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Interplay between computable measures of entanglement and other quantum correlations
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School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
(Received 14 June 2011; published 15 November 2011)

Composite quantum systems can be in generic states characterized not only by entanglement but also by
more general quantum correlations. The interplay between these two signatures of nonclassicality is still not
completely understood. In this work we investigate this issue, focusing on computable and observable measures
of such correlations: entanglement is quantified by the negativity N , while general quantum correlations are
measured by the (normalized) geometric quantum discord DG. For two-qubit systems, we find that the geometric
discord reduces to the squared negativity on pure states, while the relationship DG � N 2 holds for arbitrary
mixed states. The latter result is rigorously extended to pure, Werner, and isotropic states of two-qudit systems
for arbitrary d , and numerical evidence of its validity for arbitrary states of a qubit and a qutrit is provided as well.
Our results establish an interesting hierarchy, which we conjecture to be universal, between two relevant and
experimentally friendly nonclassicality indicators. This ties in with the intuition that general quantum correlations
should at least contain and in general exceed entanglement on mixed states of composite quantum systems.

DOI: 10.1103/PhysRevA.84.052110 PACS number(s): 03.65.Ta, 03.65.Ud, 03.67.Mn

I. INTRODUCTION

The distinction between quantum and classical correlations
in the state of a multipartite physical system is a fundamental
problem with far-reaching implications [1,2]. Correlations
can be regarded as genuinely classical if they are essentially
revealed by classical information theory tools as analogs of
correlations between random variables. On the other hand,
entangled states have been traditionally considered to be the
only quantum-correlated class of states [3], but this statement
has recently proven to be misleading. Several features of
separable (i.e., unentangled) states are incompatible with a
purely classical description. To mention a few, an ensemble
of separable nonorthogonal states cannot be discriminated
perfectly [4], general separable states may have off-diagonal
coherences in any product basis [5], or, more practically, a
measurement process on part of a composite system in a
separable state may (and in general does) induce disturbance
on the state of the complementary subsystems [6]. These are
some genuine signatures of nonclassicality of correlations in
the considered states but without any entanglement.

Renewed attention toward the properties and the usefulness
of such general quantum correlations in separable (and
entangled) states has been triggered by the observation that,
in mixed-state models of quantum computation (e.g., the
so-called DQC1), such general quantum correlations may be
at the root of a speedup compared to the classical scenario,
despite the presence of zero or nearly vanishing entanglement
[7,8]. In general, it still remains an open issue whether such
general quantum correlations are just related to the statistical
properties of a state or if they represent truly some stronger,
physical correlations of quantum nature that reduce to the
entanglement in some cases and go beyond it in general [9].

It is clear that on pure bipartite states of arbitrary quantum
systems, entanglement and quantum correlations are just
synonyms. Both of them collapse onto the notion of a lack
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of information about the system under scrutiny when only
a subsystem is probed. Quantitatively, this implies that any
meaningful measure of entanglement or general quantum
correlations should just reduce to some monotonic function of
the marginal entropy of each reduced subsystem when applied
to pure bipartite states. The question becomes significantly
more interesting for mixed bipartite states. One would expect
to find, in general, an amount of quantum correlations that is
no less than some valid entanglement monotone. In this paper
we prove such an intuition to hold true for a particular choice
of quantifiers of entanglement and quantum correlations on
arbitrary two-qubit states and on a relevant subclass of two-
qudit states.

We recall that, in the last decade, a zoo of entanglement
measures (say E , the amount of entanglement they aim to
quantify) has been introduced [10], and in a more recent drift
several measures have been proposed as well to evaluate the
degree of general quantum correlations (say Q) in composite
systems [1,2,6,11–15]. It seems reasonable to expect that

Q � E (1)

should hold for a bona fide chosen pair of quantifiers (see also
[16]). However, this claim turns out to be not mathematically
fulfilled in some canonical cases. Selecting, for instance, two
well-established entropic quantifiers such as the “entangle-
ment of formation” [17] as an entanglement monotone and the
“quantum discord” [1,2] as a measure of quantum correlations,
one finds that the latter can be greater as well as smaller than
the former depending on the states, and no clear hierarchy
can be established, even in the simple cases of two-qubit
systems [18] or two-mode Gaussian states [19]. An interesting
study has recently succeeded in describing entanglement,
classical, and quantum correlations under a unified geometric
picture [13] by quantifying each type of correlations in terms
of the smallest distance (according to the relative entropy)
from the corresponding set of states without that type of
correlations. For example, the amount of entanglement in a
state ρ is given by the relative entropic distance between
ρ and its closest separable state, and it is called relative
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entropy of entanglement [20]. In this context, our expectation
holds: the relative entropy of entanglement ER is automatically
smaller in general than the so-called relative entropy of
quantumness QR [12], which in turn quantifies the minimum
relative entropic distance from the set of purely classically
correlated states (a null-measure subset of the convex set of
separable states [21]). The latter measureQR has been recently
interpreted operationally within an “activation” framework
that recognizes the value of general quantum correlations as
resources to generate entanglement with an ancillary system
[15] (see also [22,23]). Such a protocol is sufficiently general
to let one define, in a natural way, quantumness measures QE

