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One of the essential stepping stones for reaching economic viability and industrial feasibility of the wave energy

conversion sector is the effectiveness of the device design, which is dependent, among others, to the accuracy

of mathematical models used for development. Despite being more than 45 years old, modelling is not mature yet

and there is still a clear lack of standardization of modelling techniques, and a need for increasing confidence in

hydrodynamic models. The objective of the the Collaborative Computational Project in Wave Structure Interaction

(CCP-WSI) is to critically compare and evaluate various different modelling techniques, under the same shared

experimental conditions, and using clearly pre-defined metrics. This paper details a contribution implementing, in

a computationally efficient way, nonlinear Froude-Krylov forces and nonlinear kinematics. The goal is to define a

medium-high fidelity model, higher than linear models and comparable with nonlinear models, but able to compute

at a small fraction of the computational time typically required by fully-nonlinear models. The case study considers

survivability-like wave conditions, represented by three steep focused waves, which are particularly challenging to

be modelled using partially-nonlinear potential theory-based mathematical models. Despite a poor representation in

the pitch and surge response, a good agreement with experimental heave response and mooring load is found, at

small computation time (compared to fully-nonlinear models), close to real-time computation.

1. Introduction

The current market of renewable and sustainable energy generation

is increasingly crowded and competitive, so that developers of wave

energy converter (WEC) technology are required to systematically

reduce the cost of energy and attain economic viability. One

of the major challenges developers of wave energy conversion

systems have to face, both in design and optimization stages,

is the relatively low trust in their mathematical models. The

effectiveness of the power generation and control strategy strongly

depends on the fidelity of the model (Giorgi and Ringwood,

2018a,e; Ringwood et al., 2018). Furthermore, reliable prediction

of structural loads is mandatory to assure security of personnel and

integrity of components, while avoiding over-sizing of the structure

and excessive safety coefficients.

Despite the “modelling problem” of wave energy converters

being at least 45 years old (Salter, 1974), it still can hardly be

defined matured or settled. In fact, early linear models, reasonably

borrowed from conventional ocean engineering where the objective

is usually to stabilize the floater, are often inadequate to fit the wave

energy problem, since motion enhancement and power absorption

maximization are naturally defying the linearity assumption.
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However, although the inclusion of nonlinearities has effectively

the potential to increase the model representativeness, it also

usually demands the toll of additional complexity, and therefore

computational burden. The consequent dilemma of finding the

best compromise between model accuracy and computational time

fostered, in recent years, the generation of a large number of

nonlinear models (Davidson and Costello, 2020). The performance

of each model strongly depends on the device operative principle

(Wang et al., 2019), dimension (Clément and Ferrant, 1988), shape

(Penalba et al., 2017), installation site (Giorgi and Ringwood,

2018f), and operational condition (Giorgi and Ringwood, 2018b).

Moreover, there are different fidelity/computational requirements

according to the application of the model (i.e. design, model-based

control, simulation, survivability, etc.). Therefore, it is extremely

challenging to define a level playing field of comparison between

different modelling approaches that could fairly, systematically

and substantially evaluate which model is best for what. Recent

years have witnessed the pressing need for consistent model

evaluation and standardization (Ransley et al., 2016), and a

common endeavour from several different players seems to be an

effective way to share efforts, avoid the danger of personal bias,

and increase the data basin and model diversity while having one

common case study (Ransley et al., 2019). This trend lead to a

modelling competition (Garcia-Rosa et al., 2015), the IEA-OES

project (Wendt et al., 2019) and, finally, the present CCP-WSI

project, which this work is part of (Ransley et al., 2020a,b). These

collaborative projects have the common objective of comparing

different modelling approaches for a given test case. While both

(Garcia-Rosa et al., 2015) and (Ransley et al., 2020a,b) are blind

tests, (Wendt et al., 2019) fully discloses all experimental data

from the start. On the other hand, (Wendt et al., 2019) provides a

wider range of tests (free decay, diffraction test, radiation test, and

response to regular and irregular waves), but for a single-degree of

freedom device.

