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Abstract. We present BioMetricNet: a novel framework for deep uncon-
strained face verification which learns a regularized metric to compare
facial features. Differently from popular methods such as FaceNet, the
proposed approach does not impose any specific metric on facial features;
instead, it shapes the decision space by learning a latent representation
in which matching and non-matching pairs are mapped onto clearly sep-
arated and well-behaved target distributions. In particular, the network
jointly learns the best feature representation, and the best metric that
follows the target distributions, to be used to discriminate face images.
In this paper we present this general framework, first of its kind for facial
verification, and tailor it to Gaussian distributions. This choice enables
the use of a simple linear decision boundary that can be tuned to achieve
the desired trade-off between false alarm and genuine acceptance rate,
and leads to a loss function that can be written in closed form. Exten-
sive analysis and experimentation on publicly available datasets such as
Labeled Faces in the wild (LFW), Youtube faces (YTF), Celebrities in
Frontal-Profile in the Wild (CFP), and challenging datasets like cross-age
LFW (CALFW), cross-pose LFW (CPLFW), In-the-wild Age Dataset
(AgeDB) show a significant performance improvement and confirms the
effectiveness and superiority of BioMetricNet over existing state-of-the-
art methods.

Keywords: Biometrics, face verification, biometric authentication

1 Introduction

Over the last few years, huge progress has been made in the deep learning com-
munity. Advances in convolutional neural networks (CNN) have led to unprece-
dented accuracy in many computer vision tasks. One of those that have attracted
computer vision researchers since its inception is being able to recognize a per-
son from a picture of their face. This task, which has countless applications, is
still far to be marked as a solved problem. Given a pair of (properly aligned)
face images, the goal is to make a decision on whether they represent the same
person or not.
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Early attempts in the field required the design of handcrafted features that
could capture the most significant traits that are unique to each person. Fur-
thermore, they had to be computed from a precisely aligned and illumination
normalized picture. The complexity of handling the non-linear variations that
may occur in face images later became evident, and explained the fact that those
methods tend to fail in non-ideal conditions.

A breakthrough was then made possible by employing features learned through
CNN-based networks, e.g. DeepFace [1] and DeepID [2]. As in previous meth-
ods, once the features of two test faces have been computed, a distance measure
(typically `2 norm) is employed for the verification task: if the distance is below
a certain threshold the two test faces are classified as belonging to the same per-
son, otherwise not. The loss employed to compute such features is the softmax
cross-entropy. Indeed, it was found that the generalization ability could be im-
proved by maximizing inter-class variance and minimizing intra-class variance.
Works such as [3, 4] adopted this strategy by accounting for a large margin,
in the Euclidean space, between “contrastive” embeddings. A further advance
was then brought by FaceNet [5] which introduced the triplet-loss, whereby the
distance between the embeddings is evaluated in relative rather than absolute
terms. The introduction of the anchor samples in the training process allows
to learn embeddings for which the anchor-positive distance is minimized while
the anchor-negative distance is maximized. Even though this latter work has led
to better embeddings, it has been shown that it is oftentimes complex to train
[6]. The focus eventually shifted to the design of new architectures employing
metrics other than `2 norm to provide more strict margins. In [7] and [8] the au-
thors propose to use angular distance metrics to enforce a large margin between
negative examples and thus reduce the number of false positives.

In all of the above-mentioned methods, a pre-determined analytical metric
is used to compute the distance between two embeddings, and the loss function
is designed in order to ensure a large margin (in terms of the employed metric)
among the features of negative pairs while compacting the distance among the
positive ones. It is important to underline that the chosen metric is a critical
aspect in the design of such neural networks. Indeed, a large performance increase
has been achieved with the shift from Euclidean to angular distance metrics [9,
10].

In this work we propose a different approach: not only we aim to learn the
most discriminative features, but also to jointly learn the best (possibly highly
non-linear) metric to compare such features. The only requirement we impose
determines how the metric should behave depending on whether the features
are coming from matching or non-matching pairs. Specifically, we regularize the
metric output such that its values follow two different statistical distributions:
one for matching pairs, and the other for non-matching pairs (see Fig. 1).