associated with any proper entanglement monotone E . In this
way the question of the validity of Eq. (1) becomes especially
meaningful given the natural compatibility of the involved
quantifiers [16]. However, there is a nontrivial optimization
step required for the calculation of each QE that hinders the
explicit computability of the desired resources.

In this paper, we choose computable measures for entan-
glement and general quantum correlations. In the case of
entanglement, we adopt the squared “negativity” N 2 [24],
which is a measure of abstract algebraic origin quantifying
how much a bipartite state fails to satisfy the positivity of
partial transpose (PPT) criterion for separability introduced by
Peres and Horodecki [25]. In the case of quantum correlations,
we pick the “geometric quantum discord” DG [14], which
measures (as suggested by the name) the minimum distance of
a state from the set of classically correlated states, in terms of
the squared Hilbert-Schmidt norm. Both measures are taken
to be normalized between 0 and 1. Despite the very different
origin and nature of these two measures, we prove that Eq.
(1) holds, namely DG � N 2, for arbitrary mixed states of two
qubits.

We remark that both measures play key roles in the quantum
correlation scenario, especially for their observability and
usefulness in quantum information applications. In fact, the
negativity is a popular entanglement measure, operationally
related to the entanglement cost under PPT-preserving op-
erations [26] and amenable to experimental estimation via
quantitative entanglement witnesses (which provide measur-
able lower bounds toN ) [27]. On the other hand, the geometric
discord, operationally interpreted in [28], also admits a tight
lower bound Q [29] (which is by itself a faithful, observable
quantifier of general quantum correlations), whose detection,
which does not require complete state tomography, currently
constitutes the optimal pathway to reveal and quantitatively
estimate nonclassical correlations in quantum algorithms such
as DQC1 mixed-state quantum computation [8]. In this respect,
we show specifically that the chain DG � Q � N 2 holds
in general two-qubit states (where the leftmost inequality
is analytical [29] and the rightmost one is corroborated by
numerical simulations).

Furthermore, we prove that the inequality DG � N 2

extends to arbitrary pure, Werner [3], and isotropic states [30]
of two qudits for any higher dimension d. We further provide
numerical evidence that supports the validity of the inequality
also in generic states of 2 ⊗ 3 systems. We then conjecture
that DG � N 2 should hold for arbitrary mixed states of a
d ⊗ d ′ bipartite system. Our results demonstrate an interesting
hierarchy between two apparently unrelated quantifiers of

nonclassicality, both of which have closed formulas (and
experimentally friendly detection schemes) available on the
classes of states considered here.

The fact that the geometric discord stands as a sharp upper
bound on a computable measure of entanglement such as the
(squared) negativity is a worthwhile issue to impose a rigorous
ordering of resources for all those applications where the
performance of a quantum information and communication
primitive relies on the amount and the nature of nonclassical
correlations between the involved parties [31].

This paper is organized as follows. Section II recalls the
definitions of negativity and geometric discord. In Sec. III we
compare the two measures on arbitrary states of two qubits. In
Sec. IV we extend our analysis to higher-dimensional systems.
We summarize our results and discuss future perspectives in
Sec. V.

II. MEASURES OF ENTANGLEMENT AND QUANTUM
CORRELATIONS

A. Negativity

According to the PPT criterion [25], if a state ρAB ≡ ρ

of a bipartite quantum system is separable, then the partially
transposed matrix ρtA is still a valid density operator, namely,
it is positive semidefinite. In general, ρtA is defined as the
result of the transposition performed on only one (A in this
case) of the two subsystems in some given basis. Even though
the resulting ρtA does depend on the choice of the transposed
subsystem and on the transposition basis, the statement ρtA �
0 is invariant under such choices [25]. For 2 ⊗ 2 and 2 ⊗ 3
mixed states [25], for arbitrary d ⊗ d ′ pure states, and for all
Gaussian states of 1 ⊗ n mode continuous variable systems
[32], the PPT criterion is a necessary and sufficient condition
for separability, and at the same time, its failure reliably marks
the presence of entanglement. In all the other cases, there exist
states that can be entangled with a positive partial transpose:
they are so-called bound entangled states, whose entanglement
cannot be distilled by means of local operations and classical
communications (LOCC) [33].