One peculiar characteristic of the CCP-WSI Blind-Test series 2

and 3 (BT2 and BT3, respectively) is the unavailability of the

experimental results at the moment of submission, so tuning the

model based on the expected results is not possible. Both BT2 and

BT3 consider focused waves for the same couple of buoys, one with

hemispherical bottom and one with a moonpool, but using different

wave characteristics (constant height in BT2 and constant steepness

in BT3). The CCP-WSI Blind-Test series 3 took place during the

29th International International Offshore and Polar Engineering

Conference (ISOPE-2019) (Giorgi, 2019b), while the CCP-WSI

Blind-Test series 2 took place during the 13th European Wave

and Tidal Energy Conference (EWTEC-2019) (Giorgi, 2019a). The

blind test comparison was done with the blind submissions, so

that participants were not able to tune their results as part of the

tests. After the conference, however, the full experimental data was

released, allowing participants to compare their simulations and

potentially revise or tune their model.

The present paper uses the provided experimental data to evaluate

and discuss on the accuracy of the modelling approach proposed

for CCP-WSI-BT2 (Giorgi, 2019a), with the novelty being the

comparison with experimental results and discussion of accuracy

and sources of error. The modelling approach examined in this

paper is based on partially-nonlinear potential theory, with the

inclusion of nonlinear kinematics (Fossen, 2011) and analytical

nonlinear Froude-Krylov (FK) forces (Giorgi et al., 2020). Such

a model purports to achieve a higher level of accuracy (compared

to a fully-linear model) at a small fraction of the computational

time required by fully-nonlinear models. Note that, although

experimental data was available at the moment this paper was

written, the results herein provided are unchanged from the ones in

(Giorgi, 2019a). In fact, as further discussed in Sect. 2, this model is

fully based on first principles and no tuning parameter is present, so

it is not possible to change the results to better fit the benchmarking

experimental data.

Finally, the reader is invited to download and test the open-

source NLFK demonstration toolbox, openly available at (Giorgi,

2019c).

2. Equation of motion

Wave-structure interactions and nonlinear floater kinematics and

dynamics are conveniently described in two different frames of

reference, as shown in Fig. 1. The first one is an inertial frame

(x, y, z), with x along and concordant with the positive wave

propagation direction, z vertical and positive upwards, y according

to the right-hand rule, and the origin at the centroid of the water

plane area of the floater in static equilibrium. Since its directions

2 Prepared using PICEAuth.cls
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are constant in time, this frame is best used to keep track of the

floater displacement ζ:

(1) ζ =

p

Θ

 , p =


x

y

z

 , Θ =


φ

θ

ψ

 ,

where p represents linear positions (surge, sway, and heave), and

Θ represents angular positions (roll, pitch, and yaw). However, it is

convenient to formulate the dynamic equation of motion in a body-

fixed frame (x̂, ŷ, ẑ), so that moments of inertia are time-invariant.

Furthermore, if the centre of gravity (CoG) is chosen as the origin

of the body-fixed frame, such moments of inertia are minimal and

the inertia matrix is diagonal.

x, ẋ

y, ẏ

z, ż

x̂, u

ŷ, v

ẑ, w

CoG

SWL

Figure 1. Inertial frame (x, y, z), with the origin at still water
level (SWL), and body-fixed (non-inertial) frame (x̂, ŷ, ẑ), with
the origin at the centre of gravity (CoG) of the body. Velocities
according to the inertial frame (ẋ, ẏ, ż) and the body-fixed frame
(u, v, w)

However, since the body-fixed frame is rotating (hence acceler-

ating) with the body, non-inertial effects should be taken into

account, namely Coriolis and centripetal forces. Newton’s equation

of motion is defined according to the floater velocity ν, expressed

in the body-fixed frame:

(2) ν =

v

ω

 , v =


u

v

w

 , ω =


p

q

r



where ν represents linear velocities and ω represents angular

velocities.

The rate of change of displacements in the global frame (ζ̇) is

computed from the body velocities (ν) by means a transformation

matrix (JΘ), depending on the instantaneous angular orientation of

the body-fixed frame with respect to the inertial frame (Θ). Please

refer to Sect. 2.2 for further details. Therefore, displacement and

velocity of the body are computed by solving the following set of

first-order differential equations:

(3)

ζ̇ = JΘν

Mν̇ + CCorν = Fd + FFK + Frad + Fmoor,

where M is the inertial matrix, FCor = CCorν is the

Coriolis/centripetal force, Fd is the linear diffraction force, Frad

is the radiation force, and Fmoor is the mooring force. Note that

F ∈ R6 is a generalized force, composed of a linear force vector

f ∈ R3, and a torque vector τ ∈ R3.

