
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Techniques for improving localization applications running on low-cost IoT devices / Forno, Evelina; Moio, Simone;
Schenatti, Michael; Macii, Enrico; Urgese, Gianvito. - ELETTRONICO. - (2020). ((Intervento presentato al convegno
2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive tenutosi a Milan nel 18-20
November, 2020 [10.23919/AEITAUTOMOTIVE50086.2020.9307411].

Original

Techniques for improving localization applications running on low-cost IoT devices

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.23919/AEITAUTOMOTIVE50086.2020.9307411

Terms of use:
openAccess

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2846916 since: 2020-09-28T18:21:56Z

IEEE

Techniques for improving localization applications
running on low-cost IoT devices

Evelina Forno∗, Simone Moio§, Michael Schenatti§, Enrico Macii‡ and Gianvito Urgese‡
∗DAUIN Politecnico di Torino, 10138, Torino (TO), ITALY. Email: evelina.forno@polito.it

†Tierra S.p.A., 33020, Leiní (TO), ITALY. Email: smoio@tierratelematics.com
‡DIST Politecnico di Torino, 10138, Torino (TO), ITALY. Email: gianvito.urgese@polito.it

Abstract—Nowadays, localization features are widespread in
low-cost and low-power IoT applications such as bike-sharing,
off-road vehicle fleet management, and theft prevention of smart
devices. For such use cases, since the item to be tracked is
inexpensive, older or power-constrained (e.g. battery-powered
vehicles), localization features are realized by the installation of
low-cost and low-power devices. In this paper, we describe a set
of low-computational power techniques, targeting low-cost IoT
devices, to process GPS and INS data for accomplishing specific
and accurate localization and tracking tasks. The methods here
proposed address the calibration of low-cost INS comprised
of accelerometer and gyroscope without the aid of external
sensors, correction of GPS drift when the target position is static,
and the minimization of localization error at device boot. The
performances of the proposed methods are then evaluated on
several datasets acquired on the field and representing real use-
case scenarios.

Index Terms—Localization, Tracker, Inertial navigation sys-
tem, GPS/INS Integration, Micro electro mechanical systems
(MEMS), global positioning system (GPS), Automotive, IoT, IMU

I. INTRODUCTION

Localization methods have long been employed in vehicle
navigation to provide efficient navigation solutions, with sys-
tems greatly varying in precision and cost, depending on the
target application (civilian vs. military, etc.). In addition to this,
localization-based services are emerging as an attractive aspect
of the IoT field, with applications related to environmental
monitoring [1] as well as product operations and tracking in
life cycle management [2], traffic tracking [3], optimise usage
of battery in drone controlling [4], and sport monitoring [5].

Localization and tracking methods usually depend on the
use case. For instance, indoor localization can be performed
by monitoring the radio signal strength of known beacons
utilizing Bluetooth [6], while outdoors applications can use
Wi-Fi beacons [7] or the LoRa network [8]. Mobile phones and
other GSM-enabled devices can be tracked by triangulating
the position of local cell towers [9]. Robots and self-driving
vehicles can take advantage of visual systems such as cameras
[10] and LiDAR [11]. Localization and tracking of mobile
targets in an open field generally relies on the integration
of information from the Global Positioning System (GPS)
with the output of local sensors, in order to improve the
accuracy and the robustness of the result. The sensors used are
usually part of an Inertial Measurement Unit (IMU) including
devices able to measure motion (accelerometer) and rotation
(gyroscope) in the local reference frame.

The spread of low-cost localization systems has been greatly
facilitated by the introduction of Microelectromechanical Sys-
tems (MEMS)-based technology for IMU modules. This made
affordable the mass production of lightweight, miniaturized
and inexpensive integrated devices that can be easily included
in the design of new appliances or strapped to existing
equipment. However, the convenience of a MEMS-based IMU
comes at a great cost of accuracy, as the sensors are plagued
by stochastic errors that can worsen in adverse environmental
conditions, as well as systematic non-linearities [12].

This paper proposes techniques for calibration and perfor-
mance improvement of low-budget GPU/INS integration sys-
tems. In section II, we give an overview of existing GPS/INS
integration and augmentation methods and their applicability
to low-cost devices. In section III, we illustrate the proposed
techniques and explain our method for collecting experimental
datasets in the field. In section IV, we demonstrate the results
of the proposed techniques using selected datasets, and give
an estimation of the computational costs. Finally, section V
contains our comments and conclusions.

