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Highlights 

• Optimal control of stepped gear transmission (SGT) hybrid electric vehicles (HEVs). 

• Account for both fuel economy and drivability. 

• A rapid near-optimal off-line control algorithm is developed. 

• Comparable results with dynamic programming while cutting down computational cost. 

• Ease of use in advanced design and calibration methodologies for SGT HEVs. 

Abstract 

Efficiently solving the off-line control problem represents a crucial step to predict the fuel economy capability of hybrid 

electric vehicles (HEVs). Optimal HEV control approaches implemented in literature usually prove to be either 

computationally inefficient or sub-optimal. Moreover, they often neglect drivability and comfort associated to the generated 

control actions over time. This paper therefore aims at introducing a rapid near-optimal approach to solve the off-line control 

problem for parallel and series-parallel HEV powertrains while accounting for drivability criteria such as the frequency of 

gear shifts and the number of activations of the thermal engine. The performance of the introduced slope-weighted energy-
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based rapid control analysis (SERCA) algorithm is compared with the global optimal benchmark provided by dynamic 

programming (DP) for both the parallel and the series-parallel HEV layouts over different driving missions. Results 

demonstrate how the SERCA algorithm can produce comparable control results with respect to DP by limiting the increase in 

the estimated fuel consumption within 2.2%. The corresponding computational time can be simultaneously reduced by around 

99.5% while ensuring a limited number of gear shifts and engine activations over time. Engineers could therefore potentially 

implement the proposed SERCA algorithm in design and calibration procedures of parallel and series-parallel HEVs to 

accelerate the overall vehicle development process. 

 

Keywords: fuel economy; hybrid electric vehicle (HEV); optimal energy management; parallel layout; rapid control 

1. Introduction 

Hybrid electric vehicles (HEVs) currently 

represent a profitable technology to potentially 

comply with worldwide tightening CO2 emission 

regulations and simultaneously accomplishing 

customers’ needs [1][2]. Moreover, HEVs constitute 

an important stage in the global paradigm shift of the 

transportation sector towards electrification [3]. 

HEVs generally embed an internal combustion 

engine (ICE) and one or more electric 

motor/generators (MGs). The presence of different 

power components aims at reducing the overall fuel 

consumption by increasing the flexibility in the HEV 

powertrain operation [4][5].  

Different categories of HEV powertrain 

architectures can be defined according to the position 

of the power components and the type of 

transmission embedded [6]. At the most general 

level, HEVs can be classified into electrically 

variable transmission (eVT) type and stepped gear 

transmission (SGT) type. eVT HEVs are based on 

planetary gear sets, composed of a ring gear, a carrier 

and a sun gear. These two degrees of freedom 

mechanical devices enable decoupling the ICE 

rotational speed from the vehicle linear speed, thus 

enhancing the potential of fuel economy through 

higher flexibility of operation [7][8]. Nevertheless, 

these HEVs typically require two MGs (one for 

propelling the vehicle and one for generating 

electrical energy from the mechanical energy 

provided by the ICE) and therefore represent 

complex powertrain architectures [9]. Moreover, the 

mechanical coupling of planetary gear sets does not 

allow to direct the ICE mechanical energy entirely to 

the wheels, thus partially compromising the potential 

drivability of these vehicles. Finally, the increased 

number of gear engagement points in planetary gear 

devices intensifies the overall transmission meshing 

losses [10]. On the other hand, SGT HEVs preserve 

the typical structure of road vehicle drivetrains being 

equipped with the ICE, a clutch, a gearbox and final 

drive in series. One or multiple MGs can then be 

added to the drivetrain in specific positions according 

to the designers’ choice. P0, P1, P2, P3 and P4 

locations are particularly defined depending on the 

MG being located upstream the ICE (belt-driven), 

downstream the ICE (keyed directly onto the same 

shaft), between the ICE and the transmission gearbox 

(being linked through clutch connections), between 

the transmission gearbox and the final drive and 

separately from the ICE in the rear axle (that 

performs as pure electric driven axle) respectively 

[11]. The main disadvantage of SGT HEVs compared 

to eVT HEVs is represented by the speed of the ICE 

being dependent on the vehicle speed. However, in 

SGT HEV layouts both ICE and MGs can directly 

deliver tractive power to the driven wheel shaft, thus 

making these vehicles appealing from the points of 

view of drivability, towing capability and maximum 

achievable speed [12]. Moreover, relatively little 

changes are required to convert a conventional road 

vehicle drivetrain into a SGT HEV powertrain, thus 

enhancing the ease of production of these HEVs from 

car makers’ perspective [13]. 

Advanced computer-aided engineering tools are 

required in order to shorten the total development 

cost of HEVs. As a matter of fact, consistent 

reductions in the retail price of HEVs are required in 

order to promote the widespread adoption of these 

vehicles in the market [14][15]. In this framework, a 

compelling need can be stated in promoting 
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innovative tools to rapidly evaluate design options 

and parameters of HEV architectures. Generally, 

when assessing HEV design options in early vehicle 

development phases, the fuel economy potential is 

evaluated by implementing off-line HEV powertrain 

energy management strategies in which the target 

driving mission profiles are known a priori before 

running the numerical simulation. Then, the selected 

energy management algorithm predicts the optimal 

fuel consumption value by optimizing the powertrain 

operation (e.g. gear number engaged, torque split) in 

the entire retained driving mission. A relevant off-

line HEV energy management strategy must also 

demonstrate capability of effectively producing an 

appropriate behavior of the hybrid powertrain in 

terms of drivability and comfort. This translates as 

example in limiting the overall number of ICE 

activations, the number of gear shifts and the ICE 

speed oscillations. 

Dynamic Programming (DP) currently represent 

the most popular HEV off-line control approach and 

it is generally adopted in these procedures [16][17]. 

The major strengths of DP relate to both its capability 

of returning a global optimal fuel economy solution 

and its flexible application to various HEV 

architectures including both SGT and eVT types 

[18][19]. Nevertheless, a major drawback of DP can 

be identified in its significant computational cost. 

This currently represents a main restriction in design 

methodologies implemented in HEV computer-aided 

engineering tools, forcing designers to restrain the 

amount of either the considered driving missions or 

the examined powertrain design parameters [20]. 

Moreover, as DP suffers from curse of 

dimensionality, its computational power and time 

exponentially increase when considering additional 

state variables to comply with further criteria in the 

HEV control (e.g. number of gear shifts, number of 

ICE activations). To solve the aforementioned issue, 

a recent trend can be observed in developing HEV 

off-line energy management strategies capable of 

producing a good approximation of the global 

optimal DP results while simultaneously limiting the 

related computational cost. One of the best known 

near-optimal HEV control approaches in this 

framework is represented by the Pontryagin’s 

Minimum Principle (PMP), which operates a local 

optimization considering a dual-term cost function 

[21]. Particularly, the instantaneous rate of fuel 

consumption and the employed battery power, 

weighted through an equivalence factor, are 

considered in the cost function in this case [22]. The 

PMP has been demonstrated to rapidly produce 

results comparable to DP for some retained HEV case 

studies [23]. Nevertheless, its implementation in 

HEV design methodologies requires recurrent tuning 

of the equivalence factor in order to achieve the 

charge-sustained battery operation for the analyzed 

driving mission [24]. Moreover, limiting the number 

of ICE activations over time in PMP involves 

implementing and tuning a dedicated ICE command 

filter [25]. In general, when further enhancing HEV 

drivability and comfort, each evaluation criterion 

would thus require developing a corresponding 

additional filter in PMP. These represent demanding 

procedures since the calibration process for the 

equivalence factor and the command filters must be 

repeated not only for each considered drive cycle, but 

also for each analyzed design option. Moreover, the 

near-optimality of PMP may be compromised 

depending on the influence of the developed 

command filters and on the specific powertrain 

operating conditions. Three additional rapid near-

optimal HEV off-line control techniques, named the 

power-weighted efficiency analysis for rapid sizing 

(PEARS), the efficiency evaluation real-time control 

strategy (EERCS) and the slope-weighted energy-

based rapid control analysis (SERCA), have been 

introduced by Zhang et al. in 2013 [26], by Qin et al. 

in 2018 [27], and by the authors of this paper in 2019 

[28], respectively. As it will be described in par. 3.2, 

these heuristic optimization algorithms operate by 

iteratively replacing pure electric with hybrid 

operation in the most convenient time points of the 

driving mission until the charge-sustained battery 

operation is achieved. PEARS, EERCS and SERCA 

have been proved to generate fuel economy results 

comparable to DP while limiting the associated 

computational cost. Furthermore, computationally 

efficient approaches to enhance drivability and 

comfort have been demonstrated implementable 

within these HEV control strategies [29]. 

Nevertheless, the application of PEARS, EERCS and 

SERCA is currently limited to eVT HEVs only 

[30][31].  
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As a main outcome of this literature analysis, an 

effective off-line control strategy capable of rapidly 

predicting the fuel economy capability of SGT HEVs 

while accounting for drivability criteria still requires 

development. A crucial need for implementing 

computationally efficient near-optimal off-line 

control strategies for SGT HEV layouts can therefore 

be identified in order to fulfil the highlighted research 

gap. These strategies should be able to rapidly assess 

the fuel economy capability of SGT HEVs while 

considering drivability and comfort related to the 

generated powertrain control actions. Particularly for 

SGT HEVs, ensuring smooth driving might translate 

into effectively limiting the number of ICE 

activations and gear shifts as example. To answer 

these needs, this paper proposes a computationally 

lightweight off-line HEV control strategy that can 

assess the near-optimal fuel economy capability of 

SGT HEVs and increase vehicle drivability. The 

main contributions of this paper compared to the 

current state-of-art include (1) the development of a 

version of the SERCA algorithm capable of rapidly 

estimating the fuel economy capability of SGT 

HEVs, (2) the implementation of a dedicated 

approach to optimally minimize both the number of 

ICE activations and gear shifts throughout considered 

driving missions, (3) a comparative analysis of 

SERCA and DP control approaches applied to SGT 

HEVs by varying the retained number of state 

variables. By comparing values for the estimated fuel 

consumption, the number of ICE activations and gear 

shifts occurring throughout various driving missions, 

the SERCA algorithm demonstrates a satisfactorily 

accurate approximation of the global optimal solution 

provided by DP while remarkably reducing the 

associated computational cost. In general, the 

developed SERCA algorithm could find 

implementation in design and sizing methodologies 

for SGT hybrid electric powertrains to accelerate the 

overall vehicle development process. 

