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Constructive estimates of the pull-in range for synchronization circuit
described by integro-differential equations

Anton V. Proskurnikov1, Vera B. Smirnova2

Abstract— The pull-in range, known also as the acquisition
or capture range, is an important characteristics of synchro-
nization circuits such as e.g. phase-, frequency- and delay-
locked loops (PLL/FLL/DLL). For PLLs, the pull-in range
characterizes the maximal frequency detuning under which the
system provides phase locking (mathematically, every solution
of the system converges to one of the equilibria). The presence
of periodic nonlinearities (characteristics of phase detectors)
and infinite sequences of equilibria makes rigorous analysis of
PLLs very difficult in spite of their seeming simplicity. The
models of PLLs can be featured by multi-stability, hidden
attractors and even chaotic trajectories. For this reason, the
pull-in range is typically estimated numerically by e.g. using
harmonic balance or Galerkin approximations. Analytic results
presented in the literature are not numerous and primarily deal
with ordinary differential equations. In this paper, we propose
an analytic method for pull-in range estimation, applicable to
synchronization systems with infinite-dimensional linear part,
in particular, for PLLs with delays. The results are illustrated
by analysis of a PLL described by second-order delay equations.

Index Terms— PLL, pull-in range, nonlinear system, stability

I. INTRODUCTION

Mathematical models of phase-locked loops (PLLs) and
other nonlinear synchronization circuits has been long stud-
ied in the literature [1]–[4]. In spite of their seeming sim-
plicity, PLLs can have non-trivial dynamics featured by
chaotic behaviors [5] and hidden attractors [6]–[8]. These
effects are essentially nonlinear and cannot be understood
by linearization-based analysis and are caused by presence
of periodic nonlinearities, describing the phase detector.
Mathematical methods able to cope with general periodic
nonlinear systems (or, equivalently, dynamics on cylindrical
manifolds) have been developed quite recently and originate
from dynamical systems and control theories [9]–[12].

In this paper, we study one of the classical problems
related to PLL circuits stability, namely, estimation of PLL’s
pull-in range. The pull-in range characterizes capturing capa-
bilities of the PLL and, following [1], is defined mathemat-
ically [6] as the interval of frequency detuning (deviation
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between the reference and controlled oscillators’ frequen-
cies), for which phase locking is guaranteed. Mathematically,
phase locking can be characterized as the convergence of
each solution to one of the equilibria of the system.

Starting from the pioneer works on the pull-in range
estimation [13], [14], the engineering literature has been
primarily dealing with approximate numerical methods. On
one hand, the pull-in range cannot be broader than the hold-in
range [6], that is, the set of initial detuning for which the sys-
tem may have a (locally) stable equilibrium. Local stability
analysis of equilibria thus gives a rough upper estimate of the
pull-in interval. On the other hand, global stability obviously
excludes the existence of periodic solutions (cycles). The
boundary of the pull-in interval is thus often estimated as a
point of bifurcation, at which a cycle (possibly, degenerating
to a saddle-point separatrix loop) emerges [15]–[17]. To
find cycles, harmonic balance [14], [18]–[20] or Galerkin
approximation [16], [21] techniques can be used; some
special methods also exist for low-order systems [22]. It
should be noticed, however, that mathematically the absence
of cycles and global stability are different properties. Using
the Poincare-Bendixsson theory [23], their equivalence can
be proved for second-order models of PLLs, whereas three-
and higher dimensional systems may have non-periodic
attractors [7]. Mathematically rigorous estimates for pull-in
ranges are scarce and surveyed in recent works [6], [8], [24].

The aforementioned techniques for the pull-in range esti-
mation are mainly confined to nonlinear circuits described by
ordinary differential equations (ODE). In practice, the actual
dynamics of PLL may appear to be infinite-dimensional
for two reasons. First, many PLL circuits contain a non-
negligible delay in the feedback loop [20], [25]–[28] or in
the reference signal [29]. Second, a PLL may contain a loop-
filter whose transfer function is non-rational, e.g. fractional-
order low pass filter [30]. Analytic estimates for the pull-in
frequency detuning range in the infinite-dimensional case are
quite limited. For delayed second-order PLLs, some numer-
ical results are available in [28], [31]. The aforementioned
method of harmonic balance to find cycles in delayed PLLs
was employed in [20]. Bifurcation analysis of a simplistic
first-order PLL model has been performed in [32], [33].

