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Balanced Multi-Image Demons for Non-Rigid Registration of
Magnetic Resonance Images

Luca Mesina,∗

aMathematical Biology and Physiology, Dept. Electronics and Telecommunications, Politecnico di
Torino, Turin, Italy

Abstract

A new approach is introduced for non-rigid registration of a pair of magnetic resonance
images (MRI). It is a generalization of the demons algorithm with low computational
cost, based on local information augmentation (by integrating multiple images) and bal-
anced implementation. Specifically, a single deformation that best registers more pairs
of images is estimated. All these images are extracted by applying different operators
to the two original ones, processing local neighbors of each pixel. The following five
images were found to be appropriate for MRI registration: the raw image and those ob-
tained by contrast-limited adaptive histogram equalization, local median, local entropy
and phase symmetry. Thus, each local point in the images is supplemented by augmented
information coming by processing its neighbor. Moreover, image pairs are processed in
alternation for each iteration of the algorithm (in a balanced way), computing both a
forward and a backward registration.
The new method (called balanced multi-image demons) is tested on sagittal MRIs from
10 patients, both in simulated and experimental conditions, improving the performances
over the classical demons approach with minimal increase of the computational cost
(processing time around twice that of standard demons). Specifically, a simulated defor-
mation was applied to the MRIs (either original or corrupted by additive Gaussian or
speckle noises). In all tested cases, the new algorithm improved the estimation of the
simulated deformation (squared estimation error decreased by about 65% in the average).
Moreover, statistically significant improvements were obtained in experimental tests, in
which different brain regions (i.e., brain, posterior fossa and cerebellum) were identified
by the atlas approach and compared to those manually delineated (in the average, Dice
coefficient increased of about 6%).
The conclusion is that a balanced method applied to multiple information extracted from
neighboring pixels is a low cost approach to improve registration of MRIs.
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∗Corresponding author
Email address: luca.mesin@polito.it (Luca Mesin)

1



1. Introduction

Image registration estimates a transformation aligning the pixels of different images.
It is useful to match pictures taken from the same object at different times [1], or from
different viewpoints or sensors [2][3][4][5]. It can also be applied to images taken from
different objects, to match them optimally in order to better compare them. The dif-5

ferent images could be assumed to be related by either a simple rigid transformation
(e.g., translation, rotation, affine transformation [6]) or a non-rigid deformation [3][4].
For each of these hypotheses, different methods have been proposed to estimate the
transformation [2][4]. Image registration found many applications, e.g., in computer
vision [7] and medical imaging [4][5][8], e.g., for the segmentation of the human brain10

[9][10][11][12][13][14][15].
Different approaches have been explored for non-rigid image registration [4], e.g.,

physical constraints [16], statistical models [15][17], deep learning [1][18]. Demons method
is a non-parametric, non-rigid image registration technique which is appreciated for the
good performances and low computational cost [19][20]. It is based on a diffusion process15

[4]. To match two images, the following interpretation was proposed (from which the
method takes the name): object boundaries in one picture are like as semi-permeable
membranes through which the other image, considered as a deformable grid model, dif-
fuses thanks to local forces impressed by demons situated within them. Intensity vari-
ations across these object boundaries (i.e., polarity) drive diffusion. In practice, the20

gradient of the image intensity indicates the normal to object boundaries along which
the deformable model is pushed to match the two images. The use of polarity was indi-
cated as an important difference with respect to many other registration methods based
on attraction, which instead relies on the concept of distance [19].

Some methods have been proposed to improve demons performances, e.g., by pro-25

cessing multiple recorded images [21][22] or imposing the registration to be symmetric
[23], but they have quite a high computational cost [24][25].
In this paper, a new algorithm is proposed to improve demons registration still keeping a
low computational cost, based on local information augmentation (by integrating multi-
ple images) and balanced implementation. Specifically, the idea is to generalize demons30

algorithm to process together more image pairs obtained by pre-processing the two pic-
tures to be registered and to treat them in a balanced way. As all images are extracted
from the same original ones, they are assumed to be affected by the same deformation,
which is estimated optimally in the least mean squared sense. All these images have the
same dimensions as the original ones from which they were obtained. They are produced35

by filtering or texture processing operations, each extracting some feature of the objects
represented in the images (which should be significant for improving the registration).
These processing procedures apply locally, extracting some specific information (depend-
ing on the operation applied) from a neighbor of each pixel.
Notice that, in general, the assumption that a single transformation matches all image40

pairs cannot be strictly satisfied, as the deformation changes the neighbors of the pixels,
affecting the result of the filtering operators generating the pairs of images. However, it
is expected that, by extracting meaningful features and including a sufficient number of
images in the sets, the beneficial effect of integrating their information can emerge.
It is claimed that integrating information from such images could be considered as a45

multi-modal approach that is similar to the way in which images are interpreted by intel-
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ligent individuals: indeed, when a person is looking at a specific direction, each visualized
point is not investigated out of its context, but specific properties (e.g., local symmetry,
homogeneity, roughness, texture, anisotropy,...) are associated to each location to decode
the scene.50

The registration problem is iteratively linearized and the update is computed ana-
lytically, thus getting a fast algorithm. Moreover, the update is applied alternatively to
each of the two sets of images, obtaining a balanced method in which each one is given
the same importance.

In the following sections, the method is described in details and optimized for mag-55

netic resonance images (MRI). It is then tested in simulated conditions (i.e., estimat-
ing a specific deformation applied on an MRI, possibly corrupted by noise) and in a
typical experimental problem (i.e., identifying brain regions using the atlas approach
[26][27][28][29]).