The rest of the paper is organized as follows: the 

two considered SGT HEV architectures that include a 

single-motor parallel P2 layout and a dual-motor 

series-parallel P1P2 layout are firstly reviewed in 

section 2. The adopted modeling approach is 

described as well in this section. Then, the state-of-art 

off-line HEV control is discussed in section 3 

considering both the global optimal energy 

management through DP and the rapid near-optimal 

energy management with SERCA and PEARS. The 

section 4 aims at illustrating and detailing the 

dedicated version of the SERCA algorithm for SGT 

HEVs. Simulation results are then illustrated in 

section 5to prove the effectiveness of the developed 

algorithm considering both a sensitivity study and a 

benchmark study. Finally, conclusions are given in 

section 6. 

2. Parallel and series-parallel HEV layouts 

This section aims at illustrating the SGT HEV 

layouts retained in this study and the correspondingly 

adopted modeling approach. A single-motor parallel 

P2 architecture and a dual-motor series-parallel P1P2 

architecture are particularly considered. 

2.1. Parallel P2 HEV 

Fig. 1 illustrates a parallel P2 HEV layout. As it 

can be seen, the torques of ICE and MG are additive 

and governed by the following equation: 

𝑇𝐼𝐶𝐸  +  𝑇𝑀𝐺  =  𝑇𝐴𝑇                        (1) 

𝑇𝐼𝐶𝐸 , 𝑇𝑀𝐺 , and 𝑇𝐴𝑇 refer to the ICE torque, the MG 

torque, and the torque at the automatic transmission 

input shaft, respectively. Gear shifting in the 

automatic transmission is enabled by Clutch2, while 

Clutch1 ensures the connection of the ICE to the 

driven wheels and allows engine cranking operations. 

As reported in Table 1, three operating modes are 

available for this HEV architecture, named pure 

electric, torque assist and battery charging.  Different 

operating modes are enabled depending whether the 

ICE is activated and employed to propel the vehicle 

or not and according to the value of 𝑇𝐼𝐶𝐸 . In torque 

assist mode, both 𝑇𝐼𝐶𝐸  and  𝑇𝑀𝐺  are positive and the 

overall torque provided to the transmission shaft is 

represented by the sum of their partial contributions. 

In battery charging mode, the ICE provides higher 

torque compared to the amount of torque requested 

by the driver. The exceeding torque value is then 

absorbed by the MG, which operates as generator to 

charge the battery. 
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2.2. Series-parallel P1P2 HEV 

Fig. 2 illustrates the series-parallel P1P2 HEV 

layout. Compared to the P2 architecture described in 

the previous paragraph, in this HEV an additional 

MG is located downstream the ICE on its same shaft. 

The electric path that connects the high-voltage 

battery through the power electronics to the electric 

machines thus depends on the sum of the torque 

values of both MGs. The torque balance equation can 

be rewritten considering 𝑇𝑀𝐺2 as an additional term 

for the MG2 torque: 

𝑇𝐼𝐶𝐸  +  𝑇𝑀𝐺1 + 𝑇𝑀𝐺2 = 𝑇𝐴𝑇                  (2) 

Table 2 reports the operating modes of the P1P2 

HEV layout. In addition to the three operating modes 

of the P2 architecture, a series mode is enabled as 

well in the P1P2 HEV layout when an appropriate 

ratio between MG1 size and ICE size is 

accomplished. In the series mode, the ICE is 

activated and only MG2 propels the vehicle while the 

MG1 operates as generator in order to either charge 

the battery or allow the battery to operate in higher 

efficiency. 

2.3. HEV modeling approach 

In this paper, both the considered SGT HEV 

architectures are modelled through the well-known 

backward quasi-static approach [32]. This method 

considers adjacent values of the simulated driving 

mission speed profile to calculate the amount of 

propelling or braking torque requested at the wheels 

(𝑇𝑤ℎ𝑒𝑒𝑙𝑠) backwards as follows: 

𝑇𝑤ℎ𝑒𝑒𝑙𝑠 = (𝐹𝑟𝑜𝑙𝑙 + 𝐹𝑚𝑖𝑠𝑐 + 𝐹𝑎𝑒𝑟𝑜

+𝑚𝑣𝑒ℎ𝑒𝑞(𝑛𝑔𝑒𝑎𝑟) ∙ 𝑎)

∙ 𝑟𝑤ℎ𝑒𝑒𝑙  
 

With:        𝐹𝑟𝑜𝑙𝑙 = 𝑚𝑣𝑒ℎ ∙ 𝑔 ∙ 𝑓0   

𝐹𝑚𝑖𝑠𝑐 = 𝑚𝑣𝑒ℎ ∙ 𝑔 ∙ sin(𝛼) + 𝑘 ∙ 𝑣 

𝐹𝑎𝑒𝑟𝑜 =
1

2
∙ 𝜌 ∙ 𝑆 ∙ 𝐶𝑥 ∙ 𝑣

2 

(3) 

  

𝐹𝑎𝑒𝑟𝑜, 𝐹𝑚𝑖𝑠𝑐   and 𝐹𝑟𝑜𝑙𝑙  represent resistive load 

terms provided by aerodynamic drag, some 

miscellaneous terms (e.g. transmission losses, side 

forces, road slope) and the rolling resistance, 

respectively. 𝑎 relates to the value of vehicle 

acceleration or deceleration as requested by the 

 
 

Fig.  2. Series-parallel P1P2 HEV powertrain layout. 

 
Table 2  

Operating modes of the series-parallel P1P2 HEV layout 

Mode Clutch1 ICE TICE TMG1 ; TMG2 

Pure 

electric 
Disengaged OFF TICE = 0 

TMG1 = 0 ;      

TMG2 = TAT 

Torque 

assist 
Engaged ON TICE < TAT 

(TMG1+ TMG2)  

> 0 

Battery 

charging 
Engaged ON TICE > TAT 

(TMG1+ TMG2)  

< 0 

Series Disengaged ON TICE > 0 
TMG1 = - TICE;      

TMG2 = TAT 

 

 
 
Fig.  1. Parallel P2 HEV powertrain layout. 

 

Table 1  

Operating modes of the parallel P2 HEV layout 

Mode Clutch 1 ICE TICE TMG 

Pure 

electric 
Disengaged OFF TICE = 0 TMG = TAT 

Torque 

assist 
Engaged ON TICE < TAT TMG > 0 

Battery 

charging 
Engaged ON TICE > TAT TMG < 0 
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analysed time point in the driving mission. 𝑚𝑣𝑒ℎ, 

𝑟𝑤ℎ𝑒𝑒𝑙  and 𝑚𝑣𝑒ℎ𝑒𝑞 are vehicle mass, wheel effective 

radius and vehicle equivalent mass, respectively. 

Particularly 𝑚𝑣𝑒ℎ𝑒𝑞 considers both the inertia of the 

powertrain rotating components (wheels, shafts, ICE 

and MGs) and the value of gear ratios for the gear 

engaged 𝑛𝑔𝑒𝑎𝑟 . 𝑔,  𝛼 and 𝜌 stand for the gravity’s 

acceleration, the road slope and the air density, 

respectively. 𝑓0, 𝑘, 𝑆 and 𝐶𝑥 represent vehicle 

parameters corresponding to the rolling friction 

coefficient, a miscellaneous loss coefficient, the 

frontal area and the drag coefficient, respectively. 

Then, the torque at the automatic transmission 

input shaft 𝑇𝐴𝑇  can be determined as follows by 

evaluating the torque balance between input and 

output of the automatic transmission:  

𝑇𝐴𝑇 = 𝑇𝑜𝑢𝑡  ∙   
𝑖𝐹𝐷  ∙  𝑖𝑛𝑔𝑒𝑎𝑟

(𝜂𝐹𝐷  ∙  𝜂𝐴𝑇 )
𝑠𝑖𝑔𝑛(𝑇𝑜𝑢𝑡)

                (4) 

𝑖𝐹𝐷  and  𝑖𝑛𝑔𝑒𝑎𝑟 represent the gear ratio values for 

the final drive and the engaged gear number, 

respectively. 𝜂𝐹𝐷  and 𝜂𝐴𝑇 are the efficiency values 

for the final drive and the automatic transmission 

gearbox respectively, which are considered as 

constant values in this paper. These two latter 

parameters are powered to the sign of the output 

torque in order to account for both propelling and 

braking cases. 

Concerning the power components, these are 

modelled through their empirical operational lookup 

tables. Particularly, the fuel map and the electric loss 

tables with torque and speed as independent variables 

are considered to represent the ICE fuel consumption 

and the electrical losses for each MG, respectively. 

