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Generalized Markovian Quantity Distribution
Systems: Social Science Applications
Noah E. Friedkin,a Anton V. Proskurnikovb,c

a) University of California, Santa Barbara; b) Politecnico di Torino; c) Institute for Problems of Mechanical Engineering

Abstract: We propose a model of Markovian quantity flows on connected networks that relaxes
several properties of the standard compartmental Markov process. The motivation of our general-
ization are social science applications of the standard model that do not comport with its steady
state predictions. The proposed generalization relaxes the predictions that every node belonging to
the same nontrivial strong component of a network must acquire the same fraction of its members’
initial quantities and that the sink component(s) of the network must absorb all of the system’s
available initial quantity. For example, when applied to refugee flows from a nation in chaos to
other nations on a network with one or more sink nations, the standard model predicts that all the
refugees will be eventually located in the sink(s) of the network and none that will permanently
locate themselves in the nations along the paths to the sink(s). We illustrate this and several other
social science applications to which our proposed model is applicable.

Keywords: Markov chains; compartmental systems; social science; networks; quantity flows

THE Markov chain model has been a fertile platform of important normal science
developments and interdisciplinary applications for more than 100 years (Ke-

meny and Snell 1976; Seneta 2006; Meyn and Tweedie 2012). The dynamics of a
homogeneous (or time-stationary) chain with n states is uniquely characterized
by its matrix of transitional probabilities W or, equivalently, the behavior of the
deterministic linear discrete-time system

x(k + 1)> = x(k)>W = · · · = x(0)>Wk+1, k = 0, 1, 2, . . . . (1)

The n× n matrix W = [wij] has to be row-stochastic, that is, wij ≥ 0 and ∑n
j=1 wij = 1

for all i = 1, . . . , n. Its entry wij stands for the (time-invariant) probability of tran-
sition from state i to state j. The x(0) = [xi(0)] is a column vector probability
distribution with xi(0) ≥ 0 and ∑n

i=1 xi(0) = 1 whose element xi(0) stands for the
probability that the chain starts at state i. Similarly, xi(k) is the probability that the
chain visits state i at period k. Equation (1) admits an alternative interpretation,
which is broadly applied in biology, chemistry, and economics to describe compart-
mental systems, that is, systems distributing some quantity over a network with n
nodes (compartments) (Walter and Contreras 1999). In such applications, the vector
x(k) stands for the distribution of quantity at period k and the ∑n

i=1 xi(k) = c > 0
∀k, where c is the total amount of quantity in the system. The wij is interpreted as
the proportion of quantity that node i transfers to node j in the weighted directed
network D associated with W at each stage of quantity redistribution.
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Network Topology

In the generic situation, the matrix W is aperiodic, that is, the limits V = limk→∞ Wk

and x(∞)> = limk→∞ x(k)> = x(0)>V exist. The structure of V and x(∞) are
substantially constrained by the topology of the network D that is associated with
W and, in particular, by its sink component(s). As usual, arc i −→ j of the network D
corresponds to the positive entry wij > 0, that is, the flow of quantity from node i
to node j. Positive diagonal entries wii > 0 stand for self-arcs. The network D is
strongly connected (or strong) if every two nodes i and j 6= i are connected by a
path. A network that is not strong contains several strong components. Two nodes
i and j are in the same strong component if there is path from i to j and a path from
j to i. A strong component can consist of a single node; such components are called
trivial; otherwise the component is nontrivial. For aperiodicity (the existence of
matrix V), it suffices that each nontrivial strong component contains some node
with a self-loop (wii > 0). If the network is strong, then it has only one strong
component (which coincides with D). Otherwise, at least two strong components
exist. It can be shown that at least one of them is a sink component, that is, has no
outcoming arcs.

Without loss of generality, henceforth we assume that the matrix W + W> corre-
sponds to a connected undirected graph, and the network D is said to be (weakly)
connected, or weak. Otherwise, the Equation (1) system splits into several indepen-
dent subsystems, and each of them can be studied separately. Three substantially
different cases are possible in a connected network D: (a) the network is strongly
connected; (b) the network has several strong components, and only one of them
is a sink (a one-sink network); (c) the network has two or more sink components
(a multiple-sink network). In the cases (a) and (b) the behavior of the Equation (1)
system is simple in the sense that the final distribution x(∞) is independent of the
initial distribution x(0). In the case (c), the behavior is more complex, and x(∞)

depends on x(0).