Furthermore, note that no viscous term is present in the equation of

motion (3), since the model is based on the inviscid potential flow

theory. It would be possible to artificially include viscous effects by

means of a Morison-like term (Bhinder et al., 2011), but a drag

coefficient should be identified, ideally using experimental data.

However, in blind-test comparisons as well as in usual preliminary

design or shape optimization applications, there is no experimental

data to reliably identify the drag coefficient. Therefore, viscous

effects have been neglected. Consequently, this model cannot be

adjusted according to better fit experimental data, since it is based

on first principles and no tuning parameter is present. In particular,

results provided in Sect. 4 have not been modified after that the

experimental data has been released, maintaining the blind-test

condition valid. Indeed, one of the main objectives of this paper

is to produce and evaluate a model fully-based on first principles

and with no tuning factor. Nevertheless, a sensitivity analysis on the

drag coefficient is provided in (Giorgi, 2019a) for the geometry with

sharp edges (more affected by viscous losses) showing, as expected,

a decrease of the response.
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Considering the body to be small compared to the typical

wavelength, it is reasonable to assume linear diffraction and

radiation forces (Clément and Ferrant, 1988). Furthermore, by

means of a moment-matching identification technique it is

possible to replace the radiation convolution integral by a more

computationally convenient state space representation (Faedo et al.,

2018). On the other hand, since large motions are expected from a

wave energy converter in order to maximize power absorption, the

following nonlinearities should be considered:

nonlinear FK forces, due to large translational and rotational

displacements, making variations of the instantaneous wetted

surface significant (see Sect. 2.1).

nonlinear kinematics, due to large rotational displacements and

velocities (see Sect. 2.2);

2.1. Nonlinear Froude-Krylov force

Froude-Krylov forces are defined as the integral of the undisturbed

pressure field (P ) over the wetted surface of the floater, plus

the gravity force. In the linear approximation, it is assumed that

the relative motion between the body and the free surface is

small, so that FK forces are computed with respect to the mean

wetted surface. On the contrary, nonlinear FK force calculations are

performed with respect to the actual instantaneous wetted surface

(Sw(t)):

(4a) fFK = fg +

∫∫
Sw(t)

Pn dS,

(4b) τFK = rg × fg +

∫∫
Sw(t)

Pr× n dS,

where fg is the gravity force, n is the unity vector normal to the

surface, r is the generic position vector, and rg is the position

vector of the CoG. The undisturbed incident pressure field of uni-

directional regular wave is defined as:

(5) P (x, z, t) = −ρgz + a cos (ωt− kx)
cosh (k (z′ + h))

cosh(kh)
,

where a, ω, and k are the wave amplitude, frequency, and number,

respectively, ρ the water density, g the acceleration of gravity, h

the water depth, and z′ the vertical coordinate modified according

to Wheeler’s stretching (Giorgi and Ringwood, 2018f). Stretching

techniques are a pragmatic way to reduce the impact of errors due to

violations of the free surface boundary conditions of linear potential

flow approaches, which are particularly detrimental when NLFK

forces are computed at high positive peaks. Although they always

improve Airy’s theory results in computing NLFK forces(Giorgi

and Ringwood, 2018f), their accuracy in represent the pressure

field decays with the degree of nonlinearity of the wave, namely

with its steepness. Therefore, due to the particularly steep focused

waves considered in this study, inaccuracies of the pressure field

description can be expected.

Solving integrals in (4) requires, in general, computationally

demanding mesh-based approaches (Gilloteaux, 2007). However,

more computationally convenient methods are attainable for

axisymmetric bodies (Giorgi and Ringwood, 2018c), taking

advantage of cylindrical coordinates (%, ϑ) to obtain an analytical

representation of the wetted surface:

(6)


x̂(%, ϑ) = f(%) cosϑ

ŷ(%, ϑ) = f(%) sinϑ

ẑ(%, ϑ) = %

, ϑ ∈ [−π, π) ∧ % ∈ [%1, %2]

where f(%) is a generic function of the vertical coordinate %,

describing the profile of revolution of the axisymmetric body. Since

it is convenient to define the FK integrals in the body-fixed frame

of reference, the pressure field must be mapped from the inertial to

the body-fixed frame. Therefore, after some manipulations (Giorgi

and Ringwood, 2018d), the integral in (4a), for example, becomes:

fFK = RT
Θfg +

∫∫
Sw(t)

P (x̂, ŷ, ẑ)ndS =

= RT
Θfg +

π∫
−π

%2∫
%1

P (%, ϑ) (e% × eϑ) d%dϑ,(7)
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where e% and eϑ are the unity vector along % and ϑ, respectively.