The idea of relying on the (empirical) distributions of the feature distances in
order to improve their discriminative ability was discussed in [11]. In the above
work, the authors introduce the histogram loss in order to minimize the overlap
between the histograms of the distances of matching and non-matching feature
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Fig. 1: The goal of BioMetricNet is to map the input pairs onto target distri-
butions in the latent space. Matching pairs (same user - blue) are mapped to a
target distribution whose mean value is far from that of the non-matching pairs
(different users - red).

pairs, so as to obtain more regularized features. However, while this approach fits
well clustering tasks in which one is only interested in relative distances between
pairs, it is not suited for the verification problem we are considering in this paper:
the decision boundary between the two histograms is highly dependent on the
employed dataset and does not generalize across different data distributions.
The approach we follow is rather different: by regularizing a latent space by
means of target distributions we impose the desired shape (based on a possibly
highly non-linear metric) and thus have a known and fixed decision boundary
which generalizes across different datasets. This seminal idea of employing target
distributions was first introduced in [12] and [13]. However, it is important to
underline that in [12] and [13] it was used to solve a one-against-all classification
problem, regularizing a latent space such that the biometric traifts of a single
user would be mapped onto a distribution, and those of every other possible
user onto another distribution, so that a thresholding decision could be used to
identify biometric traits belonging to that specific user. The above methods also
required a user-specific training of the neural network.

Conversely, besides learning features, the neural network proposed in this
paper, which we name BioMetricNet, shapes the decision metric such that pairs
of similar faces are mapped to a distribution, whereas pair of dissimilar faces
are mapped to a different distribution, thereby avoiding user-specific training.
This approach has several advantages: i) Since the distributions are known, and
generally simple, the decision boundaries are simple, too. This is in contrast
with the typical behavior of neural networks, which tend to yield very complex
boundaries; ii) If the distributions are taken as Gaussian with the same variance,
then a hyperplane is the optimal decision boundary. This leads to a very simple
classifier, which learns a complex mapping to a high-dimensional latent space,
in a way that mimics kernel-based methods. Moreover, Gaussian distributions
are amenable to writing the loss function in closed form; iii) Mapping to known
distributions easily enables to obtain confidences for each test sample, as more
difficult pairs are mapped to the tails of the distributions. Since in BioMetricNet
the distribution of the metric output values is known, the decision threshold can
be tuned to achieve the desired level of false alarm rate or genuine acceptance
rate.
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Fig. 2: BioMetricNet architecture during the training phase. After face detection
and alignment, matching and non-matching face pairs are given as an input
to the FeatureNet to extract the discriminative face features from the image
space x into feature vector space fi ∈ Rd. The feature vectors are concatenated
f = [f1f2] ∈ R2d and passed to the MetricNet which maps f onto well-behaved
target distributions z ∈ Rp in the latent space.

The resulting design, employing the best learned metric for the task at hand,
allows us to improve over the state-of-the-art also in the case of very challenging
datasets, as will be shown in Sec. 3.7. We stress that, although in this paper
BioMetricNet is applied to faces, the method is general and can be applied to
other biometric traits or data types; this is left as future work.

2 Proposed Method

BioMetricNet strives to learn meaningful features of the input faces along with
a discriminative metric to be used to compare two sets of facial features. More
specifically, as depicted in Fig. 2, BioMetricNet is made of two sub-networks:
FeatureNet and MetricNet. The former is a siamese network which processes
pairs of input faces x = [x1,x2] and outputs a pair of facial features f = [f1, f2]
for both matching and non-matching input pairs. MetricNet is then employed
to map these feature pairs onto a point z in a p-dimensional space in which a
decision is made. These two networks are trained as a single entity to match the
desired behavior. Their architecture is described more in detail in Sec. 2.1.

