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Abstract. In recent years, due to the high availability of omic data, data driven 

biology has greatly expanded. However, the analysis of different data sources is 

still an open challenge. A few multi-omic approaches have been proposed in lit-

erature. However, none of them take into consideration the intrinsic topology of 

each omic. In this work, an unsupervised learning method based on a deep neural 

network is proposed. For each omic, a separate network is trained, whose outputs 

are fused into a single graph; for this purpose, an innovative loss function has 

been designed to better represent the data cluster manifolds. A graph adjacency 

matrix is exploited to determine similarities among samples. With this approach, 

omics having a different number of features are merged into a unique represen-

tation. Quantitative and qualitative analyses show that the proposed method has 

results comparable to the state of the art. The method has a great intrinsic flexi-

bility as it can be customized according to the complexity of the tasks and it has 

a lot of room for future improvements compared to more fine-tuned methods, 

opening the way for future research. 

Keywords: mRNA, miRNA, lung cancer, multi-omics, SNF, data fusion, neu-

ral networks, MLP, unsupervised learning, competitive learning, Kamada-Ka-

wai graph visualization 

1 Introduction 

In recent years, the development of high throughput techniques for biological data ac-

quisition, like next generation sequencing for DNA and RNA, has significantly in-

creased the availability of raw data, while decreasing the cost by orders of magnitude. 

For instance, the cost of sequencing a full human genome has fallen from 100 billion 
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dollars to 1000 dollars in the last 20 years [23]. The availability of this kind of ”omic 

data” (such as genomic, epigenomic and proteomic data) has remarkably speeded up 

progress across of biology and medicine. This is also due to emerging cooperative ef-

forts across institutions to build common standardized datasets. 

The availability and standardization of data is opening avenues to data driven re-

search, from statistical analysis to supervised and unsupervised machine learning. Su-

pervised learning is limited to the fields where it is possible to obtain accurate labels. 

One example is the prediction of hard outcomes, like in survival studies [8]. Con-

versely, unsupervised learning and especially clustering analysis, can lead to the dis-

covery of new classes that may have biological relevance. For instance, clustering of 

RNA expression data can lead to the discovery of cancer subtypes. [12]. Applying ma-

chine learning to single-omic data has produced significant results. mRNA expression 

data has been successfully used for instance to perform clustering on cancer subtypes 

or classification based on known sub-types [13]. However, it is limited by the incom-

plete information carried by single omics. Thus, using multi-omic data integration is of 

fundamental importance in order to get more accurate analyses and predictions. How-

ever, the integration is not trivial and represents an open computational problem. 

A solution can be attempted by merging all the features from different omics in a 

single feature space or performing a consensus clustering among the different input 

datasets. The former leads, however, to further increase the dimensionality, while the 

latter is limited in accuracy by the fact that the fusion process is not learnt from the 

topology of the input spaces. Indeed, multi-omic data integration does not consistently 

perform better than single omic analysis on the best performing omic [24].  

The development of new data fusion techniques is an open research problem. Here 

the proposed method to address it is a deep learning approach called Neural Graph 

Learning Fusion (NGL-F). 

The paper is organized as follows: Section 2 introduces the background, in particular 

concerning the problem of applying machine learning to the study of multi-omic data; 

Section 3 introduces and describes the NGL-F algorithm; Section 4 details the dataset 

and how the experiments have been performed, comparing the results with those ob-

tained through the Similarity Network Fusion(SNF) algorithm [26], a well-established 

method for multi-omic data fusion; Section 5, at last, describes the conclusions and the 

future works.  

One of the main contributions of this work is to propose an original neural approach 

for modeling multi-omic datasets. Compared to the state-of-the-art algorithms, this ap-

proach exploits the manifold topology of the input space. The main advantage of this 

approach is the possibility to extend the algorithm to the case of omics having a differ-

ent number of samples; this is not possible using the existing techniques, which are not 

tailored to the problem at hand. 
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2 Background 

Given the greater availability of omic data, thanks to high throughput techniques, data 

driven biology has greatly expanded with the help of the creation of open databases and 

the development and improvement of algorithms.  