In this paper, we propose an estimate applicable to a
more general class of synchronization systems that arise
as feedback superpositions of linear blocks and periodic
nonlinearities. Unlike many results in engineering literature,
we do not simply exclude periodic oscillations, but prove
global stability of the system. We illustrate our results by
analyzing some models of PLL circuits with delay [20], [28].



II. THE GENERAL MODEL OF PLL. PROBLEM SETUP.
The minimal structure of a PLL circuit is shown in Fig. 1

and comprises the phase detector (comparator), the low-pass
loop filter and the voltage control oscillator (VCO), which
has to be synchronized with the reference oscillator (RO)
signal. In practice, synchronization circuits often include
frequency dividers, charge pumps and other elements.

Fig. 1. The minimal structure of a PLL circuit

Assume that the input to PLL is a harmonic signal
Fin(t) = sinσin(t) = sin(ωint+σ0

in) of constant frequency
ωin > 0. The VCO has a free-run (natural) frequency ω0

V CO,
whereas its instantaneous frequency is controlled as

ωV CO(t) = σ̇V CO(t) = ω0
V CO + e(t),

where e(t) is the filtered phase error, computed by the
detector. The VCO output Fout(t) = sinωV CO(t) has to
be synchronized with the reference input, that is,

σ(t)
∆
= σin(t)− σV CO(t) −−−→

t→∞
σ∗ = const,

σ̇(t) = ωin − σ̇V CO(t) −−−→
t→∞

0.
(1)

The phase detector (comparator) receives the input and
output signals Fin(t), Fout(t), and returns a sum of a
“slowly” changing function, represented as f(σ(t)), and a
“fast” oscillatory signal, e.g., by computing the product

Fin(t)Fout(t) =
1

2
cos(σ(t))︸ ︷︷ ︸
f(σ(t))

− 1

2
cos(σV CO(t) + σin(t))︸ ︷︷ ︸

fast signal

.

To simplify modeling, it is typically assumed that the filter
perfectly rejects high-frequency components of the detector’s
output, and only the “slow” part of this output f(σ(t))
influences the VCO; note that f(σ) is a periodic function.
Typically, the loop filter is described by a stable linear time-
invariant system, described by the convolution equation

e(t) = ρf(σ(t)) +

t∫
0

χ(t− s)f(σ(s)) ds, (2)

where ρ = const and χ(·) ∈ L1[0,∞) are the filter’s
characteristics. The filter’s transfer function is defined as

K(p) = ρ+

∫ ∞
0

χ(t)e−ptdt.

Combining (1) and (2), one arrives at the equation

σ̇(t) = (ωin − ω0
V CO)︸ ︷︷ ︸

∆ω

−ρf(σ(t))−
t∫

0

χ(t− τ)f(σ(τ)) dτ,

(3)

The constant ∆ω is said to be the frequency detuning of the
PLL. Our main concern is to find the set of possible values
∆ω, under which the PLL provides phase locking (1) for
every initial phase error σ(0).

For technical reasons, it appears to be convenient to get rid
of the constant ∆ω by shifting the detector characteristics.
Notice that in the case of ideal phase locking σV CO(t) −
σin(t) ≡ σ∗ = const, the steady phase error β ∆

= f(σ∗) can
be found from (3) as follows

β = − ∆ω

ρ+
∫∞

0
χ(t)dt

= − ∆ω

K(0)
. (4)

It is convenient to introduce a shifted detector’s characteris-
tics ϕβ(σ)

∆
= f(σ) − β, vanishing at the equilibrium points

σ∗. The equation (3) shapes into

σ̇(t) = σ0(t)− ρϕβ(σ(t))−
∫ t

0

χ(t− τ)ϕβ(σ(τ))ds, (5)

where σ0(t) = β
∫∞
t
χ(s)ds −−−→

t→∞
0. Typically, the filter is

an exponentially stable system, so that |χ(t)| ≤ ae−bt for
some a, b > 0. In this case, σ0 also decays exponentially

|σ0(t)| ≤ a|β|
∫ ∞
t

e−bsds =
a|β|
b
e−bt.