Once the total amount of electrical power exchanged 

between power components and battery is evaluated 

(𝑃𝑏𝑎𝑡𝑡), the corresponding variation in the state-of-

charge (SOC) is calculated. This term (𝑆𝑂𝐶̇ ) can be 

determined as follows by considering an equivalent 

open circuit model for the battery:  

𝑆𝑂𝐶̇ =
𝑉𝑂𝐶(𝑆𝑂𝐶)− √𝑉𝑂𝐶(𝑆𝑂𝐶)

2−4∙𝑅𝐼𝑁(𝑆𝑂𝐶)∙𝑃𝑏𝑎𝑡𝑡

2∙𝑅𝐼𝑁∙𝑄𝑏𝑎𝑡𝑡
    (5) 

𝑅𝐼𝑁, 𝑉𝑂𝐶  and 𝑄𝑏𝑎𝑡𝑡 represent the internal 

resistance, the open-circuit voltage and the capacity 

of the battery (in ampere-second), respectively. Both 

the values of 𝑅𝐼𝑁 and 𝑉𝑂𝐶  are function of the current 

battery SOC value according to empirical lookup 

tables. However, averaged constant values are 

considered here for these two parameters as this has 

been proved an appropriate approximation when 

studying charge sustained HEV control problems 

[23]. 

The main advantage of the backward quasi-static 

approach relates to its computational efficiency. This 

method is consequently adopted in early phases of 

the HEV architecture selection and powertrain design 

process. Indeed, considering transient phenomena 

and high-fidelity powertrain models at this point 

would dramatically increase the computational cost 

required for the preliminary HEV analysis. Here, 

both the illustrated vehicle and powertrain model and 

the HEV control strategies are implemented in 

MATLAB© software. 

3. Optimal HEV off-line control 

In this section, the off-line HEV control problem 

is discussed. Off-line control is commonly adopted to 

analyze the behavior of HEV architecture and sizing 

candidates in different pre-selected driving missions 

(both type-approval drive cycles and real-world 

driving profiles). The fuel economy capability of 

each retained design option is assessed in this way. 

The off-line HEV control problem can be formulated 

as follows: 

min { 𝐽 = ∫ 𝐿(𝑡)𝑑𝑡
𝑡𝑒𝑛𝑑

𝑡0

 } 

with: 

𝐿 = 𝑚̇𝑓𝑢𝑒𝑙 + 𝛼1 ∙ 𝐼𝐶𝐸𝑠𝑡𝑎𝑟𝑡 + 𝛼2 ∙ 𝑔𝑒𝑎𝑟𝑠ℎ𝑖𝑓𝑡  

subject to: 

𝑛𝑔𝑒𝑎𝑟𝑚𝑖𝑛 ≤ 𝑛𝑔𝑒𝑎𝑟 ≤ 𝑛𝑔𝑒𝑎𝑟𝑀𝐴𝑋 

𝜔𝐼𝐶𝐸𝑚𝑖𝑛 ≤ 𝜔𝐼𝐶𝐸 ≤ 𝜔𝐼𝐶𝐸𝑀𝐴𝑋 

𝑇𝐼𝐶𝐸𝑚𝑖𝑛 ≤ 𝑇𝐼𝐶𝐸 ≤ 𝑇𝐼𝐶𝐸𝑀𝐴𝑋  

𝜔𝑀𝐺1𝑚𝑖𝑛 ≤ 𝜔𝑀𝐺1 ≤ 𝜔𝑀𝐺1𝑀𝐴𝑋 

𝑇𝑀𝐺1𝑚𝑖𝑛 ≤ 𝑇𝑀𝐺1 ≤ 𝑇𝑀𝐺1𝑀𝐴𝑋 

𝜔𝑀𝐺2𝑚𝑖𝑛 ≤ 𝜔𝑀𝐺2 ≤ 𝜔𝑀𝐺2𝑀𝐴𝑋 

𝑇𝑀𝐺2𝑚𝑖𝑛 ≤ 𝑇𝑀𝐺2 ≤ 𝑇𝑀𝐺2𝑀𝐴𝑋 

𝑆𝑂𝐶̇ = 𝑓(𝑆𝑂𝐶,𝜔𝑀𝐺1 , 𝑇𝑀𝐺1, 𝜔𝑀𝐺2, 𝑇𝑀𝐺2) 

𝑆𝑂𝐶(𝑡0) = 𝑆𝑂𝐶(𝑡𝑒𝑛𝑑) 

𝑆𝑂𝐶𝑚𝑖𝑛  < 𝑆𝑂𝐶 < 𝑆𝑂𝐶𝑀𝐴𝑋 

(6) 
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𝐿 is the instantaneous cost function which needs 

minimization. 𝑚̇𝑓𝑢𝑒𝑙  represents the instantaneous rate 

of fuel consumption as given by the ICE fuel table, 

while 𝐼𝐶𝐸𝑠𝑡𝑎𝑟𝑡 and 𝑔𝑒𝑎𝑟𝑠ℎ𝑖𝑓𝑡 denote ICE activation 

and gear shifting events, respectively. 𝛼1 and 𝛼2 are 

constant weighting factors. Both gear number 

(𝑛𝑔𝑒𝑎𝑟), speeds (ω) and torques (𝑇) are constrained 

within the corresponding allowed limits. Equal 

battery SOC values are imposed at the beginning and 

at the end of the considered driving mission in order 

to achieve the charge sustained HEV powertrain 

operation. Solving the introduced control problem 

leads to determine the evolution over time of control 

actions associated to the specific HEV layout. These 

control actions relate to the values assumed by the 

control variables.  For the parallel P2 HEV layout 

illustrated in Fig. 1, the control variable set 𝑈𝑃2 

includes the choice of the gear number to engage and 

the value of 𝑇𝐼𝐶𝐸: 

 𝑈𝑃2 = {
𝑛𝑔𝑒𝑎𝑟
𝑇𝐼𝐶𝐸

}                             (7) 

In a backward approach, knowing 𝑇𝐼𝐶𝐸  indeed 

allows to directly determine 𝑇𝑀𝐺  through (1). As 

consequence, pure electric, torque assist and  battery 

charging operating modes can be automatically 

defined by a zero value of 𝑇𝐼𝐶𝐸 , a value of 𝑇𝐼𝐶𝐸  less 

than the requested transmission torque and a value of 

𝑇𝐼𝐶𝐸  greater than the requested transmission torque, 

respectively. As regards the P1P2 HEV layout, the 

related control variable set 𝑈𝑃1𝑃2 can be defined as 

follows: 

𝑈𝑃1𝑃2 =

{
 
 

 
 
𝑛𝑔𝑒𝑎𝑟
𝑇𝐼𝐶𝐸
𝑇𝑀𝐺1
𝜔𝐼𝐶𝐸
𝐶𝑙1 }

 
 

 
 

                             (8)  

𝐶𝑙1 is a binary variable that states if clutch1 is 

engaged or disengaged. In case clutch1 is engaged, 

the value of 𝑇𝑀𝐺2 can be computed from the values of 

𝑇𝑀𝐺1 and 𝑇𝐼𝐶𝐸  according to (2). When clutch1 is 

disengaged, pure electric mode or series mode are 

activated depending on 𝑇𝐼𝐶𝐸  being zero or positive. If 

series mode is selected, 𝜔𝐼𝐶𝐸  is required as additional 

variable to control the speed of the shaft connected to 

ICE and MG1. It should be noticed that, when clutch1 

is engaged, 𝜔𝐼𝐶𝐸  represents a redundant variable 

since the speed values for all the components are 

automatically determined by the wheel shaft speed 

and the selected gear ratio. On the other hand, if 

clutch1 is disengaged, a different redundant control 

variable can be associated with 𝑇𝑀𝐺1 since its value 

can be automatically established by following the 

equations illustrated in Table 2. 

Two different approaches for solving the 

illustrated control problem will be illustrated in the 

next paragraphs, namely global optimal control and 

rapid near-optimal control. The flowchart illustrating 

the relationship between these two methodologies is 

reported in Fig. 3. As it will be detailed later, both 

global optimal control and rapid near-optimal control 

firstly consider the exploration of all the possible 

sub-solutions (i.e. control actions) for each sub-

problem (i.e. time instant) of the retained driving 

mission. However, while the former can return a 

global optimal solution by means of an exhaustive 

search that usually turns out to be computationally 

expensive, the latter can rapidly achieve a heuristic 

approximation of the global optimal solution.  

3.1. Global optimal control 

As previously introduced, DP currently represents 

the most adopted approach to obtain a global optimal 

solution for the above-mentioned HEV off-line 

control problem. This method requires the definition 

of state variables that describe the HEV state along 

the time horizon of the examined control problem 

 
 

Fig. 3. Relationship between global optimal HEV control and 

rapid near-optimal HEV control. 
 

 

Input data:

• Vehicle body

• Hybrid powertrain layout

• Hybrid powertrain components

• Driving mission profile

1. Sub-problem exploration 1. Sub-problem exploration

Output: 

• estimated fuel consumption

• time histories of control variables and vehicle states

2. Identification of global 

optimal solution for the 

considered input data through 

exhaustive search.

2. Heuristic approximation of

global optimal solution for the

considered input data.

Global optimal off-line 

HEV control 

Rapid near-optimal 

off-line HEV control 
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[33]. The HEV state variables adopted here can be 

defined as follows: 

𝑋 = {

𝑆𝑜𝐶
𝐸𝑆
𝑛𝑔𝑒𝑎𝑟

}                                         (9) 

Where 𝐸𝑆 refers to a binary variable determining 

the ICE state (i.e. on/off). 𝐸𝑆 and 𝑛𝑔𝑒𝑎𝑟  are 

particularly considered here to detect ICE activations 

and gear shifts. For passenger comfort reasons, both 

the numbers of ICE activations and gear shifting 

occurrences indeed need proper minimization 

through weighted penalization in the overall cost 

function implemented in (6) [34]. In DP, discretized 

arrays need to be defined both for the control variable 

set and the state variable set. The algorithm then 

explores the time horizon of the control problem 

backwardly from the last instant to the first instant. 