Cooperative effort has led to large scale projects aiming to provide a unified basis 

for omic data collection and study. Examples are the Ensembl Genome project and the 

Human Proteome Project, providing respectively a growing data set for the main eu-

karyotic genes and an attempt to create a map of the protein based molecular architec-

ture of the cell. [15,20]. Similarly, in the medical field, several public databases com-

bine multiple information like omic data, clinical data and histological images, provid-

ing the foundation for data driven medical research. Among such projects, the National 

Cancer Institute Genomic Data Commons (GDC) is a unified data sharing platform for 

multiple cancer genomic projects. It provides standards for data collection to minimize 

inconsistencies due to the procedures used. With more than 80’000 samples it consti-

tutes a valuable resource for data driven medical research [18].  

Projects like the aforementioned have opened several avenues for computational 

studies, from statistical analysis to machine learning. The typical problems to be solved 

are classification and clustering. Clustering problem are of great interest because they 

allow the discovery of new classes from data beyond human capability. For example, 

the discovery of new cancer subtypes plays an important role in designing effective 

therapies that account for resistances. Clustering is an unsupervised learning approach 

to partitioning sample sets so as to maximize a similarity score among samples in the 

same subset and minimize it between different subsets [17]. While different computa-

tional approaches have produced significant results even with single omics, [13], any 

omic taken by itself provides an incomplete picture. For example, greater gene expres-

sion values for proteincoding genes correlate with higher protein counts for the protein 

they code for.  However, there are regulatory mechanisms that inhibit the translation of 

mRNA into proteins. One such regulatory element is a small non-coding RNA molecule 

(miRNA). Thus, combining mRNA and miRNA data should provide a better insight 

into the cell activity. In general, combining the information from multiple omics is cru-

cial to discover patterns and generate insights at a system level. However, there are 

significant difficulties to be overcome. 

Focusing on multi-omic clustering, different approaches are available. One distinc-

tion is between early integration and late integration algorithms: the former unite the 

features from different omics in a single matrix then perform the clustering; the latter 

perform clustering separately on the omics then merge the information. Early integra-

tion might reveal problematic when the number of samples is much less than the num-

ber of features because it increases significantly the dimensionality of the feature space. 

Late integration is a complex theoretical and computational problem requiring the dis-

covery of new and better algorithms to perform the fusion of the clustering results ob-

tained from each and every omic individually. The difficulties in the use of multi omic 

data emerge when widely used techniques are benchmarked on real clinical cases an 

shown not to perform consistently better than single omic data, especially if the com-

parison is with the best performing omic [24]. 
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One of the state of the art techniques is Similarity Network Fusion (SNF) [27],which 

starts from the similarity matrices of the original data and creates a consensus through 

an iterative algorithm: at each step the matrices from individual omics are updated ac-

counting for relevant contributions from the others. This approach has outperformed 

single-omic studies in some problems such as identification of cancer subtypes and 

prediction of survival rates when combining mRNA expression, DNA methylation and 

miRNA expression. The method is simple and fast however it has limitations like re-

quiring to have the same samples across all omics. Although the proposed NGL-F 

method has been trained on datasets containing the same samples, in principle this is 

not a strict requirement. Neural networks offer an ample development space: not only 

they allow to effectively build weighed graphs through strategies such as competitive 

learning, which then can be merged by accounting for connection strength, but they 

have built-in tools such as backpropagation to allow each clustering to take into account 

the information from other omics by introducing a global loss function with coupling 

terms. An open problem is the determination of well-performing implementations of 

those coupling terms. 

 

3 The NGL-F neural network 

The Neural Graph Learning for data Fusion (NGL-F) is a gradient-based competitive 

neural network [6], which uncovers topological sample-to-sample relation-ships using 

multiple data sources. Given two or more types of data for the same set of samples (e.g., 

patients), NGL-F learns the mutual relationships among samples taking into account 

such heterogeneous information simultaneously. The output of NGL-F is a set of 

graphs. For each data set NGL-F aims at finding a graph where nodes represent cluster 

centroids while edges represent cluster topological properties. Thereafter, the learned 

topology described by such graphs is used to create the sample adjacency matrix (S). 

