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Abstract

Surface electromyogram (EMG) has a relatively large detection volume, so that it could
include contributions both from the target muscle of interest and from nearby regions
(i.e., crosstalk). This interference can prevent a correct interpretation of the activity
of the target muscle, limiting the use of surface EMG in many fields. To counteract
the problem, selective spatial filters have been proposed, but they reduce the represen-
tativeness of the data from the target muscle. A better solution would be to discard
only crosstalk from the signal recorded in monopolar configuration (thus, keeping most
information on the target muscle). An inverse modelling approach is here proposed to
estimate the contributions of different muscles, in order to focus on the one of interest.
The method is tested with simulated monopolar EMGs from superficial nearby mus-
cles contracted at different force levels (either including or not model perturbations and
noise), showing statistically significant improvements in information extraction from the
data. The median over the entire dataset of the mean squared error in representing the
EMG of the muscle under the detection electrode was reduced from 11.2% to 4.4% of the
signal energy (5.3% if noisy data were processed); the median bias in conduction velocity
estimation (from 3 monopolar channels aligned to the muscle fibres) was decreased from
2.12 to 0.72 m/s (1.1 m/s if noisy data were processed); the median absolute error in the
estimation of median frequency was reduced from 1.02 to 0.67 Hz in noise free conditions
and from 1.52 to 1.45 Hz considering noisy data.

Keywords: Surface EMG, Crosstalk, Inverse Problem, Source Localization

1. INTRODUCTION

The relatively large pick-up volume of surface electromyogram (EMG) has been con-
sidered as a limitation with respect to invasive alternatives, which could provide more
selective information [1][2]. However, recording contributions from a large region, sur-
face EMG can represent the overall activity of a great portion of the muscle. The only5
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problem is discriminating the sources of the recorded signal. In particular, it is im-
portant to focus on the activity of interest, removing the crosstalk produced by nearby
muscles. The interference may originate from muscles which are located either adjacent
(e.g., vastus medialis and lateralis [3]), or deeper (ankle flexors and extensors [4], soleus
and gastrocnemius [5]), or around the target muscle (forearm muscles [6][7]). The prob-10

lems introduced by crosstalk were documented in different applications: gait analysis [8],
muscle coordination [9], ergonomics [6], reflexes [10], prosthetic control [11] and many
others [12][13].

The biophysical origin and the quantification of crosstalk have been investigated in dif-
ferent conditions, using both simulations [14][15] and experiments [3][16][17][18][19][20].15

The main key for understanding it is related to the shape variations of motor unit (MU)
action potentials (MUAP) as they are recorded from different locations. Specifically, cur-
rent sources propagating along muscle fibres provide near-field potentials, whereas their
generations and extinctions produce far-field contributions. Thus, the surface EMG pro-
duced by the same sources has different shape when recorded from different sites, as20

each MUAP is constituted by contributions that vary differently with distance. For this
reason, crosstalk cannot be simply quantified by cross-correlating the signals recorded
over the target and the crosstalk muscles [21].
In particular, crosstalk is usually due to the activity of muscles which are located farther
from the detection electrodes than the target one and it is thus mainly constituted by25

generation and extinction effects. These contributions are sharp when recorded close
to the bioelectric source, but they are smoothed by the volume conductor as they are
recorded far from it. As a result, crosstalk bandwidth is superimposed to that of the
target EMG, so that temporal filters are not beneficial to reduce it [22].
Far-field effects are similar when recorded by different electrodes, on the contrary of30

the contributions of the propagating sources. For this reason, placing a linear array of
electrodes aligned to the fibres of the target muscle, propagating and non-propagating
components can be recorded [23]: the first contributions allow to investigate muscle fibre
conduction velocity (CV, an important EMG index, e.g., to investigate muscle pathology
or fatigue [24]), whereas the second ones induce a bias in CV estimation [25]. As men-35

tioned above, crosstalk is mainly constituted by far-field/non-propagating components,
thus inducing a bias in CV estimation from the target muscle.