II. BACKGROUND

GPS augmentation techniques include algorithms that inte-
grate knowledge from local maps [13] [14], neural network-
aided fusion [15], and the integration of other data such as
the Position Dilution of Precision (PDOP), a figure produced
by the GPS that indicates the degree of confidence for the
given solution [16]. However, by far the most widespread and
successful technique is GPS/INS integration by Kalman Filter.

The traditional Kalman Filter [17] is an optimal filter
for linear systems, where noise is independent, random, and
additive. However, in the case of land navigation and lo-
calization, the abundance of environmental noise sources as
well as nonlinearities inherent in the sensor equipment lead
to suboptimal results when using a linear filter [12]. For this
reason, traditionally, the most used fusion filter in the field is
the Extended Kalman Filter (EKF), based on nonlinear error
models. However, one important drawback of the EKF is that
if the sensor errors violate the principle of local linearity,
the filter quickly diverges [18], especially when dealing with
low-cost MEMS [19]. Moreover, the EKF is computationally
intensive since it requires calculation of Jacobian matrices
[20], which makes its implementation prohibitive on devices
based on low-computational power microcontrollers.

The operating principle of any Kalman Filter is the proba-
bilistic integration of data from independent (complementary)
sensors; the error sources for the GPS and INS are completely
decoupled and therefore can cancel each other out. The
presence of many independent sensors can vastly improve
the performance of such a system; however, most low-to-
mid-budget devices do not include more than an inexpensive
MEMS-based accelerometer and, at most, a gyroscope. In this
paper we seek to optimize the use of such limited resources,
by reducing IMU errors without the aid of external sensors
and introducing methods to use IMU information to improve
the GPS solution with a low computational effort.

One important correction for the INS is alignment to the
navigation frame and mounting-angle detection. Static cali-
bration of the INS sensor axes to the gravity plane can be
easily attained using only an accelerometer [21]. However,
when it comes to in-motion alignment and yaw detection, more
sophisticated techniques are necessary. Many such techniques
are designed for navigation-grade IMUs [22] , which are vastly
more precise than inexpensive MEMS and operate at higher
frequencies than low-cost, low-power computing systems can
handle. Techniques suitable for MEMS often require additional
sensors such as a magnetometer [5], an odometer [23], a
barometer [24], or a GPS calculating the velocity vector [25].

III. METHODS

In this section, we will investigate operations that can be
performed before INS/GPS fusion to aid the fusion filter
and improve localization results, while maintaining a low
computational cost. In section III-A, we present the block
diagram of a possible configuration of preprocessing steps,
and we describe in detail the operation of each algorithmic
block. In section III-B, we explain the reasoning, planning
and technique behind the acquisition of field data, for the
purpose of designing and testing solutions to specific issues
encountered during real-life usage of the proposed system.

A. Low-Effort Techniques

The full model of the GPS/INS integration model is de-
scribed in Fig. 1. The colored blocks (identified by numbers)
represent the preprocessing steps that can reduce the com-
putational effort of the following integration steps, and are
described in the following subsections.

1) Saving the last known position: This is a very simple
measure that, nevertheless, brings important benefits. Funda-
mentally, the most recent position of the target is periodically
saved to memory. When the device is powered on, the last
known position is loaded from memory; since most local-
ization devices can be woken up by the accelerometer, it is
reasonable to assume that the position of the target has not
significantly changed since power down. This allows us to
have a reliable starting position even in the event that the GPS
takes a long time to startup and produce a quality fix; we also
set a minimum acceptable quality for GPS solutions, which
we evaluate by checking the PDOP field of the GPS output.

Fig. 1. Block diagram of low-effort techniques in a localization system.

2) Input preprocessing: This block is a cascaded Kalman
Filter which follows part of the implementation described in
[5]. It takes as input the raw, time-sequenced GPS and INS
data and uses separate filters to generates the rotation matrix
Rnb from the sensors’ reference frame to the world coordinates
(North, East, Down). A simplified diagram of this block is
provided in Fig. 2.

The Tilt Kalman Filter integrates the accelerometer and
gyroscope outputs to extract the roll and pitch angles through
evaluation of the gravity vector.