2. Materials and Methods60

2.1. Image acquisition and preparation

Ten pediatric patients with Chiari malformation were considered. Sagittal T1-weighted
head MRIs were acquired at 1.5 Tesla (the first 10 subjects of the dataset discussed in
[30][31] were selected). Data were digitally sampled on a matrix of 256×256 pixels and
saved in DICOM format.65

The images were first registered by an affine transformation, in order to match nasion
and inion. Then, they were converted into gray-scale and adjusted to span all 256 lev-
els. The lowest level was assigned to the background, automatically estimated by global
thresholding, selecting the threshold as the first local minimum in the histogram of the
image (smoothed by a median filter with neighbor of 5×5 pixels).70

Both simulated and experimental conditions (detailed below) were considered to make
tests of registration.

2.1.1. Simulated deformation

Each MRI was processed by a known deformation (specifically, two images were ran-
domly selected and registered by the classical demons algorithm; the obtained deforma-75

tion was enlarged by 50%). The algorithm was then applied to estimate such a simulated
deformation and the mean squared error was used to quantify the performances. Only
the region including the head was considered to estimate the error, as large mistakes
could be tolerated in the background surrounding it.
Tests were repeated on the same images after corrupting them with noise. Two noisy80

perturbations were used to corrupt the two images before registration: additive Gaussian
noise with zero mean and standard deviation equal to 0.2% of the maximum intensity of
the image; speckle noise, i.e., the image was multiplied by (1 + n), where n is uniformly
distributed with zero mean and variance 0.04. For each image and each type of noisy
perturbation, 10 realizations were considered. Thus, a total number of 210 simulations85

were obtained (10 noise-free deformations for each of the 10 MRIs; 100 cases for each of
the two types of noise). An example of MRI (either noise free or perturbed) is shown in
Figure 1.
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2.1.2. Delineation of brain regions

The experimental problem of identifying some brain regions by registration over an
atlas [26][27][28][29] was considered. The brain, posterior fossa and cerebellum were
delineated over each of the 10 MRIs. Then the 3 regions were automatically delineated
by registration over an atlas. Each image was considered in turn as the atlas and was used
to register each of the other images. In this way, 90 tests were performed in total. The
estimated regions were compared to the ones delineated manually, using the following
overlapping error

EO(MT ,ME) = 2
|MT \ME |+ |ME \MT |

|MT |+ |ME |
(1)

where MT and ME are the true (manually delineated) and estimated masks, respectively,90

|·| indicates the cardinality, \ is the set difference (so that |MX \MY | is the number of
pixels belonging to the region in X which are not matched in Y ).

2.2. Image processing

Demons algorithm is an important approach for image registration [32]. A short
introduction to the method is first given. Then, the innovative variations proposed in95

this paper are detailed.

2.2.1. Introduction to Demons algorithm

The classical demons algorithm is here described, to introduce the notation and the
ideas which are then extended to solve its multi-image and balanced generalizations.
Consider the registration of two images, each defined as a function of the point or pixel
p: the target F (p) (or deformed, or fixed) and the source M(p) (original, or moving)
images. The registration problem consists in estimating the deformation s : p → s(p)
such that the deformed source image M ◦s(p) matches F (p), i.e., it minimizes a functional
measuring dissimilarity. The mean squared error is considered as the functional to be
minimized, so that the optimization problem is written as

argmin
s
‖F (p)−M ◦ s(p)‖2 (2)

where ‖·‖ is the L2 norm. This is not a well-posed problem, as its solution could be
unstable (due to discretization, quantization and noise in the images). Some a-priori
information is then introduced imposing constraints. To enforce the deformation to be
regular, a penalization term involving its gradient is introduced

argmin
s

1

σ2
i

‖F (p)−M ◦ s(p)‖2 +
1

σ2
T

‖∇s‖2 (3)

where ∇ indicates the gradient operator; σi and σT are parameters accounting for image
noise and regularization, respectively. As the solution of this problem is not computa-
tionally efficient [32], a hidden variable c (of correspondences) is introduced, requiring
to be an approximation of the transformation s accommodating possible errors. The
problem is thus written as

argmin
s,c

‖F (p)−M ◦ c(p)‖2

σ2
i

+
‖c(p)− s(p)‖2

σ2
x

+
‖∇s(p)‖2

σ2
T

(4)
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where σx weights the spatial uncertainty in the correspondences.
This problem is iteratively solved in two steps: minimizing the sum of the first two terms
with respect to c keeping s fixed and minimizing the sum of the last two terms with
respect to s with c fixed. The second step can be solved analytically: s is obtained as a
Gaussian smoothing of c (a standard deviation of 1.5 pixels is used in this paper). The
first step is more involved and is tackled by the iterative solution of a local linearization
problem. Assuming c = s ◦ (1 + u), where 1 is the identity map and u is a small
deformation, the following linear approximation is obtained

F (p)−M ◦ c(p) = F (p)−M ◦ s(p) ◦ (1+ u(p)) ≈
≈ F (p)−M ◦ s(p)− Jpu(p)

(5)

where Jp is the Jacobian operator of M ◦ s in the point p. The minimization problem is

argmin
c

1
σ2
i
‖F −M ◦ c‖2 + 1

σ2
x
‖c− s‖2 =

= argmin
u

1
σ2
i
‖F (p)−M ◦ s ◦ (1+ u)‖2 + 1

σ2
x
‖u‖2 ≈

≈ argmin
u

1
σ2
i
‖F (p)−M ◦ s− Jpu‖2 + 1

σ2
x
‖u‖2

(6)

to be solved separately for each point p. The functional to be minimized can be written
in matrix form

