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Abstract
We suppose an OLS agnostic operation by relying only on the OCM telemetry. Analyzing an experimental data-set from an 11
EDFA OLS, we show the need for 3.6 dB margin without knowledge on EDFAs, reduced to 0.4 dB by DNN machine learning.

1 Introduction
Data traffic demand will experience a dramatic increase over
the next years, driven by the implementation of 5G access and
by the expansion of bandwidth hungry applications such as
high definition video, virtual and augmented-reality contents
[1]. Backbone optical networks will sustain such a growth,
and a key operators’ request is to exploit the existing infra-
structure to maximize their returns over investments [2]. Such
a need is directly related to the capability of orchestrating
all the network layers to squeeze out all the available ca-
pacity from the data transport [3]. In optical networks, the
enabler for the optimal exploitation of data transport is the
capability of controllers for the optical line systems (OLS) to
predict the lighpath (LP) quality of transmission (QoT) before
its actual deployment. The QoT is given by generalized SNR
(GSNR) considering both ASE noise and NLI [4, 5].GSNR =
PRx/(PASE + PNLI) = 1/(1/OSNR+ 1/SNRNL), where
OSNR = PRx/PASE , SNRNL = PRx/PNLI , PRx is the
power of the channel under test (CUT), PASE is the power
of the ASE noise and PNLI is the intensity of the NLI dis-
turbance. Among the two disturbances, the most challenging
to estimate is the ASE noise accumulation setting the optical
signal-to-noise ratio (OSNR), because it depends on the work-
ing point of erbium-doped fiber amplifiers (EDFA)[6], that is
spectral-load dependent [7]. The NLI can be accurately pre-
dicted when the ASE noise accumulation is well characterized
[8–12].

Fig. 1 schematically shows the possible operations of the
QoT estimator (QoT-E) calculating the GSNR, wavelength per
wavelength. Some data are available from static characteriz-
ation of devices – the (1) option in Fig. 1 – and are highly
significant for single-vendor systems. An agnostic operation
required in open OLS mainly relies on data from telemetry,
coming from the optical channel monitor (OCM) and from
EDFA telemetry. We can suppose that these data are avail-
able only from the network status, without any stored training

data-set: the case (2) in Fig. 1. From the statistical character-
ization of the data-set, we can evaluate the uncertainty on the
OSNR and the consequent needed margin. Option (3) in Fig. 1
is the availability of a data-set that has been generated before
the in-service operation of the OLS. Data can train a machine-
learning (ML) algorithm that will be used to predict the QoT in
actual LP deployment and in controlling the OLS power levels.

In this work, we analyze the (2) and (3) options, being the
ones characterizing an agnostic operation of the OLS. We sup-
pose a completely agnostic scenario, by relying only on data
coming from the OCM available at the end of the line system.

To emulate an OLS, we experimentally setup an 11-EDFA
line and we changed spectral loading, collecting data from an
OSA mimicking the OCM, as shown in Fig. 2. The Cisco c©

commercial EDFAs are used as black-boxes just setting the
spectrally-averaged gain to the nominal level. The channel
combs spectrally loading the OLS have been obtained by shap-
ing ASE noise. Such an approach is not limiting the generality
of results because of the large time constant characterizing
physical effects in EDFAs. The output of the ASE noise source
is shaped by means of a programmable optical wave-shaper fil-
ter (Finisar 1000 S), to generate a 100 GHz-spaced 35-channel
WDM comb centered at 1550 nm and amplified by a booster
amplifier (EDFA0 in Fig. 2). The choice of the 100 GHz spa-
cing was forced by the hardware availability as well as the
limitation to 3.5 THz. These restrictions are not limiting the
generality of results because of the bandwidth of the phenom-
ena that are properly captured. The optical line is composed by
11 spans, each made of a VOA, setting the optical span atten-
uation to 10 dB, followed by an EDFA, operating at a constant
output power of -1 dBm per channel. We generated experiment-
ally a data-set made of 2291 cases: almost 70 for each spectral
load with 2 to 34 on channels; 35 cases with only one channel
on and the all channel on scenario.

We first show that a completely agnostic use of the OLS may
require the deployment of up to 3.6 dB of system margin. Then,
using the TensorFlow c© platform [13], we show that using deep
neural network (DNN) algorithms, with some optimization,
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Fig. 1 QoT-E module predicting the GSNR(λ) using static data
from factory characterizations of network elements (1), data
form telemetry (2) or stored data from telemetry feeding a ML
module (3).

and properly exploiting the data-set, we can reduce the uncer-
tainty on the predicted OSNR down to 0.2 dB, minimizing the
needed margin to 0.4 dB.

2 Results

We analyze the experimental data-set in order to give an assess-
ment on its statistics and consequently deriving the needed sys-
tem margin. Then, we suppose the data-set has been acquired
prior the OLS activation, and show the ML benefits.

2.1 Data-set statistics

The main purpose of this analysis is to characterize the OSNR
fluctuations of this process due to the specific spectral load fea-
tures. The data-set consists of pairs combination-outpower for
each channel identified by a frequency occupation slice with
100 GHz width. These quantities have been measured over
2291 on-off configurations, a subset of the 235 possibilities
given 35 channels. The set of configurations considered is uni-
form over all the channels and the number of total on channels.
Through the whole analysis, any uncertainty in the measure-
ments is negligible with respect to the variances due to the lack
of information, therefore, we have not take them into. Since

Fig. 2. Experimental setup generating the data-set.