Particularly, all the possible discretized control 

actions and state values are exhaustively examined 

while solving an optimization problem that involves 

the last time instant, the last two ones, the last three 

ones, etc. until the initial time instant is reached [35].  

The highlight of DP relates to its capability of 

producing a global optimal solution for the HEV off-

line control problem. Moreover, the generic 

formulation of DP enables the flexible adaptation of 

this algorithm to various HEV architectures including 

both SGT and eVT layouts. However, the exhaustive 

search operated by DP dramatically increases the 

computational cost associated to this method. Despite 

remarkable advances have been observed lately for 

computational power available, current computers 

still require significant time for solving complex DP 

problems [36]. To overcome this draft, scientists and 

researchers worldwide have recently started 

developing near-optimal algorithms capable of 

approximating the global optimal solution provided 

by DP while simultaneously narrow the required 

computational cost. The next paragraph will provide 

more details about these algorithms currently under 

development. 

3.2. Rapid near-optimal control 

The motivation for developing rapid near-optimal 

off-line HEV control algorithms notably arose at the 

beginning of this decade as researchers started 

analyzing the design problem for multimode eVT 

HEVs [37]. These HEV architectures embed one or 

multiple planetary gear sets and they characterize by 

connections (either permanent or clutch-based) 

between different nodes of the planetary gear sets or 

with the ground [38]. The resulting design space can 

include up to billions of options when both the 

location of clutch connections and component sizing 

are retained as design parameters [39]. Moreover, 

since the location of both clutch-based and 

permanent-based connections represents a discrete 

design variable, brute force currently represents the 

only optimization procedure implementable for these 

HEVs [40]. In this case, analyzing each design option 

by means of DP would require an excessive 

computational time (in the order of magnitude of 

months to years). To mitigate this issue, Zhang et al. 

proposed a rapid near-optimal HEV off-line control 

algorithm named PEARS. In this algorithm, each 

time instant of the driving mission is firstly analyzed 

to extract the best operating point of the power 

components for each mode of the eVT HEV 

powertrain layout. The best operating points are 

particularly determined in order to maximize a 

power-weighted efficiency formulation which 

accounts for only the electric power (for pure electric 

modes) or for both the electric power and the fuel 

power (for hybrid modes). The HEV is then set to 

function in pure electric operation for the entire 

driving mission under analysis and the associated 

total electrical energy required is computed. 

Subsequently, a recursive procedure can be 

performed by replacing electric with hybrid operation 

in the time instant of the driving mission in which the 

narrowest difference is observed in the power-

weighted efficiency values between the best electric 

mode and the best hybrid mode of the HEV 

powertrain. This operation is iterated until the 

electrical energy required to complete the rest of the 

driving mission in pure electric operation reaches a 

zero or negative value. The charge sustained HEV 

operation is achieved in this way. The PEARS 

algorithm has been successfully applied to multimode 

eVT HEVs and it has been demonstrated predicting 

fuel economy capability results comparable to the 

ones of DP while reducing the associated 

computational time by three to four orders of 

magnitude [26]. The authors of this paper then 
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introduced an improved version of the PEARS 

algorithm which included the minimization of mode-

shifting occurrence throughout the analyzed driving 

mission. Partially accounting for ride comfort in 

these rapid preliminary HEV analysis as well was 

made possible in this way [29]. However, when 

attempting to implement the PEARS algorithm to 

rapidly control a dual-mode eVT HEV from the 

industrial state-of-art, the authors of this paper 

realized that this algorithm was underperforming with 

respect to the multimode eVT layouts. The reason for 

this drawback was associated to the PEARS 

algorithm being originally designed for eVT HEVs 

with multiple operating modes rather than only one 

pure electric mode and one hybrid mode. This leaded 

to the development of a new HEV off-line control 

strategy named SERCA. This algorithm inherited the 

iterative electric-to-hybrid replacement process from 

PEARS. However, the single optimal operating point 

identification by means of the power-weighted 

efficiency formulation is replaced for the SERCA 

algorithm by a hull of optimal operating points 

identified by maximizing the slope between the 

recharged battery energy and the corresponding 

instantaneous fuel consumption. This enhances the 

flexibility of the algorithm in having further optimal 

hybrid operating points available at each time instant. 

When firstly introduced, the SERCA algorithm has 

been demonstrated generating results closer to DP, 

while exhibiting a narrow increase in the 

computational time compared to PEARS [28]. Even 

though the PEARS and SERCA techniques have been 

developed for eVT HEVs, not many similar 

approaches have been implemented so far to 

accelerate the fuel economy capability prediction of 

SGT HEVs. The next section consequently aims at 

introducing a dedicated formulation of the SERCA 

algorithm for SGT HEVs. 

4. The SERCA algorithm for parallel and series-

parallel HEVs 

This section details the formulation of the SERCA 

algorithm specifically developed to advance the fuel 

economy prediction of both parallel and series-

parallel SGT HEV layouts. For the sake of 

continuity, the SERCA will be described here 

following the same division as the algorithm for eVT 

HEVs: the exploration of sub-problems, the 

identification of the optimal operating points and the 

achievement of charge sustained operation. The 

complete pseudo-code of SERCA is detailed in 

Algorithm 1. 

4.1. Sub-problem exploration 

During step 1 of Algorithm 1, all the possible 

control actions are analyzed for each sub-problem 

(i.e. each time instant of the analyzed driving 

mission). Sub-problems are defined according to 

peculiar values of vehicle output speed and requested 

vehicle acceleration. A discretized array is created for 

each control variable in a similar way to DP. Each 

subproblem is subsequently explored by sweeping all 

the possible sub-solutions (i.e. all the combinations of 

the discretized values for the control variables). If a 

sub-solution respects all the feasibility criteria listed 

in (6), it represents a feasible sub-solution and it will 

be stored. On the other hand, solutions not meeting 

all the feasibility requirements are discarded. Finally, 

two evaluation parameters characterize each 

identified feasible sub-solution: the instantaneous 

fuel consumption and the corresponding battery SOC 

variation, both assessed according to the vehicle and 

powertrain model presented in section 2.3.  

4.2. Identification of optimal operating points 

After all the feasible sub-solutions have been 

associated with the corresponding fuel consumption 

and battery SOC variation, step 2 in algorithm 1 will 

then identify and store the optimal operating points 

for each sub-problem of the driving mission under 

study. The feasible sub-solutions for a sub-problem 

can be graphically organized in a 2D plot with fuel 

consumption and battery SOC depletion as 

independent variables. A related example plot is 

illustrated in Fig. 4 that shows sub-solutions for three 

different gears.  
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The pure electric operating points are particularly 

distinguished by a zero value of fuel consumption 

and positive battery energy consumption. On the 

other hand, by enabling the hybrid operation it 

becomes possible to progressively decrease the SOC 

depletion and consequently recharge the battery while 

correspondingly increasing the amount of fuel 

consumed. With reference to [28], the same sub-

solution comparison was performed for an eVT HEV 

that is shown in Fig. 4.  Nevertheless, the same plot 

for a sub-problem reveals different trends according 

to the specific HEV layout. In the eVT HEV case, a 

cloud of hybrid sub-solutions can be particularly 

established. This correlates well with the operating 

principle of an eVT transmission, where different 

sub-solutions can be associated with diverse values of 

ICE speed and torque. When developing this step of 

the SERCA algorithm for eVT HEVs, the authors of 

this paper consequently developed a dedicated 

procedure to identify the optimal sub-solutions. Three 

steps were particularly accomplished including a 

discretization of the fuel consumption interval, the 

identification of the optimal sub-solution for each 

discretized fuel consumption value, and a piecewise 

relaxation to ensure that the identified optimal hull 

exhibited a convex trend.  

As it can be seen in Fig. 4, the sub-solutions 

comparison plot for an SGT HEV contrasts with its 

counterpart for an eVT HEV shown in Fig. 5. Since 

the ICE speed is constrained by the value of the 

vehicle speed associated to the sub-problem under 

study, a homogenous cloud of hybrid solutions is not 

made possible anymore. Rather, different single 

discretized arches can be observed that relate to the 

corresponding gear numbers. As consequence, a 

 
Fig.  4. Pareto frontier for sub-solutions in terms of fuel 

consumption and battery SOC variation for a single sub-

problem (SGT HEV). 

 
Fig.  5. Pareto frontier for sub-solutions in terms of fuel 

consumption and battery SOC variation for a single sub-

problem (eVT HEV). 