‖F (p)−M ◦ s− Jpu‖2 +
σ2
i

σ2
x

‖u‖2 =

∥∥∥∥[ Jp
σi
σx

]
u−

[
F (p)−M ◦ s

0

]∥∥∥∥2 (7)

The solution is obtained by pseudo-inversion as follows[
JTp

σi
σx

] [ Jp
σi
σx

]
u =

[
JTp

σi
σx

] [ F (p)−M ◦ s
0

]
→

→
(
JTp Jp +

σ2
i

σ2
x

)
u = (F (p)−M ◦ s)JTp →

→ u =
(F−M◦s)JTp

‖Jp‖2+
σ2
i
σ2x

(8)

The last expression is very similar to what could be obtained by another classical
method for image registration: optical flow [33]. Indeed, assume to write m = M ◦ s in
the arbitrary point p as a local linear approximation of F

F (p) ≈ m(p) + Jp~v(p) = m+∇m · ~v (9)

where ~v is a vector field indicating the optical flow that allows to map m into F . The
previous equation can be written as

∇m · ~v = F −m (10)

Assume the vector field to be aligned to the gradient of m (the orthogonal component
cannot be determined, as its product with ∇m is always zero; this is called aperture
problem). Then, it can be written as

~v =
(F −m)∇m
|∇m|2

(11)
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This expression is unstable in points in which the gradient of m is small, so that a
regularization was suggested [19]

~v =
(F −m)∇m

|∇m|2 + (F −m)2
(12)

This expression is the same as (8) if the second term in the denominator σ2
i /σ

2
x is assumed

to be equal to the mean squared approximation error |F −M ◦ s|2. This means that in
each point a different regularization is considered, depending on the approximation error100

(so that σ2
i /σ

2
x is a function of the pixel p). In the following, we’ll make this assumption.

The direct composition of more updates obtained by the demons algorithm would
not lead to a smooth and invertible deformation, in general. Then, it is performed as
suggested in [32], where the deformation was searched in the space of diffeomorphisms
(i.e., smooth and invertible transformations, with smooth inverse). This allows to pre-
serve object topology, avoiding not physical foldings. Specifically, once the update u is
computed, it is projected onto the group of diffeomorphisms through the exponential
map: thus, instead of computing c = s ◦ (1 + u) as above, the deformation is updated
as c = s ◦ exp(u) (notice that the two expressions are the same at a first order of ap-
proximation). In order to compute the exponential map, notice that its application is
equivalent to solving the following ordinary differential equation problem (applying the
deformation u to the pixels, starting from the initial condition p0){

dp(t)
dt = u(p(t))
p(0) = p0

(13)

and selecting p(1) ≡ exp(u). Thus, the exponential transformation of an arbitrary point p
is obtained as the solution at t = 1 of this equation (in which the displacement field is the
flow of an autonomous dynamical system), starting from the initial position at t = 0 (here
indicated with p0, i.e., the position of the point before applying the deformation update105

u). This problem is solved efficiently by squaring recursively K times the transformation
v (i.e., computing K times v ◦ v) which is initialized as a rescaled version of u, i.e.,
v = 2−Ku, so that ‖v‖2 is small enough to get convergence (the smallest value of K for
which ‖v‖2 < 0.5 was considered).

2.2.2. Multi-Image Demons110

Demons algorithm was here generalized to the case of multiple data generated by
processing the two images to be registered. The aim is to get a single deformation
allowing to match optimally many pictures obtained from the source and target images.
The method could be applied also in the case in which two sets of multiple images were
taken using different sensors, but only under the assumption that the same deformation115

can map pairs of images from the two sets (otherwise, different methods, e.g., group-wise
registration [22][34], should be applied). As this condition is difficult to be matched,
from now on we assume that the multiple images were all obtained by pre-processing the
two MRIs to be registered (notice also that this is one of the main innovations proposed
here).120

Specifically, assume that a target image F is processed by N processing algorithms
obtaining a set of images {Fi}, where i = 1, · · · , N ; the source image M is processed by
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the same algorithms obtaining the set {Mi}. We assume that the N pairs (Fk,Mk), for
each k between 1 and N , can be registered by the same transformation s, to be estimated.
As detailed below, the pre-processing techniques indicated in Figure 2 were considered125

for the application on MRIs.
The optimization problem to be solved to compute s is obtained generalizing equation

(6) by summing more mean squared errors, one for each image pair

argmin
u

N∑
k=1

‖Fk −Mk ◦ s− Jku‖2 + Σ2
k ‖u‖

2
(14)

where Jk is the Jacobian of Mk◦s and Σk = |Fk−Mk◦s| is the regularization term that, as
stated in Section 2.2.1, is chosen dependent on the registration error. The minimization
problem is written in matrix form as follows

argmin
u

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



J1
J2
...
JN

Σ1

...
ΣN


u−



F1 −M1 ◦ s
F2 −M2 ◦ s

...
FN −MN ◦ s

0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(15)

Normal equations are given by the following expression

[
JT1 · · · JTN ΣT1 · · · ΣTN

]


J1
...
JN
Σ1

...
ΣN


u =

=
[
JT1 · · · JTN ΣT1 · · · ΣTN

]


F1 −M1 ◦ s
F2 −M2 ◦ s

...
FN −MN ◦ s

0
...
0



(16)

The following update of the local displacement field solves these equations

u =

∑N
i=1(Fi −Mi ◦ s)JTi∑N
i=1 ‖Ji‖

2
+ Σ2

i

(17)
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Given the estimated displacement field, it is smoothed, converted into its diffeomorphic
version and then applied to the source map to update it (as described in the previous
section on classical demons algorithm).