Peculiar Restrictions

In its social science applications on quantity flows, the Markovian compartmental
dynamics has several peculiar restrictions that are not realistic and will be relaxed.
The first principal restriction is the concentration of the total quantity in the sink
strong components of the network (in probability theory, sink components are
known as classes of communicating recurrent states of the Markov chain, and the
latter property means that the chain eventually leaves all nonrecurrent states and
visits only recurrent ones). Consider the Figure 1 network D of refugee flows in
which each node is a nation state. This is a network with two trivial sink components
(14 and 17). Let node 1 be a nation in chaos that generates a large number of refugees
from it. Let nodes 2 to 17 be nations that accept refugees. The W that is associated
with this D must have wii = 1 for the two sink nodes (14 and 17). Each of the
remaining 15 nodes (which may have no self-loops) has two arcs with 0 < wij < 1
to other nodes. The Equation (1) Markov flow process on this networkD will absorb
all the refugees from nation 1 in the two sink nations (14 and 17), and no refugees
will permanently locate themselves in the nations along the paths to the two sink
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Figure 1: Refugee flow network among nations (wii > 0 loops are not displayed).

nations. Our generalized model allows a settlement of positive heterogeneous
fractions of the refugees in every nation 2 to 17. We will illustrate this and several
other social science applications to which our proposed generalization is applicable.

The second restriction is homogeneity of quantity redistribution within strong
components. Namely, each strong component C corresponds to the submatrix of
V(C) that either is a null matrix or is stochastic with identical rows. In other words,
if i, j, k are nodes of C, then vij = vkj. As will be discussed, the entry vij stands for
the proportion of initial quantity xj(0) that is redistributed to node i. Hence, each i
belonging to the component acquires the same proportion of the initial quantity of
each j belonging to the component. This proportion can be zero, as in the case of the
strong component (12, 15, 16) in Figure 1 and any other nonsink strong component.

The first and the second restriction imply the third geometric restriction on
the set of possible outcomes x(∞). It can be shown that if the number of sink
components inD is s, then each xi(∞) is a convex combination of s vectors, uniquely
determined by matrix W and total quantity c. Except for the degenerate case W = In
(the quantity does not circulate), we always have s < n and, typically, s � n for
large-scale networks. The convex polytope spanned by s vectors is a “very thin”
subset of the simplex of all possible distributions ∆c = {x : xi ≥ 0, ∑i xi = c}
(mathematically, it has a lower affine dimension than ∆c and, in particular, has zero
Lebesgue measure in Rn). In the case of s = 1, the set of possible x(∞) is a singleton,
for s = 2 (as in Figure 1) it is a line segment, for s = 3 it is a triangle, and so on.

Contribution

We will introduce a generalized Markov flow process that allows a larger set of
outcomes and is free of the aforementioned three limitations. In particular, it allows
distributions that do not concentrate quantity in one or multiple sink components.
Our article is organized as follows. First, we describe and illustrate the aforemen-
tioned restrictions, caused by the structure of matrix V and its submatrices V(C),
corresponding to strong components (all rows should be equal). Second, we intro-
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duce a generalization of the Markov process that circumvents these limitations, in
particular, allowing accumulation of quantity in nonsink strong components and
enabling all final distributions x(∞) ∈ ∆c. Third, we illustrate the generalization in
four social science applications.

Classic Markov Model

A matrix W is called SIA (stochastic, indecomposable, aperiodic) (Wolfowitz 1963)
or fully regular if the limit V = limk→∞ Wk exists and the rows of V are identical
(that is, V is a rank-one stochastic matrix):

V =


v1 v2 . . . vn
v1 v2 . . . vn
...

... . . .
...

v1 v2 . . . vn

 = 1nv>. (2)

Here 1n stands for the column vector of ones of dimension n. An equivalent
algebraic condition is that W has no eigenvalues beyond the open disk {z ∈ C :
|z| < 1} except for z = 1, and the eigenvalue z = 1 is simple. For an SIA matrix, the
row vector v> = (v1, . . . , vn) is the unique left eigenvector of W such that

v>W = v>, ∑
j

vj = 1,

and therefore
x(∞)> = x(0)> lim

k→∞
Wk = x(0)>V = cv>,

xj(∞) =
n

∑
i=1

xi(0)vj = cvj,
(3)

where c is the total quantity in the system. The second equation in (3) can be restated
as follows: each node j with a positive vj gets an equal proportion of each initial
quantity xi(0). The final distribution does not depend on the initial distribution
x(0) and is determined by the eigenvector v and the total amount of quantity c.