The Yaw Kalman Filter is dedicated to the calculation of
the yaw angle; in the original work, this was attained by
integrating information from a gyroscope and a magnetometer,
however, in the low-cost boards that are within our scope of
interest, a magnetometer is often not available. The only other
source of orientation information available on our board is
the heading angle measured by the GPS when the vehicle is
moving, and we use this value as the integration factor for
the gyroscope output. However, since the gyroscope measures
rotations in the sensor’s body frame, and the GPS measures
heading in the navigation frame, one crucial piece of infor-
mation is missing: the vertical-axis angle of rotation from the
sensor frame to the vehicle frame. We will see in section III-A5
how this data is calculated by module 5 .

Finally, the Gyro Bias Kalman Filter iteratively computes
the bias correction to be applied to the gyroscope output.

Fig. 2. Simplified diagram of the Input preprocessing block (2).

3) Static case determination: In order to refine the process-
ing of the data received from the sensors, the system needs to
identify whether the vehicle is moving or static. This particular
feature can be useful to drive the activation of other analysis
procedures, as in the case proposed in Fig. 1.

Due to fluctuations in the position produced by the GPS,
it is more reliable to make this check by testing the INS
output. Using the rotation matrix obtained by block 2 and
the accelerometer output in the sensor frame ybA, we obtain
the measured acceleration in the navigation frame by Eq. 1:

ynA = Rnb × ybA (1)

The speed over ground reading is acquired from the GPS
and optionally filtered (e.g. by a moving average) to minimize
drift errors. When this value drops below a certain threshold,
we check the norm of the North and East elements of ynA, i.e.,
the portion of the accelerator vector lying in the horizontal
plane. If this acceleration is smaller than a threshold θA, we
assume to be in the static case. For the experiments in this
paper, we set θA = 0.125 m/s2 .

4) 3-layer low-pass GPS filter: The GPS output is more
reliable when the vehicle is moving. In the event that the
vehicle remains in the same location for a long time, the GPS
position can begin to drift wildly. This is undesirable behavior,
in the sense that it can give false positives when trying to
determine whether the vehicle has exited a virtual geofence.

In order to make up for this problem we have inserted a 3-
tier low-pass filter for the GPS position. This filter is activated
only when the static case is detected in block 3 . At this point,
the GPS positions begin to be saved into a buffer.

When the 1st-level buffer fills up, the valid position is taken
as the average of all positions in the buffer, and saved into the
2nd-level circular buffer. In this way, the 2nd-level circular
buffer is filled with averages over subsequent time periods of
the positions in the 1st buffer; likewise, once the 2nd buffer
fills up, the 3rd level circular buffer is filled with the averages
of the positions in the 2nd buffer. The latest average of the
highest-level buffer available is taken at any time as the new
GPS measurement; the device effectively goes into a sort
of “sleep mode”, where position updates progressively slow
down as long as the vehicle stands still. The system, however,
continues to work at the usual frequency; as soon as the
horizontal acceleration grows greater than θA, the algorithm
immediately returns to the normal update regime.

5) Yaw angle alignment: The cascaded Kalman Filter in
block 2 is able to extract the rotation matrix Rnb in real time
for any INS device that is equipped with an accelerometer
and gyroscope. However, it is not able to extract the mounting
angle on the yaw/Z axis, because this angle cannot be deduced
from the gravity vector. This angle is necessary, for example,
to reconcile the data recorded by the INS (in the sensor frame)
with the speed-over-ground and heading angle measurements
recorded by the GPS (relative to the vehicle movement in the
navigation frame), by completing the transformation from the
sensor frame to the vehicle frame. In the original work [5]
this problem is solved by including a magnetometer; however,

many low-cost IMUs are equipped only with an accelerometer
and gyroscope. We then set out to find a way to overcome this
limitation, using a software approach that exploits the non-
holonomic constraints [26] on the axes of movement for land
vehicles, that is, assuming that the acceleration component on
the Y-axis of a vehicle moving on a straight path is zero.

First of all, we need to identify periods of time when the
vehicle is moving in a straight path. To this end, any time the
vehicle is not in the static case, the direction of movement (i.e.,
the heading angle α measured by the GPS in the navigation
frame) is saved into a buffer, together with the accelerometer
output ybA. In cases where the vehicle is subject to significant
engine vibrations, the accelerometer input may need to be
filtered before this step, e.g. using Fast Fourier Transform.