In the following, this generalization of the demons algorithm to multiple images is130

referred to as the ”multi-image algorithm”. The algorithm is shown in Figure 3: multiple
images are generated pre-processing the input pictures, then the deformation is obtained
by iterating the application of equation (17), the composition by exponential map and the
smoothing. The method is similar to the multi-channel diffeomorphic demons proposed
in [21] to solve a 4D registration problem. However, notice that in [21] a voxel was135

associated to each channel. Moreover, the computation time was quite high and the
application was different, as more channels were available and not generated by pre-
processing the original images with different methods, as proposed here.

2.2.3. Balanced Multi-Image Demons

Another variation of the standard demons algorithm is also proposed. The standard140

algorithm deforms the source image and fits it over the target one. The deformed image
is estimated by interpolation. However, in this way, the target image is kept whereas
the source one is perturbed by the interpolation method used to estimate the deforma-
tions. In order to treat the two images in the same way, symmetric approaches were
introduced in the literature [24][25]: a brief discussion of them is given in Appendix 1145

and a comparison with the new proposed method is provided in the Results section.
A balanced approach is introduced here, in which, at each iteration, deformations are

estimated and implemented in alternation to both the source and the target images1

uF =

∑N
i=1(Fi ◦ ŝ−Mi ◦ s)JTi∑N

i=1 ‖Ji‖
2

+ Σ2
i

uM =

∑N
i=1(Mi ◦ s− Fi ◦ ŝ)ĴTi∑N

i=1

∥∥∥Ĵi∥∥∥2 + Σ̂2
i

(18)

where uF and uM are the updates of the deformation of F and M , respectively; ŝ is the
estimated deformation to be applied to F ; Ĵi and Σ̂i are the Jacobian matrixes and the
regularizations of the images Fi ◦ ŝ (notice that the expression for uF is the same as that
for u in equation (17), in which ŝ = 1).150

In this way, the sets of target and source images are mapped on other ones (i.e.,
Fi ◦ ŝ and Mi ◦ s), toward which the two sets converge. Thus, the theoretical solution
of the problem is not unique. However, the algorithm obviously converges to a unique
numerical solution, for which source and target images are treated in the same way.
Finally, the deformation that transforms the source into the target image is computed155

as the composition of the two estimated deformations: the direct deformation starting
from the first image is composed to the inverse of the deformation of the second (notice
that such an inverse deformation can be computed, as the estimated transformations are
diffeomorphisms).

In the following, the multi-image approach including also the further method dis-160

cussed here is called ”balanced multi-image algorithm”. The algorithm is shown in
Figure 3: after updating the deformation of {Mi} (blocks indicated in black color), the

1This approach is referred to as symmetric in [4]. However, here it is called ”balanced” to distinguish
it from symmetric approaches proposed in the literature on demons.
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deformation of {Fi} is updated (blocks in gray color) and this is repeated for a selected
number of iterations.

2.2.4. Tests of the registration algorithms165

Three different methods are used to make the registration: the classical demons
algorithm, its multi-image generalization and the balanced multi-image method. Two
further symmetric algorithms (introduced in Appendix 1) are tested, to compare their
performances with the balanced method. Finally, a deep convolutional neural network
with UNet topology was developed to segment the brain in three regions (training was170

based on a dataset of 40 MRIs, i.e., the last images from [31], after removing the first 10
which are here used for test; refer to Appendix 2 for the details). It was used to compare
the innovative method with a deep learning approach in the brain segmentation test.
The multi-image approaches (either balanced or not) are applied on 5 images. They were
chosen on the basis of preliminary tests detailed in Appendix 3 and showed to provide175

useful non-redundant information, which could be applied in different conditions (e.g.,
noisy images or different gray scales). The 5 selected images are the original one and
additional pictures obtained by processing it using the following operations: contrast-
limited adaptive histogram equalization [35] (with diameter of the neighbors equal to
32 pixels), local median (with neighborhood of diameter 5 pixels), local entropy (with180

circular neighborhood of radius 15 pixels) and phase symmetry [36].
The registration methods were run in the same conditions, considering a 2-level im-

plementation scheme [24] (with an initial registration on a coarse resolution obtained
under-sampling the images with a factor 2) with 200 updates for each level (that in
preliminary tests were found to be sufficient to reach convergence).185

The algorithms have been implemented in MATLAB® (Inc., Natick, Massachusetts,
USA, ver. 2019b; interpreted single core implementation).

3. Results

Figure 1 shows an example of MRI included in the tests. The original image is on
the left; the noisy versions obtained by corrupting it with either additive Gaussian or190

speckle noise are then shown.
Figure 2 shows an MRI and the other images included in the multi-image versions of

the demons algorithm.
Figure 3 shows a block diagram of the methods. The input pictures are first processed

to compute the filtered images. Then the two sets of images are iteratively processed195

by three steps: estimation of the deformation update, use of the exponential map to
get a diffeomorphism and Gaussian smoothing. These steps are applied only to the
source images {Mi} for 200 iterations by the multi-image method; the same steps are
implemented in alternation to the sets of images target {Fi} and source {Mi} (100
iterations each) by the balanced multi-image algorithm.200

Figure 4 shows an example of processing in a test on simulation. The source MRI
(A) was deformed by a known deformation, obtaining the target image (B). Then the 3
algorithms registered the first (source) image over the second (target). The registrations
estimated by the 3 algorithms (C-E) and the deformations (simulated and estimated,
F-I) are shown. The mean squared errors in estimating the deformation are indicated.205

9



Figure 1: A) Example of original MRI used for the tests and the same image corrupted by either B)
additive Gaussian or C) speckle noise.

