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Abstract— Objective: The study of the arterial hemodynamics is 

essential for a better understanding of the risks associated with the 

onset/progression of vascular disease. However, conventional 

quantification and visualization paradigms are not sufficient to 

fully capture the spatiotemporal evolution of correlated blood flow 

patterns and their “sphere of influence” in complex vascular 

geometries. In the attempt to bridge this knowledge gap, an 

integrated computational hemodynamics and complex networks-

based approach is proposed to unveil organization principles of 

cardiovascular flows. Methods: The approach is applied to ten 

patient-specific hemodynamic models of carotid bifurcation, a 

vascular bed characterized by a complex hemodynamics and 

clinically-relevant disease. Correlation-based networks are built 

starting from time-histories of two fluid mechanics quantities of 

physiological significance, respectively (1) the blood velocity 

vector axial component locally aligned with the main flow 

direction, and (2) the kinetic helicity density. Results: Unlike 

conventional hemodynamic analyses, here the spatiotemporal 

similarity of dynamic intravascular flow structures is encoded in a 

distance function. In the case of the carotid bifurcation, this study 

measures for the first time to what extent flow similarity is 

disrupted by vascular geometric features. Conclusion: It emerges 

that a larger bifurcation expansion, a hallmark of vascular disease, 

significantly disrupts the network topological connections between 

axial flow structures, reducing also their anatomical persistence 

length. On the contrary, connections in helical flow patterns are 

overall less geometry-sensitive. Significance: The integrated 

approach proposed here, by exploiting the connections of 

hemodynamic patterns undergoing similar dynamical evolution, 

opens avenues for further comprehension of vascular 

physiopathology. 

 
Index Terms— Carotid bifurcation, complex networks, 

computational hemodynamics, helical flow, spatiotemporal 

analysis. 
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I. INTRODUCTION 

HE well-established role of hemodynamics in the onset 

and progression of vascular dysfunction, defining what is 

often referred to as the “hemodynamic risk” [1], makes the 

study of cardiovascular flows of wide interest. However, a full 

exploitation of the richness of information inherent to 

cardiovascular flows, made available by the adoption of in vivo 

four-dimensional (4D) flow MRI [2] and of personalized 

computational hemodynamics [3], poses several challenges. In 

fact, this large amount of hemodynamic data still needs for 

efficient methods distilling the arterial blood flow complexity 

in more intuitive, effective, and ultimately clinically relevant, 

hemodynamic quantifications and visualizations. 

In this context, a variety of hemodynamic descriptors has 

been proposed to visualize and quantify those flow disturbances 

in relation with aggravating biological events. Historically, the 

firstly proposed description of flow disturbances was based on 

wall shear stress (WSS), as it represents the interaction between 

blood flow and the vessel wall [4], [5]. More recently, such 

information has been extended and integrated with descriptors 

for the quantitative analysis and visualization of intravascular 

flow patterns, motivated by the presumption that intravascular 

fluid structures elicit those fluid-wall interactions involved in 

the onset of vascular disease. In this regard, a physiological 

significance has been attributed to helical flow, a main feature 

of arterial hemodynamics, as it induces flow stability 

suppressing flow disturbances at the arterial wall [6]-[12].  

Such intravascular flow features are typically represented 

through integrated quantities and/or through conventional 

visualization paradigms which, although intuitive, are only 

partially effective in capturing how blood flow patterns evolve 

and correlate in complex vascular geometries. Therefore, 

accurate knowledge on the spatiotemporal evolution of fluid 

structures and on their level of organization could be of 

paramount importance, supporting basic research on 
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cardiovascular flows and on the hemodynamic risk associated 

with vascular disease.  Here we apply methods of the Complex 

Networks (CNs) theory to computational hemodynamics data, 

with the intent to uncover and highlight fundamental 

organization principles of the arterial hemodynamics.  

The rationale for the use of CNs as tools of analysis lies in 

their ability to explore the structure and function of complex 

physical systems (i.e., 4D cardiovascular flows in our case) in 

a synthetic and effective manner.  

Technically, CNs are based on graph theory and are used to 

model pairwise relations between interacting dynamical units 

[13], [14]. Besides the well-established applications to Internet, 

economy and social dynamics [15]-[17], CNs have been 

recently applied to fluid mechanics [13], [18], e.g., to study 

climate dynamics [19], [20], isotropic turbulence [21], [22], and 

turbulence in channel flows [23], [24]. In those contexts, the 

study of CNs topology has revealed information embedded in 

the time series of fluid dynamics quantities involved in 

nonlinear phenomena that theoretical models are unable to 

describe. Here, pairwise linear correlation between the time 

series of hemodynamic quantities is used to build CNs 

measuring their spatiotemporal similarity. 

In this exploratory study, CNs are applied to the carotid 

bifurcation (CB), selected because of its intricate 

hemodynamics and its preferential atherosclerosis 

development. In detail, CNs ability in detecting the underlying 

hemodynamic features and organization is tested in a dataset of 

ten patient-specific computational fluid dynamics (CFD) 

models of human CB. Quantitative metrics derived from CNs 

theory are applied to the time-histories (along the cardiac cycle) 

of two fluid mechanics quantities describing the intricate 

intravascular hemodynamics: (1) the axial velocity, i.e. the 

blood velocity component aligned with the main flow direction; 

(2) the kinetic helicity density, a measure of pitch and torsion 

of the streaming blood [1]. These quantities were selected as 

they were previously shown to correlate with atherosclerotic 

biomarkers in the CB [25], [26]. The findings of this study 

highlight the potential of CNs in providing new pictures of the 

intravascular flows through the determination of the spatial 

scales of correlated hemodynamic structures and of their 

“persistence length” inside the CB.   

II. METHODS 

Data from this study are a subset of the Vascular Aging – The 

Link That Bridges Age to Atherosclerosis (VALIDATE) study. 

An overview of the methods applied in this study is provided in 

Fig. 1. 

A. Computational Hemodynamics 

The CB’s geometry and flow rates at inflow and outflow 

sections of ten ostensibly healthy participants were acquired 

from contrast-enhanced angiography (CEMRA) and phase-

contrast MRI (PC-MRI), respectively. The ten models were 

selected from the original VALIDATE dataset of 42 

participants to represent the large inter-individual variability in 

flow disturbances [25]. As detailed in a previous study [27], the 

common carotid artery (CCA) lumen geometry was 

reconstructed from the thoracic segment, where possible, to 

above the bifurcation, using the open-source Vascular 

Modelling Toolkit (VMTK, www.vmtk.org).  