In general, the rule that applies to all possible connected network topologies
(being aperiodic, so that matrix V is well defined) is that the submatrices of V
corresponding to nontrivial strong components are rank-one matrices with equal
rows that are either stochastic or null matrices. This property means that each
member i of the component acquires the same fraction of the initial quantity from
each j belonging to the same component.

Strongly Connected Systems

If the connected networkD is strongly connected (one nontrivial strong component),
then the matrix W is said to be irreducible. For irreducible matrices, the SIA property
is equivalent to primitivity: for a sufficiently large k > 0, the matrix Wk has
strictly positive entries. This holds, for instance, if at least one diagonal entry is
positive wii > 0. An important property of irreducible matrices is that, according to
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Figure 2: Unilaterally connected D (wii > 0 loops are not displayed).

the Perron–Frobenius theorem, the vector v is strictly positive, that is, each node
accumulates some amount of quantity. In this case, the V matrix for this system
will have identical rows of positive vij values.

Networks with One Sink Component

Irreducibility is in fact not necessary for the SIA property. A reducible matrix W is
SIA if and only if two conditions hold: (1) D has a unique sink strong component
and (2) the irreducible submatrix W(C) corresponding to this component is SIA (for
instance, has a positive diagonal entry). In this situation, Equation (3) remains valid.
However, unlike strongly connected networks, the row v> of matrix V includes
null elements, namely, vi > 0 for the nodes of the unique sink component C and
vi = 0 for all other nodes. Thus, the quantity is concentrated in the unique sink
component. The uniqueness of a sink component is well known for unilaterally
connected networks where for each two nodes i and j either a path from i to j or a
path from j to i exists. A weakly connected network may also have a single sink
component, for instance, the network 1 −→ 2 ←→ 3 ←− 4 with the nontrivial sink
component (2, 3).

Consider the unilateral D in Figure 2. Its unique sink is a nontrivial strong
component C1 = {1, 2}, and the other nodes also belong to a nontrivial strong
component C2 = {3, 4, 5, 6}. The V(C1) submatrix will have identical rows of
positive vij values. The V(C2) submatrix will have identical rows of null vij values.

Let the W for this network be

W =


0 1 0 0 0 0

0.7630 0.2370 0 0 0 0
0 0 0.4053 0.4068 0.1880 0

0.0915 0.2155 0 0 0.2703 0.4227
0.2120 0 0.4560 0 0 0.3320

0 0.2874 0 0.7126 0 0

 =⇒ V =


0.4328 0.5672 0 0 0 0
0.4328 0.5672 0 0 0 0
0.4328 0.5672 0 0 0 0
0.4328 0.5672 0 0 0 0
0.4328 0.5672 0 0 0 0
0.4328 0.5672 0 0 0 0

 .

All quantity circulating in the network is accumulated in the sink component. Node
1 accumulates the same fraction (0.4328) of the initial quantity from each node
i = 1, 2, . . . , n. Node 2 accumulates the same fraction (0.5672) of the initial quantity
from each node i = 1, 2, . . . , n.
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Figure 3:Weakly connected D (wii > 0 loops are not displayed).

The generalized quantity flow model that we develop allows a V(C1) submatrix
with positive nonidentical rows of vij values and a V(C2) submatrix with zero or
positive nonidentical rows of vij values.

Networks with Multiple Sink Components

Without loss of generality, for networks with s > 1 strong components, we can
assume that such a network is weakly connected, or weak (that is, the network
corresponding to the matrix W + W> is connected). A network that is not weak can
be decomposed into several disconnected weak networks. The limit distribution
x(∞) and matrix V are well defined if all sink components C1, . . . , Cs are aperiodic
(e.g., contain self-loops) or, equivalently, the corresponding submatrices W(Ci) are
SIA. Algebraically, this means that W has no eigenvalues on the circle {z ∈ C : |z| =
1} except for z = 1, which eigenvalue, however, can be multiple. Its multiplicity s
coincides with the number of sink components in the network D. In matrix V, the
sink components correspond to stochastic rank-one submatrices as in Equation (2)
V(Ci); all other entries of V are zero. In particular, any strong component that is
not a sink is associated with a zero submatrix.