Fig. 3 Blue dots: mean value of the OSNR measured on each
channel; errorbars: standard deviations. In green and red, re-
spectively, the maximum and the minimum for each channel .
The dashed line indicates the overall minimum OSNR.

the sample has a relative limited dimension, in what follows,
we address to the standard deviation calculated with the weight
N − 1, in order to obtain a less biased estimator of any quantity
variance. By means of this first approach, we obtain the stat-
istical description shown in Fig. 3. The average values of the
OSNR, dots in the figure, sketch a characteristic figure of the
EDFAs amplification process and take place between 29 and
30.5 dB with standard deviations from 0.13 to 0.4 dB. Omit-
ting the description of the shape outlined by the OSNRs, in this
work, we would like to arrange this behavior in a practical case.
Not far from a realistic scenario, let us suppose that the line user
experiences a condition of total lack of information of the ED-
FAs cascade features. Unaware of the frequency resolution of
the amplification process, he/she has to set a constant nominal
value of the OSNR over all the spectrum, which would be in-
deed beneath the minimum value measured, the dashed red line
in the Fig. 3. As shown in the same figure, this solution would
be suboptimal with a required margin up to 3.6 dB.

2.2 Machine-learning aided OSNR prediction

We now describe the improvements which we obtain applying
the ML to this system. In our opinion, this scenario is a per-
fect ground for a ML approach, since it can compensate the
lack of information due to the hidden behaviour of the EDFAs
cascade. Far from being an exhaustive description of the ML
application, the goal of this work is to achieve a better pre-
diction power with respect to the approaches exposed in the
previous section, starting from the same data-set. In particular,
we take advantage of the well known Tensorflow c© platform
[13] and we tune, along our requirements, few high level fea-
tures. As first evidence, we obtain that the deep neural network
(DNN) reaches a better precision with respect to the linear re-
gression model. Chosen the former model, we have tried many
configurations of hidden layers and number of nodes and, once
we reached a suitable reliability, we have opted for the best
trade-off between precision and computational time.

Given a channel under test, we select a portion of the data-
set, almost one fourth of it, as test subset. We create it choosing
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randomly various instances from the data-set, with the only re-
quirement to preserve the uniform distribution with respect to
the number of on channels in the configurations; this subset,
from now on, represents our reference point to questioning the
quality of the predictions. As outlined in the previous section,
the uncertainty of the system can be split along the variances
of the received signal power and the ASE noise. Therefore,
we proceed applying the ML training procedure separately. For
the prediction of the ASE noise we identify the train set with
the whole residual sample. Whereas, for the prediction of the
output power when the channel is on, we restrict the resid-
ual sample to the configurations with the channel under test
on, in order to feed the machine with the proper information.
This process, since the uniform distribution of the sample, re-
duces significantly the train set in this case. This dimension
discrepancy of the train sets, can partially motivate the different
accuracy of the final results.

Fig. 4 Distribution of the discrepancy of the ML guesses of the
ASE noise for the channel centred in the spectral hole burning.

Fig. 5 Distribution of the discrepancy of the ML guesses of the
OSNR for the channel centred in the spectral hole burning.

First, we focus our investigation on the channel with the
most uncertainty. Unfortunately, the collected data-set does not

Fig. 6 Each slice of the heat map represents the distribution
of the error of the prediction process. Hotter colors stand for
higher accuracy.

allow us to train and test the machine directly over those scen-
arios in which only the channel under test (CUT) changes state.
Nevertheless, at least for those configurations with on chan-
nels not in the frequency neighborhood of the CUT or for
reasonable full spectral loads, the change of the state of one
channel does not effectively affects the others. Therefore, we
feed the trained ML model with the powers of all the chan-
nels but the CUT and we analyze the accuracy of the guess
of the CUT OSNR produced by the machine. In Fig. 4-5, we
show an overall statistical description of the inaccuracy of the
ML, respectively, for the ASE noise and the OSNR guesses.
Clearly, as previously anticipated, the ASE prediction is effect-
ively more accurate of the signal power prediction, not pictured
here, that leads the final OSNRs inaccuracy of 0.2 dB. We
repeat this investigation for all the channels and we picture
the results in Fig.6. Each slice of the heat map outlines the
distribution of the uncertainty of the ML prediction.

3 Conclusions

We analyzed the prediction of the OSNR component of the
GSNR, being the dominant one and the mostly affected by
uncertainties induced by the spectral dependence of gain and
noise figure of EDFAs on the spectral load, given the nominal
gain. We supposed an agnostic use of the optical line systems,
by operating the EDFAs as black-boxes setting the nominal
gain and by relying only on data from the OCM to predict the
spectrally resolved GSNR. We experimentally obtained a data-
set from an 11-EDFA OLS, focusing on the OSNR prediction
only. We show that, without any specific knowledge, the uncer-
tainty on the GSNR with the possible spectral loads needs the
deployment of a margin up to 3.6 dB. Supposing to be able to
acquire a training data-set before the actual traffic deployment,
we show that DNN ML techniques from the TensorFlow c© plat-
form enable a reduction on the uncertainty on the OSNR down
to 0.2 dB.
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