The information contained in the matrix represents all datasets and it can be used to 

uncover latent patterns among samples. In this sense, the sample adjacency matrix is 

used to build a unique graph (sample graph) in which nodes represents samples and the 

edges are derived from S. 

NGL-F is composed of a set of dual multi-layer perceptrons (MLPs), one foreach 

dataset, equipped with a final competitive layer. Weights are estimated by backpropa-

gation. [6]. The activation functions are ReLU for the hidden layers and linear for the 

output competitive units. The input of each network is a dataset represented as a matrix 

XZ ∈ ℝd,n, where n is the number of samples and d the number of features. Each MLP 

provides as output a set of vectors 𝓌  ∈ ℝd representing cluster centroids for the input 

data. For each data source taken into consideration, a multi-layer neural network is in-

stantiated. The architecture of each network can be customized according to the com-

plexity of its own data set (see Fig. 1). 
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Fig. 1. NGL-F architecture: N datasets are fed in input to NGL-F. For each dataset, a multi-layer 

perceptron is employed and customized according to dataset complexity. Clustering outputs are 

at the end combined in order to create a sample graph built from the adjacency matrix S. 

The loss function of NGL-F takes into account at the same time the quality of clusters 

found by each MLP and their underlying topology. The relationships among clusters 

are modeled using an adjacency matrix E, where E(i, j) represents the number of sam-

ples for which 𝓌i and 𝓌j are the two closest centroids. The higher E(i, j), the more 

their respective clusters are related. The matrix E represents a graph on the neural net-

work, where the nodes are the neurons and the edges are inter-neuron connections. 

These links represent the topology of the input data. The loss function  of each MLP is 

composed of four terms taking into account inter and intra-cluster distances, quantiza-

tion error and parsimony in representing the underlying topology: 

                                      𝓛 =
𝑚𝑎𝑥𝑘 𝑑{𝑖𝑛𝑡𝑟𝑎}(𝐶𝑘)

𝑚𝑎𝑥{𝑖,𝑗}𝑑{𝑖𝑛𝑡𝑒𝑟}(𝐶𝑖 , 𝐶𝑗)
+  𝑄 +  ||E||                                     (1) 

where 𝑑{𝑖𝑛𝑡𝑟𝑎}(𝐶𝑘) is the intra-cluster distance, 𝑑{𝑖𝑛𝑡𝑒𝑟}(𝐶𝑖 , 𝐶𝑗) the inter-cluster dis-

tance, and Q the quantization error. The complete diameter distance is used as an intra-

cluster quality index, representing the distance between the two remotest samples be-

longing to the same cluster: 

                                                 𝑑{𝑖𝑛𝑡𝑟𝑎}(𝐶𝑖) =  max
𝑥,𝑦∈𝐶𝑖

𝑑(𝑥, 𝑦)                                                (2) 

 The single linkage distance, representing the closest distance between two samples 

belonging to two different clusters, is used to model inter-cluster distance: 

                                               𝑑{𝑖𝑛𝑡𝑒𝑟}(𝐶𝑖) =  min
𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

𝑑(𝑥, 𝑦)                                              (3) 

 The quantization error is computed as the norm of the distances between cluster cen-

troids (𝓌𝑖) and cluster points (𝐶𝑖):  

                                               𝑄 =  ‖𝑑(𝓌𝑖 , 𝑥)‖2        ∀𝑥 ∈ 𝐶𝑖                                                (4) 

 The NGL-F loss function is the linear combination of MLPs’ losses: 

                                                              ℒ = ∑ ℒ𝑍

𝑧

                                                                   (5) 
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 Once all networks terminate the training procedure, the resulting clusters are analyzed. 

For each data set, two samples are considered near to each other in case they belong to 

the same cluster; far from each other in case they belong to different clusters. A sample 

adjacency matrix S is then computed as follow: 

                                                    𝑆(𝑖, 𝑗) = ∑ 𝑛𝑒𝑎𝑟𝑑(𝑖, 𝑗)𝑛
𝑑=1                                                     (6) 

 

where 𝑛𝑒𝑎𝑟𝑑(𝑖, 𝑗) is a boolean function calculating the proximity of the samples as 

previously explained and n is the number of data set taken into consideration. This ma-

trix is the result of the fusion process. Its quality can be analyzed and compared to other 

methods in different ways, as it will be shown in the next section. 