Carefully consider Figure 3. The nodes 1 and 2 belong to C1, nodes 3 and 4
belong to C2, and nodes 5 and 6 belong to C3. The two sink components are C1 and
C2. The corresponding submatrices of V have identical rows. As has been discussed,
this means that each member i of the component acquires the same fraction of the
initial quantity from each j belonging to the component. The submatrix of the C3
component is a null matrix, and the initial quantities [x5(0) x6(0)] are distributed
unequally to the two sink components.

W =


0.25 0.75 0 0 0 0
0.65 0.35 0 0 0 0

0 0 0.20 0.80 0 0
0 0 0.45 0.55 0 0

0.10 0.30 0.10 0.20 0.10 0.20
0.30 0.25 0.15 0.10 0.20 0

⇒ V =


0.4643 0.5357 0 0 0 0
0.4643 0.5357 0 0 0 0

0 0 0.3600 0.6400 0 0
0 0 0.3600 0.6400 0 0

0.2753 0.3177 0.1465 0.2605 0 0
0.3104 0.3582 0.1193 0.2121 0 0

 .

A trivial (single-node) sink component is constituted by a so-called absorbing
node with wii = 1 and wij = 0 ∀j 6= i. Such a node accumulates quantity transferred
from other nodes but does not distribute quantity. A Markov chain model is called
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absorbing if there are no other sink components, in other words, every node is
connected by a path to one of the absorbing nodes. Absorbing Markov chains
arise in abundance in economics and ecology (Suh 2005); in particular, they are
used to model pathways in resource flow networks (Duchin and Levine 2010).
Renumbering, if necessary, the strong components, matrix V can be transformed
into a standard form. Let s ≥ 2 be the number of the network’s trivial or nontrivial
sink components. Without loss of generality, we may assume that the node(s)
of the first sink component C1 are indexed 1 through m1 ≥ 1, the node(s) of the
second sink component C2 are indexed m1 + 1 through m1 + m2, and so on, to
the node(s) of last sink component Cs with indices m1 + · · ·+ ms−1 + 1, . . . , M :=
m1 + · · ·+ ms−1 + ms. Then it can be shown that the matrix V has the following
standard structure:

V =



V11 0 · · · 0 0

0 V22
... 0

...
. . .

...
0 Vss

∗ ∗ ∗ ∗ 0


, Vii = 1mi (v̂

i)>, 1>mi
v̂i = 1.

The left-top part of this matrix (dimensioned M × M) is block-diagonal and is
constituted by s different blocks Vii of dimension mi, i = 1, . . . , s. If a sink is a trivial
strong component, its dimension is mi = 1 and its vii = 1. If a sink is a nontrivial
strong component, its dimension is mi > 1 and Vii has identical rows: its rows v̂>i
are nonnegative vij values that sum to 1. The right-top part of V is an M× (n−M)

zero matrix. The bottom n−M rows of matrix V (denoted as * * * *) are convex
combinations of the top M rows. The coefficients can be computed explicitly and
depend only on matrix W.

Consider a node i ∈ {1, . . . , m1} from a nontrivial sink component C1. Recalling
that x(∞)> = x(0)>V, it can shown that node i accumulates the following amount
of quantity:

xi(∞) =
m1

∑
j=1

v̂1
i xj(0) +

n

∑
j=M+1

vjixj(0).

Hence, each node i accumulates an equal proportion v1
j of quantities initially stored

in its sink component C1 and some (in general, unequal) proportions of the quanti-
ties stored at nodes M + 1, . . . , n that do not belong to sink components. Similarly,
for C2,

xi(∞) =
m2

∑
j=m1+1

v̂2
i xj(0) +

n

∑
j=M+1

vjixj(0) ∀i = m1 + 1, . . . , m2,

and each node i from sink component C2 accumulates an equal proportion v1
j of

quantities initially stored in its sink component C2, and so on. Nodes M + 1, . . . , n
are emptied of quantity and accumulate zero percentage of quantity from any other
node.
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Notice that there is another implicit constraint on the set of possible final distri-
butions x(∞). Without loss of generality, assume that the total amount of quantity
is c = 1, so that ∑i xi(0) = 1. Then, x(∞)> is a convex combination of the rows of
matrix V. Recalling that the bottom (n−M) rows are convex combinations of the
top M rows, the vector x(∞)> belongs to the convex hull, spanned by the top M
rows, that is, the set of vectors

[α1v1 α2v2 . . . αsvs 01×n−M], αi ≥ 0, ∑
i

αi = 1.