 

Algorithm. 1 SERCA  

Input: vehicle parameters, HEV powertrain components 
and driving mission 

Output: estimated fuel consumption, time histories of 
control variables and vehicle states 

0: Initiate HEV control optimization 

1: Sub-problems exploration 

For each sub-problem i 

   For each sub-solution j 

      1.1 Check feasibility of sub-solution j 

      1.2 Compute fuel consumption of sub-solution j 

      1.3 Compute SOC variation of sub-solution j 

   end for 

2: Identification of optimal operating points 

   2.1 Compute slope θHEV for each sub-solution for sub-

problem i 

   2.2 Identify optimal sub-solution for sub-problem i 

end for 

3: Charge balanced analysis 

3.1 Compute time history of gear number throughout the entire 

driving mission according to λGS 

3.2 Create table of optimal sub-solutions for the driving mission 

psub-optimal 

3.3 Compute required electrical energy EEV for pure electric 

operation throughout the entire driving mission 

While EEV≥ 0 

3.4 Determine sub-optimal hybrid electric sub-solution 

3.4.1 Identify hybrid electric sub-solution a with maximum 

slope θHEV_MAX throughout the entire driving mission 

3.4.2 Identify best hybrid electric sub-solution b among sub-

problems adjacent to time instants already operating in hybrid 

electric mode θHEV_MAX_adj 

if  θHEV_MAX_adj ≥ θHEV_MAX∙λICE 

   3.4.3 Select  sub-solution b 

else 

   3.4.3 Select  sub-solution a 

end if 

3.5 Update EEV, estimated fuel consumption and time series 

control variables according to selected sub-solution 

3.6 Delete selected sub-solution from psub-optimal 

end while 
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peculiar procedure needs implementation for 

extending the SERCA algorithm to SGT HEVs. Here, 

one optimal pure electric sub-solution and multiple 

optimal hybrid sub-solutions are specifically 

identified for each sub-problem. An optimization 

problem can be stated whose resolution will 

determine optEV, the optimal pure electric sub-

solution for the analyzed sub-problem. 

optEV = min [𝑆𝑂𝐶̇  (𝑛𝑔𝑒𝑎𝑟)] 

subject to:  𝑚̇𝑓𝑢𝑒𝑙 = 0 
(10) 

The gear number related to the optimal pure 

electric sub-solution for each sub-problem can be 

thus identified, meanwhile the corresponding values 

of 𝑆𝑂𝐶̇  are recorded. As regards the hybrid operating 

points, an optimal sub-solution is retained for each 

feasible gear number associated to the specific sub-

problem. For this purpose, for each generic hybrid 

point 𝐻𝐸𝑉𝑘 a slope value (𝜃𝐻𝐸𝑉𝑘) is defined that 

represents the highlight of the SERCA algorithm.  

𝜃𝐻𝐸𝑉𝑘 =
𝛥𝑆𝑂𝐶̇

𝛥𝑚̇𝑓𝑢𝑒𝑙
=

|𝑆𝑂𝐶̇ (𝑘)−𝑆𝑂𝐶̇ (optEV)|

𝑚̇𝑓𝑢𝑒𝑙(𝑘)
        (11) 

The slope 𝜃𝐻𝐸𝑉𝑘 can thus be defined as the ratio 

between the gain in battery energy with respect to the 

pure electric optimal sub-solution and the 

correspondingly consumed fuel. For each generic 

feasible gear i, it becomes possible to determine the 

optimal hybrid sub-solution optHEVgear𝑖
 for each sub-

problem by solving the following optimization 

problem. 

optHEVgear𝑖
= max [𝜃𝐻𝐸𝑉𝑘(𝛥𝑆𝑂𝐶

̇ , 𝑚̇𝑓𝑢𝑒𝑙(𝑘))] 

subject to:  𝑆𝑂𝐶̇ (𝑘) ≥ 𝑆𝑂𝐶̇ (optEV) 
(12) 

optHEVgear𝑖
 should maximize the slope between 

the gain in battery energy and the fuel consumption 

compared with  optEV selected above. The condition 

reported in (12) ensures that the battery energy 

consumption in optimal hybrid operation is reduced 

with respect to the pure electric counterpart. The 

optimal pure electric and hybrid sub-solutions are 

thus identified and stored for all the sub-problems of 

the considered driving mission in this way in the 

table psub-optimal. 

4.3. Charge balanced analysis 

In step 3 of Algorithm 1 for SERCA, the off-line 

HEV control problem illustrated in (6) is solved for 

the entire considered driving mission. This is 

achieved by analyzing the information coming from 

the analysis of all the sub-problems conducted above. 

Two sub-steps need achievement to complete the 

charge balanced analysis. 

4.3.1 Initially, the HEV layout is scheduled to 

operate through the entire driving mission in pure 

electric mode. At this point, a trade-off is needed 

between energy saving and driving comfort. While 

the first term can be easily quantified by the 

amount of consumed battery energy, here the latter 

term is characterized by the number of gear-

shifting events. Following the approach illustrated 

in [29], a coefficient 𝜆𝐺𝑆 can be defined in order to 

reduce the gear-shifting occurrence. The following 

analysis, repeated for each time instant k, allows to 

determine the selected gear in pure electric 

operation (gear(k)) throughout the overall driving 

mission: 

𝑔𝑒𝑎𝑟(𝑘) =

 {
𝑔𝑒𝑎𝑟𝑜𝑝𝑡𝐸𝑉   if  𝑆𝑂𝐶

̇
𝑔𝑒𝑎𝑟𝑜𝑝𝑡𝐸𝑉

(𝑘) ≥  𝜆𝐺𝑆 ∙ 𝑆𝑂𝐶̇ 𝑔𝑒𝑎𝑟𝑘−1(𝑘)

𝑔𝑒𝑎𝑟𝑘−1  if  𝑆𝑂𝐶̇ 𝑔𝑒𝑎𝑟𝑜𝑝𝑡𝐸𝑉
(𝑘) <  𝜆𝐺𝑆 ∙ 𝑆𝑂𝐶̇ 𝑔𝑒𝑎𝑟𝑘−1(𝑘)

     

   (13) 

Where 𝑔𝑒𝑎𝑟𝑜𝑝𝑡𝐸𝑉 refers to the optimal gear 

number identified in (10), while 𝑔𝑒𝑎𝑟𝑘−1 is the 

gear number selected in the previous time instant. 

At each time instant, the SOC rate in pure electric 

operation for the gear number selected at the 

previous time instant is computed and represented 

by 𝑆𝑂𝐶̇ 𝑔𝑒𝑎𝑟𝑘−1(𝑘). The illustrated methodology 

thus enables a gear-shifting occurrence only in 

case enough advantage is realized in terms of 

energy savings. Driving comfort is prioritized 

alternatively. 

After the procedure is repeated for all the time 

instants of the driving mission (from the first one 

to the last one), the electrical energy required to 

operate the driving mission in pure electric 

operation (𝐸𝐸𝑉) is computed. This can be achieved 

by integrating over time the instantaneous SOC 

rates thorough the entire driving mission.  
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4.3.2 A recursive process is then performed in 

order to achieve charge balanced operation. 

Indeed, at this point of the algorithm a charge 

depleting scenario is defined since the ICE has 

never been activated thorough the driving mission. 

A search is particularly performed in sub-step 

3.4.1 to identify the time instant in which the 

highest value of 𝜃𝐻𝐸𝑉𝑘 (i.e. the steepest slope) is 

observed. For the selected time instant, the pure 

electric operation is replaced with the hybrid 

operation corresponding to the control variable 

values of the sub-solution p(j) corresponding to 

the highest value of optHEVgear𝑖
. The overall fuel 

consumption for the driving mission is then 

updated by adding the fuel cost related to the 

hybrid operation in the identified time instant. 

Meanwhile, 𝐸𝐸𝑉 is updated considering two 

energy terms for the selected time instant. 

Particularly, the electrical energy required for the 

previously defined pure electric operation is 

subtracted, while the electrical energy 

corresponding to the just selected hybrid operation 

is algebraically summed. After the first electric-to-

hybrid replacement j is performed, a procedure 

like (13) can be implemented in the following 

iteration j+1 in order to minimize the amount of 

ICE activation events (14) for sub-step 3.4.3. The 

values of θHEV for the time instants adjacent to the 

ones already operating in hybrid mode are 

particularly considered. Among them, the best 

sub-solution 𝑝𝑎𝑑𝑗_𝑏𝑒𝑠𝑡  can be identified in sub-step 

3.4.2 through the maximum slope  𝜃𝐻𝐸𝑉𝑀𝐴𝑋−𝑎𝑑𝑗 . 
On the other hand, 𝜃𝐻𝐸𝑉𝑀𝐴𝑋 represents the highest 

slope identified among all remained sub-solution 

for the table psub-optimal. 

𝑝(𝑗 + 1) =

 {
𝑝𝑎𝑑𝑗_𝑏𝑒𝑠𝑡   if  𝜃𝐻𝐸𝑉𝑀𝐴𝑋−𝑎𝑑𝑗  ≥ 𝜃𝐻𝐸𝑉𝑀𝐴𝑋(𝑗 + 1) ∙ 𝜆𝐼𝐶𝐸
𝑝𝑏𝑒𝑠𝑡(𝑗 + 1) if  𝜃𝐻𝐸𝑉𝑀𝐴𝑋−𝑎𝑑𝑗 < 𝜃𝐻𝐸𝑉𝑀𝐴𝑋(𝑗 + 1) ∙ 𝜆𝐼𝐶𝐸

        

(14) 

p(j+1) represents the sub-solution selected for 

hybrid electric operation at iteration j+1 of step 

3.4 in Algorithm 1, while 𝜆𝐼𝐶𝐸 is a constant 

coefficient aiming at minimizing the number of 

ICE activation events. Following (14), hybrid 

electric operation is prioritized in the time instants 

adjacent to the ones already operating in hybrid 

mode if satisfactory overall efficiency of the HEV 

powertrain is maintained. Otherwise, the time 

instant corresponding to the best sub-solution 

among the remaining ones in the table psub-optimal is 

retained, thus involving a further ICE activation 

event.  

Each electric-to-hybrid replacement iteration is 

followed by a check for the value of 𝐸𝐸𝑉. After 

updating the overall fuel consumption and 

electrical energy needed, the selected sub-solution 

is deleted from the table psub-optimal in order not to 

retain it repetitively. The recursive process is then 

carried out until 𝐸𝐸𝑉 exhibits a zero or negative 

value. 