In applications, crosstalk is usually reduced using selective spatial filters [17][26].
However, the optimal filter depends on the specific tissues [14][15], so that it should be
estimated by adapting to the specific condition [25]. Moreover, selective filters discard40

not only crosstalk, but also the signal from the target muscle, recording data which are
less representative of its activity [5], which could be a problem when studying a muscle
providing multiple biomechanical actions [27].
Thus, monopolar data include most information from the target muscle, but they are
the most affected by crosstalk; on the other hand, optimal selective filters can reduce45

crosstalk, but they provide poor information on the target muscle. Hence, reducing
crosstalk from monopolar data could be a useful alternative to the use of spatial filters,
which has the advantage of keeping most information from the target muscle.

In this paper, the signals produced by the target and the crosstalk muscles are es-
timated by inverse modelling. The method is used to quantify and reduce crosstalk.50

Monopolar EMGs are considered, in order to extract most of the information from the
target muscle. The possibility of compensating for the bias introduced by crosstalk in
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estimating EMG amplitude, CV and median frequency (MDF) of the target muscle is
investigated.
This work is an extension of a preliminary congress contribution [28].55

2. Methods

2.1. Inverse modelling algorithm

Surface EMG is the electric potential over the skin induced by bioelectric currents
flowing across the membrane of muscle fibres and inducing their contraction. Identifying
the active regions in a muscle from the recorded EMG is an inverse problem. In general,60

inverse problems are difficult to solve, as they require to estimate the cause (the current
sources in our case), given the effect (i.e., the surface EMG). The direct problem of surface
EMG simulation can be simulated solving an electrostatic problem [29] (assumption
valid if voluntary contractions are considered [30]), with Poisson equation relating the
bioelectric source and the potential distribution in the tissues, thus, in particular, over65

the skin surface. This problem was extensively studied for surface electroencephalogram
(EEG) [31], e.g., with the aim of supporting presurgical evaluation of epileptic patients
[32]. Most of the methods proposed in the field of surface EMG have a high computational
cost, as they either require to apply intensive simulations by the finite elements method
(FEM)[33] or to decompose the interference EMG into constituent MUAPs [34].70

Here, a low cost method is considered, which could even be run in real-time [35]. It is
based on an interpretation model, to be inverted to fit the data, which are assumed to be
approximately represented as a linear combination of a set of single fibre action potentials
(SFAP), each representing the activity of a source in a specific location (assuming the
action potential to propagate at 4 m/s along muscle fibres):

b (x, t) =

NR∑
n=1

Nτ∑
k=1

Xn,kan (x, t− τnk) (1)

where b (x, t) is the EMG, x is the space variable (indicating the position of the recording
channels), t is the time variable, τnk is a delay (Nτ is the number of considered delays)
and an(x, t) are NR basis waveforms (i.e., the SFAPs representing the activity of a source
located in a specific region). The coefficients {Xn,k} are the unknowns and indicate the
activity of a specific source (the nth) at a certain time (i.e., corresponding to the delay75

τnk). Notice that this interpretation model is quite coarse in approximating a real EMG,
e.g., as only few basis waveforms are considered (instead of hundreds of MUAPs generated
by the MUs involved in a high level contraction), their shape cannot be exactly equal
to any MUAP (indeed, they are only SFAPs), the details of the volume conductor and
fibres anatomy could be not known precisely, a constant value of muscle fibre CV was80

considered, and electrical noise was not included.
As shown in [35], Equation (1) can be rewritten in matrix form

AX = b, (2)

with the basis waveforms (with all considered delays) placed in the columns of the matrix
A, the vector b including the measurements andX collecting the unknowns. Due to model
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approximations, experimental noise and the inherent instability of the inverse problem,
a least mean squared solution was sought after introducing Tikonov regularization [35]

min
X
‖AX − b‖2 + α‖X‖2 (3)

where the first term is the residual norm (measuring the error in data fitting) and the
second is the solution norm (weighted by α equal to one thousandth of the maximum
eigenvalue of the matrix ATA), imposing the energy of the solution to be small (avoiding
oscillating solutions with large phase cancellations; on the other hand, the essential
solution including only few sources is selected, accepting a larger residual variance in
fitting the data, with such a residual error ideally reflecting the contribution of noise).
The problem has the following analytical solution

X = (ATA+ αI)−1AT b (4)

2.2. Simulated EMGs for tests

The same generation model as in [28] was used, but extensive simulations were here
performed. In brief, the volume conductor and electrode configuration are shown in
Figure 1. Two nearby muscles were considered, each including 400 MUs uniformly dis-85

tributed in their cross-sections. Their MUAPs were simulated by summing simulated
SFAPs in monopolar configuration (10 fibres per mm2, MU centres chosen randomly and
closest fibres selected as belonging to them).