Then, ICEM-CFD (ANSYS Inc., Canonsburg, PA) was used to 

generate uniform quadratic tetrahedral-element meshes. Details 

on the adopted numerical settings and schemes are exhaustively 

reported in a previous study [27]. The availability of PC-MRI 

measurements ensured patient-specific boundary conditions, as 

Fig. 1. Schematic diagram of the integrated computational hemodynamics and CNs-based approach. T: cardiac cycle duration; PC-MRI: phase-contrast MRI; 

CEMRA: contrast-enhanced magnetic resonance angiography. 
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detailed elsewhere [25], [27]. To ensure fully-developed 

velocity profiles at the CCA inlet and to minimize the influence 

from outlet boundary conditions, flow extensions were added 

to the inlet and outlet faces of all CFD models. CFD simulations 

were carried out using a previously validated finite element-

based in-house solver [28]. After CFD, using VMTK [29] all 

simulated models were truncated normal to the branch axis at 

locations 7, 2 and 5 radii of the local maximally inscribed 

spheres away from the branch division [9], [30] respectively for 

CCA, external (ECA) and internal (ICA) carotid artery (CCA7, 

ECA2 and ICA5 sections in Fig. 1, respectively), in order to 

ensure a consistent spatial extent across all cases for the CNs 

analysis [6], [27]. Each carotid geometry was characterized in 

terms of the expansion at the carotid bulb with respect to the 

CCA by the geometric descriptor FlareA (Fig. 14 in the 

Appendix). According to a previous study [31], FlareA was 

defined as the ratio between the maximum cross-sectional area 

at the CCA branch proximal to the flow divider and the CCA 

area at 3 maximally inscribed spheres radii upstream of the 

branch division (CCA3). Physically, a large expansion at the 

bifurcation with respect to the CCA promotes flow separation 

and in general flow disturbances in the bifurcation. 

B. Intravascular Flow 

Two fluid mechanics quantities, axial velocity (𝑉𝑎𝑥) and 

kinetic helicity density (𝐻𝑘), were considered to describe the 

laminar intravascular flow in the CB, and CNs were applied to 

their time-histories along the cardiac cycle (Fig. 1). In detail 

𝑉𝑎𝑥 , the axial component of blood velocity vector, 

representative of the main flow direction, was calculated by 

projecting the velocity vector field along the local vessel 

centerlines (i.e., the local axial direction, Fig. 15 in the 

Appendix), according to a scheme proposed elsewhere [32].  

Based on the established physiological significance of 

arterial helical flow [8], [33]-[36], in particular in the CB [6], 

[9], [25], and on the recognized role of helicity in the evolution 

and stability of both turbulent and laminar flows [37], also in 

the context of hemodynamic flows [11], [12], intravascular 

blood flow patterns were also characterized using the kinetic 

helicity density 𝐻𝑘, defined as: 

𝐻𝑘(𝐱, 𝑡) = 𝐕(𝐱, 𝑡) ∙ 𝛚(𝐱, 𝑡)                  (1)                                 

where V(x,t) and ω(x,t) are the velocity and vorticity vectors, 

respectively. 𝐻𝑘 is a pseudoscalar, i.e., roughly speaking its sign 

is an indicator of the (right- or left-handed) direction of rotation 

of helical blood flow patterns. To visualize helical blood flow 

patterns inside the bifurcation, here the local normalized 

helicity (LNH) [34] was adopted, defined as: 

LNH(𝐱, 𝑡) =
𝐕(𝐱,𝑡)∙𝛚(𝐱,𝑡)

|𝐕(𝐱,𝑡)||𝛚(𝐱,𝑡)|
 ,      − 1 ≤ LNH ≤ 1.     (2)    

If LNH is positive (negative), the helical flow structures are 

right- (left-) handed, i.e. their rotation is clockwise (counter-

clockwise) when viewed in the direction of the forward 

movement.  

C. Complex Networks: definition and construction 

In graph theory, a CN is a network with markedly intricate 

patterns of connection between its elements and nontrivial 

topological features (an explanatory example is presented in 

Fig. 2). In detail, a network is defined by a set V of N of nodes 

and a set E of links {i, j}. Here we deal with spatial networks, 

i.e., networks with nodes occupying a precise position in the 

Euclidean space, here represented by the grid points of the finite 

element mesh used to perform CFD simulations. In the class of 

spatial networks considered in this study only one link is 

admitted between each pair of nodes and no self-loops {i, i} are 

allowed. 

For each CB model, “all-to-all” CNs were built from 𝑉𝑎𝑥  and 

𝐻𝑘 time-histories, respectively, by applying a correlation 

criterion. Technically, for each pair of nodes {i, j} of the 

discretized fluid domain, the linear Pearson correlation 

coefficient R𝑖𝑗 was calculated between the time-histories (along 

the cardiac cycle) of 𝑉𝑎𝑥  or of 𝐻𝑘 at nodes i and j. For both 𝑉𝑎𝑥  

and 𝐻𝑘 quantities, a correlation matrix containing the R𝑖𝑗 

coefficients was created, and the corresponding network was 

built up based upon the constraint that a topological link 

between nodes i and j exists if and only if R𝑖𝑗 is greater than a 

threshold R̂ (Fig. 1). The nontrivial aspect of properly setting 

the threshold value R̂  [19], [20], [22], [38], was here addressed 

as follows: both for the 𝑉𝑎𝑥- and the 𝐻𝑘-based networks the 

overall distribution obtained by pooling together the respective 

R𝑖𝑗 correlation coefficients of all ten CB models was 

considered. For the 𝑉𝑎𝑥-based networks, the median value of the 

R𝑖𝑗 correlation coefficients distribution was set as threshold 

value (R̂𝑉 = 0.506). For the 𝐻𝑘-based networks, the correlation 

threshold was set equal to R̂𝐻 = 0.000. The threshold value R̂𝐻 

was selected because of its physical meaning, since it allows to 

separate helical flow structures according to their direction of 

rotation (as opposite signed values of quantity 𝐻𝑘 are expected 

to yield negative correlation coefficients). Notably, the set 

threshold value R̂𝐻 = 0.000 for the 𝐻𝑘-based networks is very 

close to the median value of the R𝑖𝑗 correlation coefficients 

distribution, which is equal to 0.006. Explanatory examples of 

pairs of 𝑉𝑎𝑥  and of 𝐻𝑘 nodal time-histories with different 

correlation strength and sign (as defined by R𝑖𝑗 values) are 

presented in Fig. 3. 

Fig. 2. Explanatory example of: A) a CN with its nodes and links, and the 

corresponding adjacency matrix; B) topological structures of assortative and 

disassortative CNs. 
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Based on R𝑖𝑗 and R̂ values, an adjacency matrix can be built 

up for each “all-to-all” CN as follows (Fig. 2): 

A𝑖𝑗 = {
0, 𝑖𝑓 {𝑖, 𝑗} ∉ 𝐸 𝑜𝑟  𝑖 = 𝑗,   

1, 𝑖𝑓 {𝑖, 𝑗} ∈ 𝐸                    
                                    (3) 

where E is the set of the CN links. Matrix A contains all the 

information about node connectivity. More in detail, A𝑖𝑗=1 if a 

link exists between nodes i and j (i.e., if R𝑖𝑗>R̂), and is equal to 

zero otherwise. The steps followed in this study to construct 

undirected (A𝑖𝑗=A𝑗𝑖) CNs are presented in Fig. 1.  