Once this final step is achieved, a solution for the 

off-line HEV control problem can be obtained for an 

SGT HEV layout. The SERCA algorithm thus allows 

to rapidly estimate the fuel consumption of the HEV 

in a charge-balanced scenario over a driving mission. 

The reader is now invited to further refer to Fig. 5 for 

a graphical illustration of the workflow of the 

algorithm. 

5. Simulation results 

This section aims at presenting results for the 

implementation of the SERCA algorithm on the two 

SGT HEV layouts under consideration in this paper 

(i.e. the parallel HEV and the series-parallel HEV). 

The representative vehicle and powertrain data 

retained are firstly introduced. Then, results for two 

case studies are presented and discussed to 

demonstrate the effectiveness of the proposed 

SERCA algorithm. A comparative study between 

SERCA and DP is particularly performed in terms of 

estimated fuel consumption, computational time 

(CT), number of gear shifts and ICE activation events 

by varying the amount of considered state variables 

for the off-line HEV control problem. A benchmark 

study is then carried out to assess the performance of 

SERCA in terms of fuel economy prediction and 

computational efficiency compared to DP as global 

optimal control approach for both the SGT HEV 

layouts over different driving missions. The final part 

of this section aims at summarizing main findings 

concerning obtained results. 



 Authors‘ manuscript version accepted by Applied Energy 13 

5.1. Representative vehicle 

A representative HEV is defined here laying the 

foundations for the assessment of the SERCA 

algorithm. Table 3 particularly illustrates retained 

data related to vehicle body, ICE, transmission, final 

drive, MGs and battery. It should be noted that the 

representative vehicle selected in this study does not 

refer to any commercially available HEV, rather 

open-source data for the power components are 

selected from [41] and linearly scaled in order to 

become appropriate for a minivan-type HEV. Data 

for the vehicle body are retained from [30], while the 

sizes of the MGs for both the SGT HEV layouts are 

selected in order to obtain an hybridization factor (i.e. 

the ratio between the total power of the MGs and the 

overall power available from both ICE and MGs) of 

around 0.35 [42]. A 5 gears AMT layout is finally 

retained with corresponding efficiency values derived 

from [43]. 

5.2. Comparative study 

In this first case study, a comparative analysis is 

performed considering SERCA and DP and varying 

the amount of state variables. The operating principle 

of DP involves the determination of a discretized 

state space to account for the evolution over time of 

vehicle states throughout the driving mission under 

analysis. On the other hand, the HEV off-line 

optimization achieved by SERCA does not require 

the definition of a state space, as it has been 

described in the previous section. Rather, dedicated 

approaches characterized by the usage of constant 

coefficients (e.g. 𝜆𝐺𝑆) have been illustrated in (13) 

and (14) to limit the variation of state variable values.  

Three state variables are considered in this paper for 

the DP optimization, i.e. battery SOC, ICE state and 

gear number engaged as reported in (9). Battery SOC 

represents an indispensable variable, since charge 

sustained operation could not be achieved otherwise. 

On the other hand, 𝐸𝑆 and 𝑛𝑔𝑒𝑎𝑟  are auxiliary, yet 

necessary, state variables that help accounting for 

drivability and smooth operation of the hybrid 

electric powertrains. Similarly, 𝜆𝐺𝑆 and 𝜆𝐼𝐶𝐸 have 

been introduced in the proposed formulation of 

SERCA for parallel and series-parallel HEV 

architectures. 

This comparative study firstly aims at verifying 

the near-optimality of the estimated fuel consumption 

(EFC) obtained by means of SERCA. Moreover, 

variations in the EFC, the CT, the number of ICE 

activations and the number of gear shifts are assessed 

when gradually increasing the number of state 

variables considered. Parameters for state variables of 

Table 3  

Representative vehicle data 

Component Parameter Value 

Vehicle Mass 2238 Kg 

 Wheel dynamic radius 0.358 m 

ICE Capacity 3.3 L 

 Maximum power 
188 kW @ 

5800 rpm 

 Maximum torque 
320 Nm @ 

4400 rpm 

Transmission Gear ratios 
[3.85 2.27 

1.52 1 0.81] 

 Efficiency 0.95 

Final drive Gear ratio 3.70 

 Efficiency 0.95 

MG (P2) Maximum power 95 kW 

MG1 

(P1P2) 
Maximum power 40 kW 

MG2 

(P1P2) 
Maximum power 45 kW 

Battery Open circuit voltage 355 V 

 Resistance - charging 103 mΩ 

 Resistance - discharging 128 mΩ 

 Capacity 6.5 Ah 
 

 

 

Table 4  

Parameters for state variables used in comparative study 

 DP SERCA 

1 state SoC 𝜆𝐼𝐶𝐸 = 1 ; 𝜆𝐺𝑆 = 1 

2 states SoC, ES 
Sweep 𝜆𝐼𝐶𝐸  ; 
  𝜆𝐺𝑆 = 1 

3 states SoC, ES, ngear 
Sweep 𝜆𝐼𝐶𝐸  ; 

sweep 𝜆𝐺𝑆 
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performed analysis are reported in Table 4. In the 1 

state simulation, SOC is retained as the only state 

variable for DP, while both 𝜆𝐺𝑆 and 𝜆𝐼𝐶𝐸 are set to 1 

for SERCA (i.e. neither gear shifts nor ICE 

activations are minimized). In the 2 states simulation, 

ES is added as state variable in DP, while SERCA is 

run several times while sweeping different values of 

𝜆𝐼𝐶𝐸 to minimize the cost function 𝐿 expressed in (6). 

Finally, in the 3 states simulation, ngear is included as 

well as state variable in DP, while a further sweep of 

values for 𝜆𝐺𝑆 is performed in SERCA to achieve 

gear shifting minimization. Here, simulations are 

performed in the worldwide harmonized light-vehicle 

test procedure (WLTP). Concerning DP, SOC state 

vectors comprised of 2000 elements are considered, 

while maximum and minimum SOC values have 

been set to +5% and -5% with respect to the initial 

SOC value, respectively. Considered values for 𝜆𝐺𝑆 

 

 
 
Fig. 7. Histograms for EFC, CT, ICE activations and gear shifts for series-parallel P1P2 HEV controlled by SERCA and DP in WLTP. 
 
Table 6 

Results for EFC, CT, ICE activations and gear shifts for series-parallel P1P2 HEV controlled by SERCA and DP in WLTP. 
 1 state (SOC) 2 states (SOC, ES) 3 states (SOC, ES, ngear) 

 SERCA DP SERCA DP SERCA DP 

EFC [g] 803.3 801.0 804.6 804.4 808.4 805.7 

CT [minutes] 0.4 167.2 2.3 534.1 22.6 4172.5 

ICE activations [-] 46 52 8 19 9 8 

Gear shifts [-] 484 502 438 459 85 82 
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Fig. 6. Histograms for EFC, CT, ICE activations and gear shifts for parallel P2 HEV controlled by SERCA and DP in WLTP. 

 
Table 5  

Results for EFC, CT, ICE activations and gear shifts for parallel P2 HEV controlled by SERCA and DP in WLTP. 

 1 state (SOC) 2 states (SOC, ES) 3 states (SOC, ES, ngear) 

 SERCA DP SERCA DP SERCA DP 

EFC [g] 754.9 749.5 759.4 753.6 762.2 754.8 

CT [minutes] 0.1 14.8 0.3 47.9 2.4 394.4 

ICE activations [-] 59 50 4 12 5 7 

Gear shifts [-] 335 511 287 484 78 74 
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and 𝜆𝐼𝐶𝐸 range from 0.1 to 1 in a discretized array 

comprising 20 elements.  

 Corresponding results are illustrated in Fig. 6 and 

Fig. 7 and reported in Table 5 and Table 6 for the 

parallel P2 and the series-parallel P1P2 HEV layout, 

respectively. Values of CTs here relate to a desktop 

computer with Intel Core i7-8700 (3.2 GHz) and 32 

GB of RAM. Overall, it can be noticed how values 

for the EFC slightly increase when considering 

additional state variables. However, this corresponds 

to a remarkable reduction of both gear shifts and ICE 

activations. As example, for DP EFC increase by 0.7 

% and by 0.6 % from the 1 state analysis to the 3 

states analysis for P2 and P1P2 HEV layouts, 

 
Fig. 8. Comparison of time histories of selected gear, fuel consumption and battery SoC for parallel P2 HEV controlled by SERCA and 

DP in WLTP. 

 
Fig. 9. Comparison of time histories of selected gear, fuel consumption and battery SoC for series-parallel P1P2 HEV controlled by 

SERCA and DP in WLTP. 
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respectively. At the same time, the corresponding 

numbers of gear shifts reduce by 85.3 % and by 68.7 

% for P2 HEV and P1P2 HEV respectively, while the 

ICE activation events decrease by 86.0 % and by 84.6 

% for P2 HEV and P1P2 HEV respectively. In this 

framework, SERCA appears achieving comparable 

performance with respect to DP both in terms of 

EFC, ICE activations and gear shifts. Increase in the 

EFC for SERCA is indeed contained within 0.4 % 

and 1 % for P2 and P1P2 HEV layouts, respectively, 

while difference in the number of ICE activations and 

gear shifts are respectively limited within 2 and 4 for 

the P2 HEV in the 3 states analysis, and within 1 and 

3 for the P1P2 HEV. The main advantage of the 

implementation of SERCA relates to the overall 

constancy in values of CT when gradually increasing 

the number of state variables considered. Compared 

to the 1 state analysis, CTs required to execute DP in 

2 states and 3 states analysis are indeed 3.3 and 26.8 

times respectively for the P2 HEV, and 3.2 and 25 

times respectively for the P1P2 HEV. This appears in 

line with the well-known curse of dimensionality of 

DP when increasing the number of considered state 

variables. Moreover, overall required CTs for DP in 

the 3 states analysis amount to more than 6 hours and 

69 hours for the P2 and the P1P2 HEV layout, 

respectively. These values of CT currently weaken 

the successful application of DP to enhanced HEV 

powertrain design and sizing methodologies. In this 

framework, the introduction of the SERCA algorithm 

brings considerable benefits in terms of 

computational cost since its CT only represents 0.6 % 

and 0.5 % of the CT required by DP to simulate the 

P2 HEV and the P1P2 HEV, respectively. Moreover, 

the implemented tuning process for  𝜆𝐼𝐶𝐸 and 𝜆𝐺𝑆 

reveals a computationally efficient way for limiting 

the number of ICE activations and gear shifts. Indeed, 

even when considering 3 state analyses, the overall 

CT required by SERCA is limited below 3 minutes 

and 23 minutes for the P2 layout and the P1P2 layout 

respectively. 