On a quantitative level, the negativity of the partial trans-
pose, or, simply, “negativity,” N (ρ) [24,34] can be adopted as
a valid, computable measure of (distillable) entanglement for
arbitrary bipartite systems. The negativity of a quantum state
ρ of a bipartite d ⊗ d system can be defined as

N (ρ) = 1

d − 1
(‖ρtA‖1 − 1) , (2)

where

‖M‖1 = Tr|M| =
∑

i

|mi | (3)

stands for the 1-norm, or trace norm, of the matrix M with
eigenvalues {mi}. The quantity N (ρ) is proportional to the
modulus of the sum of the negative eigenvalues of ρtA ,
quantifying the extent to which the partial transpose fails to be
positive.

The negativity N is in general an easily computable
entanglement measure, and it has been proven to be (along
with its square N 2) convex and monotone under LOCC [24].
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The squared negativity N 2 satisfies a monogamy inequality
on the sharing of entanglement for multiqubit systems [35].

B. Geometric quantum discord

The “geometric quantum discord” DG has been recently
introduced as a simple geometrical quantifier of general
nonclassical correlations in bipartite quantum states [14]. Let
us suppose to have a bipartite system AB in a state ρ and
to perform a local measurement on the subsystem B. Almost
all (entangled or separable) states will be subject to some
disturbance due to such a measurement [21]. However, there
is a subclass of states that is left unperturbed by at least
one measurement: it is the class of the so-called “classical-
quantum” states [5], whose representatives have a density
matrix of this form:

ρ =
∑

i

piρAi ⊗ |i〉〈i|, (4)

where pi is a probability distribution, ρAi is the marginal
density matrix of A, and {|i〉} is an orthonormal vector set.
Letting � be the set of classical-quantum states and χ be
a generic element of this set, the geometric discord DG is
defined as the distance between the state ρ and the closest
classical-quantum state. In the original definition [14], the
(unnormalized) squared Hilbert-Schmidt distance is adopted.
We employ here a normalized version of the geometric
quantum discord for arbitrary mixed states ρ of a d ⊗ d

quantum system,

DG(ρ) = d

d − 1
min
χ∈�

‖ρ − χ‖2
2, (5)

where

‖M‖2 =
√

Tr(MM†) =
√∑

i

m2
i (6)

stands for the 2-norm, or Hilbert-Schmidt norm, of the
matrix M with eigenvalues {mi}. The quantity DG(ρ) in
Eq. (5) is normalized between 0 (on classical-quantum states)
and 1 (on maximally entangled states ρ = |ψ〉〈ψ |, |ψ〉 =
d−1/2 ∑d−1

j=0 |j 〉|j 〉).
The geometric discord can be reinterpreted as the minimal

disturbance, again measured according to the squared Hilbert-
Schmidt distance, induced by any projective measurement �B

on subsystem B [28],

DG(ρ) = d

d − 1
min
�B

‖ρ − �B(ρ)‖2
2 .

We notice that the geometric discord is not symmetric under a
swap of the two parties, A ↔ B.

The minimization involved in the definition of the geo-
metric quantum discord can be solved exactly for arbitrary
two-qubit states [14] and pure two-qudit states [28,36], leading
to computable formulas, as detailed in the following sections.
In the remainder of the paper, we will compare entanglement,
quantified byN 2, and quantum correlations, quantified by DG.
The latter will be shown to majorize the former. We observe
that picking the square of the negativity as the entanglement
measure is unconventional yet necessary in this case: we
want to make a mathematically consistent comparison of the

measures, both acting quadratically on the eigenvalues of the
involved matrices [compare Eqs. (2) and (5)].

III. GEOMETRIC DISCORD VERSUS NEGATIVITY IN
TWO-QUBIT SYSTEMS

The main result of this section is the following.
Theorem 1. For every general two-qubit state ρ, the

geometric quantum discord is always greater than or equal
to the squared negativity,

DG(ρ) � N 2(ρ) . (7)

Let us review the formulas needed to evaluate the two
chosen measures for generic two-qubit states.

The geometric discord DG admits an explicit closed
expression for two-qubit states [14]. First, one needs to express
the 4 × 4 density matrix ρ of a two-qubit state in the so-called
Bloch basis (or R picture) [37]:

ρ = 1

4

3∑
i,j=0

Rijσi ⊗ σj

= 1

4

⎛
⎝I4+

3∑
i=1

xiσi ⊗ I2+
3∑

j=1

yjI2 ⊗ σj +
3∑

i,j=1

tij σi ⊗ σj

⎞
⎠ ,

(8)

where Rij = Tr[ρ(σi ⊗ σj )], σ0 = I2 and σi (i = 1,2,3) are
the Pauli matrices, 
x = {xi} and 
y = {yi} are the three-
dimensional Bloch column vectors associated with subsystems
A and B, and tij denote the elements of the correlation matrix
T . Then, following [14], the normalized geometric discord
DG, Eq. (5), takes the form