A “one-to-all” approach was also applied to investigate the 

relationship between the shape of 𝑉𝑎𝑥  time-histories in the CB 

and the patient-specific, measured CCA flow rate waveform 

shape. To do so, for each CB model the Pearson correlation 

coefficient R𝑖
𝑄

 was calculated between the 𝑉𝑎𝑥 time-history at 

each node i of the discretized fluid domain and the personalized 

volume flow rate time-history 𝑄 used as inflow boundary 

condition in the numerical simulation.  

D. Complex Networks Metrics 

In this study topological CNs metrics (the meaning of some 

of them is anticipated in Table I) were calculated to characterize 

the structure of the “all-to-all” and “one-to-all” networks.  

A measure of the centrality of a node i is the degree centrality 

(𝐷𝐶𝑖), defined as the percentage of nodes of the network 

directly connected to node i, i.e., the so-called nearest 

neighborhood of i. Here we consider 𝐷𝐶𝑖 normalized over the 

total number (𝑁 − 1) of possible neighbors of i:  

𝐷𝐶𝑖 = 100 (
1

(𝑁−1)
∑ A𝑖𝑗

𝑁
𝑗=1 ) = 100 (

1

(𝑁−1)
𝑑𝑐𝑖),    (4) 

where 𝑑𝑐𝑖 is the non-normalized degree centrality of node i. 

The normalization introduced in (4) allows comparisons 

between networks of different number of nodes (N). In 

synthesis, the 𝐷𝐶𝑖 is a measure of the fraction of the total CB 

volume connected to node i.   

Correlations between the degrees of neighbor nodes inside a 

network can be evaluated by calculating the average nearest 

neighbors normalized degree centrality of node i [13], defined 

as: 

𝐷𝐶𝑛𝑛,𝑖 = 100 (
1

𝐷𝐶𝑖(𝑁−1)
∑ 𝐷𝐶𝑗𝑗∈𝑛(𝑖) ) ,        (5) 

where the sum runs over n(i), i.e., the set of the nearest 

neighbors of node i. By using the definition (5), the average 

degree of centrality of nearest neighbors for nodes of degree 

centrality 𝐷𝐶, denoted as ⟨𝐷𝐶𝑛𝑛|𝐷𝐶⟩, can be calculated, 

obtaining an expression that implicitly incorporates the 

dependence on 𝐷𝐶. Previous studies have classified networks 

as “assortative” if ⟨𝐷𝐶𝑛𝑛|𝐷𝐶⟩ is an increasing function of 𝐷𝐶, 

whereas they are referred to as “disassortative” when 
⟨𝐷𝐶𝑛𝑛|𝐷𝐶⟩ is a decreasing function of 𝐷𝐶 [39]. In other words, 

in assortative networks the nodes tend to connect to their 

connectivity peers, while in disassortative networks nodes 

scarcely connected are more likely connected with highly 

connected nodes, and vice versa (Fig. 2). Assortativity of a 

network can be quantified by calculating the Pearson 

correlation coefficient between 𝐷𝐶 values at the two ends of 

each link, namely the assortativity coefficient r, that for an 

undirected network can be defined as [39]:  

𝑟 =    
𝑀−1 ∑ 𝐷𝐶𝑘

−𝐷𝐶𝑘
+−[𝑀−1 ∑

1

2
(𝐷𝐶𝑘

−𝑀
𝑘=1 +𝐷𝐶𝑘

+𝑀
𝑘=1 )]2

𝑀−1 ∑
1

2
([(𝐷𝐶𝑘

−)2+(𝐷𝐶𝑘
+)2])−[𝑀−1 ∑

1

2
(𝐷𝐶𝑘

−𝑀
𝑘=1 +𝐷𝐶𝑘

+𝑀
𝑘=1 )]2

  (6) 

where 𝐷𝐶𝑘
− and 𝐷𝐶𝑘

+ are the 𝐷𝐶 values of the nodes at the 

ends of the kth link, with k = 1,.., M. Note that (6) is written in 

a form manifestly symmetrical in 𝐷𝐶𝑘
− and 𝐷𝐶𝑘

+, so that it does 

not matter which is the initial or ending node of the generic link, 

since in an undirected network the links have no orientation. 

Based on (6), if r>0, the network is assortative, disassortative if 

the opposite holds.  

A measure of the topological distance between couples of 

nodes {i, j} in the network, is given by the average shortest path 

length 𝐴𝑆𝑃𝐿 of the network: 

𝐴𝑆𝑃𝐿 =
1

𝑁(𝑁−1)
∑ 𝑑𝑖𝑗𝑖,𝑗∈𝑁,𝑖≠𝑗 .           (7) 

𝐴𝑆𝑃𝐿 is defined as the mean of the shortest path lengths, 

where 𝑑𝑖𝑗 ∈ ℤ is the shortest topological distance between 

nodes i and j, i.e., the minimum number of links that have to be 

crossed from node i to node j [13] (Fig. 2).  

Finally, in order to provide a quantitative measure of the 

anatomical “persistence length” of correlation of axial velocity 

and helical flow structures inside the CB, we calculated the 

normalized average Euclidean distance (𝐴𝐸𝐷𝑖) [22] of each 

node i of the network from all its nearest neighbors n(i), defined 

as: 

𝐴𝐸𝐷𝑖 =
1

𝑑𝐶𝐶𝐴7

∑ 𝑙𝑖𝑗𝑗∈𝑛(𝑖)

𝑑𝑐𝑖
              (8) 

where 𝑑𝐶𝐶𝐴7 is the CCA7 diameter of the specific CB model, 

and 𝑙𝑖𝑗  is the Euclidean distance between neighbor nodes i and 

j. The definition of 𝐴𝐸𝐷𝑖  in (8) allows an effective 

quantification and visualization of “the sphere of influence” of 

local hemodynamic patterns inside the vascular domain, and 

their main direction of propagation: high 𝐴𝐸𝐷𝑖  values indicate 

a large anatomical distance (expressed in terms of CCA7 

diameters) between node i and its nearest neighbors, while low 

𝐴𝐸𝐷𝑖  values indicate that all the nodes directly connected to 

node i are physically located close to it. According to this, 

intravascular fluid structures characterized by high 𝐴𝐸𝐷 keep 

their correlation within a large spatial distance, while for 

structures having low 𝐴𝐸𝐷, their correlation vanishes within a 

shorter distance. 