Finally, Fig. 8 and Fig. 9 report comparisons of 

vehicle states (i.e. gear engaged, cumulated fuel 

consumption and battery SOC) according to SERCA 

and DP off-line control for the P2 HEV and the P1P2 

HEV, respectively, considering the 3 states analysis. 

Overall, these results demonstrate the capability of 

SERCA of producing a good approximation of the 

global optimal control actions provided by DP, while 

correspondingly achieving a remarkable reduction in 

the required computational cost. 

5.3. Benchmark study 

This last results-sub-section aims at providing an 

exhaustive benchmark analysis between SERCA and 

DP over different driving missions. In addition to the 

WLTP, driving missions considered here include the 

urban dynamometer driving schedule (UDDS), the 

highway fuel economy test (HWFET), the new 

European driving cycle (NEDC) and the US06 

Supplemental Federal Test Procedure (US06). 

Related numerical results are displayed in Table 7 

and in Table 8 for the parallel P2 and the series-

parallel P1P2 HEV layouts, respectively.  

Overall, these results represent a further 

demonstration of the capabilities of the SERCA 

algorithm concerning the rapid near-optimal off-line 

HEV control. Indeed, for the selected driving 

missions the EFC values provided by SERCA are on 

average only 1.3 % and 0.3 % far from the EFC 

global optimal solution provided by DP for the P2 

and the P1P2 HEV layouts, respectively. On the other 

hand, the corresponding advantage of SERCA 

amounts to 99.4 % and 99.5 % averaged savings in 

terms of CT.  

5.4. Main findings 

In general, avoiding the exhaustive exploration of 

all the possible control actions represents the main 

contribution to the CT reduction in SERCA. Rather, a 

near-optimal approximation of the global optimum 

HEV powertrain behavior is achieved by means of 

the introduced slope-based approach. The 

effectiveness of the proposed algorithm has been 

demonstrated by analyzing its operation over various 

drive cycles and benchmarking its performance with 

the global optimal benchmark provided by DP. 

Moreover, the introduced SERCA algorithm allows 

considering not only fuel economy when off-line 

controlling SGT HEV powertrains, but also 

drivability and comfort. Related metrics, such as the 

number of ICE activations and gear shifts as 

example, have not usually been considered in 

previous studies implementing design oriented HEV 
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off-line control strategies. As a result, many previous 

works were not able to generate smooth HEV driving 

conditions. As example, in the time domain results 

from DP provided by Yang et al. in 2016 for a P2 

HEV in NEDC, frequent ICE activations and 

oscillations of speed of components due to frequent 

gear shifts can be observed [44]. Similarly, the 

operating mode selected by the DP version from 

Zhou et al. in 2017 for parallel P2 and multimode 

eVT layouts presented frequent shifts in UDDS [45]. 

Both these last works did not explicitly mention the 

number of ICE activations and gear shifts operated 

over time by DP. As previously mentioned, Hou et al. 

implemented an ICE command filter to avoid 

frequent engine activations when controlling a P2 

HEV using PMP. However, their control approach 

did not allow optimizing gear shifting as well, the 

latter being controlled by a heuristic approach instead 

[25]. On the other hand, SERCA allows flexibly 

optimizing gear shifting, ICE activations and power 

split in SGT HEV powertrains at the same time. 

Furthermore, the implemented control approach 

could help avoiding the generation of irregular HEV 

control actions over time that might often 

compromise the drivability and result unfeasible from 

hybrid powertrains in real world. 

It should be admitted that, similarly to the PMP, 

the proper operation of the SERCA algorithm 

depends on tuning of few coefficients (e.g. the gear-

shifting minimization coefficient and the ICE 

activation minimization coefficient). However, the 

rapidness of SERCA allows the agile tuning process 

for these coefficients. Moreover, compared to the 

PMP, the SERCA approach enables a more flexible 

handling of control variables of different types (e.g. 

both continuous and discrete). 

6. Conclusions 

This paper introduces a formulation of the SERCA 

algorithm that enables the rapid prediction of the fuel 

economy capabilities of SGT HEVs. After parallel 

and series-parallel HEV layouts have been recalled, 

the algorithm has been described in its different 

operating steps: the exploration of sub-problems, the 

identification of the optimal operating points and the 

achievement of the charge sustained operation. 

Simulation results show that the SERCA algorithm 

can achieve EFC values close to the global optimal 

benchmark provided by DP by limiting the related 

numerical difference below around 0.1% to 2%. On 

the other hand, the SERCA algorithm is proved to 

remarkably shorten the computational cost demanded 

to solve the HEV off-line control problem for SGT 

HEV layouts. DP would indeed require 

Table 7  

EFC and CT for DP and SERCA over various driving missions 

– parallel P2 HEV layout 

 DP SERCA 

 EFC [g] CT [min] EFC [g] CT [min] 

WLTP 754.8 394.4 
762.5 

(+ 1.6 %) 

2.4 

(- 99.4 %) 

UDDS 266.0 312.2 
271.8 

(+ 2.2) 

1.7 

(- 99.5 %) 

HWFET 555.4 168.9 
558.2 

(+ 0.5 %) 

1.1 

(- 99.3 %) 

NEDC 297.2 254.3 
303.2 

(+2.0 %) 

1.4 

(- 99.5 %) 

US06 517.5 131.1 
522.6 

(+ 1.0 %) 

0.9 

(-99.3 %) 

 

Table 8 

EFC and CT for DP and SERCA over various driving missions 

– series-parallel P1P2 HEV layout 

 DP SERCA 

 EFC [g] CT [min] EFC [g] CT [min] 

WLTP 805.7 4172.5 
806.3 

(+ 0.1 %) 

22.6 

(- 99.5 %) 

UDDS 287.0 3181.3 
287.8 

(+ 0.3 %) 

15.9 

(- 99.5 %) 

HWFET 471.3 1793.8 
471.9 

(+ 0.2 %) 

10.8 

(- 99.4 %) 

NEDC 323.4 2715.9 
326.5 

(+ 1.0 %) 

12.6 

(- 99.5 %) 

US06 531.5 1423.5 
532.0 

(+ 0.1 %) 

8.3 

(- 99.4 %) 
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approximately a one to two orders of magnitude 

greater computational time to return results 

comparable to SERCA in terms of EFC, number of 

ICE activations and number of gear shifts for the 

retained case studies. 

The rapidness and simultaneous near-optimal EFC 

performance of the algorithm makes SERCA 

appealing for various applications constituting 

possible future work related to this paper. First, 

SERCA could be straightforwardly implemented in 

current SGT HEV design methodologies. This would 

allow designers to efficiently increase both the 

amount of design options considered and the number 

of different driving missions evaluated. Moreover, 

the SERCA algorithm could enhance the calibration 

of current on-line heuristic HEV control strategies by 

rapidly producing off-line-optimized benchmark time 

series for the control variables. Finally, the 

development of on-line HEV controllers based on 

artificial intelligence could be fostered by the 

SERCA algorithm. Particularly, the capability of 

SERCA of promptly generating a considerable 

amount of off-line optimized data could be exploited 

to smoothly train and ameliorate artificial 

intelligences to control HEVs.  

References 

[1] B. Bilgin, P. Magne, P. Malysz, Y. Yang, V. Pantelic, M. 

Preindl et al., "Making the Case for Electrified 

Transportation", IEEE Transactions on Transportation 

Electrification 2015; 1(1): 4-17. 

[2] N. Onat, M. Kucukvar, O. Tatari, “Conventional, hybrid, 

plug-in hybrid or electric vehicles? State-based comparative 

carbon and energy footprint analysis in the United States”, 

Applied Energy 2015; 150: 36-49. 

[3] A. Emadi, “Transportation 2.0”, IEEE Power and Energy 

Magazine 2011; 9(4): 18-29.   

[4] L. Damiani, M. Repetto, A.P. Prato, “Improvement of 

powertrain efficiency through energy breakdown analysis”, 

Applied Energy 2014; 121:252-63. 

[5] R.T. Doucette, M.D., McCulloch, “Modeling the prospects of 

plug-in hybrid electric vehicles to reduce CO2 emissions”, 

Applied Energy 2011; 88(7): 2315-23. 

[6] Y. Yang, K. Arshad-Ali, J. Roeleveld, and A. Emadi, “State-

of-theart electrified powertrains-hybrid, plug-in, and electric 

vehicles”, Int. J. Powertrains 2016; 5(1): 1-29. 

[7] Lee, S., Lee, B., McDonald, J., Sanchez, L., Nam, E., 

"Modeling and Validation of Power-Split and P2 Parallel 

Hybrid Electric Vehicles," SAE Technical Paper 2013-01-

1470, 2013. 