The novelty of our approach is that we do not impose any predetermined
metric between f1 and f2: the metric is rather learned by MetricNet shaping the
decision space according to two target distributions through the loss function,
as described in the following. The loss function forces the value of the learned
metric to follow different statistical distributions when applied to matching and
non-matching pairs, respectively. Although arbitrary target distributions can be
employed, a natural choice is to use distributions that have far-enough mass
centers, lead to simple decision boundaries, and lend themselves to writing the
loss function in a closed form.

For BioMetricNet, let us denote as Pm and Pn the desired target distributions
for matching and non-matching pairs, respectively. We choose Pm and Pn to be
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multivariate Gaussian distributions over a p-dimensional space:

Pm = N (µm,Σm), Pn = N (µn,Σn), (1)

where Σm = σ2
mIp and Σn = σ2

nIp are diagonal covariance matrices and µm =
µm1T

p , µn = µn1T
p are the expected values. The choice of using Gaussian distri-

butions is a very natural one in this context. Because of the central limit theorem
[14], the output of fully connected layers tends to be Gaussian distributed. More-
over, if Σm = Σn, then a linear decision boundary (hyperplane) is optimal for
this Gaussian discrimination problem. Therefore, while in general BioMetricNet
can be trained to match arbitrary distributions, in the following we will describe
this specific case. It can also be noted that using different variance for the two
distributions would complicate the choice of the parameters, since the optimal
variance will be specific to the considered dataset in order to match its intra and
inter-class variances.

As said above, in the Gaussian case the loss function can be written in closed
form. Let us define xm and xn as the pairs of matching and non matching face
images, respectively. In the same way we define fm and fn as the corresponding
features output by FeatureNet. MetricNet can be seen as a generic encoding
function H(·) of the input feature pairs z = H(f), where z ∈ Rp, such that
zm ∼ Pm if f = fm and zn ∼ Pn if f = fn. As previously described, we want
to regularize the metric space where the latent representations z lie in order to
constrain the metric behavior. Since the distributions we want to impose are
Gaussian, the Kullback-Leibler (KL) divergence between the sample and target
distributions can be obtained in closed-form as a function of only first and second
order statistics and can be easily minimized. More specifically, the KL divergence
for multivariate Gaussian distributions can be written as:

Lm =
1

2

[
log
|Σm|
|ΣSm|

− p+ tr(Σ−1m ΣSm) + (µm − µSm)ᵀΣ−1m (µm − µSm)
]
.

(2)

where the subscript S indicates the sample statistics.
Interestingly, since we only need the first and second order statistics of z, we

can capture this information batch-wise. As will be explained in detail in Sec. 2.2,
during the training the network is given as input a set of face pairs from which
a subset of b/2 difficult matching and b/2 difficult non-matching face pairs are
extracted, being b the batch size. Letting X ∈ Rb×r with r the size of a face pair,
this results in a collection of latent space points Z ∈ Rb×p after the encoding.
We thus compute first and second order statistics of the encoded representations
Zm,Zn related to matching (µSm,ΣSm) and non-matching (µSn,ΣSn) input

faces respectively. More in detail, let us denote as Σ
(ii)
Sm the i-th diagonal entry

of the sample covariance matrix of Zm. The diagonal covariance assumption
allows us to further simplify (2) as:

Lm =
1

2

[
log

σ2p
m∏

i Σ
(ii)
Sm

− p+

∑
i Σ

(ii)
Sm

σ2
m

+
||µm − µSm||2

σ2
m

]
. (3)
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This loss captures the statistics of the matching pairs and enforces the target
distribution Pm. For brevity we omit the derivation of Ln which is obtained
similarly.

Then, the overall loss function which will be minimized end-to-end across the
whole network (FeatureNet and MetricNet) is given by L = Lm + Ln.

2.1 Architecture

In the following we discuss the architecture and implementation strategy of Fea-
tureNet and MetricNet.