The quantitative analysis of the “one-to-all” network was 

carried out using an ad-hoc defined metric, as follows: (1) for 

Fig. 3. Explanatory examples of differently correlated pairs of 𝑉𝑎𝑥 and 𝐻𝑘 time-

histories along the cardiac cycle of duration T, as defined by the 𝑅𝑖𝑗 correlation 

coefficients. 
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all the nodes in the CB the anatomical distance from the CCA7 

center of mass (Fig. 1) was calculated and denoted as 𝑙𝑖−𝐶𝐶𝐴7; i 

= 1,…N; (2) then, the Euclidean distances 𝑙𝑖−𝐶𝐶𝐴7 from CCA7 

were weighted by the value of the correlation coefficient, R𝑖
𝑄

, 

between 𝑉𝑎𝑥  at node i and the subject-specific flow rate 𝑄 at the 

inlet, to obtain the average weighted Euclidean distance 

(𝐴𝑊𝐸𝐷): 

𝐴𝑊𝐸𝐷 =
1

𝑑𝐶𝐶𝐴7

∑ 𝑙𝑖−𝐶𝐶𝐴7R𝑖
𝑄𝑁

𝑖=1

𝑁
.           (9) 

Because of the well-known high inter-individual geometric 

variability observed in the CB [6], in this study the values of the 

𝐴𝐸𝐷 and 𝐴𝑊𝐸𝐷 were normalized with respect to 𝑑𝐶𝐶𝐴7, in 

order to account for CCA geometry inter-variability. 

The Python script used to calculate the adjacency matrix A 

and the CNs metrics is provided in the electronic supplementary 

material. 

III. RESULTS 

A. CNs “all-to-all” analysis - Axial Velocity 

A picture of the axial flow in the CB is presented in Fig. 4, 

where cycle-average 𝑉𝑎𝑥  volumetric maps of are displayed. 

Regions with predominant unidirectional flow (i.e., the CCA) 

are characterized by high positive values of cycle-average 𝑉𝑎𝑥 . 

On the contrary, the predominant negative axial velocity 

characterizing the flow at the carotid bulb highlights the 

presence of flow reversal in that region. 

For each investigated CB model, the probability density 

function (PDF) of the correlation coefficients R𝑖𝑗
𝑉  between all 

pairs of nodal 𝑉𝑎𝑥  time-histories is presented in Fig. 5. In 

general, all PDFs present a peak on the right and a tail on the 

left side (i.e., the PDFs are left-skewed, as quantified by the 

negative skewness values in Table II in the Appendix). The 

probability associated with negative correlation between 𝑉𝑎𝑥  

time-histories is not negligible, indicating the presence of flow 

reversal with respect to the main flow direction (i.e., along the 

centerline from CCA to ICA and ECA). 

The volumetric maps of the normalized degree centrality 𝐷𝐶 

(Fig. 5) highlight that in general axial velocity time-histories in 

CCA nodes present high 𝐷𝐶 values, while nodes located at the 

outer wall of the carotid bulb present low 𝐷𝐶 values, indicating 

that dynamically-distinct regions can be identified: (1) regions 

where forward flow dominates, in particular in the proximal 

CCA, in which the nearest neighborhoods of the 𝑉𝑎𝑥  time-

histories are a large fraction (high 𝐷𝐶) of the nodes of the 

network, or, in other words, 𝑉𝑎𝑥  time-histories are correlated 

beyond threshold with a large fraction of the axial velocities 

characterizing CB hemodynamics; (2)  regions where flow is 

slow, recirculating, with direction reversal, in particular close 

to the outer wall of the carotid bulb where these flow features 

are associated to propensity to plaque formation and 

progression [4], [40]. In the latter regions the nearest 

neighborhoods of 𝑉𝑎𝑥  time-histories are a small fraction (low 

𝐷𝐶) of the nodes of the network.  

The distribution of 𝑉𝑎𝑥  time-histories average nearest 

neighbors normalized degree centrality values vs. 𝐷𝐶, 
⟨𝐷𝐶𝑛𝑛|𝐷𝐶⟩, is presented in Fig. 16 in the Appendix. In general, 

all the investigated models exhibit a markedly assortative 

behavior of the network, highlighted by ⟨𝐷𝐶𝑛𝑛|𝐷𝐶⟩ trend, 

increasing function of DC, in the range of low 𝐷𝐶 values (i.e., 

for 𝐷𝐶 < 40%, in most of the cases). At higher 𝐷𝐶 values, 

⟨𝐷𝐶𝑛𝑛|𝐷𝐶⟩ presents a plateau, suggesting that the nearest 

neighbors of highly-connected nodes are all connected to a 

similar fraction of nodes inside the bifurcation model. The 

assortativity of the network, more evident at small and medium 

𝐷𝐶 values, is further confirmed by the positive values of the 

assortativity coefficient r for each of the ten 𝑉𝑎𝑥-based networks 

(Table II in the Appendix). 

In terms of topological dispersion of the 𝑉𝑎𝑥-based networks, 

measured using the average shortest path length (a physical 

interpretation for 𝐴𝑆𝑃𝐿 is given in Table I), it emerges that two 

generic nodes are separated by a 1.53-links path, on average 

Fig. 4. Volumetric maps of the cycle-average axial velocity 𝑉𝑎𝑥 in the ten CB 

models. Negative values in the map indicate the presence of flow reversal. 

Fig. 5. Volumetric maps of 𝐷𝐶 for the ten “all-to-all” 𝑉𝑎𝑥-based networks. For each model the CCA7 cross-sectional views are also displayed. The PDFs of the 

correlation coefficients 𝑅𝑖𝑗
𝑉  between all pairs of 𝑉𝑎𝑥 time-histories are also presented in the black box. The median value (0.506) of the overall distribution obtained 

by pooling together the 𝑅𝑖𝑗
𝑉  of all ten CB models (red curve) was set as threshold �̂�𝑉 to build the 𝑉𝑎𝑥-based networks. 
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(𝐴𝑆𝑃𝐿 range: 1.25-1.97). The association between the 

topological distance between two nodes and the expansion at 

the bifurcation can be appreciated in the scatter plot of 𝐴𝑆𝑃𝐿 

vs. geometric descriptor FlareA (Fig. 6). The 𝐴𝑆𝑃𝐿 of 𝑉𝑎𝑥-

based networks and FlareA are positively correlated (R = 0.77, 

p < 0.01), implying that the expansion at the bifurcation 

significantly contributes to break up the topological links of the 

network and is therefore a putative mechanism of correlation 

dispersion of axial velocity time-histories. Fig. 6 also highlights 

the emergence of a negative correlation (R = -0.67, p < 0.05) 