Figure 2: A) Same MRI as in Figure 1 and B)-E) the images used in the multi-image approaches,
obtained by the following processing methods: B) adaptive histogram equalization (with diameter of the
neighbors equal to 32 pixels), C) median filter (with neighbors of diameter 5 pixels), D) local entropy
(circular neighbors with radius of 15 pixels) and E) phase symmetry.

10



Figure 3: Block diagram of the multi-image and balanced multi-image methods. Both methods require to
generate a set of images starting from the original input pictures. Then, deformation update, application
of exponential diffeomorphism and Gaussian smoothing are iterated either only on the set of source
images {Mi} (multi-image algorithm, indicated in black), or in alternation to the set of source images
{Mi} and target images {Fi} (balanced multi-image algorithm; the additional processing applied to the
target images is indicated in gray color).
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Notice that the multi-image approach allows to improve over the classical demons the
estimation of the deformation and the balanced multi-image method provides a further
improvement.

Figure 4: Processing of an MRI (same as in Figure 1). A) The original image is shown together with B)
the deformed one and its estimations obtained by C) standard demons, D) multi-image and E) balanced
multi-image approaches. Below, the deformations are shown, either F) simulated or G)-I) estimated by
the 3 methods (ED, EM and EB are the percentage mean squared errors in estimating the simulated
deformation using the 3 methods, respectively, normalized with respect to its mean squared value; the
deformation was considered only in the light region, which includes the head).

The indication provided by this figure is the same for all the tested simulated condi-
tions: the multi-image approach improves the estimation of the deformation with respect210

to the classical demons algorithm and the balanced version gives a further improvement.
Figure 5 shows the distributions of the errors for all cases (as box and whisker plots).
The errors vary considering different images, but, as stated above, paired comparisons
of same tested images (either original or corrupted by noise) processed by the different
methods indicate that there are always improvements when using different approaches in215

the following order: classical demons algorithm, multi-image generalization and balanced
multi-image method.

The algorithms were run on a PC with Intel® Core i7-7500U, Dual-Core, clock fre-
quency of 2.7 GHz, 8 GB of RAM and 64 bits operating system. The computational time
of a single registration was 24.8±1.6 s (mean±std) for the standard demons, 41.9±2.5220

s for the multi-image algorithm (67.9±8.0% longer than the standard approach) and
54.5±2.2 s for the balanced multi-image method (116.1±16.2% longer than the standard
demons). The larger computational cost with respect to the multi-image algorithm is due
to the need of managing for each iteration two transformations (requiring to interpolate
both images to apply their deformations).225

Figure 6 shows an example of MRI and 10 different manual delineations of three
regions of interest: brain, posterior fossa and cerebellum. The borders of the brain struc-
tures of interest were repeatedly indicated by an operator, using a custom made software
in MATLAB® which allows to place some points which are then linearly interpolated to
determine the boundary. The overlapping errors between pairs of delineations indicate a230

limit under which the measure of the performances of the algorithms is not reliable.
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Figure 5: Box and whisker plots (indicating median, quartiles, range and outliers) of the errors in estimat-
ing the simulated deformation by the 3 methods (classical demons algorithm, multi-image generalization
and balanced multi-image method) when applied to A) the original images or to those corrupted by
either B) additive Gaussian or C) speckle noise.

Figure 6: A) Different delineations of the regions of interest: brain, posterior fossa and cerebellum.
B) Distributions of overlapping errors (box and whisker plot), defined as in Equation (1) and given as
percentage of pixels with different classification (i.e., either included or excluded in a region) in all 45
pairs of manual delineations.
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The performances of the algorithms in estimating the regions of interest are shown
in Figure 7. The three regions were first delineated by an operator in each of the 10
MRIs; then, each MRI was used as atlas for the registration of the others, in order to
estimate automatically those three regions in them. The paired Wilcoxon signed rank235

test indicates always an improvement when using multi-image approaches compared to
the standard demons method. Moreover, a significant improvement is found when using
the balanced approach instead of the multi-image only for estimating the cerebellum
(even if an average reduction of the overlapping error of about 12% was observed also in
the case of the brain and posterior fossa). Consider that, as indicated in Figure 6, the240

manual delineation has an inherent indeterminacy due to the limited resolution and the
subjective nature of the procedure.
Figure 7D shows the processing times for a single registration by the different algorithms
(run on the same PC mentioned above): 22.2±2.1 s (mean±std) for the standard demons,
34.0±2.1 s for the multi-image method (53.8±11.0% longer than standard, single-image245

demons) and 45.0±2.4 s for balanced multi-image technique (103.2±14.5% longer than
standard demons).

Figure 7: Test of region delineation by the atlas approach. Brain regions were manually delineated on
all 10 MRIs. Each of them was used as atlas to estimate the regions on the other MRIs, each in turn
considered as test (90 estimations were obtained). Distributions (box and whisker plot) of overlapping
errors (defined as in Equation (1)) in identifying A) brain, B) posterior fossa and C) cerebellum. D)
Computational time needed to process each case.