FeatureNet The goal of FeatureNet is to extract the most distinctive facial
features from the input pairs. The architectural design of FeatureNet is crucial.
In general, one may employ any state-of-the-art neural network architecture
able to learn good features. Due to its fast convergence, in our tests we em-
ploy a siamese Inception-ResNet-V1 [15]. The output size of the stem block in
Inception-ResNet is 35×35×256, followed by 5 blocks of Inception-ResNet-A, 10
blocks of Inception-ResNet-B and 5 blocks of Inception-ResNet-C. At the bot-
tom of the network we employ a fully connected layer with output size equal to
the feature vector dimensionality d. The employed dropout rate is 0.8. The pairs
of feature vectors f1 and f2 in output of FeatureNet are concatenated resulting
in f = [f1f2] ∈ R2d and given as input to MetricNet.

MetricNet The goal of MetricNet is to learn the best metric based on feature
vector f and to map it onto the target distributions in the latent space. MetricNet
consists of 7 fully connected layers with ReLU activation functions at the output
of each layer. At the last layer, no activation function is employed. The input
size of MetricNet is 2d, the first fully connected layer has an output size equal
to 2d, the output size keeps decreasing gradually by a factor of 2 with the final
layer having an output size equal to the latent space dimensionality p.

We also highlight that MetricNet, by taking as input f = [f1, f2], allows us to
model any arbitrary nonlinear correlations between the feature vectors. Indeed,
the use of an arbitrary combination of the input features entries has been proven
to be highly effective, see e.g. [16, 17].

2.2 Pairs Selection during Training

For improved convergence, BioMetricNet selects the most difficult matching and
non-matching pairs during training, i.e., those far from the mean values of the
target distributions and close to the threshold. For each mini-batch, at the end
of the forward pass we select the subset of matching pairs whose output zm
is sufficiently distant from the mass center of Pm, i.e. ||zm − µm||∞ ≥ 2σm.
Similarly, for the non-matching pairs we select those which result in a zn such
that ||zn −µn||∞ ≥ 2σn. Then, in the backward pass we minimize the loss over
a subset of b/2 difficult matching and b/2 difficult non-matching pairs with b
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Fig. 3: During the testing phase, we obtain the latent vectors of the input image
pair and its three horizontal flips. For all experiments, the final latent space

vector is calculated as z̄ = 1
4

(∑4
i=1 zi

)
. Pairs are classified as matching and

non-matching by comparing z̄ with a threshold τ .

being the mini-batch size of the selected difficult pairs. In order to have a stable
training, the backward pass is executed only when we are able to collect b/2
difficult matching and b/2 difficult non-matching pairs, else the mini-batch is
discarded.

The rationale behind this choice comes from the result of the latent space
regularization. Indeed, as one traverses the latent space from µm towards µn,
one moves from very similar face pairs to very dissimilar ones. Points close to the
threshold can be thought of as representing pairs for which the matching/non-
matching uncertainty is high. As the training proceeds, at every new epoch the
network improves the mapping of the “difficult” pairs as it is trained on pairs for
which it is more difficult to determine whether they represent a match or not.

2.3 Authentication

In the testing phase, a pair of images are passed through the whole network in
order to compute the related metric value z. Then, a decision is made according
to this value. As said, for our choice of target distributions a hyperplane can be
used for the optimal decision, i.e., we can use the test

(µm − µn)T z ≶ (µm − µn)T (µm + µn)/2. (4)

For p = 1, this boils down to comparing the scalar z with a threshold τ =
(µm + µn)/2.