Note that the transpose of rotation matrix is used to map the

gravity force in the body-fixed frame. The integral in (7) is

solved numerically, using a 2D-quadrature scheme for trapezoidal

integration.

2.2. Nonlinear kinematics

Let us define, for convenience of notation, the skew-symmetric

operator S : R3 → R3×3 as

(8) S :

λ ∈ R3

∣∣∣∣∣∣∣∣∣∣
S(λ)

∆
=


0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0


 .

It follows that S(λ) = −S(λ)T , and that the cross-product can be

written as:

(9) λ× a = S(λ)a

Since the equation of motion is described in a rotating (hence

accelerating) frame of reference, Coriolis and centripetal effects

should be taken into account. When defined about the CoG, these

are computed as follows (Fossen, 2011):

(10) FCor = CCorν =

 mS(ω) 03×3

03×3 −S(Igω)


v

ω

 ,

where m is the mass of the body, and Ig is the matrix of the

moments of inertia with respect to CoG.

Instantaneous velocities generate infinitesimal displacements along

the body-fixed axis, which are continuously changing direction in

time. Therefore, it is necessary to determine the rate of change of

the displacements (ζ̇) in the global coordinate system by applying

the following instantaneous rotations to ν:

(11) ζ̇ =

 ṗ

Θ̇

 =

 RΘ 03×3

03×3 TΘ


v

ω

 = JΘν,

where RΘ is the rotation matrix, depending on the Euler angles Θ,

defined according to the 3-2-1 convention as:

RΘ = Rẑ,ψRŷ,θRx̂,φ

=


cψ −sψ 0

sψ cψ 0

0 0 1



cθ 0 sθ

0 1 0

−sθ 0 cθ




1 0 0

0 cφ −sφ

0 sφ cφ

 ,(12)

with c and s standing for cos() and sin() trigonometric operators,

respectively. RΘ is applied to translational velocities, and TΘ is

applied to rotational ones and is defined as follows:

(13) TΘ =


1 sφ · tθ cφ · tθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 ,

where t stands for the tan() trigonometric operator. Note that the

singularity of TΘ in ±π/2 is usually not an issue in wave energy

applications, since the amplitude of the pitch angle is, by design,

always expected to be smaller than π/2.

Note that, if small angular velocities and displacement are assumed

(as in the usual linear approximation), Coriolis-centripetal forces

in (10) are negligible, and JΘ in (11) becomes the identity matrix.

Consequently, displacement according to inertial and non-inertial

frames are equivalent (Fossen, 2011). However, in this paper such

an approximation is rejected, since large pitch angles are expected.
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3. Wave tank experiments

The CCP-WSI Blind Test Series 2 focuses on the study

hydrodynamic interactions between small bodies and large, steep

waves, in order to be representative of point-absorbing WECs in

harsh sea states, which can be considered across of the limit of

power production region. All details of the experimental campaign

are given in (Ransley et al., 2020a). Focused waves are a compact

solution to replicate, in the typically short time windows of wave

tank experiment, extreme wave conditions equivalent to the highest

wave in a long realization of a panchromatic wave. The NewWave

theory (Tromans et al., 1991) is applied to a Pierson-Moskowitz

spectrum (significant wave height Hs), so that all frequency

components arrive with zero phase angle at the focus location,

where the device is placed. Three waves are considered, with the

same amplitude (A) but increasing peak frequency (fp), hence

steepness (kA), which is a proxy of nonlinearity. Table 1 tabulates

waves characteristics and identification codes (ID), while Fig. 2

shows the time traces, only in the time window considered for the

comparison, between 35.3s and 50.3s. In the simulations performed

for this work, the components of the free surface elevation have

been reconstructed from data collected by a wave gauge at the

centre of the wave tank (where the device is placed), during a test

without the device (empty-tank test). Frequency components have

been computed by applying a fast-Fourier transform to filtered and

windowed data, and applying a cut-off frequency of 14 rad·s−1.