The basis waveforms used for the fitting model (1) were 90 in total, distributed in the
muscle cross-section, with depth between 1 and 9 mm (2 mm step) and angle between90

±45o (5o step, removing 0o, which is the angle of the plane separating the two muscles).
For each muscle, interference EMGs of 20 s duration were simulated (as in [36]) for

contraction levels in the range 5-100% of the maximal voluntary contraction (MVC; 5%
step) and combined to generate the dataset to test the algorithm (parameters used to
generate the interference signals: range of recruitment thresholds 70% of MVC; range of95

the firing rate 8–30 Hz, with linear increase with the force level with slope of 1 Hz per
1% MVC, after MU recruitment and until the upper limit of the firing rate; 10% random
Gaussian jitter of the inter-spike interval).
Both ideal and noisy conditions were considered. In the first case, the basis waveforms
were simulated using the same volume conductor model as the one considered to simulate100

the test EMGs (as in the representative simulations shown in [28]). In the tests in noisy
conditions, the same simulated EMGs were corrupted by adding white Gaussian noise
with 25 dB of signal-to-noise ratio. High frequency noise was then attenuated by a
lowpass filter with cutoff 350 Hz (6th order Chebychev filter of type I, applied twice, once
with time reversed to remove phase distortion). Moreover, the volume conductor used to105

simulate the basis waveforms for inverse modelling included the following differences with
respect to the one used to generate the test signals: the cylindrical volume conductor
had a radius 2 mm larger, the fat layer was 1 mm thinner, the skin was twice thicker,
the diameter of the bone was 5 mm shorter and the conductivities of all tissues were the
50% larger.110

2.3. Performance evaluation

The following performance measurements were used to check the accuracy of the
proposed algorithm.
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Figure 1: Description of the simulation model. A) Cylindrical volume conductor used to simulate two
muscles (M1 and M2). Monopolar signals were acquired from a grid of electrodes of 16 rows and 3
columns (transverse and parallel to the muscle fibres, respectively). B) Indication of the anatomy of the
muscle fibres. C) Cross-section of the volume conductor with indication of the location and dimension of
the motor units (400 for each muscle). D) Example of simulated monopolar signal, showing the raw EMG
and the contribution of each of the two muscles recorded by a linear array in the transverse direction
with respect to the muscle fibres.
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� Mean squared error (MSE) in the estimation of the simulated signal from each of
the two muscles recorded over it, given in terms of percentage with respect to the
energy

MSE(f1, f2, x) = 2

∫
t

(sf1,f2(x, t)− s̃f1,f2(x, t))2dt∫
t

s2f1,f2(x, t)dt+
∫
t

s̃2f1,f2(x, t)dt
(5)

where s and s̃ are the simulated and estimated EMG signals, respectively, produced
by the muscle under the considered channel. These signals depend on the force level115

fk of muscle Mk (with k = 1, 2), the location of the electrodes x and time t.

� The ratio of the RMS amplitudes of the surface EMG of a muscle (either simulated
or estimated) over the total EMG was used to provide a quantification of crosstalk

R(f1, f2, x) =
‖mf1,f2(x, t)‖2
‖Tf1,f2(x, t)‖2

(6)

where m is the signal produced by a single muscle, T is the total EMG (sum of
the contributions of the two muscles, either simulated or estimated) and ‖·‖2 is
the L2 norm obtained integrating over time. The performance in the quantification
of crosstalk was measured in terms of the mean absolute difference of the ratio R120

obtained using as signal m either the simulated or the estimated EMG from the
considered muscle.

� Muscle fibre CV is biased by crosstalk. It was estimated on the raw EMG and on
those produced by the muscle under the electrodes, either simulated or estimated.
The estimation was obtained by applying the multi-channel spectral matching al-125

gorithm [37] to the three monopolar signals aligned to the muscle fibres, for each
of the 16 transverse location shown in Figure 1A and 1C (80 epochs of 250 ms).
The performance of the proposed algorithm was measured in terms of the mean
absolute error in estimating CV from the muscle under the electrodes.