In this paper, we consider a more general model of a PLL,
allowing the presence of delays in the chain Detector-Filter-
VCO. Assuming, for simplicity, that the transport delay h ≥
0 is constant and lumped, (5) is replaced by

σ̇(t) = σ0(t)−ρϕβ(σ(t−h))−
∫ t

0

χ(t−τ)ϕβ(σ(τ))ds. (6)

The kernel χ(t) remains exponentially decaying, and the
function σ0(t) depends not only on β and filter character-
istics, but also on the initial condition σ(t), t ∈ [−h, 0].
Furthermore, we also allow noises in the PLL circuit [34],
[35] that are supposed to decay sufficiently fast (yet not
exponentially) and can also be included into the term σ0(t).
For this reason, we do not require exponential convergence
for σ0, but only suppose that σ0 ∈ L1[0,∞) ∩ L2[0,∞).
Considering the delay as an element of the loop filter, its
transfer function becomes as follows

K(p) =

(
ρ+

∫ ∞
0

χ(t)e−ptdt)

)
e−ph, p ∈ C. (7)

We are now ready to formulate the problem in question.

Problem. Given the phase detector characteristics f(σ)
and the loop filter’s transfer function K(p), find the set of
β ∈ R such that the solution of (6) with ϕβ(σ) = f(σ)− β
satisfies (1) for every σ0(·) ∈ L1[0,∞) ∩ L2[0,∞).

In view of (4), the frequency detuning ∆ω = −K(0)β
belongs to the pull-in range of the synchronization circuit.
We thus give a sufficient condition for belonging of ∆ω to
the pull-in range (our criteria are, however, not necessary).



III. STABILITY CRITERION

Henceforth the following assumptions are adopted:
1) the phase detector nonlinearity is continuously differ-

entiable and periodic with known period ∆ > 0, that
is, f(σ + ∆) = f(σ);

2) for every β ∈ R, the equation

ϕβ(σ) = f(σ)− β = 0, σ ∈ [0,∆], (8)

has a finite non-zero number of solutions;
3) the filter is an exponentially stable linear block, that

is, |χ(t)| ≤ ae−bt for all t ≥ 0 and some a, b > 0;
We also introduce some notation. Let

α1
∆
= inf
ζ∈[0,∆)

f ′(ζ); α2
∆
= sup
ζ∈[0,∆)

f ′(ζ) (9)

Φ(ζ)
∆
=
√(

1− α−1
1 f ′(ζ)

) (
1− α−1

2 f ′(ζ)
)
, (10)

ν(β)
∆
=

∆∫
0

ϕβ(ζ) dζ

∆∫
0

|ϕβ(ζ)|dζ
, ν0(β)

∆
=

∆∫
0

ϕβ(ζ) dζ

∆∫
0

Φ(ζ) |ϕβ(ζ)| dζ
. (11)

In view of periodicity of f(·), we have α1 < 0 < α2. In
general, the explicit computation of functions ν(β), ν0(β)
is not very simple, however, for special phase detectors
(e.g. one with sinusoidal characteristics f(σ) = sinσ) their
closed-form expressions are available (see Example 1).

To estimate the pull-in range, the will use the following
stability criterion established in [36].

Theorem 1: Suppose there exist the numbers
a ∈ [0, 1], ε > 0, δ > 0, τ > 0 and κ ∈ R, such that the
following requirements are true:
1) for all ω ∈ R the inequality

Π(ω)
∆
= Re{κK(ıω)− τ(K(ıω) + ıα−1

1 ω)∗(K(ıω)+

+ ıα−1
2 ω)} − ε|K(ıω)|2 ≥ δ

(12)
(where ∗ stands for complex conjugation) is valid.
2) the following quadratic form is positive definite:

Q(x, y, z)
∆
= εx2 + δy2 + τz2+

+aκν(β)xy + (1− a)κν0(β)yz > 0

∀x, y, z : |x|+ |y|+ |z| 6= 0.

(13)

Then every solution of (6) (corresponding to some function
σ0 ∈ L1 ∩ L2) converges to an equilibrium

σ̇(t) −−−→
t→∞

0, σ(t) −−−→
t→∞

σeq (14)

where f(σeq) = β. In other words, the frequency detuning
∆ω = −K(0)β is within the PLL’s pull-in range.

Remarks. It should be noticed that Theorem 1 is applicable
to every PLL representable in the form (6), not only low-
order systems. Unlike many results, available in engineering
literature, it ensures stability of (1) rather than the absence
of periodic cycles. Notice that Theorem 1 does not say
anything about (local) stability of a specific equilibrium
point. Considering the simple model of a viscously damped

pendulum [37], one may notice that typically the system has
both stable and unstable equilibria. The frequency-domain
condition (12) does not involve β and depends only on the
properties of linear filter and the slopes αi of the phase
detector characteristics. However, conditions (12) and (13)
are entangled, involving the same scalar parameters δ, ε,κ, τ .