Table 1. Blind test 2 (BT2) incident wave identification number
(ID), amplitude (A), peak frequency (fp), significant wave height
of the original Pierson-Moskowitz spectrum (Hs), and wave
steepness (kA).

ID A [m] fp [Hz] Hs [m] kA

1BT2 0.25 0.3578 3.0 0.128778

2BT2 0.25 0.4000 3.0 0.160972

3BT2 0.25 0.4382 3.0 0.193167

Two surface-piercing structures have been considered, whose shape

and dimensions, compared to the wave length, are characteristic of

typical wave energy converters. Two geometries are considered: one

hemispherical-bottomed cylinder (G1), and a cylinder with a moon-

pool (G2). Figure 3 shows the cross-sections of the two geometries,

along with dimensions (in mm) and position with respect to the

still water level (SWL). Table 2 tabulates the mass and moments of

36 38 40 42 44 46 48 50
−0.2

0

0.2

0.4

t[s]
η
[m

]

1BT2
2BT2
3BT2

Figure 2. Incident free surface elevation in the time window
considered for the analysis.

inertia of the two bodies. Both floaters are moored to the tank floor

(water depth 3m) by means of a single pre-tensioned mooring line.

Table 2. Mass and inertia of the two floaters

M [kg] Ixx[kgm2] Iyy[kgm2] Izz[kgm
2]

G1 43.674 1.620 1.620 1.143

G2 61.459 3.560 3.560 3.298

R 250

1
3
1

1
7
8

3
2
2

CoG
R 250

CoG

1
5
2

3
3
0

5
0
0

SWL

R 288.5
R 144.5

Figure 3. Dimensions and position (in mm) with respect to the
still water level (SWL) of the cross-section of geometry G1, at
the left, and G2, at the right.

The mooring system is composed of a single line, anchored

at the tank floor and attached at the bottom of the device, as

shown in Fig. 4. The axial stiffness Kmoor is the same for both

geometries, and equal to 67Nm; the rest length (L0) is 2.212m for

G1, and 2.204m for G2. Note that, in order to guarantee correct

equilibrium in the mathematical simulation, the rest length has been

computed from experimental measurements (mass, draft, mooring

6 Prepared using PICEAuth.cls
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line stiffness, and water density) and from the submerged volume

calculated within the NLFK framework. Thanks to the universal

joint connecting the mooring line to the floater, fmoor is generally

not aligned to the buoy axis, hence τmoor is not zero. Therefore,

the mooring force is computed, in the body-fixed frame, as follows:

(14) Fmoor =

 fmoor

τmoor

 =

emKmoor∆L

rb × fmoor



where em is the unit vector of the mooring line and rb is the position

of the attach point of the mooring line at the bottom of the floater,

both defined with respect to the body-fixed frame.

SWL

3
0
0
0

Figure 4. Global and body-fixed frames of reference, shown at
the static equilibrium (left) and in operation (right). Schematics
of the mooring system, with initial length (L0) and axial stiffness
(Kmoor) defining the pretension, and line extension ∆L. em is
the unit vector of the mooring line and rb is the position of the
attach point of the mooring line at the bottom of the floater.
Water depth shown in mm.

4. Results

A first numerical test that can be performed to support and

validate the modelling approach is to compute the dynamic FK

forces using linear and nonlinear approaches, but under linear

conditions, so that the results should overlap with virtually no

error. Such linear conditions refer to zero displacement and a wave

amplitude negligible with respect to the freeboard of the floater.

In this case 1mm-wave amplitude is used, which is two orders of

magnitude smaller than the freeboard and draft of both geometries.

Note that even for the highest considered frequency (15rad/s), the

ratio between wave amplitude (1mm) and wavelength is less than

0.4%. For each frequency, a time domain simulation is performed.

Once the transient is fully elapsed, it is possible to measure the

amplitude of the response and the phase difference with respect

to the free surface elevation. Figure 5 shows, for geometry G1,

a successful comparison between the NLFK model and the linear

results obtained via the Boundary Element Method (BEM) software

Wamit (WAMIT Inc., 2014).

A further test that can be done in order to verify the correctness of

the implementation, is to compute the response amplitude operator

(RAO), which is the complex ratio between the displacement and

the incoming wave. On the one hand, the RAO is directly computed

using the frequency domain parameters from a BEM software. On

the other hand, a time domain model is defined and solved through a

second-order Runge-Kutta scheme. Under linear conditions (1mm-

amplitude wave and linear moorings) and using an appropriately

small time step, time-domain and frequency-domain results should

overlap. Furthermore, the time-domain model is run with and

without the inclusion of nonlinearities to further verify the model.