� Spectral parameters are biased by crosstalk. Median frequency (MDF) was esti-130

mated considering the sample spectrum computed on 20 epochs of 1 s duration of
the monopolar signal detected from the central electrode of each triplet aligned to
muscle fibres. To overcome resolution problems (limiting to 1 Hz the estimation ac-
curacy), after computing the MDF on the sample spectrum, the two closest points
were interpolated with a quadratic polynomial to refine the estimation. MDF was135

computed on the raw EMG and on that produced by the muscle under the elec-
trodes, either simulated or estimated. The performance of the proposed algorithm
was measured in terms of the mean absolute error in estimating MDF from the
muscle under the electrodes.

The indexes were functions of the force levels of the two muscles and of the location of140

the electrodes. They were shown either as a function of the force levels of the two muscles
(computing the median across channels) or of the channel (showing the distributions of
values depending on the force levels).
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Figure 2: Example of signal processing to estimate the contributions of the two muscles. A) Examples
of signals: total EMG and contributions of either of the two muscles. Simulated and estimated signals
are superimposed (mean squared errors, defined in equation (5), in the estimation of the contributions
of M1 and M2 were 7.2% and 6.4%, respectively). Quantification of muscle crosstalk, in terms of the
percentage of RMS of signals from the two muscles (central linear array in transverse direction). B)
Example of estimation of muscle fibre conduction velocity (CV, from the shown 250 ms epoch) and
median frequency (MDF, from 1 s epoch centred on the shown one) from either the raw EMG or the
signals obtained after removing the contributions of the crosstalk muscles (i.e., the simulated/estimated
signal of M2 was removed from channels 1-8, that of M1 from channels 9-16). A portion of data from
the central columns of electrodes is shown (both raw data and simulated/estimated contributions of the
muscles under the electrodes). Some MUAPs are indicated using ellipsoids and rectangles: they are
visible from all channels in the raw signal, but they are produced by either of the two muscles.

3. Results

Figures 2-5 show the accuracy of the proposed method in quantifying crosstalk and145

reducing its effect in the considered simulated data. Some representative examples of
processing are first shown, then overall results on the entire dataset are presented, proving
the possibility of reducing the bias in amplitude, CV and MDF estimation.

Figure 2 shows an example of EMG processing. A signal including contributions of
the two muscles at 50% of their MVC is considered. The percentage RMSs of the two150

muscles over the transverse position are shown in 2A, comparing simulated and estimated
signals. This test indicates the potential application in the quantification of the contri-
butions of crosstalk (shown on the right). Moreover, a bias in amplitude estimation from
the target muscle could be compensated (as further assessed in the following Figure 3).
Figure 2B shows an example of estimation of CV and MDF of the target muscle (i.e., the155

one under the considered electrodes). Some portions of signals from the central chan-
nels are shown: notice that some MUAPs are visible in all channels, but they should
be considered either as signal or as crosstalk (e.g., the MUAPs indicated with ellipses
and rectangles are visible in all channels, but they are produced by either M1 or M2,
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respectively). The algorithm, by discriminating the contributions of the two muscles,160

can be used to remove the crosstalk contribution (i.e., the signal from the muscle which
is not under the electrodes). This can reduce the bias in CV and MDF estimation.
However, the algorithm is efficient only if the crosstalk muscle is not too close: some
problems are expected in the channels number 8 and 9 (actually, only for channel 9 the
bias in CV estimation is not reduced, whereas MDF measurement was always improved165

in the specific example shown in the figure). In fact, consider that they are only 2.5 mm
distant from the plane separating the two muscles (i.e., x = 0 in Figure 1C). Moreover,
the resolution of the sources of the kernel waveforms is quite poor: it is about one source
every 5.5 mm2, with a mean transverse distance between closest sources of about 3.4
mm. The problems in discriminating the signals from the two muscles hamper the esti-170

mation of EMG indexes from those channels which are very close to the crosstalk muscle.
Consider also that in such channels the contribution of crosstalk is mainly constituted
by propagating components of MUAPs generated by MUs close to the electrodes. On
the other hand, most crosstalk found in the other channels is due to non-propagating
components (related to generation and extinction of action potentials). The removal of175

such contributions is very important to reduce the bias in CV and MDF estimation in
all other channels (as further shown in the following Figures 4 and 5).