between FlareA and the median value of R𝑖𝑗
𝑉  (values of the latter 

quantity are listed in the inset of Fig. 5). This implies that when 

FlareA is larger, R𝑖𝑗
𝑉  is generally lower, and the 𝑉𝑎𝑥-based CN 

has fewer links (since it is smaller the area under the PDF for 

R𝑖𝑗
𝑉 > R̂𝑉), thus requiring, on average, a longer path (measured 

by 𝐴𝑆𝑃𝐿) connecting node couples. In a larger bifurcation 

expansion, 𝑉𝑎𝑥  time-histories become topologically more 

isolated, and a longer path is necessary to connect them in those 

vascular territories where the geometry does not divert the flow 

from the axial direction. This topological separation induced by 

the CB flare seems to reflect also a physical separation, as 

evidenced by the visual inspection of the volumetric maps of 

metric 𝐴𝐸𝐷 (Fig. 7), quantifying the Euclidean length of 

persistence of the correlation in the 𝑉𝑎𝑥-based networks. In 

detail, it emerges from 𝐴𝐸𝐷 maps that 𝑉𝑎𝑥  time-histories 

located close to CCA7 and ICA5 sections are characterized by 

a neighborhood that expands on an anatomical distance 

equivalent to 3 CCA7 diameters or more, confirming the 

persistence of correlated 𝑉𝑎𝑥  structures in those regions. 

However, lower 𝐴𝐸𝐷 values characterize nodes located close 

to the outer wall of the carotid bulb. The 𝑉𝑎𝑥  time-histories in 

that region, typically characterized by flow reversal (i.e., 

negative axial velocity values), present an 𝐴𝐸𝐷 quantifiable in 

one CCA7 diameter (Fig. 7). 

B. CNs “one-to-all” analysis – Inlet flow rate vs. Axial 

Velocity 

The influence that the personalized inlet flow rate time-

history 𝑄 has on 𝑉𝑎𝑥 , evaluated in terms of correlation R𝑖
𝑄

, can 

be appreciated in Fig. 8, where the map of correlation values 

above the median (R̂𝑖
𝑄

= 0.79) of the PDF distribution pooled 

over the ten models are displayed. Fig. 8 highlights that, in 

general, the highest R𝑖
𝑄

values are located in the proximal 

segment of the CCA, as expected. The cross-sectional views are 

characterized by variegated correlation patterns, since in 

general the CCA7 does not correspond to the inlet section 

where the inflow boundary condition 𝑄 was applied (Fig. 1). 

High correlation values are restored distally in the ICA and 

ECA, although with some inter-variability deriving from the 

patient-specific flow waveform shapes applied as flow 

boundary conditions in CFD simulations [27]. Lower 

correlation with 𝑄 characterizes 𝑉𝑎𝑥  time-histories in the 

proximal ICA and in the carotid bulb. To quantify the 

anatomical length of persistence of the 𝑉𝑎𝑥- 𝑄 correlation within 

each CB model, the 𝐴𝑊𝐸𝐷 is reported in Fig. 8 and represented 

with a red line: it can be observed that the correlation between 

the inflow rate 𝑄 and 𝑉𝑎𝑥  time-histories keeps persistence 

around the distal CCA for some of the ten investigated cases (B, 

C, D, F, K), while in the remaining models the correlation 

expires within a shorter distance (below 1.88 𝑑𝐶𝐶𝐴7).  A 

negative, almost significant trend (R = -0.59, p = 0.07) emerges 

between 𝐴𝑊𝐸𝐷 and FlareA (Fig. 8), i.e., the average distance 

Fig. 6. “All-to-all” 𝑉𝑎𝑥 CNs. Association between the geometric descriptor 

FlareA and: the topological metric 𝐴𝑆𝑃𝐿 (left panel); the median value of 𝑅𝑖𝑗
𝑉  

coefficients (right panel). A significant positive correlation emerges between 

FlareA and 𝐴𝑆𝑃𝐿, indicating the effect of the bifurcation expansion in 

disrupting links between the nodes, as also corroborated by the negative trend 

observed between FlareA and the median value of 𝑅𝑖𝑗
𝑉  (*pvalue < 0.05; †pvalue < 

0.01). 

Fig. 7. “All-to-all” 𝑉𝑎𝑥 CNs. Volumetric maps of 𝐴𝐸𝐷, i.e., the Euclidean length of persistence of correlated 𝑉𝑎𝑥 structures in the CB. 𝐴𝐸𝐷 is measured in terms 

of CCA7 diameters (𝑑𝐶𝐶𝐴7), in order to account for CCA geometry inter-variability. Low 𝐴𝐸𝐷 values (below 1 𝑑𝐶𝐶𝐴7) at the carotid bulb reflect the impact of 

the bifurcation expansion in reducing the sphere of influence of axial flow in that region. 

Fig. 8. Volumetric maps of the correlation 𝑅𝑖
𝑄 between 𝑉𝑎𝑥 time-histories and the personalized inlet flow rate (𝑄) waveform in the “one-to-all” CNs. Volumetric 

maps show only 𝑉𝑎𝑥 vs. 𝑄 correlations above the median value (0.79) of the 𝑅𝑖
𝑄 PDF distribution pooled over the ten models. For each model the CCA7 cross-

sectional views are also displayed. The average Euclidean length of persistence of the 𝑉𝑎𝑥 vs. 𝑄 correlation (𝐴𝑊𝐸𝐷) is indicated on each CB model by a red line 

in terms of CCA7 diameters. The scatter plot on the left indicates a negative, almost significant trend between 𝐴𝑊𝐸𝐷 and FlareA. 
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of correlation between 𝑉𝑎𝑥  time-histories and the inlet volume 

flow rate waveform decreases as the expansion at the 

bifurcation increases.  

C. CNs “all-to-all” analysis – Kinetic Helicity Density 

A visualization of the bihelical, counter-rotating blood flow 

patterns in the investigated CB models is presented in Fig. 9. 

The PDFs of the correlation coefficients R𝑖𝑗
𝐻  between all pairs 

of 𝐻𝑘 time-histories are presented in Fig. 10. A feature common 

to all the CBs is that the R𝑖𝑗
𝐻  PDF is markedly symmetric around 

zero (Table II in the Appendix). Such a symmetry is the 

quantitative confirmation that distinguishable counter-rotating 

helical flow patterns (characterized by 𝐻𝑘 time-histories 

opposite in sign along the cardiac cycle) mark out the CB 

hemodynamics, consistent with previous observations [6], [9], 

[25]. For a more in-depth analysis, the PDFs of R𝑖𝑗
𝐻  obtained by 

separating the CCA segment (from CCA7 to CCA3) from the 

bifurcation (BIF) region are analyzed (Fig. 10). From the 

comparison, it emerges that in general, the PDFs of the R𝑖𝑗
𝐻  in 

the BIF region present a peak around zero correlation, while in 

the CCA the R𝑖𝑗
𝐻  distributions tend to be bimodal, with the two 

maxima close to the extreme correlation values (i.e., -1 and 1) 

suggesting that the presence of strongly correlated and anti-

correlated 𝐻𝑘 time-histories is highly probable in the CCA. This 

correlation distribution subtends the existence of two 

distinguishable counter-rotating helical flow structures 

transported in the CCA along the cardiac cycle. On the 

opposite, the bifurcation tends to weaken the correlation of the 

𝐻𝑘 time-histories. This is quantitatively confirmed by the 

probability (i.e., the areas under the PDF curves in Fig. 10) of 

low (|R𝑖𝑗
𝐻 | ≤ 0.2) and high (|R𝑖𝑗

𝐻 | ≥ 0.8) correlation for 𝐻𝑘 time-

histories in CCA and in BIF (bar chart in Fig. 10): the scarcely 

correlated 𝐻𝑘 time-histories are mainly located in the BIF 

region, the strongly correlated ones being located in the CCA. 