The balanced multi-image algorithm was also compared to the symmetric generaliza-
tions of demons introduced in Appendix 1. In brief, both approaches solve iteratively
linearized optimization problems, updating the transformation with either of the fol-250

lowing methods: 1. average of the forward and backward transformation mapping the
source into the target image or vice-versa [24][25]; 2. solution of the linearized symmetric
problem.
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Both algorithms were applied on the entire dataset, considering the same number of up-
dates as the other methods (thus, with an equivalent computational cost as the balanced255

multi-image algorithm). In the case of simulations, the errors in estimating the defor-
mation were about 4.4% and 20% lower when using the balanced algorithm with respect
to running either of the two symmetric methods, respectively. Statistically significant
differences were indicated by the paired Wilcoxon signed rank test, with p <0.01. When
considering the experimental tests, the mean overlapping error in estimating posterior260

fossa and cerebellum regions manually delineated was about 1% and 2.7% lower when us-
ing the balanced approach instead of either of the two symmetric methods, respectively
(statistically significant differences). No significant difference was found in estimating
the borders of the brain.

Finally, the performances of the balanced multi-image algorithm in delineating brain,265

posterior fossa and cerebellum were compared to an UNet trained on 40 additional MRIs
(details provided in Appendix 2). Different UNets were implemented. The median
overlapping errors of the best UNet were 7.6%, 25.4% and 28.7%, for the three regions
respectively. The median overlapping errors of the balanced multi-image algorithm were
instead 7.5%, 21.9% and 22.3% (about the same as in Figure 7; notice that here the270

outliers were not removed). Notice that both the performances of the UNet and of the
balanced multi-image method could be improved: indeed, the UNet could be trained
on a larger database or the cost function could be upgraded by constraints (e.g., by
enforcing each of the three regions to be connected or the topology to be preserved
[37]); the balanced multi-image algorithm could be improved by a multi-atlas approach275

[27][28][29].

4. Discussion

A new approach is proposed for the non-rigid registration of two images. It merges
information from multiple pictures extracted by pre-processing the images to be regis-
tered with different algorithms. In this way, each location of the pictures is augmented280

with additional information coming from its neighbor. Indeed, neighbors of each pixel are
processed to extract averaged information or texture features. In this paper, 5 specific
images have been selected as optimal for sagittal MRIs, after some tests in simulations
(detailed in Appendix 3). Different pre-processing could be chosen to fit other applica-
tions. By changing the dimension of the neighbor, different spatial scales can be explored.285

Considering different processing operators, various local features (e.g., spectral or texture
properties) can be included.
The specific implementation proposed here is based on the standard demons approach,
but the same idea can be embedded in other registration algorithms. The new method
has improved performances with respect to the standard demons, still keeping low the290

computational cost. The algorithm imposes that each image pair can be matched by
using the same deformation2: this constraint allows to reduce the computational cost of
the algorithm.

2Possibly, additional images could also be acquired by an experimental procedure involving the syn-
chronous acquisition of more information from the investigated objects.
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By considering multiple pairs of images obtained by filtering and texture operators,
global information about a neighbor of each point is included to estimate the deforma-295

tion. The integration of the information contained in the different images can make the
registration more stable and accurate (obviously, if useful images are included). In the
case of the classical demons algorithm, instead, the deformation is first computed sepa-
rately for each pixel (considering only its intensity and local gradient); then, information
from different pixels is merged relying simply on a Gaussian smoothing applied to the300

updated deformation.
In the literature, information from multiple images (taken by either different sensors

or in different time instants) have been integrated to compute a non-rigid registration.
For example, in the group-wise demons approach [22], more pictures are registered over an
average image to be estimated. The method is more sophisticated than the one proposed305

here, but it has a higher computational cost. Moreover, the possibility of generating more
pictures from the available ones, in order to get multi-scale/multi-modal information
useful to improve the registration of single images, was not explored.

A further variation of the classical demons algorithm is also included here. The
registration of the images is updated for each iteration of the algorithm in alternation310

to deform those from the source over those from the target image and then vice-versa
(obtaining what is here called the balanced multi-image algorithm). In the literature, a
similar method was introduced, that enforces demons algorithm to select a symmetric
transformation [24][25]. As discussed in Appendix 1, two approaches can be considered:
1. computing the forward and backward transformations of the linearized problem and315

approximating the update as an average of them; 2. updating the transformation with the
solution of the linearized symmetric optimization problem. Small improvements of the
performances were obtained using the balanced instead of the symmetric methods. This
can be possibly justified considering that the symmetric approaches impose constraints
to the transformation, whereas the balanced algorithm searches for optimal solutions320

separately for the forward and backward problems. The improvements were larger when
considering the simulated instead of the experimental conditions, the latter requiring the
solution of a segmentation problem. Indeed, simulations provide ideal testing conditions,
whereas manual delineation is affected by subjectivity and by an indeterminacy which
limits the possibility of correctly measuring the accuracy: Figure 6 shows that an over-325

lapping error of about 5% was found when delineating more times the brain regions on
the same MRI.