Figure 3 shows overall results on amplitude estimation, considering all simulations.
The MSE in estimating the contributions of the two muscles is shown in 3A as a function
of their force levels. The median MSE decreased from 11.2% of the signal energy (using180

raw data) to 4.4 % (using processed data; processing noisy data, the median MSE was
5.3%). Notice that a larger mistake is obtained when the force level of the target muscle
is small and that of the crosstalk muscle is big. The mean absolute error in crosstalk
quantification is shown in 3B, considering M1 as target muscle. Notice that the best
estimation is found when the two muscles have similar force levels (e.g., if the force185

contribution of a muscle is not lower than the 30% of the other, the average error is
lower than 10%). The error in estimating the EMG of the target muscle is shown in
Figure 3C as a function of the electrode location in the transverse direction. Notice that
the algorithm allows to reduce the estimation error in all locations, even considering
noisy processed data compared to noise free raw EMGs.190

Figure 4 shows the results of CV estimation obtained considering the entire dataset.
The absolute error in estimating CV from the target muscle (i.e., M1 for channels 1-
8, M2 for channels 9-16) is shown as a function of the force level in 4A and 4B, after
computing the median across channels, considering the raw and processed data, either
including or not the noise perturbations. The median bias in CV estimation of the195

muscle under the electrode decreased from 2.12 m/s (using raw data) to 0.72 m/s (using
processed data; processing noisy data, the bias was 1.1 m/s). Notice that removing
crosstalk is important when the force levels are not much different. The absolute error in
CV estimation is shown in 4C as a function of the detection channels (for each channel,
the distribution of the 400 combinations of force levels is displayed). As already noticed200

in Figure 2B for a specific case, when removing the estimated contributions of crosstalk,
CV computation could be degraded for channels 8 and 9 (i.e., the closest to x = 0). For
all other channels, crosstalk removal is beneficial to improve CV estimation.

Figure 5 shows the results of MDF estimation obtained considering the entire dataset.
As for the estimation of CV mentioned above, the absolute error from the target muscle205

(i.e., M1 for channels 1-8, M2 for channels 9-16) is shown as a function of the force level
8



Figure 3: Collective results from simulations of different contraction levels: for each muscle, contraction
levels in the range 5-100%MVC (5% step) were considered. A) MSE in estimating the contributions
of each muscle (averaging across channels and time samples), normalized by the average energy of
the simulated and estimated signals. B) Mean absolute error in quantifying muscle crosstalk as the
percentage of energy of the signal from muscle M1 (central linear array in transverse direction). C)
Distribution of MSE (shown in terms of median, quartiles and range) of the estimation of the EMG
of the target muscle (i.e., the one under the electrode) as a function of the transverse location of the
detection point. For each electrode location, Wilcoxon signed rank test indicated statistical differences
between raw and processed data (either corrupted or not by noise).
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Figure 4: Collective results of CV estimation considering simulations of different contraction levels.
A) Median (over channels) of mean absolute error in the estimation of the CV of the muscle under
the electrodes using either the raw data or the EMG processed to remove the estimated contribution
of the crosstalk muscle, as a function of the contraction levels of the two muscles. B) Same as A),
but considering noisy data. C) Distribution (considering different contraction levels) of mean absolute
error in estimating CV of the signal of the muscle under the electrodes, considering either the raw EMG
or the one obtained after removing the estimated crosstalk (with or without noise corruption). The
distributions of errors are shown in terms of median, quartiles and range. Wilcoxon signed rank test
indicated statistical differences between raw and processed data (either corrupted or not by noise) for
each electrode location.
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Figure 5: Collective results of MDF estimation considering simulations of different contraction levels.
The central electrode of each triplet aligned to the muscle fibres was considered. A) Median (over
channels) of mean absolute error in the estimation of the MDF of the muscle under the electrodes using
either the raw data or the EMG processed to remove the estimated contribution of the crosstalk muscle,
as a function of the contraction levels of the two muscles. B) Same as A), but considering noisy data.
C) Distribution (considering different contraction levels) of mean absolute error in estimating MDF of
the signal of the muscle under the electrodes, considering either the raw EMG or the one obtained
after removing the estimated crosstalk (with or without noise corruption). The distributions of errors
are shown in terms of median, quartiles and range. Wilcoxon signed rank test indicated statistical
differences between raw and processed data for each location except for electrode 10 for noise free data
and electrode 6 for noisy data.