[8] Y. Yang, N. Schofield, A. Emadi, "Integrated 

Electromechanical Double-Rotor Compound Hybrid 

Transmissions for Hybrid Electric Vehicles", IEEE 

Transactions on Vehicular Technology 2016; 65(6): 4687-99. 

[9] T. Hutchinson, S. Burgess, G. Herrmann, “Applying 

empiricaldesign data to life cycle assessment and whole-life 

cost analysis”, Applied Energy 2014; 119: 314-329. 

[10] Matsumura, M., Shiozaki, K., and Mori, N., “Development of 

New Hybrid Transaxle for Mid - Size Vehicle,” SAE 

Technical Paper 2018-01-0429, 2018. 

[11] W. Zhuang, S.L. Eben, X. Zhang, D. Kum, Z. Song, G. Yin, J. 

Ju, “A survey of powertrain configuration studies on hybrid 

electric vehicles”, Applied Energy 2020; 262: 114553. 

[12] R. Finesso, E. Speesa, M. Venditti, “Cost-optimized design of 

a dual-mode diesel parallel hybrid electricvehicle for several 

driving missions and market scenarios”, Applied Energy 

2016; 177: 366-383. 

[13] Kapadia, J., Kok, D., Jennings, M., Kuang, M., Masterson, B., 

Isaacs, R. et al., "Powersplit or Parallel - Selecting the Right 

Hybrid Architecture," SAE Int. J. Alt. Power 2017;. 6(1): 68-

76. 

[14] K. Palmer, J. Tate, Z. Wadud, J. Nellthorp, “Total cost of 

ownership and market share for hybrid and electric vehicles in 

the UK, US and Japan”, Applied Energy 2018; 209: 108-19. 

[15] B. Al-Alawi, T. Bradley, “Total cost of ownership, payback, 

and consumer preference modeling of plug-in hybrid electric 

vehicles”, Applied Energy 2013; 103: 488-506. 

[16] A. Biswas and A. Emadi, "Energy Management Systems for 

Electrified Powertrains: State-of-the-Art Review and Future 

Trends", IEEE Transactions on Vehicular Technology 2019; 
68(7): 6453-6467. 

[17] S. G. Wirasingha, A. Emadi, "Classification and Review of 

Control Strategies for Plug-In Hybrid Electric Vehicles", 
IEEE Transactions on Vehicular Technology 2011; 60(1): 

111-22. 

[18] F. Millo, L. Rolando, R. Fuso, F. Mallamo, “Real CO2 

emissions benefits and end user’s operating costs of a plug-in 

Hybrid Electric Vehicle”, Applied Energy 2014; 114: 563-71. 

[19] P.G. Anselma, G. Belingardi, A. Falai, C. Maino, F. Miretti, 

D. Misul et al., "Comparing Parallel Hybrid Electric Vehicle 

Powertrains for Real-world Driving," 2019 AEIT 

International Conference of Electrical and Electronic 

Technologies for Automotive (AEIT AUTOMOTIVE), 

Torino, Italy, 2019, pp. 1-6.  

[20] S. Ebbesen, C. Donitz, L. Guzzella, "Particle swarm 

optimisation for hybrid electric drive-train sizing", Int. J. 

Vehicle Design, Vol. 58, Nos. 2/3/4, 2012. 

[21] Paganelli, G., Guezennec, Y., and Rizzoni, G., "Optimizing 

Control Strategy for Hybrid Fuel Cell Vehicle," SAE 

Technical Paper 2002-01-0102, 2002. 

[22] S. Delprat, T. Hofman, S. Paganelli, "Hybrid Vehicle Energy 

Management: Singular Optimal Control", IEEE Transactions 

on Vehicular Technology 2017; 66(11): 9654-66. 

[23] N. Kim, S. Cha, H. Peng, "Optimal Control of Hybrid Electric 

Vehicles Based on Pontryagin's Minimum Principle", IEEE 



 Authors‘ manuscript version accepted by Applied Energy 19 

Transactions on Control Systems Technology 2011; 19(5): 

1279-87. 

[24] Dabadie, J., Sciarretta, A., Font, G., and Le Berr, F., 

"Automatic Generation of Online Optimal Energy 

Management Strategies for Hybrid Powertrain Simulation," 

SAE Technical Paper 2017-24-0173, 2017. 

[25] C. Hou, M. Ouyang, L. Xu, H. Wang, “Approximate 

Pontryagin’s minimum principle applied to the energy 

management of plug-in hybrid electric vehicles”, Applied 

Energy 2014; 115: 174-89. 

[26] X. Zhang, H. Peng, J. Sun, “A near-optimal power 

management strategy for rapid component sizing of power 

split hybrid vehicles with multiple operating modes,” 

American Control Conference(ACC), 2013: 5972-77. 

[27] Z. Qin, Y. Luo, W. Zhuang, Z. Pan, K. Li, H. Peng, “ 

Simultaneous optimization of topology, control and size for 

multi-mode hybrid tracked vehicles“, Applied Energy 2018; 

212: 1627-41. 

[28] P.G. Anselma, Y. Huo, J. Roeleveld, G. Belingardi, A. Emadi, 

“Slope-weighted Energy-based Rapid Control Analysis for 

Hybrid Electric Vehicles”, IEEE Transactions on Vehicular 

Technology 2019; 68(5): 4458 – 66.  

[29] P.G. Anselma, Y. Huo, E. Amin, J. Roeleveld, A. Emadi, G. 

Belingardi, “Mode-shifting Minimization in a Power 
Management Strategy for Rapid Component Sizing of 

Multimode Power Split Hybrid Vehicles”, SAE Technical 

Paper 2018-01-1018, 2018. 

[30] P.G. Anselma, Y. Huo, J. Roeleveld, A. Emadi, G. Belingardi, 

“Rapid optimal design of a multimode power split hybrid 

electric vehicle transmission”, Proc. IMechE Part D: J. 

Automobile Engineering 2019; 233(3): 740-62. 

[31] X. Zhang, H. Peng, J. Sun, "A Near-Optimal Power 

Management Strategy for Rapid Component Sizing of 

Multimode Power Split Hybrid Vehicles", IEEE Transactions 

on Control Systems Technology 2015; 23(2): 609-18. 

[32] L. Guzzella, A. Amstutz, "CAE tools for quasi-static 

modeling and optimization of hybrid powertrains", IEEE 

Transactions on Vehicular Technology 1999; 48(6): 1762-69. 

[33] R.E. Bellman, E. Lee,  “History and development of dynamic 

programming”, IEEE Control Systems Magazine 1984; 4(4): 
24-28. 

[34] J. Lempert, B. Vadala, K. Arshad-Aliy, J. Roeleveld and A. 

Emadi, "Practical Considerations for the Implementation of 

Dynamic Programming for HEV Powertrains," 2018 IEEE 

Transportation Electrification Conference and Expo (ITEC), 

Long Beach, CA, 2018, pp. 755-760. 

[35] O. Sundstrom and L. Guzzella, "A generic dynamic 

programming Matlab function," 2009 IEEE Control 

Applications, (CCA) & Intelligent Control, (ISIC), St. 

Petersburg, 2009, pp. 1625-30. 

[36] P.G. Anselma, G. Belingardi, "Next generation HEV 

powertrain design tools: roadmap and challenges," SAE 
Technical Paper 2019-01-2602, 2019. 

[37] J. Liu, H. Peng, "A systematic design approach for two 

planetary gear split hybrid vehicles", Vehicle System 

Dynamics 2010; 48(11): 1395-412. 

[38] A. Bayrak, Y. Ren, P. Papalambros, "Design of Hybrid-

Electric Vehicle Architectures Using Auto-Generation of 

Feasible Driving Modes", Proceedings of the ASME 2013 

International Design Engineering Technical Conferences and 

Computers and Information in Engineering Conference, 

Portland, OR, USA, 2013, pp. 1-9. 

[39] W. Zhuang, X. Zhang, Y. Ding, L. Wang,  X. Hu,  

“Comparison of multi-mode hybrid powertrains with multiple 

planetary gears,” Applied Energy 2016; 178(C):624-632. 

[40] X. Zhang, S. Eben Li, H. Peng, J. Sun, "Efficient Exhaustive 

Search of Power-Split Hybrid Powertrains With Multiple 

Planetary Gears and Clutches." ASME. J. Dyn. Sys., Meas., 

Control. 2015; 137(12): 121006. 

[41] Dabadie, J., Sciarretta, A., Font, G., and Le Berr, F., 

"Automatic Generation of Online Optimal Energy 

Management Strategies for Hybrid Powertrain Simulation," 
SAE Technical Paper 2017-24-0173, 2017. 

[42] J. M. Tyrus, R. M. Long, M. Kramskaya, Y. Fertman and A. 

Emadi, "Hybrid electric sport utility vehicles", IEEE 
Transactions on Vehicular Technology 2004; 53(5): 1607-22. 

[43] T. Hofman and C. H. Dai, "Energy efficiency analysis and 

comparison of transmission technologies for an electric 
vehicle," 2010 IEEE Vehicle Power and Propulsion 

Conference, Lille, 2010, pp. 1-6.  

[44] Y. Yang, X. Hu, H. Pei, Z. Peng, “Comparison of power-split 
and parallel hybrid powertrain architectures with a single 

electric machine: Dynamic programming approach”, Applied 

Energy 2016; 168: 683-690.  
[45] X. Zhou, D. Qin, J. Hu, “Multi-objective optimization design 

and performance evaluation for plug-in hybrid electric vehicle 

powertrains”, Applied Energy 2017; 208: 1608-25. 
 

 