The 𝐷𝐶 volumetric maps of 𝐻𝑘-based networks reflect the 

blood flow arrangement in helical counter-rotating structures 

(Fig. 11). In particular, it can be observed that positively 

correlated 𝐻𝑘 time-histories form two clearly separated regions 

of low and high 𝐷𝐶 value, corresponding to those counter-

rotating helical flow patterns conveyed from the CCA into the 

bifurcation [6], [9], [25]. The 𝐷𝐶-based visualization of such 

intravascular flow features is enriched with the quantitative 

information provided by the 𝐷𝐶 metric. In particular, Fig. 11 

clearly shows how positively correlated 𝐻𝑘 time-histories give 

rise to connected networks in the CCA (as also evident from the 

cross-sectional views of the CCA7 sections in Fig. 11), and in 

the bifurcation. The negatively correlated 𝐻𝑘 time-histories, 

reported in Fig. 17 in the Appendix, represent the complement 

of Fig. 11. As a consequence, 𝐷𝐶 measures the similarity 

between the dynamics of helical flow patterns, proving that 

large portions (i.e. high 𝐷𝐶) of those distinguishable structures, 

usually visualized and described in terms of integral quantities 

[6], [9], exhibit also a similar time-dependent behavior. 

From the analysis of the distributions of the 𝐻𝑘 average 

nearest neighbors normalized degree centrality ⟨𝐷𝐶𝑛𝑛|𝐷𝐶⟩ vs. 

𝐷𝐶 (Fig. 18 in the Appendix) it emerges that, in general, the 

⟨𝐷𝐶𝑛𝑛|𝐷𝐶⟩ distribution has a sigmoid shape, with a steep 

positive slope in the range 45% < 𝐷𝐶 < 55%, where the 

assortative behavior of the networks is more pronounced. The 

assortativity of the 𝐻𝑘-based CNs is also proved by the positive 

values of the assortativity coefficients r (Table II in the 

Appendix) and reflects the tendency of 𝐻𝑘 time-histories to 

connect to 𝐻𝑘 time-histories with similar 𝐷𝐶.  

In terms of topological dispersion of the 𝐻𝑘-based networks, 

as measured by 𝐴𝑆𝑃𝐿, two generic nodes are separated by a 

1.49-links path on average (𝐴𝑆𝑃𝐿 range: 1.48-1.50) (Fig. 12). 

From the analysis of the average topological distance between 

nodes vs. the geometric expansion at the bifurcation (𝐴𝑆𝑃𝐿 vs. 

FlareA) reported in Fig. 12, no significant trend emerges (R = 

0.57, p = 0.09). No association emerges also between ASPL and 

the median values of R𝑖𝑗
𝐻  (R = -0.61, p = 0.06, Fig. 12), a 

consequence of the low dispersion of 𝐴𝑆𝑃𝐿 and median R𝑖𝑗
𝐻  

values. 

Finally, the 𝐴𝐸𝐷 volumetric maps for the 𝐻𝑘-based networks 

are presented in Fig. 13. 𝐻𝑘 time-histories with the largest 𝐴𝐸𝐷 

are located close to CCA7 and ICA5 sections, similarly to what 

observed for 𝑉𝑎𝑥  (Fig. 7). Helical flow patterns developing in 

those regions propagate maintaining correlation at an average 

anatomical distance of 3.5 CCA7 diameters or more. In the 

bifurcation region, helical structures exhibit lower 𝐴𝐸𝐷 values 

(from 1.5 to 2 CCA7 diameters). 

IV. DISCUSSION 

Given the well-established key role played by intravascular 

flow in conditioning WSS and its physiological significance in 

terms of flow stability and mass transport, a plethora of 

cardiovascular fluid mechanics studies [10], [25], [34], [41]–

[43] have provided a detailed analysis of fluid structures in the 

bulk of the vessels. However, most studies, in particular the 

ones focusing on the association of hemodynamic risk with 

vascular disease, tend to apply a “reductionist” approach, in 

mathematical terms (mostly focused on cycle-average values). 

To further explain, such approach usually neglects the 

spatiotemporal evolution and the persistence length of 

correlated blood flow patterns as a whole in the vasculature. 

This is mostly motivated by the clinical need of synthetizing the 

complexity of four-dimensional phenomena, with the risk of an 

information loss that (at least partially) limits the collective 

emergence of hemodynamic phenotypes with marked potential 

in terms of (1) basic comprehension of the physiopathology of 

the vasculature, and of (2) diagnostics/prognostics application. 

Fig. 9. Volumetric representation of the helical flow in the CB models as given 

by the visualization of cycle-average LNH isosurfaces. Negative (positive) LNH 

values identify left-handed (right-handed) counter-rotating helical structures. 
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Here, we propose a method to investigate cardiovascular 

flows, exploring the potential of CNs when applied to patient-

specific computational hemodynamics. In particular, the 

integrated approach is here applied to investigate the underlying 

structure and organization of computational hemodynamic 

flows in ten patient-specific models of human CB. To the best 

of our knowledge, the application of CNs to understand blood 

flow advection mechanisms in realistic cardiovascular flows 

has never been explored before. Thanks to the perspective 

offered by networks science, here correlated flow patterns are 

Fig. 10. PDFs of the correlation 𝑅𝑖𝑗
𝐻 between 𝐻𝑘 time-histories in the CB models (back box). The PDFs distributions are all almost symmetric around zero, 

quantitatively confirming the presence of the two distinguishable counter-rotating helical structures as a characteristic feature of the CB hemodynamics. For each 

model the PDFs of the 𝑅𝑖𝑗
𝐻 values obtained by separating the CCA segment from the BIF region are also displayed. The values of the area under the PDF curves 

indicating low (|𝑅𝑖𝑗
𝐻| ≤ 0.2) and high (|𝑅𝑖𝑗

𝐻| ≥ 0.8) correlation probability for 𝐻𝑘 time-histories in CCA and BIF are also displayed in the bar chart. 