Comparing the new algorithms with the standard demons, the tests indicate that
the proposed algorithms improve the estimation of a simulated deformation applied to
MRIs, either corrupted with noise or not. Specifically, the multi-image algorithm always330

performs better than the classical demons, with about a 50% of reduction of the error
in estimating the simulated deformation. The balanced multi-image approach provides
always the best performances, with an average error in estimating the deformation which
is about the 36% of that of standard demons. Moreover, being aware of the subjective
nature of manual delineation, the new algorithms are tested in an experimental problem335

of registration of pairs of MRIs. Again, the algorithms show significant improvements
with respect to the standard demons: overlapping errors in the average are 15% and 29%
lower, when using the multi-image and the balanced multi-image methods, respectively.
The performances of the balanced multi-image approach in brain segmentation are also
a bit superior in the average, but similar to those of a UNet (trained on a dataset of 40340
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images). Both algorithms could be improved, e.g., integrating information from multiple
atlas to refine the delineation of the proposed registration approach and enlarging the
dataset to better train the UNet: however, the results show that both methods are
reasonable approaches for brain segmentation.

As a limitation, in this study only specific tests are shown and the simulated defor-345

mation is always the same3. Further tests are suggested for future studies (e.g., on other
applications concerning different imaging techniques or on different registration methods
embedding multiple images obtained by pre-processing the available data). However, the
300 registration tests performed in this study (210 simulations and 90 experimental de-
lineations of brain regions) already indicate highly significant outcomes. Some additional350

segmentation results can be found in [31], where the same methods are applied on 50
MRIs.
Specific pre-processing techniques are considered to produce the additional images, which
were chosen ad hoc for the application at hand. Each of them could provide some useful
information in different conditions: for example, the adaptive histogram equalization is355

useful if images have different distributions of intensity (this could happen in the ex-
perimental tests, but not in the simulations shown here; however, some additional tests
indicate that adaptive histogram equalization largely improves the estimation of a sim-
ulated deformation if the target image is also gamma corrected); the median filter is
useful in the case of noisy data (for example, preliminary tests indicate that the use of360

the median filtered image largely improves the estimation of a simulated deformation if
salt and pepper noise is included in the images). Thus, in different conditions, different
pre-processing (e.g., extracting edges, texture features, global information from a neigh-
bor of each pixel) could be important to improve the registration. The best set of images
should be chosen on the basis of the specific application. Selecting automatically the best365

processing to generate the additional images could be an important future development.
Another important future perspective could be the extension to 3D segmentation of the
brain. Some interesting results have also been obtained using a deep learning approach
[38][39]. The current 2D implementation is functional to the application we are currently
interested in, namely the Chiari malformation, which is more evident in sagittal images370

[30][31].

5. Conclusion

An efficient generalization of demons method is proposed: the balanced multi-image
algorithm. Its performances in each simulated test considered here are greater than
those of the classical approach; statistically significant improvements are also found in a375

registration test (even if some uncertainty is present in that case, due to the subjective
delineation of brain regions). The algorithm requires only a small additional computa-
tional cost with respect to the original method. Using more images, all extracted by
pre-processing the single initial pictures to be registered, can be considered as a multi-
modal approach. Indeed, each operation providing a new image (e.g., extracting specific380

frequency components or texture information) summarizes in each location the result

3However, consider that a large deformation was simulated, obtaining a registration problem which
is quite difficult, with respect to the matching of two different experimental MRIs.
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of processing neighboring pixels around it. In this way, some local information on a
neighbor is collected into a specific position. This paper shows that such an information
can help in improving the registration, making it more accurate and robust to noise.
Moreover, a balanced approach, in which forward and backward registrations are applied385

in alternation for each iteration of the algorithm, provides a further improvement of the
performances (which are also slightly superior to those of other symmetric generalizations
of demons applied to the same data).

Recent works show the application of this balanced multi-image algorithm to sagittal
brain MRIs to extract morphometrics useful to identify the optimal surgical intervention390

to treat Chiari malformation [30][31].
It is expected that this method could find applications in different non-rigid registra-

tion problems. The idea of augmenting the local information by adding multiple images
extracted from the pictures to be registered could also be beneficial for other registration
approaches than demons. The integration of this approach in a multiple atlas registra-395

tion strategy [27][28][29] is straightforward and could further improve the performances
in delineating specific brain structures.

Appendix 1 - Symmetric registration approaches

A short introduction to symmetric demons algorithms is provided here. Some meth-
ods were introduced in the literature [24][25] and can be considered as alternatives to the
balanced algorithm discussed in this paper.
The cost function to be minimized is the sum of the errors in computing the deformations
mapping the source into the target images and vice-versa, imposing that an estimated
deformation is the inverse of the other. Thus the following terms are included in the
functional to be minimized

‖F (p)−M ◦ s(p)‖2 +
∥∥M(p)− F ◦ s−1(p)

∥∥2 (19)

where s−1 is the inverse transformation of s. Two approaches are considered to face this
problem.400

1. An approximate solution was proposed in [24][25], where updates in forward and
backward direction, uF→M and uM→F , were searched by minimizing the linearized
error of mapping F into M and vice-versa, respectively. Then, the update for
the map going from M to F was a linear combination of these two estimations:
u = (uM→F − uF→M )/2.405

2. As the equations for the update are linear, a direct approach could solve in the
least squared sense the problem of searching for a symmetric transformation (notice
however that this method has not been used in the literature on demons, yet). For
simplicity, consider the single image case:

‖F (p)−M ◦ s∗ − JMu‖2 +
∥∥M(p)− F ◦ s−1∗ + JFu

∥∥2 +
σ2
i

σ2
x
‖u‖2 =

=

∥∥∥∥∥∥
 JM
−JF
σi
σx

u−
 F (p)−M ◦ s∗
M(p)− F ◦ s−1∗

0

∥∥∥∥∥∥
2

(20)
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where s∗ is the deformation for this symmetric implementation of demons algo-
rithm, JM is the Jacobian of M ◦s∗ and JF is the Jacobian of F ◦s−1∗ . The normal
equations are

[
JTM − JTF

σi
σx

] JM
−JF
σi
σx

u =

[
JTM − JTF

σi
σx

] F (p)−M ◦ s∗
M(p)− F ◦ s−1∗

0

 (21)

The solution is

u =
(F −M ◦ s∗)JTM + (F ◦ s−1∗ −M)JTF

‖JM‖2 + ‖JF ‖2 +
σ2
i

σ2
x

(22)

with straightforward generalization in the case of multiple images.