However, we consider an improved approach which is able to capture addi-
tional information: we use flipped images to compute supplementary features as
done in the recent literature [8, 10]. Namely, given an image pair, we compute
the metric output z for the original image pair as well as the 3 pairs resulting
from the possible combinations of horizontally flipped and non-flipped images.
We employ a horizontal flip defined as (x, y) −→ (width−x−1, y). We thus obtain

4 metric values. Then, the decision is performed on a value z̄ = 1
4

(∑4
i=1 zi

)
,

where zi is the metric output corresponding to the i-th image flip combination,
see Fig. 3. The expected value of z̄ in case of matching and non-matching pairs
is still equal to µm and µn, respectively. Therefore, the test (4) will still be valid
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Fig. 4: BioMetricNet architecture during the testing phase. Given a pair of images
to be tested, after face detection and alignment, by accounting for all the possible
horizontal flip combinations, we obtain 4 image pairs, i.e. P1, P2, P3 and P4. The
latent vectors of the corresponding pairs are computed and aggregated to z̄ and
compared with a threshold τ .

on z̄. Fig. 4 depicts BioMetricNet during the authentication phase. P1 represents
the input image pair, and P2, P3, and P4 represent the three horizontal flips.

3 Experiments

3.1 Experimental Settings

The network is trained with Adam optimizer [18] using stochastic gradient de-
scent [19, 20]. Each epoch consists of 720 people with each person having a min-
imum of 5 images to ensure enough matching and non-matching pairs. We set
the batch size b to 220 difficult pairs to obtain statistically significant first and
second order statistics. Each batch is balanced, i.e. it contains half matching and
half non-matching pairs. The initial learning rate is set to 0.01 with an exponen-
tial decay factor of 0.98 after every 5 epochs. In total, the network is trained for
500000 iterations. Weight decay is set to 2 × 10−4. We further employ dropout
with a keep probability value equal to 0.8. All experiments are implemented in
TensorFlow [21]. For the augmentation horizontal flips of the images are taken.

3.2 Preprocessing

For preprocessing we follow the strategies adopted by most recent papers in the
field [9, 10, 8]. For both the training and testing datasets, we employ MTCNN
[22] to generate normalized facial crops of size 160 × 160 with face alignement
based on five facial points. As a final step, the images are mean normalized and
constrained in the range [−1, 1] as done in [10, 8, 9].

3.3 Datasets

Training The training datasets are those commonly used in recent works in the
field. More in detail, we use different datasets for training and testing phases.
The datasets we employ during training are Casia [23] (0.49M images having
10k identities) and MS1M-DeepGlint (3.9M images having 87k identities) [24].
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Fig. 5: Kurtosis and skewness of the latent space metric on LFW when Pn =
N (w, 1) where w = [0.5, 120], and Pm = N (0, 1). If the means of the two distri-
bution are too far apart the training process becomes unstable, hence it affects
the kurtosis and skewness of the imposed distributions.

Testing BioMetricNet, in the current setting, has been developed for 1:1 ver-
ification in a face authentication scenario, particularly, when there is a single
image template per subject. Therefore, BioMetricNet has been validated on 6
popular unconstrained face datasets for 1:1 verification, excluding large scale
datasets like MegaFace [25] and IJB [26] used for set-based face recognition, i.e.,
deciding whether two sets of images of a face belong to the same person or not.

Labeled Faces in the Wild (LFW) [27] and YouTube Faces (YTF) [28] are
the most commonly used datasets for unconstrained face verification on images
and videos. LFW consists of 13233 face images collected from 5749 people. YTF
consists of 3425 videos of 1595 people. Latest deep learning models for face
verification are powerful enough to achieve almost perfect accuracy on LFW and
YTF, making the related results not very informative. For detailed insights we
further test BioMetricNet on more challenging datasets such as Cross-Age LFW
(CALFW) [29] which is constructed by selecting 3000 positive face pairs with age
gap from LFW to add the aging process to intraclass variance, and Cross-Pose
LFW (CPLFW) [30] which is constructed from 3000 face pairs of LFW with
pose difference to add pose variation to intra-class variance. Finally, we evaluate
our method on Celebrity dataset in frontal and profile views (CFP) [31] having
500 identities with 7000 images, and in-the-wild age database (AgeDB) [32]
containing 16488 images of 568 identities. For all the datasets, we report the
results for 6000 pairs of testing images and videos having 3000 matching and
3000 non-matching pairs. For reporting the performance we follow the standard
protocol of unrestricted with labeled outside data as done in [5, 9, 10].