DG(ρ) = 1
2

(‖
y‖2 + ‖T ‖2
2 − k

)
, (9)

with k being the largest eigenvalue of the matrix 
y 
yt + T tT .
The expression in Eq. (9) can be also recast as the solution to
a variational problem [28]; namely, for two qubits,

DG(ρ) = 2
[
Tr(CtC) − max

A
Tr(ACtCAt )

]
, (10)

where C = R/2 and the maximum is taken over all 2 × 4

isometries A = 1√
2
(
1 
a
1 −
a ), with 
a being a three-dimensional

unit vector.
Concerning the negativity N , Eq. (2), it is known that a

two-qubit state ρ is separable if and only if ρtA � 0 [25], and
for entangled two-qubit states ρ, at most one eigenvalue of the
partial transpose ρtA can be negative [37]. Denoting by {λi} the
eigenvalues of ρtA in decreasing order, for two-qubit entangled
states we have λ1 � λ2 � λ3 � 0 � λ4, and the negativity of
ρ takes the form [24]

N (ρ) = ‖ρtA‖1 − 1 = 2|λ4| , (11)

while for separable states (λ4 � 0) one has N (ρ) = 0.
We first compare entanglement and quantum correlations

in the simple instance of pure two-qubit states ρp = |ψ〉〈ψ |.
Up to local unitary operations (which leave correlations
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invariant), a two-qubit pure state can be written in its Schmidt
decomposition, corresponding to a density matrix of the form

ρp =

⎛
⎜⎜⎜⎝

1
2 (

√
1 − N 2 + 1) 0 0 N

2

0 0 0 0
0 0 0 0
N
2 0 0 1

2 (1 − √
1 − N 2)

⎞
⎟⎟⎟⎠ .

(12)

It is straightforward to show that in this case,

DG(ρp) = N 2(ρp) ≡ SL

(
ρ

p

A

)
, (13)

where SL(ρp

A) = 4Det (ρp

A) denotes the marginal linear entropy
of one subsystem in its reduced state. As expected, entangle-
ment and quantum correlations correctly coincide for pure
two-qubit states, and specifically, the two chosen measures
(geometric discord and squared negativity) collapse onto the
very same quantifier of local lack of purity.

For general two-qubit mixed states, our intuition dictates
that the amount of quantum correlations should exceed
entanglement. This is formalized in Theorem 1, which we
are now ready to prove.

Proof. We focus on the case of entangled states, as Eq. (7)
trivially holds when ρ is separable.

First, we look at the original formulation of geometric
discord in [14]: the closest classical-quantum state χ̄ that
achieves the minimum of the Hilbert-Schmidt norm ||ρ − χ ||22
is such that Tr[ρχ̄ ] = Tr[χ̄2]. Thus, we can rewrite Eq. (5) as

DG = 2 min
χ∈�

‖ρ − χ‖2
2 = 2(Tr[ρ2] − Tr[χ̄2])

= 2(Tr[ρtA 2] − Tr[χ̄2]). (14)

Then, denoting (as before) by λ = {λi} the vector of eigenval-
ues of ρtA in decreasing order (λ1 � λ2 � λ3 � 0 � λ4) and
similarly denoting by ς = {ςi} the vector of eigenvalues of χ̄

(ς1 � ς2 � ς3 � ς4 � 0), recalling that the Hilbert-Schmidt
norm is invariant under partial transposition [38], we obtain∑4

i=1 ς2
i = Tr[ρtA χ̄]. We can further exploit the Hoffman-

Wielandt theorem [39], which implies that

‖ρtA − χ̄‖2
2 �

4∑
i=1

|λi − ςi |2 =
3∑

i=1

|λi − ςi |2 + (|λ4| + ς4)2.

(15)

Thus, from (14) and (15) we have

4∑
i=1

ς2
i =

4∑
i=1

λiςi . (16)

Now, let us consider the function

f (λ,ς ) =
3∑

i=1

λi |λi − ςi | − |λ4|(|λ4| − ς4); (17)

it is easy to see that, performing an optimization by the
Lagrange multipliers method, the minimum of f remaining

fixed |λ4| and ς4 (say f ′) is reached when λ1 = λ2 = λ3 =
(1+|λ4|)

3 and ς1 = ς2 = ς3 = 1−ς4

3 . Hence, we have

f ′(|λ4|,χ4) = (1 + |λ4|)
(

1 + |λ4|
3

− 1 − ς4

3

)
− |λ4|(|λ4| − ς4).