This set is a convex polytope with s vertices, which has affine dimension s− 1. In
the above example, this set is a line segment in six-dimensional space. Because
usually s � n, the Markov dynamics invisibly restricts the final distribution to a
very “thin” set in the space of all possible distributions. The generalization, which
we introduce below, relaxes these properties.

Generalization

Here we describe an alternative quantity flow model that relaxes the key restrictions
of the classic Equation (1) Markov model. Along with the matrix W, this model
introduces a diagonal n × n matrix A, where 0 < aii ≤ 1 and aij = 0 ∀i 6= j.
Obviously, the matrices AW and W determine the same topology of the network.
The case A = In will correspond to the classic model.

The dynamical system that we propose is a mixed dissipative-aggregative state
transition process as follows:

y(k + 1)> = z(k)>(I−A) + y(k)>, z(0) = x(0), y(0) = 0, (4)

z(k + 1)> = z(k)>AW = · · · = z(0)>(AW)k+1, (5)

x(k + 1)> = y(k + 1)> + z(k + 1)> (6)

= x(0)>
[(

k

∑
i=0

(AW)i

)
(I−A) + (AW)k+1

]
∀k ≥ 0 (7)

= x(0)>V(k + 1).

The rationale of these equations is as follows. Along with distributing quantity, the
nodes of a network can also accumulate it. Hence, the total amount of quantity at
node i is a sum of two components: xi(k) = yi(k)+ zi(k), where yi is the aggregative
component and zi is the dissipative component. At each step, the amount of aiizi(k)
is distributed by node i to self and other nodes; similar to the usual Markov model,
wij is the proportion of this quantity transferred to node j. After this redistribution,
the dissipative component of node i becomes

zi(k + 1) =
n

∑
`=1

a``w`iz`(k) = [z(k)AW]i.
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The remaining amount of (1− aii)zi(k) is withdrawn from circulation and remains
at the node forever, being added to the aggregative component: yi(k + 1) = yi(k) +
(1− aii)zi(k).

Notice that a node with aii = 0 behaves as an absorbing node in the classic
Markov chain and has no dissipative component: such a node only accumulates
quantity. On the other hand, nodes with aii = 1 do not have aggregative component
and distribute all quantity stored at them at each period. Our model thus natu-
rally extends Markovian models with absorbing states (Duchin and Levine 2010),
allowing the nodes to both distribute and absorb the quantity.

It can be easily shown that the model preserves total quantity ∑i xi(k) =

∑i cxi(0) = c for all i and k. The matrix V(k) evolves as follows:

V(k) = AWV(k− 1) + I−A, k = 1, 2, . . . , V(0) = I. (8)

All V(k) satisfy 0 ≤ vij(k) ≤ 1 ∀ij and ∑n
j=1 vij(k) = 1 ∀i.

Most typically, the matrix AW is Schur stable (all eigenvalues are less than 1 in
modulus), and

lim
k→∞

(AW)k = 0, and (9)

lim
k→∞

[ k−1

∑
i=0

(AW)i
]
(I−A) = (I−AW)−1(I−A) := V. (10)

With some abuse of notation, we use the same symbol V that denoted the matrix
limk→∞ Wk in the classic Markov model. This redefinition appears to be natural,
because, similar to Equation (3), x(k) converges to the equilibrium distribution

x(∞)> = x(0)>(I−AW)−1(I−A) (11)

= x(0)>V.

Equations (9) to (11) obviously hold if A < In. In this situation, the matrix V has
positive diagonal entries because V ≥ I−A. More generally, the stability can be
guaranteed (Parsegov et al. 2017) if each node i either aggregates quantity (aii < 1)
or is connected by a path to some aggregating node j with ajj < 1. This always
holds if A 6= In and the network D is strongly connected. The resulting matrix V
may have heterogeneous rows, as well as its submatrices corresponding to sink
components. Furthermore, if a node has aii < 1, it accumulates some amount of
quantity. Hence, the submatrices corresponding to nonsink strong components may
be nonzero.