4 Experiments 

Data are downloaded from the portal of the NIH Genomic Data Commons [22]and are 

collected in tabular form, resulting in a mRNA and a miRNA transcriptome profiling 

matrix. 

The mRNA matrix consists in raw counts gene expression values [4]. A higher value 

represents, for protein coding genes, a greater amount of protein produced. This is true 

unless regulatory mechanisms inhibit the translation of the mRNA. 

The miRNA matrix consists in raw counts miRNA values [9]. As miRNA inhibits 

the translation of mRNA, a higher expression value corresponds to a lower presence of 

the proteins related to that sequence.  

The data was preprocessed as follows: 

─ For the mRNA matrix, the genes with an expression value equal to zero across all 

the samples were deleted. Then the normalization was performed through a variance 

stabilizing transformation [16] and only protein coding genes were selected. This 

resulted in 17682 genes for which the expression value is reported. 

─ For the miRNA matrix, the sequences with zero expression value across the samples 

were deleted and the matrix was normalized through DESeq2 [21]. The final values 

were obtained as log2(𝑒𝑥𝑝𝑟𝑉𝑎𝑙𝑢𝑒 +  1) [3]. 

 

The patients for which either the mRNA or the miRNA data was missing were de-

leted from the matrices. This resulted in 1248 miRNA and mRNA sequences for which 

the expression value is reported. This deletion is not a strict requirement in general for 

NGL-F but it is necessary to compare it with SNF and taken as requirement for this 

specific implementation. 

Data samples come from either healthy or cancerous lung tissue belonging to two 

types: Lung Adenocarcinoma (LUAD) or Lung Squamous cells Carcinoma (LUSC). 

The healthy tissue has been taken from non-tumoral tissue samples usually close to the 

position of the tumor. Data was acquired from three projects: TCGA-LUAD [25] and 

CPTAC-3, with samples from adenocarcinoma patients, and TCGA-LUSC, with sam-

ples from squamous cells carcinoma patients. Overall this resulted in six different an-

notations all reported as the name of the project followed by either the ”tumoral” or 

”healthy” annotation. 
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All the code for the experiments has been implemented in Python 3, relying upon 

open-source libraries [1,14]. All the experiments have been run on the same machine: 

IntelR©CoreTMi7-8750H 6-Core Processor at 2.20 GHz equipped with8 GB RAM. 

The two datasets previously described are fed as input to the NGL-F algorithm. The 

structure of the networks employed in this paper is reported in Fig.2. NGL-F is a single 

neural network that employs a set of dual multi-layer perceptrons, one for each analyzed 

omic. The use of dual networks is justified given the high-dimensionality of the data 

sources [2,6,7]. The number of features may vary between different omic and it is main-

tained through the layers, as dual networks are trained on the transposed matrix [6]. In 

this way, output nodes preserve input dimensionality and can be used as cluster cen-

troids for each input matrix. In this implementation, the only requirement is on the 

number of samples (1248) that needs to be identical among the omics. As mentioned in 

Sec. 3, the fusion process consists in the creation of a unique sample adjacency matrix 

that takes into consideration the information extracted from every omic data. In order 

to compare the results of the proposed method, the experiment was repeated by using 

the SNF algorithm [26]. 

 

 

Fig. 2. NGL-F network architecture as used in the experiments. Between brackets the dimension-

ality of input/output data of each layer are reported. Regarding the matrices, the dimensions are 

defined as features x samples since the matrix is transposed. Next to each dense and output 

gclayer, instead, is reported the dimensionality of the associated weight matrix. Also, it should 

be noticed the different dimensionality of the two input sources, miRNA (top) and mRNA (bot-

tom) maintained through the layers. 