Figures 6 and 7 show this overlap for geometries G1 and G2,

respectively.

The constant time step used for the Runge-Kutta integration scheme

can be defined such that a satisfactory trade-off between accuracy

and computational effort is obtained. Considering, for example, the

response of geometry G1 to the harsher wave 3BT2, Fig. 8 shows

the relative computational time (tr) and the percentage error (ε)

depending on the time step dt, where ε is defined as:

(15) ε = mean

(
rms

(∣∣ζ − ζref ∣∣
ζmaxref

))

where ζ is the time dependent vector of the 6-DoF displacements,

as defined in (1). ζref is the benchmarking response, obtained for

the smallest dt, and ζmaxref is the maximum of ζref . Note that a

single value for ε is obtained, as the mean of the errors in surge,

heave, and pitch. The computational time is normalized against the

time required when the smallest dt is used. By setting an arbitrary
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Figure 5. Comparison between dynamic Froude-Krylov force (FFKdy
) for geometry G1, computed with a BEM code and the NLFK

model in linear conditions, i.e. fixed body and 1mm-amplitude waves.
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Figure 6. Response amplitude operator for geometry G1, computed in linear conditions (1mm wave height and linear moorings) in
the time domain using a fully-linear ( ) and a nonlinear ( ) model, successfully compared to frequency domain calculations
( ).

threshold of ε = 1%, a time step of 0.04s is selected. Note that

(15) performs the average of the error for the three DoFs because

ε is a single metric to measure convergence of the whole model,

rather than an accuracy metric.The resulting computational time,

for both geometries and all waves, is Tabulated in Table 3. The

algorithm is implemented in ad hoc Matlab code, and run on a

single processor of a standard computer (Dell, Precision T5810,

Intel R© Xeon R© CPU E5-1620v3 @ 3.50GHz; RAM:16GB). Table

3 tabulates the normalized computational time, defined as the

ratio between run-time and simulation time, so that the real-time

computation requirement translates into a normalized time less or

equal than one. Overall, the NLFK model computes from 4.6 to

13.2 times slower than real time. However, considering that this

implementation was not optimized for computational speed, and

that Matlab is inherently 1 to 2 orders of magnitude slower than

lower level coding languages, such as C or Fortran (Wendt et al.,

2019), real-time computation is potentially an easily achievable

goal. This makes the NLFK model a suitable option for studies

requiring computational time of the same order or magnitude of

the simulated time.

Analysing Table 3 in more detail, it can be remarked that G2

is more time-demanding than G1. On the one hand, G1 can be

8 Prepared using PICEAuth.cls



Proceedings of the Institution of Civil Engineers CCP-WSI-BT2: a NLFK apprach

Giorgi

1 2 3 4
0

2

4

6

|R
A
O
|[m

/m
]

Surge

1 2 3 4

−2
0

2

Tw [s]

∠R
A
O
[r
a
d
]

1 2 3 4
0

1

2

3

4

|R
A
O
|[m

/m
]

Heave

1 2 3 4

−2
0

2

Tw [s]

∠R
A
O
[r
a
d
]

1 2 3 4
0
2
4
6
8
10

|R
A
O
|[N

m
/m

]

Pitch

1 2 3 4

−2
0

2

Tw [s]

∠R
A
O
[r
a
d
]

Figure 7. Response amplitude operator for geometry G2, computed in linear conditions (1mm wave height and linear moorings) in
the time domain using a fully-linear ( ) and a nonlinear ( ) model, successfully compared to frequency domain calculations
( ).

10−3 10−2 10−1
0

2

4

6

8

1%

dt[s]

ε[
%
]

10−3 10−2 10−1
0

0.2

0.4

0.6

0.8

1

dt[s]

t r

Figure 8. Normalized computational time tr and mean
percentage error ε, defined as in (15), for different time steps dt,
for geometry G1 and wave 3BT2.

described by 2 geometrical sections (one hemisphere and one

cylinder). On the other hand,G2 requires considering two cylinders

(external surface and moonpool) and one bottom disk. Since the

number of FK integrals is proportional to the number of different

geometrical sections composing the device, the normalized time for

Table 3. Normalized computational time (run-time over
simulation time), using the nonlinear Froude-Krylov model.