Whenever the buffer is full, we test the variance of α over
the buffer; if it is smaller than a chosen threshold θα, we have
identified a straight path. The approximate mounting error is
then found using the mean of the acceleration data in the
buffer, ȳbA, minus the gravity vector, using Eqs. 2 and 3:

[axayaz]T = (Rnb × ȳbA) − gn (2)

εα = arctan

(
ay
ax

)
(3)

This method can update the mounting angle in real time
as the system is running, at any time when a straight path
is encountered. Alternately, in cases where the INS is firmly
fixed to the vehicle frame, this estimation may be executed as
an optional, one-off calibration routine, in which case the error
may be saved to memory, saving subsequent computations.

B. Datasets acquired on the field

In order to develop and validate the system, data must be
acquired from the sensors during real-time tests in various
environments [25] [27] [28]. In fact, by using simulated data
we would not be able to properly evaluate the impact of sensor
errors and non-idealities; the use of data gathered from the real
world is crucial for the estimation of the applied methods,
since it allows us to obtain a GPS data stream that’s coherent
with INS data describing the same route. For this motivation,
all the analyses proposed in this paper are performed on
datasets physically acquired on the field.

To that end, we developed a firmware which performs the
dump of raw sensor data into formatted files. For the INS
gyroscope and accelerometer data, a CSV-formatted file is
produced directly, containing the timestamped outputs of both
sensors. For the GPS data, the program dumps the stream
of NMEA strings into a text file while interspersing it with
timestamps. The text files form the devices are post-processed
by a Python parser that produces a CSV file integrating the
time-stamped data from both sensors into a single timeline.

Dataset acquisition should be planned in order to obtain
a collection of scenarios that are both consistent with real-
life usage and presenting features that allow for the identifi-
cation of well-defined critical cases and that can be used as
benchmarks aimed at evaluating the performance of specific

modules of a system, both in isolation and in concert with
other modules. A few examples of such scenarios include:
• Routes where the IMU is mounted with its sensors axes
misaligned with respect to the vehicle’s reference system,
which can be used to evaluate self-alignment of the IMU with
respect to the vehicle’s coordinate frame.
• Highly dynamic routes including many variations in the
inclination and orientation of the vehicle; these datasets can
be used to evaluate real-time self-alignment of the IMU with
respect to the navigation coordinate frame.
• Keeping the device turned on in a static position for a long
time; the drift of GPS position error while a vehicle is static
can be evaluated, as well as any correction measures.
• Routes that include sources of GPS errors (such as obstruc-
tions, cloudy weather, or electromagnetic noise) or outright
GPS outages (such as closed buildings or tunnels). A GPS
outage can also be simulated a posteriori by deleting selected
portions of the GPS output, while modelling environmental
errors is more complex. Using such datasets, dead reckoning
and correction capabilities of a fusion system can be tested.
• Datasets recorded starting from a cold boot of the GPS
system, which show the time necessary for the first valid fix
to be produced and can be used to design and test measures to
make up for this systematic outage, such as loading previous
positions from memory and PDOP-based corrections.

IV. RESULTS

In this section, we illustrate the details of three experimental
datasets (A , B and C), acquired in the field and selected
with the purpose of highlighting the effects of the processing
techniques described in this paper. The results of the input
preprocessing methods applied to each dataset are presented
in sections IV-A, IV-B and IV-C, while IV-D contains an
estimation of the computational cost of each proposed block.

In dataset A , the device was placed in a courtyard and
left in the same position for about 90 minutes. The location
presents some non-idealities for visibility and multipath errors
as the sky is partially obscured by trees and buildings. This
dataset is useful for evaluating the shift of the position and
the average error of the accelerometer when the board is
in a steady condition. We use this dataset to validate the
effectiveness of module 4 in converging to the correct steady
point while the GPS position drifts for a long time.

In dataset B , the device was mounted on the deck of an
electric scooter which was driven following a racing track
around a rugby field. The scooter’s deck runs parallel to the
ground. Multiple laps were recorded at an average speed of
17.6 km/h. The path followed is the most external white line
marking the track boundary; this gives us a reference on the
ground. The device is mounted with its X axis pointed at
a rough 90° clockwise angle with respect to the head of
the scooter, and the dataset is a sequence of straight paths
alternated with long U turns. This dataset is designed to
confirm the ability of module 5 to correctly identify straight
stretches, find the mounting angle of the sensor to correct the
rotation matrix, and preserve this correction as laps repeat.

In dataset C , the device was turned on in a courtyard and
carried in a bag while walking a lap around a parking lot,
finally returning to the starting point. The dataset presents a
long time for GPS position to converge to a quality fix. This
dataset is useful for estimating the time of position fixing, and
is used to validate the use of module 1 for the reduction of
the error during board start-up, in the position fixing phase.