in 5A and 5B (median across channels), considering the raw and processed data, either
including or not the noise perturbations. The median bias in the estimation of MDF of
the target muscle (i.e., that under the electrode) decreased from 1.02 Hz to 0.67 Hz using
respectively raw and processed noise free data. In noisy conditions, the median absolute210

error was 1.52 Hz for the raw signal and 1.45 Hz for the processed data. Again, removing
crosstalk is important when the force levels are not much different. The distribution of
the absolute error in MDF estimation (over the force levels) as a function of the detection
channels is shown in Figure 5C. The median bias is always quite small, but larger for
the electrodes closer to the crosstalk muscle. However, there is always a lower median215

of the estimation errors when using the processing method to reduce crosstalk (with
statistically significant improvements of the performances in all but few cases).

4. Discussion

The applications of surface EMG can be limited by crosstalk from muscles placed
nearby the target one [2][6][8][9][10][11][12]. Indeed, crosstalk may be misinterpreted as220

signal produced by the muscle of interest, affecting the extraction of different information
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from it, e.g., activation intervals, EMG amplitude, spectral content and muscle fibre CV.
Even though the problems induced by crosstalk are well-known, no standard methodology
is accepted to measure or reduce its contribution. The most common approach to reduce
it relies on recording the EMG by selective spatial filters. However, optimal filters should225

be adapted to the investigated anatomy [15] and they provide information only on a small
detection volume, which could be not representative of the overall activity of the target
muscle [5].

Here a different method is explored, i.e., estimating the contributions of the target
and crosstalk muscles, in order to remove the interference and being able to better extract230

the information of interest. The method is tested on simulations from close superficial
muscles. Discriminating the two contributions is an inverse problem, which is inher-
ently unstable. Indeed, MUAPs generated by close sources are very similar, so that the
discrimination is quite difficult, in particular when the crosstalk muscle is contracted
at a much higher force level than the target one and the detection channel is close to235

both. Moreover, the model used to fit the data includes some coarse approximations:
the number of considered sources (90) is quite limited with respect to the simulated MUs
(800), as it should be in the order of the number of electrodes sensing the EMG (48);
the kernel waveforms of the inverse model were simulated with a constant CV equal to 4
m/s. The effect of further problems like additive noise or differences between the volume240

conductor used to simulate the basis waveforms and the EMG were investigated in [35],
showing that the method is quite stable in the identification of the transverse location of
the active regions, which is useful to identify crosstalk from nearby superficial muscles.
More tests were performed here, confirming that the estimation of crosstalk is stable to
additive noise and problems in the volume conductor model. Indeed, the estimation of245

the amplitude and CV of the target muscle improved even comparing noise free raw data
and EMG processed in noisy conditions. The MDF was largely affected by the additive
noise (and also by the filter used to remove the contributions out of EMG bandwidth):
however, improvements in estimating it were observed comparing raw data either noise
free or noisy and their processed versions, respectively. As already noticed in [28], the250

best estimations are obtained when the two muscles have similar force levels.
These promising results indicate the need of further tests in experimental conditions.

In such a case, the level of crosstalk is not known a-priori (only tests in simulations allow
to overcome this problem). However, more stable estimations of amplitude, MDF and CV
from the target muscle are expected during the co-activation of a crosstalk muscle when255

using the proposed processing method. Moreover, experimental signals from selective
activations of different muscles could be combined to simulate a co-contraction. Thus,
some quantitative tests of the performances of the method could be investigated even in
experimental conditions.

The present study has the limitation of considering a specific simulation model. Close260

parallel muscles were simulated. This is a condition in which the inverse modelling
approach has shown stable results [35]. Other interesting geometrical configurations
could be studied, e.g., crosstalk could come from a deep muscle (more difficulties are
expected in such a condition, as the depth of sources is difficult to be estimated with
good accuracy [35]). Moreover, fibre orientation could be different, e.g., pinnate muscles265

could be investigated. Further investigation in those directions is suggested.
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5. Conclusions

Crosstalk is a subtle problem which can limit the application of surface EMG in many
fields. There’s no standard for its quantification and reduction. In this paper, an inverse
modelling approach is proposed to address the quantification and reduction of crosstalk.270

Tests in simulations show promising results in estimating its contribution and in reducing
the bias in amplitude, MDF and CV estimation.
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