Fig. 11. Volumetric maps of 𝐷𝐶 for the ten “all-to-all” 𝐻𝑘-based networks. The CCA7 cross-sectional views highlight the existence of two clearly separated low 

and high 𝐷𝐶 regions, according to the existence of two distinguishable, counter-rotating, and dynamically correlated helical flow structures. 
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unveiled, drawing upon the similarity between their dynamical 

processes, and the persistence length of fluid structures as they 

are conveyed into the CB is measured. To do that, the 

interdependence between hemodynamic time-histories defined 

in discrete computational domains is investigated by the so-

called correlation networks [18]–[20], [22], [38], [44]. 

Associations, albeit not always significant, are also reported 

here between CNs metrics and a geometric indicator of 

disturbed flow. In particular, the bifurcation flare (i.e., the 

expansion) is considered here, because it has been reported that 

a large expansion at the bifurcation produces flow separation 

and in general flow disturbances promoting vascular disease 

(e.g., atherosclerosis [31], [45], or restenosis [46]). In this sense 

the findings of the study highlight the potential of CNs to 

quantify the impact of vascular geometry on the 

preservation/loss of similarity of flow patterns in the streaming 

blood, enforcing and widening the previously shown 

associations between CB geometry and hemodynamic 

disturbances [25], [31], [47]. With the application of the CNs 

formalism, the here proposed viewpoint on cardiovascular 

flows is able to highlight their arrangement in “functionally” 

connected patterns, encoding spatiotemporal similarity along 

the cardiac cycle and measuring both its topological and 

anatomical length of persistence. In doing that, we aim to 

contribute to give a less elusive definition of “coherent 

hemodynamic structures” as structures which are easily 

recognizable because they undergo similar dynamical evolution 

along the cardiac cycle and persist in space. 

A. Hemodynamic interpretation of the CNs-based analysis 

An interpretation of the organization principles behind CB 

hemodynamics is given by characterizing the structure of the 

networks (Table I), in which the spatiotemporal evolution along 

the cardiac cycle of correlated intravascular flow patterns is 

encapsulated.  

The determination of the topological “centrality” of a node 

inside a network, as given by metric 𝐷𝐶, allows both the 

identification and visualization of dynamically-similar 

hemodynamic features. As for 𝑉𝑎𝑥 , a correlated axial flow (high 

𝐷𝐶) develops mainly in the CCA, while the outer wall of the 

carotid bulb emerges as the more topologically isolated area, 

with very low 𝐷𝐶 (Fig. 5), reflecting the presence of a 

recirculation region with more intricate, uncorrelated 𝑉𝑎𝑥  

spatiotemporal patterns. On the other hand, 𝐻𝑘 appears more 

spatiotemporally compact, in general characterized by the 

absence of relevant topologically isolated structures (𝐷𝐶 

always greater than 35%), and by symmetry in the correlated 

helical flow patterns (Fig. 11). These results differ from 

conventional visualizations of axial and helical flow maps (Fig. 

4 and 9, respectively), which are unable to encode the 

spatiotemporal similarity of intravascular flow structures in a 

snapshot or in a distance function. 

In this study, the use of networks preserving the spatial 

collocation of two-point correlations enabled the measurement 

of the anatomical “sphere of influence” of correlated 

intravascular flow quantities, through the computation of metric 

𝐴𝐸𝐷: in CCA and distal ICA, axial and helical flow exhibit a 

persistence length of correlation of around 3 CCA7 diameters 

(Fig. 7 and 13); in the bifurcation region, bulb expansion 

reduces the sphere of influence of correlated hemodynamic 

structures (low 𝐴𝐸𝐷), indicating that such structures are not 

preserved on a long distance but are confined within the region 

around the bifurcation expansion. In the case of the CB this 

result, while confirming what can be arguably shown by other 

simpler hemodynamic analyses [9], for the first time measures 

to what extent flow similarity is disrupted by specific vascular 

geometric features. 

B. The different impact of bifurcation expansion on axial 

velocity and helical flow  

The influence of vascular geometry on the persistence length 

of intravascular flow patterns is discussed here (and 

summarized in Table I). The topological dispersion in the 𝐻𝑘-

based networks, as measured by 𝐴𝑆𝑃𝐿, is moderately lower 

than 𝑉𝑎𝑥 , and presents less inter-variability (Fig. 12 and 6, 

respectively). In addition, while for the case of the 𝑉𝑎𝑥-based 

networks 𝐴𝑆𝑃𝐿 is positively correlated with FlareA (R = 0.77, 

p < 0.01, Fig. 6), no significant association emerges for the 𝐻𝑘-

based networks (R = 0.57, p = 0.09, Fig. 12). In other terms, the 

𝐻𝑘-based networks are less sensitive to geometry than the 𝑉𝑎𝑥-

based networks, as 𝐴𝑆𝑃𝐿 for the 𝐻𝑘-based networks is not 

sensitive to the inter-variability in FlareA. This leads to 

presume a different action of the bulb expansion on the two 

intravascular quantities: a larger expansion, by inducing flow 

separation at the outer wall, disrupts correlation of axial 

velocity time-histories more than helical flow structures  

Fig. 12. “All-to-all” 𝐻𝑘 CNs. Association between the geometric descriptor 

FlareA and: the topological metric 𝐴𝑆𝑃𝐿 (left panel); the median value of 𝑅𝑖𝑗
𝐻 

coefficients (right panel). The ranges of the vertical axes are consistent with 

Fig. 6, to underline that for 𝐻𝑘 no significant association emerges between the 

investigated quantities. This indicates that the topological compactness of 𝐻𝑘 
networks is less sensitive to geometry than 𝑉𝑎𝑥 networks, in the CB. 

Fig. 13. “All-to-all” 𝐻𝑘 CNs. Volumetric maps of 𝐴𝐸𝐷, i.e., the Euclidean length of persistence of correlated 𝐻𝑘 structures in the CB. 𝐴𝐸𝐷 is measured in terms 

of CCA7 diameters (𝑑𝐶𝐶𝐴7), in order to account for CCA geometry inter-variability. At the carotid bulb, correlated helical flow structures still persist over 1.5 
𝑑𝐶𝐶𝐴7, thus proving the less disruptive effect of the bifurcation expansion on the connections between 𝐻𝑘 time-histories. 
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transported through the CCA into the carotid bulb [6]. This 

presumption is corroborated, in the 𝑉𝑎𝑥-based networks, by the 

low 𝐷𝐶 and 𝐴𝐸𝐷 values (discussed in Section III-A) in the 

recirculation region of the bulb (Fig. 5 and 7), which imply: (1) 

a topological separation of the nodes in that region from the rest  

of the network (thus highlighting the presence of two 

dynamically-distinct regions); (2) a dynamic similarity among 

the nodes of each region.  