Furthermore, optimizing over ς4, we obtain f ′′, which is the
minimum of f at fixed |λ4| (i.e., at fixed negativity):

f ′′(|λ4|) = 1 + |λ4|
3

− |λ4| � 0. (18)

Finally, the last inequality implies
∑3

i=1 λi |λi − ςi | �
|λ4|(|λ4| − ς4), i.e.,

3∑
i=1

λi |λi − ςi | + |λ4|(|λ4| + ς4) � 2|λ4|2,

and thanks to Eq. (16) this yields

4∑
i=1

|λi − ςi |2 � 2|λ4|2 , (19)

which is equivalent to Eq. (7), thus demonstrating the claim.
This concludes the proof of Theorem 1 for all two-qubit mixed
states. �

To illustrate the comparison between geometric discord and
squared negativity, we plot in Fig. 1(a) the physical region
filled with 105 randomly generated two-qubit states in the
space DG versus N 2. Along with the lower bound (red online)
emerging from Theorem 1, saturated by pure states [Eq. (12)]
for which DG = N 2, we notice the existence of an upper
bound as well on DG at fixed negativity. This shows that the
quantum correlations in excess of entanglement or, in general,
beyond entanglement are somehow constrained. Two-qubit
states saturating the upper bound (green online) can be sought
within the class of rank-2 X-shaped density matrices of the
form

ρX =

⎛
⎜⎜⎜⎜⎝

a 0 0
√

ad

0 b
√

bc 0

0
√

bc c 0√
ad 0 0 d

⎞
⎟⎟⎟⎟⎠ , (20)

where d=1−a−b−c and b=[2−2a−2c+2(−1+6a−7a2 +
6c − 18ac − 7c2 + 4

√
2
√

ac(−1 + 2a + 2c)2)
1
2 ]/4, with a

and c varying in the parameter range 0 � a,c � 1/2, − 1 +
6a − 7a2 + 6c − 18ac − 7c2 + 4

√
2
√

ac|2a + 2c − 1| � 0.
The remaining optimization of DG at fixed N 2 can be
efficiently done numerically.

In the limiting case of separable two-qubit states,N (ρsep) =
0, the maximum value of the (normalized) geometric discord
can be analytically found to be [40]

DG

(
ρ

sep
opt

) = 1
4 . (21)

This is achieved by imposing the edge of separability, λ4 = 0,
that corresponds to ad = bc in Eq. (20). The maximum DG
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FIG. 1. (Color online) (a) Geometric quantum discord DG and (b) its observable lower bound Q vs squared negativity N 2 for 105 randomly
generated states of two qubits. The lower boundary (red online) in both plots accommodates pure states. In (a), the upper boundary (green
online) can be saturated by a subclass of rank-2 states of the form of Eq. (20), while the side (magenta online) vertical line at N 2 = 0 is filled by
separable states with nonzero quantum correlations, which reach up to the value DG = 1/4 on states of the form of Eq. (22). All the quantities
plotted are dimensionless.

is then reached, e.g., for a = c = 1
8 (2 + √

2). Notice that the
corresponding state ρ

sep
opt ,

ρ
sep
opt =

⎛
⎜⎜⎜⎜⎝

1
8 (2 + √

2) 0 0 1
4
√

2

0 1
8 (2 − √

2) 1
4
√

2
0

0 1
4
√

2
1
8 (2 + √

2) 0
1

4
√

2
0 0 1

8 (2 − √
2)

⎞
⎟⎟⎟⎟⎠ ,

(22)

upon swapping the subsystems A and B, becomes of the
classical-quantum form of Eq. (4), i.e., a state with zero
DG. This suggests that the maximum geometric discord for
general two-qubit separable states is obtained on an extremally
asymmetric state [the marginal state ρ

sep
opt A

is maximally
mixed, while the marginal state of subsystem B is quasipure,
Tr

(
ρ

sep
opt B

2) = 3/4] that displays no signature of quantum
correlations at all if subsystem A rather than B is probed
by local measurements. The example in Eq. (22) is just one
of an entire class of two-qubit states that enjoy the same
property [23].

The full allowed range 0 � DG � 1/4 for the geomet-
ric discord of separable states [vertical magenta line in
Fig. 1(a)] can be spanned, for instance, by mixtures of the form
ρ

sep
p = pρ

sep
opt + (1 − p)I/4, with 0 � p � 1, for which

DG(ρsep
p ) = p2/4.