3.4 Effect of Feature Vector Dimensionality

We explored the effect of different dimensionality of the feature vector by fixing
p = 1, and varying d, see Tab. 1. It can be observed that small values of d are
not sufficient to capture the most discriminative facial features. On the other



10 Ali. A et al.

Table 1: Accuracy (%) for different feature vector d and latent vector p dimen-
sionality. Highest accuracy is obtained for the feature vector of size d = 512 and
for p = 1

Dataset d = 128 d = 256 d = 512 d = 1024 p = 1 p = 3 p = 8 p = 16

LFW 99.47 99.51 99.80 99.63 99.80 99.75 99.74 99.72
YTF 97.57 97.76 98.06 98.0 98.06 97.85 97.73 97.76

CALFW 96.48 96.59 97.07 96.78 97.07 97.02 96.92 96.93
CPLFW 94.89 94.81 95.60 95.25 95.60 95.57 95.13 95.43
CFP-FP 99.01 99.08 99.35 99.25 99.35 99.33 99.33 99.47

hand, a too large feature space (1024) causes overfitting and thus a performance
drop. We picked the best value, i.e. d = 512, since in our experiments this choice
leads to the highest accuracy.

3.5 Effect of Latent Space Dimensionality

In order to select the optimal latent space size we explored different dimension-
alities by fixing d = 512. The results are shown in Tab. 1. In this case, as a
general behavior it can be observed that an increase in p leads to a performance
drop.

Since p affects the number of parameters at the very bottom of MetricNet (an
FC network), its choice strongly affects the overall performance. We conjecture
that large values of p might be beneficial for very complex dataset, for which
the amount of training data is typically large. Indeed, samples in a higher di-
mensional latent space are generally more linearly separable. This is even more
important when the number of data points is very large. On the other hand,
too large values of p might lead to a performance drop as it becomes difficult
to learn a mapping onto large latent space. From Tab. 1 it can be seen that
for most of the datasets, p = 1 is sufficient. On the other hand, for CFP-FP it
can be seen seen that the highest accuracy (even though by a small amount) is
reached for p = 16. In this case, a higher latent space dimensionality provides
room to achieve a better separation. Since p = 1 provides optimal or close to
optimal results in all cases, we choose this value for the experiments.

3.6 Parameters of Target Distributions

In this section, we perform an experiment to explore the behavior of different
parameters of the target distributions. At first, let us recall that we set the two
distributions to have the same variance σm = σn = σ. This allows us to have only
a single free parameter, i.e. the ratio (µm−µn)/σ, affecting our design, in terms
of how far apart we place the distributions compared to the chosen variance.
Without loss of generality, this can be tested by setting the distributions to be
Pm = N (0, 1) and Pn = N (w, 1), where w = [0.5, 120]. From now on if not
differently specified we will consider p = 1 and d = 512.
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Table 2: Verification accuracy % of different methods on LFW, YTF,
CALFW, CPLFW, CFP-FP and AgeDB. BioMetricNet achieves state-of-the-art
results for YTF, CALFW, CPLFW, CFP-FP, and AgeDB and obtains similar
accuracy to the state-of-the-art for LFW

Method # Image LFW YTF CALFW CPLFW CFP-FP AgeDB

SphereFace [8] 0.5M 99.42 95.0 90.30 81.40 94.38 91.70
SphereFace+ [33] 0.5M 99.47 - - - - -

FaceNet [5] 200M 99.63 95.10 - - - 89.98
VGGFace [1] 2.6M 98.95 97.30 90.57 84.00 - -
DeepID [2] 0.2M 99.47 93.20 - - - -
ArcFace [9] 5.8M 99.82 98.02 95.45 92.08 98.37 95.15

CenterLoss [34] 0.7M 99.28 94.9 85.48 77.48 - -
DeepFace [35] 4.4M 97.35 91.4 - - - -