All datasets were acquired using a Tierra WL11 board,
mounting a Cortex M3 processor and 32 MB of RAM. The
board integrates a Telit Jupiter SE868-v3 positioning system
and an STM LSM6DS3 inertial module. The GPS position
updates are acquired at a frequency of 1 Hz. The IMU was
sampled at a frequency of 4 Hz for datasets A and C , and
40 Hz for dataset B .

A. 3-layer low-pass GPS filter

In Fig. 3, the "cloud" of green points represents the positions
produced in dataset A over a period of 90 minutes, while the
red dot represents the real position occupied by the device
during the test period. This position is particularly critical; the
GPS position did not immediately converge when the device
exited the house, and there are multipath and satellite visibility
issues due to buildings and trees.

Fig. 3. Effects of the 3-layer low-pass GPS filter on dataset A.

Fig. 4. Position error estimate before (GPS) and after (LPF) application of
the 3-layer low-pass position filter.

The black points plot the fusion of the accelerometer data
with the low-pass filtered GPS positions, produced by the
algorithm in block 4 , after the static case was identified
by block 3 . The resulting collection of points shows much
less variation in time and never exits the courtyard enclosure
(marked in the figure by the blue line).

Fig. 4 illustrates the position error with respect to the ground
truth (the red dot in Fig. 3) during the time of the experiment.
The X axis corresponds to the west-east direction and the Y
axis to the south-north direction. The mean error for each
solution is reported in the figure legend; while the X-axis
magnitude of the error is on average greater for the filtered
position, it is notable that the position remains stable for a long
time, and peaks are averted. At the same time, the overall error
on the Y-axis is reduced.

B. Real-time yaw alignment

The yaw alignment problem reduces to finding the rotation
matrix to apply to accelerometer data in order to align it to
the vehicle body frame; that is, assuming that the alignment of
the Y and Z axes can be deduced from the gravity vector, the
angle to be found is that of the X axis of the accelerometer
with respect to the axis of motion of the vehicle. In dataset B ,
the device is mounted with an angle of about 90° clockwise
between the X axis and the head of the scooter.

Fig. 5.A shows the effect of calibration on this dataset.
When the device is powered on, the X axis is assumed to
be pointing to the head of the vehicle. As soon as the vehicle
encounters a straight path long enough to satisfy calibration
requirements, the mounting angle εα is updated. Effectively,
we expect that after calibration the X axis should be modeled
as pointing to the right hand side of the vehicle.

In Fig. 5.B we can see how the calibration is handled as
the device is running. The vehicle is running laps counter-
clockwise around the field; the colored line represents the
path followed by the vehicle (as the union of subsequent GPS
positions) and the black arrow represents the direction of the
X axis in the rotation matrix Rnb . At the end of the first
straight portion in the track (running from north to south),

Fig. 5. A: Rotation applied to the sensor model at startup and after calibration.
B, C: Effect of real-time yaw calibration on dataset B.

the alignment buffer is filled; the rotation angle is updated
using the method described in III-A5. At the next position
update, the direction of the sensor-frame X axis is correctly
identified as being to the right hand side of the direction of
movement (εα = 82.08°). Fig. 5.C shows how the mounting
angle correction is preserved in subsequent laps.

C. Use of last known position at start-up

In Fig. 6, we demonstrate the effectiveness of module 1 on
dataset C . The algorithm is set up so as to refuse GPS updates
with PDOP > 10. The red line represents the sequence of GPS
positions. The first ones received are very distant from the
actual starting position; they are refused for the high associated
PDOP. The algorithm outputs the last known position as long
as the INS does not detect any movement. Once a reliable
(PDOP < 10) GPS fix arrives, it is accepted and the position
is integrated into the navigation solution.

Fig. 6. Effect of excluding high-PDOP fixes at GPS start-up on dataset C.

D. Evaluation of computational cost

As a study of the feasibility of the algorithms on a low-cost
system, we have carried out an estimation of the computational
cost of each module. In table I two different measures of the
computational effort for each module are given. The FLOP
count for each module is a big-O estimation based on the
properties of Kalman Filter algorithms [29]. In this estimation,
both sums and multiplications are considered FLOPs.