We can refine the hierarchy proven in this section by taking
into account the observable measure of quantum correlations
Q introduced in [29]. In particular, for arbitrary two-qubit
states this quantity takes the form of a state-independent
function of the density matrix elements given by

Q = 2
3 (Tr[S] −

√
6Tr[S2] − 2(Tr[S])2), (23)

where S = 1
4 (
y 
yt + T tT ). We have shown in [29] how to

recast Q in terms of observables that can be measured
experimentally via simple quantum circuits. We also proved
that Q is a tight lower bound to the geometric discord, i.e.,
DG � Q, where the inequality is saturated for pure states and
Q = 0 ⇐⇒ DG = 0. In Fig. 1 we plot Q versus the squared

negativity: numerics confirm that this quantity is still an upper
bound to N 2. Therefore, the following hierarchical ordering
is satisfied for all two-qubit states: DG � Q � N 2, while all
the quantifiers become equal for pure states.

IV. GEOMETRIC DISCORD VERSUS NEGATIVITY IN
HIGHER-DIMENSIONAL SYSTEMS

Here we provide extensions of the results of the previous
section to d ⊗ d and d ⊗ d ′ systems.

A. Pure d ⊗ d states

We first generalize Theorem 1 to arbitrary pure states of
two qudits. Namely, we prove the following.

Theorem 2. For every pure two-qudit state |ψ〉 ∈ Cd ⊗ Cd ,
the geometric quantum discord is always greater than or equal
to the squared negativity,

DG(ψ) � N 2(ψ) . (24)

Proof. Any pure state |ψ〉 ∈ Cd ⊗ Cd can be written
without loss of generality in the Schmidt decomposition:

|ψ〉 =
d−1∑
j=0

√
αj |j 〉|j 〉 , (25)

where the Schmidt coefficients are probability amplitudes,∑
j αj = 1.
The geometric discord [Eq. (5)] can be computed in this

case following Luo and Fu [28,36]. The closest classical state
to |ψ〉, entering the definition [Eq. (5)], turns out to be the
completely uncorrelated state ρ⊗ = ρA ⊗ ρB obtained as the
tensor product of the marginal states ρA = TrB(|ψ〉〈ψ |) and
ρB = TrA(|ψ〉〈ψ |). This implies

DG(ψ) = d

d − 1

(
1 −

∑
i

α2
i

)
= 2d

d − 1

∑
j>i

αiαj . (26)
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FIG. 2. (Color online) Geometric quantum discord vs squared negativity for 3 × 104 (per panel) randomly generated pure states of two
qudits with d = 2, . . . ,7. The two measures coincide for d = 2 (pure two-qubit states). In general, the dashed red line DG = N 2 is not attainable
for intermediate values of both measures, while a tighter lower bound (solid green line) on DG exists at fixed negativity, given by Eq. (31).
Such a bound is saturated by states with Schmidt decomposition as in Eq. (30). The upper bound on DG at fixed negativity is more structured.
Notice that these plots can be also interpreted as the span of the pair of entanglement measures τ2 [42] vs N 2 [24] for two-qudit pure states.
All the quantities plotted are dimensionless.

Meanwhile, the negativity [Eq. (2)] is given by [24]

N (ψ) = 1

d − 1

⎡
⎣(∑

i

√
αi

)2

−
∑

i

αi

⎤
⎦

= 1

d − 1

⎡
⎣(∑

i

√
αi

)2

− 1

⎤
⎦ . (27)

We know from [41] that the following inequality holds:

4
∑
j>i

αiαj � 2

d(d − 1)

⎡
⎣(∑

i

√
αi

)2

− 1

⎤
⎦

2

; (28)

therefore we obtain

2
d

d − 1

∑
j>i

αiαj � 1

(d − 1)2

⎡
⎣

(∑
i

√
αi

)2

− 1

⎤
⎦

2

. (29)

The left side is the normalized geometric discord, while the
right side is the normalized squared negativity. �

We have already seen that for d = 2, the two measures
DG and N 2 indeed coincide on pure states. However, for any
d > 2, the geometric discord is in general strictly larger than
the negativity. This seems to go against the expectation that
quantum correlations should reduce to entanglement on pure
states. In fact, DG does reduce to an entanglement measure
on general two-qudit pure states, but such a measure is in
general different from the squared negativity for d � 3. The
pure-state entanglement monotone that takes the very same
expression as in Eq. (26) is a particular coefficient τ2 of the
characteristic polynomial of the nontrivial block of the Gram
matrix of pure two-qudit states (see [42] for details). Such a
measure has not been studied for mixed states, and it is an
interesting (yet technically challenging) open problem to see

whether the hierarchy DG � τ2 holds for general two-qudit
mixed states beyond d = 2.