The new model thus relaxes the restrictions of the classic Markov model. (1) In
a strongly connected aperiodic D, the rows of V may be heterogeneous. (2) In a
unilaterally connected D, all strong components may retain positive quantity, and,
if the unique sink component is a nontrivial component, then the corresponding
submatrix of V can have heterogeneous rows. (3) In general, for the network D,
any nontrivial sink component may correspond to a submatrix with heterogeneous
rows, and all other components of D may retain positive quantity.
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Figure 4: Strongly connected D (aiiwii > 0 loops are not displayed).

Notice also that if aii < 1∀i, then one has a one-to-one correspondence between
the final and the initial distribution x(0) = (I− A)−1(I− AW)x(∞). Hence, un-
like the classic Markov model, all distributions x(∞) such that xi(∞) ≥ 0 and
∑i xi(∞) = c can emerge as a result of the quantity distribution process.

Social Science Applications

The social science applications of the generalized Markov process include systems
of monetized quantity flows, pay-it-forward altruism flows, resource flows in
organizations, and refugee flows among nations. In this section, we illustrate the
different steady state implications of the classic and generalized Markovian flow
models. Each illustration is based on a particular W and x(0). Because the normal
Markov model is a special case of the generalized model, we use the generalized
model with A = I for the classic model results and a random 0 < A < I in which
all 0 < aii < 1 for the contrasting results. We display the values of the matrix
constructs in x(∞)T = x(0)TV for the V of the classic and generalized model. Each
row of the displayed V sums to 1, and the maximum rounding error of any row is
∑j vij = 1± 0.0001.

Monetized Quantity Flows and Income Distribution Inequalities

Consider a system of monetized quantity flows in which the n nodes are agents

that are transferring money to another agent i
aiiwij>0
−−−−→ j in exchange for goods or

services, and the income distribution inequalities that result from the network of
such exchanges (Kuznets 1955; Amiel and Cowell 1999; Esping-Andersen 2007).
Figure 4 illustrates a strongly connected network of such flows.

Let x(0)T = [422 359 558 742 424 429], ∑i xi(0) = 2934, and

W =


0 0.22 0.15 0.22 0.10 0.31
0 0 0 0 0 1
0 0 0.49 0 0.51 0
0 0.69 0 0.31 0 0

0.01 0.46 0 0.23 0.30 0
0.62 0.38 0 0 0 0

 .
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The normal Markov process gives
588
762
173
257
210
944


T

=


422
359
558
742
424
429


T 

0.2003 0.2598 0.0589 0.0877 0.0715 0.3219
0.2003 0.2598 0.0589 0.0877 0.0715 0.3219
0.2003 0.2598 0.0589 0.0877 0.0715 0.3219
0.2003 0.2598 0.0589 0.0877 0.0715 0.3219
0.2003 0.2598 0.0589 0.0877 0.0715 0.3219
0.2003 0.2598 0.0589 0.0877 0.0715 0.3219

 ,

in which each i’s xi(∞) is based on the same fraction of every node’s initial quantity,
for example, 0.2003 in the case of node 1. Let the A of the generalized Markov flow
process be

A =


0.5472 0 0 0 0 0

0 0.1386 0 0 0 0
0 0 0.1493 0 0 0
0 0 0 0.2575 0 0
0 0 0 0 0.8407 0
0 0 0 0 0 0.2543

 .

Then 
240
797
552
755
107
483


T

=


422
359
558
742
424
429


T 

0.4676 0.1757 0.0778 0.1136 0.0135 0.1517
0.0104 0.8770 0.0017 0.0025 0.0003 0.1081
0.0009 0.0410 0.9180 0.0174 0.0175 0.0052
0.0020 0.1693 0.0003 0.8074 0.0001 0.0209
0.0111 0.4993 0.0019 0.2114 0.2133 0.0630
0.0747 0.1124 0.0124 0.0181 0.0022 0.7801

 ,

in which each i’s xi(∞) is based on a different fraction of every node’s initial
quantity.

Tournaments of Pay-It-Forward Altruism

A network D is a tournament if and only if it is a complete asymmetric structure.
Such structures may be either strongly or unilaterally connected. Figure 5 is an
example of an unilateral tournament. Let x(0) be the distribution of n individuals’
capacities for altruistic actions (also referred as generalized or unilateral exchange)
that transfer gifts to other individuals without any expectation of immediate rec-
ompense (Malinowski 1920; Yamagishi and Cook 1993; Bearman 1997; Michalski
2003; Molm, Collett, and Schaefer 2007). The W that is associated with D governs
the distribution of gifts. The system’s total supply of gifts, ∑n

i=1 xi(k) = ∑n
i=1 xi(0)

∀k, remains constant over time periods. Because this tournament is an unilaterally
connected structure, it has only one sink component (trivial or nontrivial), and the
steady state of the normal Markov process will concentrate the total supply of gifts
in it. In contrast, the generalized model allows all individuals to withhold gifts, and
each individual in a nontrivial component will have a heterogeneous accumulation
of gifts.