A. Simplification of the conditions from Theorem 1

The condition (13) can be rewritten in a simpler way

4εδτ > κ2(a2ν(β)2τ + (1− a)2ν0(β)2ε). (15)

One way to prove this is to use the standard Sylvester
criterion for positive definiteness; alternatively, one may
minimize Q(x, y, z) with respect to z and check that (13)
boils down to the positive definiteness of the quadratic form

Qmin(x, y)
∆
= min

z
Q(x, y, z) =

= εx2 +

[
δ − (1− a)2κ2ν0(β)2

4τ

]
y2 + aκν(β)xy,

which is equivalent to the negativity of the discriminant

a2κ2ν(β)2 − 4εδ +
ε(1− a)2κ2ν0(β)2

τ
< 0.

The latter inequality is equivalent to (15).
Notice now that the parameter a appears only in (15),

and the right-hand side of (15) attains its minimum for a =
(εν2

0)/(εν2
0 + τν2) ∈ [0, 1]. Substituting this value into (15),

one shows that (15) holds for some a ∈ [0, 1] if and only if

4εδτ >
κ2τεν(β)2ν0(β)2

εν0(β)2 + τν(β)2
⇔ 4δ >

κ2ν(β)2ν0(β)2

εν0(β)2 + τν(β)2
.

The latter inequality, obviously, holds when κ = 0. This
inequality, as well as (12), retain their validity if one scales
all parameters κ, ε, τ, δ by a positive constant. For this
reason, one may always assume that either κ = 0 or κ = ±1.
Theorem 1 can be now restated in a simpler form.

Theorem 2: Suppose that three real numbers ε, τ, δ > 0
and an integer κ ∈ {−1, 0, 1} exist such (12) holds and

δ > κ2 ν(β)2ν0(β)2

4(εν0(β)2 + τν(β)2)
. (16)

Then every solution of (6) converges to an equilibrium (14).
Notice that essentially one can get rid of the parameter δ,

rewriting (12) and (16) as a single inequality

inf
ω∈R

Π(ω) > κ2 ν(β)2ν0(β)2

4(εν0(β)2 + τν(β)2)
, (17)

which involves only two real parameters ε, τ > 0 and one
discrete parameter κ ∈ {0,±1}.

B. A special case of system (6): delayed differential equation

A typical example of the infinite-dimensional system (6)
is the PLL described by delay equations

dz(t)

dt
= Az(t)− bϕβ(σ(t− h)) ∈ Rm

dσ(t)

dt
= c>z(t)− ρϕβ(σ(t− h)) ∈ R,

(18)



where A is a Hurwitz (stable) matrix, b,c are vectors, ρ ∈
R and z(t) is the internal state variable of the filter. The
solution is uniquely defined by initial conditions z(0) and
σ : [−h, 0]→ R, it is supposed that σ is continuous at t = 0
so that σ(0) = limt→−0 σ(t). The filter’s transfer function is

K(p) =
(
ρ+ c>(pI −A)−1b

)
e−ph,

which corresponds to the following kernel of convolution

χ(t) =

{
0, if t < h,

−c>eA(t−h)b, if t > h.

In the case of filter (18), phase locking (1) also implies
that z(t) −−−→

t→0
0, since A is Hurwitz and ϕβ(σ(t)) −−−→

t→∞
0.

IV. NUMERICAL EXAMPLES

In this section, we illustrate Theorem 2 by examining a
delayed PLL with a proportional-integrating filter and a sine-
shaped detector (with the period is ∆ = 2π) [20]

K(p) = T
sTp+ 1

Tp+ 1
e−ph, f(σ) = sinσ, ϕβ(σ) = sinσ−β.