Coming back to our measures of choice in this work,
geometric discord and squared negativity, we can visualize
their interplay on pure two-qudit states with increasing d. We
have generated a large ensemble of two-qudit states up to d = 7
with random Schmidt coefficients. At fixed negativity, the
geometric discord displays both upper and lower bounds. The
upper bounds are multibranched, with an increasing number
of nodes appearing with increasing d. The lower bounds are
regular curves lying in general strictly above the bisectrix for
any d > 2, with DG = N 2 occurring only at the extremal
points where both vanish (on factorized states) or both reach
the maximum (on maximally entangled states). We find that,
for any d, the pure two-qudit states that achieve the minimum
geometric discord at fixed negativity (solid green curve in
Fig. 2) have a peculiar distribution of Schmidt coefficients:

α0 = sin2 θ , (30)

αi = cos2 θ

d − 1
∀ i = 1, . . . ,d − 1 ,

with arccos
√

(d − 1)/d � θ � π/2. Since this is true for
every pure state in the special case d = 2, this is a further
proof that on two-qubit pure states DG equals N 2, as observed
in the previous section. In general, the lower bound on DG at
fixed N as saturated by the states of Eq. (30) is given by

Dlow
G (N ) = [2(d − R − 1) + (d − 2)(d − 1)N ]

×{2[(d − 1)2 + R] − (d − 2)(d − 1)N }
× [(d − 1)2d2]−1 , (31)

with R =
√

(d − 1)2(1 − N )[1 + (d − 1)N ].
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B. Werner and isotropic d ⊗ d states

The ordering relationship between geometric discord and
squared negativity can be further extended rigorously to
two special classes of mixed d ⊗ d highly symmetric states,
namely, the Werner states [3] and the isotropic states [30].
We recall that for both families of states the PPT criterion is
necessary and sufficient for separability [43].

The Werner states in arbitrary d dimension take the form [3]

ρw = d + k

d3 − d
Id + −dk − 1

d3 − d
|�〉〈�|, (32)

where |�〉 = ∑d−1
i,j=0(|ij 〉 + |ji〉) and k ∈ [−1,1] with 0 <

k � 1 for entangled states. The geometric discord calculated
in [28] and then normalized is

DG(ρw) = (dk + 1)2

(d + 1)2
, (33)

while after simple algebra we obtain the following expression
for the (normalized) negativity:

N (ρw) = max {0,k} . (34)

The isotropic states can be instead defined as [30]

ρi = 1 − p

d2 − 1
Id + d2p − 1

d2 − 1
|�〉〈�|, (35)

where |�〉 = 1√
d

∑d−1
i=0 |ii〉 and p ∈ [0,1], with the states

being entangled for p > 1/d. In such a case the (normalized)
geometric discord [28] is

DG(ρi) = (d2p − 1)2

(d2 − 1)2
, (36)

and the negativity is given by [44]

N (ρi) = max

{
0,

dp − 1

d − 1

}
. (37)

Interestingly, for both classes of states (in the nontrivial
region of parameters where they are entangled) some straight-
forward algebra shows that the simple relationship

DG(ρw,i) =
[

1 + d N (ρw,i)

1 + d

]2

� N 2(ρw,i) (38)

holds, thus establishing once again the desired hierarchy.
We notice a radical difference between quantum correla-

tions of Werner and isotropic states in the region in which
they are separable. Namely, for Werner states the quantum
correlations measured by the geometric discord can grow,
approaching the maximum (which is 1 in normalized units)
even without entanglement, with increasing dimension d, so
that limd→∞ DG(ρw) = k2 in the full range k ∈ [−1,1], half of
which contains separable states. Therefore Werner states with

FIG. 3. (Color online) (top) Geometric quantum discord vs squared negativity (solid blue line) [Eq. (38)] for d ⊗ d Werner states with
dimensions d = 2,3,10,99 (from left to right); the dashed red line of the equation DG = N 2 is just a guide to the eye. The corresponding plots
for isotropic states are identical, apart from the extra vertical branch at N = 0 that is absent in those cases. (middle) DG (solid blue line) and
N 2 (red dashed line) for d ⊗ d Werner states (32) plotted as a function of the parameter k ∈ [−1,1]. (bottom) DG (solid blue line) and N 2 (red
dashed line) for d ⊗ d isotropic states (35) plotted as a function of the parameter p ∈ [0,1]. All the quantities plotted are dimensionless.
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FIG. 4. (Color online) Geometric discord vs squared negativity
for 2 × 105 mixed states of 2 ⊗ 3 systems, randomly generated by
using the MATHEMATICA package available in [47]. All the quantities
plotted are dimensionless.

high dimension and k → −1 are examples of highly mixed,
completely separable states whose quantum correlations are
asymptotically as big as those of pure maximally entangled
states, as predicted in [15] (see also [45]). On the other hand,
for isotropic states, with increasing d the separability region
(0 � p � 1/d) just shrinks to zero, meaning that in such a case
the geometric discord just converges to the squared negativity
in the full parameter range, with no significant signatures of
quantum correlations exhibited in absence of entanglement.
Note that the two families of states are instead completely
equivalent in the limiting case d = 2 (upon identifying k =
2p − 1). The interplay between DG and N 2 for Werner and
isotropic states of varying dimension is illustrated in Fig. 3.

