∈  [0, 1]×Σ such that β(ψρ[sρ, yρ])
= 0 follows, because by the continuity of the maps β and ψρ and the invariance
of the topological degree by homotopy we have shown that 0 = d(G, Σ ×
[0, 1), 0) = d(β ◦ ψρ, Σ × [0, 1), 0).

By (4.75) we also have β(tρ,s ρ ,y ρ
ψρ[sρ, yρ]) = 0. Since t ρ,s ρ ,y ρ

ψρ[sρ, yρ] ∈ 
N ε , the assertion follows.

Lemma 4.11.Let ε̃ as in Lemma 4.9 and ε ∈  (0, ˜ε). There exists  ρ > 0 such
that for any ρ >  ρ

Bε,ρ := max{E ε (t ρ,1,y ψρ[1, y]) : y ∈  Σ} < C 0,ε .
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Proof. Let us set t ρ = t ρ,1,y and ψρ = ψ ρ[1, y]. By contradiction, assume that
there exist ρn → ∞ and y n ∈ Σ such that E ε (t ρn

ψρn ) ≥ C 0,ε for every n ∈  N.
Since tρn

ψρn
∈ Nε we can write

Eε (t ρn
ψρn ) =

1
2

− 1
p

t ρn
ψρn

2
a + ε

1
p

− 1
2∗

|tρn
ψρn

|2
∗

2∗

=
1
2

− 1
p

t2
ρn ϑw(· − ρ n yn ) 2

a + ε
1
p

− 1
2∗

t2∗
ρn |ϑw(· − ρn yn )|2∗

2∗ .

(4.81)
Observe that in our setting 0 < m ≤ C 0,ε ≤ E ε (t ρn

ψρn ) ≤ A ε,ρ < 2m and that
0 < c ≤ ϑw(· − ρ n yn ) a ≤ C < ∞, ∀ n ∈  N. Hence from (4.81) it follows that
0 < c1 ≤ t ρn

≤ C 1 < ∞. So, up to a subsequence, we can assume tρn → t > 0.
Since ρn → ∞, the same estimates provided in the proof of Lemma 4.4

prove Eε (t ρn
ψρn ) → E ε,∞ (tw), and we get

C0,ε ≤ E ε,∞ (tw) = E ∞ (tw) −
ε

2∗
|tw| 2∗

2∗

≤ E ∞ (w) −
ε

2∗
|tw| 2∗

2∗

= m −
ε

2∗
|tw| 2∗

2∗ < m,

contrary to Lemmas 4.9 and 4.8 (a).

4.2.Proof of theorem 1.3
Let us recall the values

A ε,ρ = max{E ε (t ρ,s,y ψρ[s, y]) : s ∈  [0, 1], y ∈  Σ},

Bε,ρ = max{E ε (t ρ,1,y ψρ[1, y]) : y ∈  Σ},

C0,ε = inf{E ε (u) : u ∈  Nε , β(u) = 0}. (4.82)
By Corollary 4.7 and Lemmas 4.4, 4.8, 4.9, 4.10 and 4.11, the inequalities

⎧
⎨

⎩

(a) Bε,ρ < C 0,ε ≤ A ε,ρ

(b) m < c0 +m
2

< C 0,ε ≤ A ε,ρ ≤ A < 2m
(c) A ε,ρ < 2 mε

(4.83)

hold true for every ρ > max{¯ρ, ρ, ρ} and for every 0 < ε < min{¯ ε, ε}. Let 0 <
δ < min m

2 , 2m − A, C0 −m
2 and let us consider εδ according to Proposition

4.3.
We claim that E ε constrained on Nε has a (PS)-sequence in [C0,ε , Aε,ρ ]

for every 0 < ε < ε := min{ε δ, ε̄, ε}. This done, the existence of a non-zero
critical point ¯u with E ε (ū) ≤ A ε,ρ follows from Proposition 4.3.

Assume, by contradiction, that no (PS)-sequence exists in [C 0,ε , Aε,ρ ].
Then, usual deformation arguments imply the existence of η > 0 such that
the sublevel EC0,ε −η

ε := {u ∈  N ε : Eε (u) ≤ C 0,ε − η} is a deformation retract
of the sublevel E A ε,ρ

ε := {u ∈  N ε : Eε (u) ≤ A ε,ρ }, namely there exists a
continuous function σ : E A ε,ρ

ε → E C0,ε −η
ε such that

σ(u) = u for any u ∈  E C0,ε −η
ε . (4.84)
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Furthermore, by (4.83) (a) we can also assume η so small that
C0,ε − η > B ε,ρ . (4.85)

Let us define the map H : [0, 1] × Σ → R N by

H(s, y) = β σ tρ,s,y ψρ[s, y] .

By (4.85), (4.84) and by using the map G introduced in (4.80), we deduce that
H maps {1} × Σ in a set homotopically equivalent to ρΣ (and then to Σ) in
RN \{0}. Moreover, taking also into account Lemma 2.1, we see that H is a
continuous map. Hence, by the argument developed in the proof of Lemma
4.10, a point ( s̃, ỹ) ∈  [0, 1] × Σ must exist, for which

0 = H(˜s, ỹ) = β(σ(t ρ,s̃, ỹ ψρ[s̃, ỹ])).

Then, E ε (σ(t ρ,s̃, ỹ ψρ[s̃, ỹ])) ≥ C 0,ε , contrary to σ tρ,s,y ψρ[s, y] ∈ E C0,ε −η
ε for

every (s, y) ∈  [0, 1] × Σ, so the claim must be true.
Let ū ∈  E A ε,ρ

ε be the critical point we have found. To show that ¯u is
a constant sign function, assume,by contradiction, that ū = ¯u+ − ū− , with
ū± = 0. Multiplying the equation in (Pε ) by ū± we deduce that ū± ∈ Nε , so

Eε (ū) = E ε (ū+ ) + E ε (ū− ) ≥ 2m ε ,

contrary to (4.83) (c).

Remark 4.12.Let us set

R(Ω) = max{r > 0 : ∃xr ∈ RN such that B r (x r ) ⊂  RN \Ω}.

Assume BR(Ω) (0) ⊂  RN \Ω and call ua,Ω the solution provided by Theorem 1.3.
Arguing as in [26], the following asymptotic behaviour of ua,Ω can be described,
as R(Ω) → ∞, up to some sequence:

ua,Ω (x) = w 1,ε (x − x 1,Ω ) + w 2,ε (x − x 2,Ω ) + O(Ω),

where O(Ω) −→ 0 in H 1(RN ), as R(Ω) → ∞, x 1,Ω , x2,Ω ∈ RN verify

|x1,Ω − x 2,Ω | −→ ∞ and
x1,Ω + x 2,Ω

2
−→ 0, as R(Ω) → ∞,

and w 1,ε , w2.ε are solutions of (Pε,∞ ). The same behaviour of ua,Ω can be
obtained considering a sequence of potentials an (x) verifying (1.1) and (1.9)
and such that

lim
n→∞

an (x) = ∞ a.e. in RN .

On the contrary, if the capacity of R N \Ω goes to zero and |an − a ∞ |N/2 → 0,
then uan ,Ω converges to a solution of the limit problem (P ε,∞ ).

Remark 4.13.The behaviour of the solution ua,Ω described in Remark 4.12 can
be employed to obtain multiplicity of solutions of (P ε ) when Ω = R N ∪\ h

i=1 ωi

and a(x) = a ∞ +
! k

j=1
α j (x), with suitable ω i ⊂⊂ R N , i = 1, . . . , h, and

α j ∈ LN/2 (RN ), j = 1, . . . , k. See [25] for a description of the method.
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