Notice that the equation (8) has solutions only for β ∈
[−1, 1]. Due to space limitations, we consider only non-
negative values of β ≥ 0 (estimating thus a “half-plane”
pull-in range [16]). Here T > 0 and s ∈ (0, 1) are some
constants, h ≥ 0 is the delay. The slopes (9) of f(·) are
α2 = 1 = −α1, thus Φ(σ) = | sinσ| and one can show that

|ν(β)| = πβ

2(β arcsinβ +
√

1− β2)
(19)

|ν0(β)| = 2πβ

4β + π − 2 arcsinβ − 2β
√

1− β2
. (20)

Example 1. Consider first the undelayed PLL case
h = 0. Notice first that for K(0) = T > 0 and
Re{(K(ıω) + ıα−1

1 ω)∗(K(ıω) + ıα−1
2 ω)} = |K(ıω)|2 − ω2,

the inequality (12) may hold only with κ > 0, so we choose
κ = 1. Also, it is convenient to redesignate the parameters:
τ ′ = τ/µ, ε′ = ε/µ, δ′ = δµ, where µ ∆

= 1
T . Obviously, this

change of the parameter does not change the relation (16).
Denoting y ∆

= ω2, (12) is written as

Ay2 +By + C ≥ 0, ∀y ≥ 0 (21)

A
∆
= τ ′µ3, B

∆
= τ ′µ5 − (τ ′ + ε′)s2µ+ sµ− δ′µ,

C
∆
= µ3(1− τ ′ − ε′ − δ′).

(22)

It is clear that (21) holds if and only if C ≥ 0 (the value at
y = 0) and either B ≥ 0 or the discriminant of the quadratic
function B2 − 4AC ≤ 0. In other words, τ ′ + ε′ + δ′ ≤ 1
and at least one of the following conditions should hold:

τ ′µ4 − (τ ′ + ε′)s2 + s− δ′ ≥ 0, (23)

(τ ′µ4 − (τ ′ + ε′)s2 + s− δ′)2 ≤ 4τ ′µ4(1− ε′ − δ′ − τ ′)
(24)

It can be shown that the right-hand side of (16) is an
increasing function of β. Changing, with a sufficiently small
step, the values of δ′ ∈ (0, 1), ε′ ∈ (0, 1 − δ′) and

τ ′ ∈ (0, 1 − δ′ − ε′) and taking such triples that one of the
relations (23) or (24) holds, one can estimate the maximal
β satisfying (16) (with κ = 1). Taking the maximum over
all admissible triples (δ, ε, τ), one estimates the pull-in range
for the fixed values of µ, s. The dependence between β and
µ for different s ∈ (0, 1) is shown in Fig.1.
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Fig. 2. Stability domains for PLL’s with the proportional–integrating low-
pass filter and the sine–shaped characteristic of phase detector

Notice that the genuine value for the pull-in range bound-
ary reported in [38] for s = 0.4 is β0 = 0.84 for µ < 0.2
and β0 = 1 for µ ≥ 1. Theorem 2 gives the value β ≈ 0.74
for µ < 0.2, β ≈ 0.8 for µ = 1 and β ≈ 0.96 for µ > 2.2.

Example 2. Consider now the case where h > 0. The
frequency–domain inequality (12) with κ = 1 takes the form

τµ2ω4 + ω2(τµ4 − δµ2 + µs cos(ωh)−
−(ε+ τ)s2)− µ2(1− s)ω sin(ωh) + µ3 cos(ωh)−

−(ε+ τ)µ2 − δµ4 ≥ 0, ∀ω ≥ 0.

(25)

Substituting ω = 0, one shows that

µ3 − (ε+ τ)µ2 − δµ4 ≥ 0,

and therefore µ2δ + ε + τ ≤ µ. For every pair (µ, β) the
inequality (25) has been checked numerically. It is obvious
that it holds for ω > Ω, where Ω is sufficiently large. To
check it on the interval [0,Ω], we scan this interval with
sufficiently small step hω > 0.

Scanning with small steps hδ, hε, hτ the intervals

δ ∈
(

0,
1

µ

)
, ε ∈ (0, µ− µ2δ), τ ∈ (0, µ− µ2δ − ε),

we find the triples (δ, ε, τ) that satisfy (25) and estimate the
maximal value of β satisfying (16) for every such triple.
Taking the maximum over all feasible triples (δ, ε, τ), we
estimate the pull-in range. For s = 0.2, h = 0.01 and µ =
T = 1 the estimated value is β = 0.7, whereas the genuine
pull-in range reported in [31] is β0 = 0.93.

V. FUTURE WORKS

The pull-in range estimates obtained in this paper are
confined to analog PLL circuits with smooth characteris-
tics of phase detector. Their extensions to continuous-time
models with continuous yet non-smooth (e.g. Lipschitz) and
discontinuous nonlinearities and, more important, to models
of digital PLLs are subjects of ongoing research.
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