Appendix 2 - A deep learning approach for brain segmentation

UNet is a deep neural network, including convolutional layers, with an architecture
consisting of contraction, bottleneck and expansion sections (thus resembling a ”U” topol-
ogy, justifying its name) [40]. It is finding outstanding performances in semantic seg-410

mentation tasks [38][39][41][42].
Different multi-class networks were developed using the deep learning toolbox of

MATLAB®. They were trained (10 fold crossvalidation using 40 MRIs), using stochastic
gradient descent with momentum (SGDM) optimizer (with momentum equal to 0.9) and
cross entropy loss. Among many different trials, the three most promising networks had415

the following parameters:

� 58 layers (encoder depth = 4), learning rate = 0.1;

� 46 layers (encoder depth = 3), learning rate = 0.01;

� same as the first one, but histogram equalization applied first on the input images.

Further optimization of the parameters and choice of loss functions/optimizers can be420

carried out to achieve slightly better performance. Few trials were also lead using Dice
loss and augmentation, but they did not seem to result in a significant improvement.

The first network mentioned above provided overlapping errors in delineating brain,
posterior fossa and cerebellum with median 13.3% (quartiles 11.0–17.3), 36.1% (24.8–
43.1) and 33.4% (28.6–47.4), respectively.425

The second one provided reliable estimations of the brain only, with overlapping error of
17.5% (quartiles 15.3–23.4).
The third network provided overlapping errors in delineating brain, posterior fossa and
cerebellum with median 7.6% (quartiles 7.1–9.2), 25.4% (21.5–34.3) and 28.7% (22.0–
39.2), respectively.430

The best UNet was the third one. Its performances were compared with those ob-
tained by the balanced multi-image approach considering in turn each of the MRI as atlas
(and excluding the atlas for the comparison). In all 10 cases, the mean error in estimating
each of the 3 regions was lower when using the balanced multi-image approach.

The same deep learning approach (i.e., encoder depth = 4, learning rate = 0.1 and435

histogram equalized images) was also used to develop single-class networks, to segment
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respectively the brain, the posterior fossa and the cerebellum. The three UNets had the
following overlapping errors, respectively: median 12.3% (quartiles 11.1–16.2), 31.6%
(27.2–34.4) and 19.0% (16.3–24.9). The estimation of the brain and the posterior fossa
was always superior when using the balanced multi-image method. The estimation of440

the cerebellum was equivalent with the UNet and the balanced multi-image approach
(i.e., lower errors were found when using the registration considering some atlases, but
not with others). Notice that, using a specific atlas, the estimation could be better or
worst, in relation to the presence or absence of cerebellar hernia (indeed, our patients had
Chiari malformation, with different extension of the herniation). Indeed, as the estimated445

transformation was a diffeomorphism, if the hernia was present in the test image but not
in the atlas (or vice-versa), it could not be estimated correctly. A correction focused on
the reconstruction of the hernia is discussed in [30][31].

Appendix 3 - Selection of best images for MRI registration

The 5 images used for this study were selected out of the following set.450

1. Original,
2. contrast-limited adaptive histogram equalized (with diameter of the neighbors equal

to 32 pixels) [35],
3. local median (with neighborhood of diameter 5 pixels) ,
4. local entropy (with circular neighborhood of radius 15 pixels),455

5. phase symmetry [36],
6. Laplacian of the image (finite difference approximation),
7. gradient of the image (both components; second order finite difference approxima-

tion),
8. local range (with 3 × 3 neighborhood),460

9. local standard deviation,
10. local skewness,
11. local kurtosis,
12. nine Laws texture features (to emphasize levels, edges, spots and ripples) [43],
13. three-class segmentation (by k-means),465

14. level set segmentation with bias correction (3 sets) [44].

The original image was always included in the set. Then, a sequential forward selection
was performed, by adding the image out of the set that allowed to get best average
performances in estimating simulated deformations applied on two noise free MRIs. Ad-
ditional images were included in the best set until performances improved. A few tests470

were also performed with noisy data, obtained perturbing the images to be registered by
either gamma correction, salt and pepper or additive Gaussian noise. Equalization and
median filter were found to be much important in such conditions.
Finally, to test if some of the 5 selected images could be removed, all possible combina-
tions of 4 images were used to estimate a simulated deformation of the entire dataset of 10475

MRIs (noise free conditions). Median errors were always lower when using the entire set
of 5 images. Statistically significant degradation of the performances of the multi-image
approach were indicated by the Wilcoxon signed rank test (p<0.05) when either the local
entropy or the phase symmetry were removed. In the case of the balanced multi-image
approach, images to be kept to avoid statistically significant reduction of performances480

were the adaptive histogram equalized, the local median and the phase symmetry.
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