The count of sums and multiplications for the Kalman
Filter portions of the system is also provided. These figures
are an analytic estimation, based on the filter parameters
(the state vector size n, the measurement vector size m
and the command vector size p) and assuming a Cholesky
implementation of the matrix inversion [30].

We can observe that certain blocks, such as 1 and 4 ,
have an extremely low computational effort and therefore
can be easily integrated in any system at a negligible cost.
Block 5 , while being more complex, still consists of a very
limited number of operations. Block 2 , containing 3 Kalman
Filters, requires a greater computational effort; however, it
is interesting to put this cost into perspective by comparing
it with that of a typical GPS/INS fusion filter (block 6).
The fusion filter we examined in this estimation is the linear
Kalman Filter described in [5]; this filter operates on 9 state
variables versus the 3 used by filters in block 2 , thus
presenting a computational cost that’s more than 10× greater
than each of the aforementioned filters. We can then assume

TABLE I
COMPUTATIONAL EFFORT ESTIMATION

Block Module Portion FLOPS
[29]

KF params
[n,m,p]

sum
[30]

mul
[30]

1 Load position Memory access 4
2 Tilt KF KF Predict 120 [3,3,3] 54 63

KF Predict 120 54 63
KF Update 183 159 207
Total 423 267 333

Yaw KF KF Predict 120 [3,3,3] 54 63
KF Predict 120 54 63
KF Update 183 159 207
Total 423 267 333

Gyro Bias KF KF Predict 120 [3,3,3] 54 63
KF Update 183 159 207
Total 303 213 270

4 Static Filter Mean of buffer
(worst case) 40

5 Yaw alignment Mean of buffer 50
Other Processing 64
Rotm conversion 20
Total 134

6 Fusion KF KF Predict 3078 [9,5,3] 1476 1566
KF Update 2165 2493 2869
Total 5243 3969 4435

that for a system that’s been designed to accommodate a fusion
filter, the addition of the cascaded KF-based preprocessing
would require an acceptable amount of computational effort.

V. CONCLUSIONS

We have presented a collection of methods for the im-
provement of performance of INS/GPS systems that have a
low computational effort and are targeted at low-cost systems.
These methods focus on specific critical cases, identified by
datasets we acquired in the field, that make these methods
suitable for a variety of applications that foresee the use
of low-budget, strapdown devices. For instance, block 1
can be used to identify whether a vehicle has been moved
while the device was turned off, while block 4 can exclude
false movements when the vehicle is static; these methods
can be applied to create anti-theft measures for vehicles and
bike sharing systems, or to compensate for excessive position
drift on slow moving vehicles. The dynamic INS calibration
provided by blocks 2 and 5 can be useful in applications
for wearable IoT devices or for localization devices that are
not fixed to the vehicle body. In all such cases, the proposed
techniques are designed to have a minimal impact on the
reduced computational pool in low-cost, low-power devices,
leaving most of the resources free to execute other tasks.

REFERENCES

[1] Joseph L Awange. Environmental monitoring using GNSS: Global
navigation satellite systems. Springer Science & Business Media, 2012.

[2] Gianvito Urgese et al. “An Engineering Process model for managing a
digitalised life-cycle of products in the Industry 4.0”. In: NOMS 2020-
2020 IEEE/IFIP Network Operations and Management Symposium.
IEEE. 2020, pp. 1–6.

[3] Fekher Khelifi et al. “A survey of localization systems in internet of
things”. In: Mobile Networks and Applications 24.3 (2019), pp. 761–
785.

[4] Donkyu Baek et al. “Battery-aware operation range estimation for
terrestrial and aerial electric vehicles”. In: IEEE Transactions on
Vehicular Technology 68.6 (2019), pp. 5471–5482.

[5] Shaghayegh Zihajehzadeh et al. “A cascaded Kalman filter-based
GPS/MEMS-IMU integration for sports applications”. In: Measure-
ment 73 (2015), pp. 200–210.

[6] Pavel Kriz, Filip Maly, and Tomas Kozel. “Improving indoor local-
ization using bluetooth low energy beacons”. In: Mobile Information
Systems 2016 (2016).

[7] Anthony LaMarca et al. “Place lab: Device positioning using radio
beacons in the wild”. In: International Conference on Pervasive
Computing. Springer. 2005, pp. 116–133.

[8] D. Croce et al. “Performance of LoRa for Bike-Sharing Systems”.
In: 2019 AEIT International Conference of Electrical and Electronic
Technologies for Automotive (AEIT AUTOMOTIVE). 2019, pp. 1–6.