The adjacency matrix built by both methods are depicted in Fig. 3. Observing the 

two plots, the results are pretty similar with both methods capable of identifying simi-

larities among data. This is a first important result as it shows the quality of the fusion 

process carried out by the proposed method when com-pared to a state-of-the-art algo-

rithm. 
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Fig. 3. Adjacency matrix of the sample using (left) SNF and (right) NGL-F algorithms 

In order to better analyze this result, it was decided to plot the sample adjacency 

matrix through the Kamada-Kawai path-length algorithm [19]. This algorithm is a 

force-directed graph drawing method that can be used to visualize undirected graphs in 

a two-dimensional space. The main characteristics of this class of algorithms is that 

edges are displayed in such a way that the number of crossings is the lowest possible. 

In the two plots of Fig. 4, it is clear that the number of connections found by SNF is 

redundant: even isolated samples as the LUAD tumoral ones on the top and left edges 

are connected with many other samples. Conversely, NGL-F better identifies outliers 

as it can be seen with the tumoral CPTAC3 on the top right corner. However, the sample 

adjacency matrix plot produced by SNF, better separates LUAD from LUSC tumoral 

data, while in the plot concerning NGL-F the samples belonging to the two classes are 

quite confused. 

At last, the quality of the proposed algorithm is validated through a comparison of 

the spectral clustering executed on the two adjacency matrices. In Fig.5, the quality of 

the clusters of the grouped samples can be appreciated. More precisely, a harmonic 

mean of purity and efficiency of the clusters is computed according to the class of the 

samples belonging to each cluster. Both clustering techniques are capable to precisely 

identify CPTAC3 healthy samples, grouped in the C5 cluster. Also, CPTAC3 tumor 

samples are mostly collected in a single cluster, C4; however, the adjacency matrix 

produced by SNF seems to better separate these samples as the corresponding cluster 

quality is higher. Instead, samples belonging to LUAD and LUSC (both tumor and 

healthy) seem to be more difficult to identify. Indeed, for both tissues, tumor samples 

are collected together in the C0 and C2 clusters for SNF and C0 and C1 clusters for 

NGL-F. At last, the few LUAD and LUSC healthy samples are mostly placed in C3clus-

ter for NGL-F, while they are split among all the clusters in the case of SNF. 

Summing up, the results produced by the two algorithms are very similar. It is worth 

pointing out the importance of this result, as NGL-F is a completely new algorithm and 

it is based on a recent neural theory [6]. Compared to state-of-the-art methods, the neu-

ral network structure of NGL-F shows a higher flexibility and can be easily extended 

to omics with different number of samples. Future works may include the improvement 



9 

of the loss function taking account cluster densities [11] and the development of incre-

mental, hierarchical [10], and biclustering [5] versions of NGL-F. 

 

Fig. 4. Graph of the sample adjacency matrix through the Kamada-Kawai path-length algorithm. 

 

 

Fig. 5. Harmonic mean of cluster efficiency and purity computed on the spectral clusters, com-

puted on the adjacency matrix produced by SNF (top) and NGL-F (bottom)algorithms 
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5 Conclusions 

Since the interpretation of data coming from multiple data sources is still an open and 

challenging problem, some multi-omic approaches have been recently proposed. How-

ever, these methods do not take into account the intrinsic topology of each omic. There-

fore, NGL-F has been designed to tackle this issue. It is an unsupervised deep learning 

neural network endowed with an original final layer which is competitive, because of 

the choice of the loss function. Indeed, it takes into account both the quantization and 

the clustering and the onset of the edges. The training procedure is repeated for all input 

datasets generating each a network of centroids to which the samples are assigned in a 

competitive fashion, with criteria for creating and decaying connections between the 

centroids themselves. The final outcome is a connected graph for each input which is 

merged to obtain the final graph from which the clusters are derived. Experimental re-

sults show its competitiveness with state-of-the-art algorithms; however, they are more 

flexible in the sense that several kinds of layers can be employed and more than two 

input sources can be fed simultaneously. Hence, the proposed algorithm is suitable for 

a wider range of applications. 

Future work will deal with the implementation of convolutional layers into the neural 

architecture and with a deeper analysis of the loss function. A shallow version of the 

network, which underlines both the competitive aspect of the approach and the topology 

of the data by the edges, is under study. It will be applied not only to few omics and 

also to non-biological data. 
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