G1 G2

1BT2 4.6 12.5

2BT2 4.6 13.1

3BT2 4.7 13.2

G2 is larger than the one for G1. However, other aspects affect the

computational time, such as the complexity of the geometry, the

displacements of the floater, the value of the integrand, and the ratio

between the tolerances of the numerical integration algorithm and

the value of the integral. In this work, constant relative and absolute

tolerances have been adopted, so that the computing time of small

or large quantities may differ significantly. As a possible future

improvement of the model, adaptive tolerances (as opposed to

constant) may reduce the total computational time without affecting

the accuracy.

However, note that the computational time required by the

nonlinear FK model also depends on the complexity of the

incoming wave representations, namely the number of frequency

components (nω) (Giorgi and Ringwood, 2018e). Assuming a

constant fundamental frequency (depending on the simulated time

window), nω depends on the cut-off frequency (ωc). Although low-

energy high-frequency content of ordinary panchromatic waves
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is usually negligible, it is relevant for the correct reproduction

of focused waves, since fully constructive phase interaction of

all components is ensured at the focused location to generate

the peak. This is one of the reasons why focused waves are

particularly challenging to simulate with a nonlinear FK approach,

especially for validation purposes, where the ability to replicate

the incoming wave is essential. Figure 9 shows how the cut-off

frequency, hence the number of frequency components (nω), affects

the computational time (tn) and the ability to replicate the peak of

the focused wave (ηmax). The consequent error in reproducing the

peak (εη) and the computational time are normalized against the

case with higher ωc.
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Figure 9. Relative error on the peak of the focused wave
surface elevation (εη) and normalized computational time (tn)
with respect to the cut-off frequency (ωc) and number of
frequency components (nω). Note that there is a one-to-one
relationship between ωc and nω . The case with maximum ωc is
used for the normalization.

The impact of εη on the response of the device is shown in

Fig. 10, for the example of geometry G2, using a convergence

metric ε, defined as in (15). It can be remarked that the surge degree

of freedom is the most affected, while heave and pitch are less

sensitive to the ηmax.
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Figure 10. Convergence metric in the surge, heave, and pitch
response of geometry G2, depending on the adopted cut-off
frequency ωc, due to the relative error εη , shown in Fig. 9.

The resulting time traces are shown in Figs. 11 and 12, for geometry

G1 and G2, respectively, and are compared with experimental

results (Ransley et al., 2020a,b). The most worthwhile remark is

that the profile of the heave response is well captured, both in shape

and phase. The only small differences are found in the tail of the

response (after the peak) with larger waves, in particular for the

floater with the moonpool, likely due to the interaction with the

water column, which has not been included as additional degree of

freedom in the model. On the other hand, surge and pitch responses

are accurate until just before the peak of the wave arrives (t =

45s), and diverge from the experimental afterwards. A significant

overestimation is found in particular for pitch, especially for

geometry G2. Finally, considering the mooring loads, a reasonably

accurate representation is achieved, apart from some deviation in

the tail of the response. In fact, in this configuration, mooring loads
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depend mainly on the heave displacements, which are accurately

represented.

A quantitative description of the accuracy of the reproduction is

provided in Table 4, which shows the root mean square error

between the simulated and experimental time traces, normalized by

the standard deviation of the experimental time trace, as suggested

in (Ransley et al., 2020a). It can be remarked that the error in

heave remains about constant for increasing wave steepness, for

both G1 and G2. Conversely, while the error in pitch decreases

with increasing steepness for G1, it shows the opposite trend for

G2. This is mainly due to the error in reproducing the tail of the

pitch response for G2, with increasing overestimation for steeper

waves. On the other hand, for geometry G1, both simulated and

experimental pitch response increase with the wave steepness,

without decaying in the tail of the time trace. Finally, errors in the

mooring tension are due to a combination of all other DoFs, so they

show variations for different wave steepness.

Table 4. Normalized root mean square error, normalized by the
standard deviation of the experimental time trace.