C. Generic d ⊗ d ′ states

Encouraged by the previous results, we now wish to test
the validity of the inequality DG � N 2 for generic mixed
states of arbitrary d ⊗ d ′ dimensional systems. Specifically,
we run a numerical exploration of the DG versus N 2 plane
for randomly generated mixed states of 2 ⊗ 3 systems. In
this case, the geometric discord can be computed according
to the prescription of Ref. [46], while the negativity still
captures all entanglement potentially present in the states
[25]. Remarkably, based on extensive numerical evidence (see
Fig. 4), we find that the hierarchy between geometric discord
and squared negativity holds as well for arbitrary states of a
qubit and a qutrit. This finding, in addition to the results of the
previous sections, motivates us to conjecture that DG � N 2

might be a universal ordering relationship for arbitrary d ⊗ d ′
dimensional systems. A general proof of this statement would
be very valuable, and an interesting, related open question
concerns investigating the role of bound entanglement in
higher dimensions and its interplay (not captured by the
negativity) with geometric measures of quantum correlations.

V. CONCLUDING REMARKS

We have presented a qualitative and quantitative study of en-
tanglement and general quantum correlations for arbitrary two-
qubit states and for relevant instances of higher-dimensional
states.

First, we identified a computable measure of entanglement,
the squared negativity N 2 [24], and proved that it is always
majorized by a compatible measure of quantum correlations,
the geometric discord DG [14], in the case of generic two-qubit
states. The inequality is saturated for pure states. We also
provided numerical evidence that the squared negativity is still
majorized by a tight lower bound Q to the geometric discord,
recently proposed as an observable measure of quantum
correlations [29]. Thus, the chain DG � Q � N 2 holds for
two-qubit states.

Then, we explored the pattern of the plane DG versus
N 2, identifying the classes of two-qubit states with maximal
geometric discord at fixed negativity. In particular, the bound
is reached by a family of X states given in Eq. (20). Remark-
ably, for separable states the upper bound accommodates a
fully asymmetric state, i.e., a state becoming a zero-discord
classical-quantum state upon swapping of the subsystems.

Finally, we extended our analysis to arbitrary d ⊗ d ′
systems. For two-qudit pure states, we found that the hierarchy
between geometric discord and squared negativity still holds
rigorously. We characterized the states with minimal DG at
fixed N 2: they present an elegant parametrization of the
distribution of their Schmidt coefficients, allowing us to
express analytically the lower bound in the DG versus N 2

plane for any d, as in Eq. (31). In the mixed-state case,
the inequality is still valid for Werner and isotropic d ⊗ d

states, for which DG is a simple function of the negativity for
each dimension d. We further provided numerical evidence
supporting the validity of the hierarchy between geometric
discord and squared negativity for general mixed states of
2 ⊗ 3 systems. In all the instances analyzed in this paper,
DG and N were computable in closed form and were always
found to obey the ordering relationship DG � N 2. We thus
conjecture its validity on arbitrary bipartite states of any
dimension, leaving open at the present the task of providing a
rigorous general proof (or a counterexample) to our claim.

Our results agree with the intuitive prediction that general
quantum correlations should be somehow related to entangle-
ment and definitely incorporate it [16]. Geometric discord [14]
(or its lower bound Q [29]) and negativity [24] are two com-
putable, observable, and experimentally friendly measures of
quantum correlations whose interplay, explored in this paper, is
important for getting a quantitative grip on the performance of
several quantum information protocols, ranging from quantum
computation to quantum metrology and state discrimination
[31]. Understanding the nature of nonclassical correlations
and their role in determining advantages over fully classical
scenarios is a central issue in quantum information processing
and communication [9]. On a more fundamental level, our
findings suggest that nonclassical correlations measured by
geometric discord could be regarded as a more general feature
that somehow incorporates entanglement and state mixedness,
following the intuition advanced in [15]. Encouraging prelim-
inary evidence that the geometric discord (the lower bound Q)
can be employed to characterize the dynamics of quantum
correlations in open systems and possibly other relevant
features of open systems themselves (e.g., non-Markovianity
[48]) has been recently presented in [29]. In this respect, the
ordering relations we found suggest that entanglement and
general quantum correlations as well can both be interrelated
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to such properties of open systems. Encouraged by the
hierarchy pointed out in this paper, we believe it becomes even
more meaningful to keep searching for simple but universal,
physically motivated and mathematically accessible, unifying
measures of “quantumness” of the correlations, along the spirit
of Refs. [13,15,16,22].
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