[9] I Smith et al. “Are GSM phones THE solution for localization?” In:
Seventh IEEE Workshop on Mobile Computing Systems & Applications
(WMCSA’06 Supplement). IEEE. 2005, pp. 34–42.

[10] Yihong Wu, Fulin Tang, and Heping Li. Image Based Camera Local-
ization: an Overview. 2016. arXiv: 1610.03660 [cs.CV].

[11] Z. Su et al. “Global localization of a mobile robot using lidar and
visual features”. In: 2017 IEEE International Conference on Robotics
and Biomimetics (ROBIO). 2017, pp. 2377–2383.

[12] Neda Navidi et al. “A new technique for integrating MEMS-based low-
cost IMU and GPS in vehicular navigation”. In: Journal of Sensors
2016 (2016).

[13] Nguyen Quang Vinh. “INS/GPS integration system using street return
algorithm and compass sensor”. In: Procedia Computer Science 103
(2017), pp. 475–482.

[14] Yi-Hsuan Lee and Kai-Wei Chiang. “The performance analysis of a 3D
map embedded INS/GPS fusion algorithm for seamless vehicular navi-
gation in elevated highway environments”. In: International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences
39 (2012), B1.

[15] D. Li, X. Jia, and J. Zhao. “A Novel Hybrid Fusion Algorithm for Low-
Cost GPS/INS Integrated Navigation System During GPS Outages”. In:
IEEE Access 8 (2020), pp. 53984–53996.

[16] Qingsheng Kong, Shenglei Xu, and Sang-Sun Lee. “using PDOP
to estimate Kalman filters measurement noise covariance for GPS
Positioning”. In: 2012.

[17] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Esti-
mation with applications to tracking and navigation: theory algorithms
and software. John Wiley & Sons, 2004.

[18] J. L. Crassidis. “Sigma-point Kalman filtering for integrated GPS
and inertial navigation”. In: IEEE Transactions on Aerospace and
Electronic Systems 42.2 (2006), pp. 750–756.

[19] Y. Li and X. Xu. “The Application of EKF and UKF to the SINS/GPS
Integrated Navigation Systems”. In: 2010 2nd International Conference
on Information Engineering and Computer Science. 2010, pp. 1–5.

[20] Simon J. Julier and Jeffrey K. Uhlmann. “New extension of the Kalman
filter to nonlinear systems”. In: Defense, Security, and Sensing. 1997.

[21] Christopher J Fisher. “Using an accelerometer for inclination sensing”.
In: AN-1057, Application note, Analog Devices (2010), pp. 1–8.

[22] Qiangwen Fu et al. “Autonomous in-motion alignment for land vehicle
strapdown inertial navigation system without the aid of external
sensors”. In: The Journal of Navigation 71.6 (2018), pp. 1312–1328.

[23] Y. Wu. “Versatile land navigation using inertial sensors and odome-
try: Self-calibration, in-motion alignment and positioning”. In: 2014
DGON Inertial Sensors and Systems (ISS). 2014, pp. 1–19.

[24] Zhang Lei, Shu Rong, and Wang Jianyu. “Initial alignment for SINS
based on low-cost IMU”. In: Advances in Modeling and Simulation
Guest Editor: Jinrong Zhu 6.6 (2011), p. 1080.

[25] Burak H Kaygısız and Bekir Şen. “In-motion alignment of a low-cost
GPS/INS under large heading error”. In: The Journal of Navigation
68.2 (2015), pp. 355–366.

[26] Gamini Dissanayake et al. “The aiding of a low-cost strapdown inertial
measurement unit using vehicle model constraints for land vehicle
applications”. In: IEEE transactions on robotics and automation 17.5
(2001), pp. 731–747.

[27] Yiqing Yao et al. “A hybrid fusion algorithm for GPS/INS integration
during GPS outages”. In: Measurement 103 (2017), pp. 42–51.

[28] Seung-hee Han and Jinling Wang. “A Novel Initial Alignment Method
for GPS/SINS Integration with Large Initial Heading Error”. In: 2009.

[29] Aurélien Valade et al. “A study about Kalman filters applied to
embedded sensors”. In: Sensors 17.12 (2017), p. 2810.

[30] C. Ingemarsson and O. Gustafsson. “On fixed-point implementation of
symmetric matrix inversion”. In: 2015 European Conference on Circuit
Theory and Design (ECCTD). 2015, pp. 1–4.