Let x(0)T = [3 10 7 3 6 9], ∑i xi(0) = 38, and

W =


0.13 0.17 0.13 0.10 0.47 0

0 1 0 0 0 0
0 0.26 0.10 0.10 0.14 0.40
0 0.06 0 0.34 0.60 0
0 0.55 0 0 0.45 0

0.27 0.24 0 0.17 0.18 0.14

 .
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1 3 6

2 4 5

Figure 5: Unilateral tournament (aiiwii > 0 loops are not displayed).

The normal Markov process gives
0

38
0
0
0
0


T

=


3

10
7
3
6
9


T 

0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0

 ,

in which each i’s xi(∞) is based on the same fraction of every node’s initial supply
of gifts. Let the A of the generalized Markov flow process be

A =


0.7094 0 0 0 0 0

0 0.7547 0 0 0 0
0 0 0.2760 0 0 0
0 0 0 0.6797 0 0
0 0 0 0 0.6551 0
0 0 0 0 0 0.1626

 .

Then 
1
16
5
2
5
9


T

=


1
17
5
2
5
8


T 

0.3203 0.3573 0.0757 0.0339 0.2030 0.0099
0 1 0 0 0 0

0.0016 0.1124 0.7449 0.0133 0.0303 0.0973
0 0.3240 0 0.4166 0.2594 0
0 0.5109 0 0 0.4891 0

0.0144 0.0804 0.0034 0.0133 0.0311 0.8574

 ,

in which each i may withhold gifts, and each i’s xi(∞) is based on a different fraction
of every node’s initial quantity.

Resource Flows in Organizations’ Tree Structures

A weakly connected D is a tree from unique node if and only if exactly one node
has indegree 0 and every other node has indegree 1. Figure 6 is an example of such
structures. Let a countable quantity (funds or materials) be distributed from the
indegree 0 node to the other nodes of the tree (Pfeffer and Salancik 1974; Winkofsky,
Baker, and Sweeney 1981; Garcia, Calantone, and Levine 2003). The W associated
with the structure admits a family of possible steady state distributions of quantity

under the rule that each i
wij−→ j, i 6= j, arc of the tree has a wij > 0. The inevitable

steady state quantity distribution locates all quantity in the four sink nodes. In
contrast, the generalized model allows all nodes with 0 ≤ wii < 1 to retain a
positive fraction of the quantity supply.
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1

2 3

4 5

6 7

Figure 6: Tree structure (aiiwii > 0 loops are not displayed).

Let x(0)T = [1000 0 0 0 0 0] and

W =



0.10 0.70 0.20 0 0 0 0
0 0.20 0 0.60 0.20 0 0
0 0 1 0 0 0 0
0 0 0 0.15 0 0.40 0.45
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 .

The normal Markov process gives

0
0

222
0

194
275
309



T

=



1000
0
0
0
0
0
0



T 

0 0 0.2222 0 0.1944 0.2745 0.3088
0 0 0 0 0.2500 0.3529 0.3971
0 0 1 0 0 0 0
0 0 0 0 0 0.4706 0.5294
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 ,

in which all quantity is distributed to the four sink nodes. Let the A of the general-
ized Markov flow process be

A =



0.6221 0 0 0 0 0 0
0 0.3510 0 0 0 0 0
0 0 0.5132 0 0 0 0
0 0 0 0.4018 0 0 0
0 0 0 0 0.0760 0 0
0 0 0 0 0 0.2399 0
0 0 0 0 0 0 0.1233

 .