Furthermore, the 𝐴𝐸𝐷 values in the bifurcation region, 

higher in the 𝐻𝑘-based network (from 1.5 to 2.0 CCA7 

diameters, Fig. 13) than 𝑉𝑎𝑥  (around 1.0 CCA7 diameters, Fig. 

7): (1) confirm the effect of the carotid bulb in preserving the 

topological connection between helical flow structures more 

than axial velocity patterns; (2) prove that the impact of the 

bifurcation expansion on flow topology can be quantified in 

terms of persistence length within the fluid domain. 

C. Insights from the “one-to-all” analysis 

The “one-to-all” analysis here introduced allows the 

calculation of the anatomical “sphere of influence” of the 

subject-specific inflow rate 𝑄 on the axial flow in the CB. This  

 allows to estimate the length of correlation of the flow rate 

waveform driving perfusion along the main blood flow 

direction, imparted by, e.g., geometry (the bifurcation 

expansion in the case under study), downstream vascular 

impedance, wave reflection. Additionally, the disrupting effect 

of the CB geometric expansion on the 𝑉𝑎𝑥-𝑄 length of 

correlation is reflected by the negative association, albeit not 

significant (R = -0.59, p = 0.07), observed between the 

introduced metric 𝐴𝑊𝐸𝐷 and FlareA (Fig. 8). 

V. CONCLUSION 

In conclusion, the here presented CNs-based exploration of 

the spatiotemporal complexity of cardiovascular flows 

simulated using the paradigm of computational hemodynamics 

has led to the quantification of the persistence length of 

correlation of hemodynamic quantities in a dataset of 

personalized models of human carotid bifurcations. Our 

findings suggest that the geometry of the carotid bulb, in 

particular its expansion (already identified as the main 

determinant of disturbed shear [31], [47]), plays a major role in 

differently weakening/preserving spatiotemporal similarity in 

axial flow and in helical flow, by influencing the topological 

connections between fluid mechanics quantities.  

The integrated CNs and computational hemodynamics 

approach allows the identification of fluid structures 

undergoing similar dynamical evolution. This opens avenues 

for further comprehension of the blood-vessel interaction 

physiopathology, in particular for those markedly 

"multidirectional" flow districts (like in heart and aneurysms) 

where disruption of flow coherence may have significant 

diagnostic/prognostic implications.  

APPENDIX 

PDF properties of R𝑖𝑗
𝑉

 and R𝑖𝑗
𝐻

 correlation coefficients, 

together with CNs assortativity are reported in Table II. 

TABLE I 

SUMMARY OF THE HEMODYNAMIC INTERPRETATION OF THE COMPLEX NETWORKS (CNS)  

TOPOLOGICAL ANALYSIS AND IMPLICATIONS FOR 𝑉𝑎𝑥 AND 𝐻𝑘 

Topological 

CNs metric 
Hemodynamic 

interpretation 
Implications for 𝑽𝐚𝐱 Implications for 𝑯𝐤 

 “all-to-all” analysis 

𝑫𝑪 
Dynamic similarity 

between hemodynamic 

patterns 

- high 𝐷𝐶 in the CCA 

(forward flow) 

- low 𝐷𝐶 in the carotid bulb 

(recirculating/reversed flow) 

two clearly separated regions of low and high 

𝐷𝐶 value suggest the existence of two 

distinguishable, counter-rotating, dynamically 

correlated, helical flow patterns 

𝑨𝑺𝑷𝑳 
Functional 

compactness/dispersion of 

hemodynamic structures 

connections in axial flow sensitive to CB 

flare, which causes correlation dispersion 

connections in helical flow: 

- overall compact (low mean 𝐴𝑆𝑃𝐿) and stable 

(low SD) 
- less sensitive to the CB flare 

𝑨𝑬𝑫 
Persistence length of 

correlation of 

hemodynamic structures 

correlated 𝑉ax structures: 

- persist for 3 𝑑𝐶𝐶𝐴7 in CCA and distal ICA 

- expire in 1 𝑑𝐶𝐶𝐴7 in CB flare 

correlated 𝐻k structures: 

- persist for 3 𝑑𝐶𝐶𝐴7 in CCA and distal ICA 

- persist over 1.5 𝑑𝐶𝐶𝐴7 in CB flare 

 “one-to-all” analysis 

𝑨𝑾𝑬𝑫 
Persistence length of 

correlation between 𝑉ax and 

inflow rate 𝑄 

length of  𝑉ax vs. 𝑄 correlation: 

- generally persists up to 
distal CCA 

- decreases in larger CB flares 

- 

TABLE II 

MEDIAN AND SKEWNESS VALUES OF R𝑖𝑗
𝑉

 AND R𝑖𝑗
𝐻 , AND ASSORTATIVITY 

COEFFICIENT r FOR THE 𝑉AX- AND 𝐻K-BASED CNS 
CB 

Model 
Vax-based networks Hk-based networks 

 Median   Skewness       r Median   Skewness       r 

A 0.254 -0.204 0.683 0.002 0.027 0.265 

B 0.694 -1.348 0.218 0.010 -0.007 0.627 

C 0.534 -0.684 0.360 0.002 0.015 0.250 

D 0.622 -0.961 0.237 0.018 -0.020 0.541 

E 0.658 -0.782 0.779 0.006 -0.001 0.639 

F 0.774 -1.387 0.418 0.034 -0.023 0.594 

G 0.546 -0.748 0.382 0.014 -0.007 0.674 

H 0.458 -0.672 0.529 0.006 0.024 0.588 

J 0.414 -0.578 0.329 0.002 0.048 0.341 

K 0.714 -1.029 0.147 0.018 -0.012 0.713 

All  
models 

0.506 -0.750 - 0.006 0.009 - 
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Each CB geometry was characterized using the geometric 

descriptor FlareA, a measure of the maximum expansion at the 

carotid bulb with respect to the CCA, as shown in Fig. 14. 

The sketch in Fig. 15 shows how the axial velocity 𝑉𝑎𝑥  was 

calculated: locally the velocity vector V is projected along the 

“axial direction”, here intended as the direction aligned with the 

tangent to vessel’s centerline [32]. 

⟨DCnn|DC⟩ vs. 𝐷𝐶 curves for the “all-to-all” 𝑉𝑎𝑥  networks 

are reported in Fig. 16. 

“All-to-all” 𝐻𝑘 CNs considering negatively correlated 𝐻𝑘 

time-histories were also built, in addition to the ones discussed 

in Section III-C and obtained from positively correlated 𝐻𝑘 

time-histories. As expected, the 𝐷𝐶 distributions of negatively 

(Fig. 17) and positively correlated (Fig. 11) 𝐻𝑘 time-histories 

are exactly complementary. 

⟨DCnn|DC⟩ vs. 𝐷𝐶 curves for the “all-to-all” 𝐻𝑘 networks 

are reported in Fig. 18. 
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