Baidu [36] 1.3M 99.13 - - - - -
RangeLoss [37] 5M 99.52 93.7 - - - -

MarginalLoss [38] 3.8M 99.48 95.98 - - - -
CosFace [10] 5M 99.73 97.6 - - 95.44 -
BioMetricNet 3.8M 99.80 98.06 97.07 95.60 99.35 96.12

In more detail, in Fig. 5 we show the skewness and kurtosis of the latent
representation as a function of w for LFW dataset. It can be seen that in the
region corresponding to 20 ≤ w ≤ 90 the skewness and kurtosis are close to 0
and 3, respectively, and the accuracy is high, showing that the training indeed
converges to Gaussian distributions. We eventually choose µm = 0 and µn = 40
to keep the distributions sufficiently far apart from each other. Further, if the
difference between µm and µn is too large (e.g. µn > 90), the training process
becomes unstable and the distributions become far from Gaussian.

3.7 Performance Comparison

Tab. 2 reports the maximum verification accuracy obtained for different methods
on several datasets. For YTF and LFW as reported in Tab. 2, it can be observed
that BioMetricNet achieves higher accuracy with respect to other methods. In
particular, it achieves an accuracy of 98.06% and 99.80% for YTF and LFW
datasets respectively. On these two datasets, ArcFace obtains a comparable ac-
curacy.

For a more in-depth comparison we further test BioMetricNet on more chal-
lenging datasets, i.e. CALFW, CPLFW, CFP-FP and AgeDB. State-of-the-art
results on these datasets are far from the “almost perfect” accuracy we pre-
viously observed. In Tab. 2 we compare the verification performance for these
datasets. As can be observed, BioMetricNet significantly outperforms the base-
line methods (CosFace, ArcFace, and SphereFace). For CPLFW, BioMetricNet
achieves an accuracy of 95.60% obtaining an error rate that is 3.52% lower than
previous state-of-the-art results, outperforming ArcFace by a significant margin.
For CALFW, BioMetricNet achieves an accuracy of 97.07% which is 1.62% lower
than previous state-of-the-art results. For CFP dataset BioMetricNet achieves
an accuracy of 99.35% lowering the error rate by about 1% with respect to Arc-
Face. Finally, for AgeDB BioMetricNet achieves an accuracy of 96.12% lowering
the error rate by about 1% compared to ArcFace.
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Fig. 6: ROC curve of BioMetricNet on LFW, YTF, CFP, CALFW, CPLFW and
AgeDB.

Table 3: GAR obtained for LFW, YTF, CFP, CALFW, CPLFW and AgeDB at
FAR={10−2, 10−3}

Dataset GAR@10−2FAR% GAR@10−3FAR%

LFW 99.87 99.20
YTF 96.93 90.87

CALFW 94.63 88.13
CPLFW 87.73 61.27
CFP-FP 99.43 97.57

AgeDB-30 89.23 74.70

To summarise, when compared to state-of-art approaches BioMetricNet con-
sistently achieves higher accuracy, proving that, by learning the metric to be
used to compare facial features in a regularized space, the discrimination abil-
ity of the network is increased. This becomes more evident on more challenging
datasets where the gap from perfect accuracy is larger.

3.8 ROC Analysis

The Receiver Operating Characteristic (ROC) analysis of BioMetricNet is il-
lustrated in Fig. 6. This curve depicts the Genuine Acceptance Rate (GAR),
namely the relative number of correctly accepted matching pairs as function of
the False Acceptance Rate (FAR), the relative number of incorrectly accepted
non-matching pairs. Furthermore, we report the GAR at different FAR values,
namely FAR={10−2, 10−3} in Tab. 3. By means of the ROC, we can analyze
how the verification task solved by BioMetricNet generalizes across different
datasets. It is immediate to notice that, as a result of clear separation and low
contamination of the area between the matching and non-matching distribu-
tions, high GARs are obtained at low FARs. This is generally true at different
“complexity” levels as exposed by the considered datasets. More in detail, for
LFW at FAR=10−2 and FAR=10−3 high GARs of 99.87% and 99.20% are ob-
tained, see Tab. 3. For YTF at FAR=10−2 and FAR=10−3, GARs of 96.93% and
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Fig. 7: Histogram of z decision statistics of BioMetricNet matching and non-
matching pairs from (a) LFW; (b) YTF; (c) CALFW; (d) CPLFW; (e) CFP-FP.
Blue area indicates matching pairs while red indicates non-matching pairs.
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Fig. 8: Histogram of z̄ decision statistics of BioMetricNet matching and non-
matching pairs from (a) LFW; (b) YTF; (c) CALFW; (d) CPLFW; (e) CFP-FP.
Blue area indicates matching pairs while red indicates non-matching pairs.