Then the result,

403
324
133
67
35
18
20



T

=



1000
0
0
0
0
0
0



T 

0.4030 0.3241 0.1327 0.0669 0.0351 0.0180 0.0202
0 0.6980 0 0.1442 0.0755 0.0387 0.0436
0 0 1 0 0 0 0
0 0 0 0.6366 0 0.1710 0.1924
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 ,

is that each i on the path leading to a sink node may store a positive fraction of the
distributed quantity.
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Refugee Flows

Our last illustration considers refugee flows (Pan and Nagurney 1994; Keely 1996;
Moorthy and Brathwaite 2019) and returns to the Figure 1 weakly connected net-
work D of refugees flows in which each node is a nation state. Let x(0)T =

[1000, 0 . . . 0]. The wii of the two sink nations (14 and 17) must be wii = 1,
the two wij arcs of all other 15 nations must be 0 < wij < 1, and the wii of the 15
nations must be 0 ≤ wii < 1. Then, in the steady state of the classic Markov process,
the 1000 refugees must be completely distributed into the two sink nations. The
only variable is the proportion of refugees distributed in the two sinks. The steady
state of the generalized Markov flow process with a11 = 1, and 0 < aii < 1 for all
other nations, allows a settlement of a positive fraction of the refugees in every
nation 2 to 17. Let x(0)T = [1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] and

W =



0.34 0.34 0.32 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.30 0 0.03 0.67 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.40 0 0.23 0.36 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.39 0 0 0.43 0.18 0 0 0 0 0 0 0 0 0
0 0 0 0 0.37 0 0 0.14 0.49 0 0 0 0 0 0 0 0
0 0 0 0 0 0.29 0 0 0.51 0.20 0 0 0 0 0 0 0
0 0 0 0 0 0 0.32 0 0 0 0.23 0 0 0.45 0 0 0
0 0 0 0 0 0 0 0.43 0 0 0.22 0.35 0 0 0 0 0
0 0 0 0 0 0 0 0 0.02 0 0 0.59 0.39 0 0 0 0
0 0 0 0 0 0 0 0 0 0.08 0 0 0.17 0 0 0 0.75
0 0 0 0 0 0 0 0 0 0 0.39 0 0 0.37 0.25 0 0
0 0 0 0 0 0 0 0 0 0 0 0.41 0 0 0.23 0.37 0
0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0.37 0.50
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.47 0 0.47 0.06 0 0
0 0 0 0 0 0 0 0 0 0 0 0.08 0 0 0 0.20 0.72
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


.

The normal Markov process, x(k + 1)T = x(k)TW, k = 0, 1, 2, . . . , concentrates the
refugees in the two sink nations (14 and 17):

x(∞)T = [0 0 0 0 0 0 0 0 0 0 0 0 0 209 0 0 791]

Let the aii values of the generalized Markov flow process be a11 = 1 for nation 1
with the following aii, i 6= 1, for nations 2 to 17: 0.7730, 0.7715, 0.8546, 0.5427, 0.5943,
0.2631, 0.4957, 0.9914, 0.1346, 0.3307, 0.0151, 0.8104, 0.7276, and 0.8010, respectively.

Then the equilibrium distribution of the 1000 refugees,

x(∞)T = [0 329 304 5 148 32 2 16 28 12 3 47 11 4 4 7 48],

is a distribution in which each nation on the paths leading to the two sink nations
has a positive settled fraction of the 1000 refugees. The assumption of 0 < aii < 1
for all nations i 6= 1 may be relaxed to allow other instances of aii = 1, in which case
the steady state fraction of refugee settlement would be zero in those nations. For
example, if nations 2 and 3 have aii = 1, then all refugees from nation 1 to them will
flow to nations 4 to 6. Thus, for a given W, the generalization allows a dramatically
larger domain of refugee distributions.
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Discussion

We have endeavored to be careful in emphasizing the social science motivations
for introducing our generalization of the classic Markov model. Given the vast
literature on Markov processes, we also have endeavored to find instances of prior
work that have addressed the concerns that prompted the present formulation. We
currently believe that the formulation is novel and that it is a potentially useful
movement toward greater realism, especially in regard to social science applications.
It is interesting to note that the fixed point of the iteration

V(k) = AWV(k− 1) + I−A, k = 1, 2, . . . , V(0) = I,

is found from the equation V = AWV + I−A and, in turn,

x(∞)> = x(0)>AWV + x(0)>(I−A).

It also is interesting to note the duality of the classic Markov model and the DeGroot
(1974) influence system model. A similar duality occurs with the generalized model
and the Friedkin and Johnsen (1999) influence system model. The existence of
mathematical dualities of systems that apply to substantively different phenomena
is always intriguing when they point to an open question of why it is so that these
different phenomena are mathematically related.
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