90.87% are obtained. The same behavior can be observed for CFP. For challeng-
ing datasets of CALFW CPLFW and AgeDB it can be observed that the ROC
curves obtained are comparatively lower compared to LFW, YTF, and CFP.
The GARs at FAR=10−2 and FAR=10−3 comes to be 94.63% and 88.13% for
CALFW, 87.73% and 61.27% for CPLFW and 89.23% and 74.70% for AgeDB
respectively.

3.9 Analysis of Metrics Distribution

BioMetricNet closely maps the metrics for matching and non-matching pairs
onto the imposed target Gaussian distributions. To analyze more in depth the
effects of the latent space regularization, we depict the histograms of z and z̄
computed over different test datasets, in Fig. 7 and Fig. 8 respectively. At first,
it can be noticed that for both z and z̄ the proposed regularisation is able to
shape the latent space as intended by providing Gaussian-shaped distributions.
Observing the histograms of z and z̄, it can be noticed that for all the datasets
BioMetricNet very effectively separates matching and non-matching pairs.

Concerning non-matching pairs, the distributions of z are indeed Gaussian
with the chosen parameters. For matching pairs, it can be observed that the z
score has the correct mean, but tends to have a lower variance than the target
distribution. A possible explanation is that matching and non-matching pairs
exhibit different variability, so it is difficult to match them to distributions with
the same variance. Indeed, for a fixed number of persons, the number of pos-
sible non-matching pairs is much larger than the number of possible matching
pairs. Moreover, the KL divergence is not symmetric and the chosen loss tends
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to promote sample distributions with a smaller variance than the target one,
rather than with a larger variance. Hence, a solution where matching pairs have
a smaller variance than the target distribution is preferred with respect to a
solution where non-matching pairs have a larger variance than the target distri-
bution. We can also observe that for more difficult datasets, like CALFW and
CPLFW, the distribution obtained for matching pairs has heavier tails than the
target distribution.

The histogram for z̄ scores in Fig. 8 shows that the variance of both match-
ing and non-matching pairs is slightly reduced with respect to that of z. Since
reduced variance means increased verification accuracy, this justifies using z̄ over
z. Furthermore, the decision boundary we are using depends only on mean val-
ues, which are preserved, and thus it is not affected by the slight decrease in
variance.

4 Conclusions

We have presented a novel and innovative approach for unconstrained face ver-
ification mapping learned discriminative facial features onto a regularized met-
ric space, in which matching and non-matching pairs follow specific and well-
behaved distributions. The proposed solution, which does not impose a specific
metric, but allows the network to learn the best metric given the target distribu-
tions, leads to improved accuracy compared to the state of the art. In BioMetric-
Net distances between input pairs behave more regularly, and instead of learning
a complex partition of the input space, we learn a complex metric over it which
further enables the use of much simpler boundaries in the decision phase. With
extensive experiments, on multiple datasets with several state-of-the-art bench-
mark methods, we showed that BioMetricNet consistently outperforms other
existing techniques. Future work will consider BioMetricNet in the context of
3D face verification and adversarial attacks. Moreover, considering the slight
mismatch between metric distributions and target distributions, it is worth in-
vestigating if alternative parameter choices for the target distributions can lead
to improved results.
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