G1
11BT2 12BT2 13BT2

Surge 1.351 1.610 1.316

Heave 0.245 0.227 0.234

Pitch 1.243 0.792 0.678

Mooring tension 0.344 0.436 0.476

G2
21BT2 22BT2 23BT2

Surge 0.873 0.759 0.470

Heave 0.281 0.293 0.272

Pitch 1.532 1.696 2.062

Mooring tension 0.365 0.426 0.427

Figure 13 shows the single-sided variance density spectrum of

the response of the two geometries for the wave condition of

medium steepness (2BT2). Similarly to considerations for the

time series, the spectral content is reproduced with reasonable

accuracy in heave and mooring load, while surge and especially

pitch show a large disagreement. However, Figure 13 shows that

the NLFK model is able to articulate super-harmonics due to

nonlinear phenomena, although their amplitude and position is

seldom matched by experimental data.

The significant overestimation of the pitch response (the least

accurate result) has a strong impact in generating discrepancies in

other degrees of freedom, in both time and frequency domains.

In fact, due to nonlinear kinematics (see Sect. 2.2), such large

rotations cause an erroneous decomposition of translational motion

from the body-fixed frame to the global frame, favouring surge

over heave. This partially explains the overestimation of the surge

response and the underestimation of the heave response. The

overestimation of the pitch response is partially caused by potential

measurement inaccuracies (moments of inertia are particularly

challenging quantities to measure), but mainly due to the absence

of viscous drag losses in the model as well as the assumption

of small interactions between the moonpool and the buoy. In

fact, the moonpool and its entrance with sharp edges may cause

modifications of the fluid flow that are neglected in this model.

Furthermore, surge displacement (coupled with pitch) mainly

depends on the mooring force, first order surge force, and the

second order drift force. In this model, only drift due to Froude-

Krylov forces is considered, while second order diffraction effects

are neglected.

However, the author believes that one of the main reasons for

inaccurate reproduction of surge and pitch responses lies in the

misrepresentation of the pressure field around the body. Linear

dispersion relationship is used to compute wave numbers from the

Fourier transform of the free surface elevation at x = 0. Although

the reconstructed time trace of η is exact at x = 0, it loses accuracy

with distance from the identification coordinate. Similarly, also

the pressure field spatial-representation accuracy decreases with x.

Forces in surge and pitch are more significantly affected because

of their predominant dependence on the pressure difference in the

horizontal direction. In this paper, in order to limit the nonlinear

dispersion error, the surge displacement is enforced to zero for the

computation of the pressure field. However, further investigation

is needed to assess what is the impact of nonlinear dispersion in

focused waves on nonlinear FK force computation, and eventually

introduce a convenient correction.

5. Conclusion

The current stage of development of hydrodynamic models

for wave energy applications highlights the urgent need for

standardization of modelling techniques and evaluation/comparison

metrics, which are essential for developing more confidence and
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Figure 11. Response of geometry G1 in surge (x), heave (z), pitch (θ), and mooring load (Fmoor).
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Figure 12. Response of geometry G2 in surge (x), heave (z), pitch (θ), and mooring load (Fmoor).

effectiveness of the design process. The CCP-WSI project aims to

provide different institutions with common experimental data, in

order to implement and compare various modelling techniques for

the same test cases. In general, the choice of the model is guided by

the particular requirements of the intended application, especially

the accuracy/computational time balance. This paper proposes a

model which achieves a medium level of a accuracy, but keeps

the run-time close to real-time. Therefore, nonlinear kinematics
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Figure 13. Single-sided variance density spectrum of the response of geometries G1 (on the left) and G2 (on the right) in surge (Ŝx),
heave (Ŝz), pitch (Ŝθ), and mooring load (ŜFmoor ).

and nonlinear Froude-Krylov force calculations are implemented,

exploiting the axisymmetric shape of the floaters to enhance the

computational performance of the model.

Although the focused waves herein considered are representative

of medium/extreme conditions, hence outside the natural realm

of preferred applicability of a NLFK model, which is operational

power-production region, sufficiently accurate results are obtained

for the heave response and mooring loads, up to the largest waves.

These results have been achieved using one core of an ordinary

laptop at a computational time close to real time, various orders

of magnitude faster than a common CFD (Computational Fluid

Dynamics) simulation.

However, surge and especially pitch responses are relatively poorer,

likely due to the absence of viscous drag and the inaccuracy of

the representation of the pressure field around the floaters, which

is particularly challenging with nonlinear focused waves. A topic

for further investigation is the analysis of corrective measures to

include the effect of nonlinear propagation in the nonlinear FK

framework.

In a nutshell, the NLFK model seems not best in cases where

pitch and surge responses to focused waves are of interest, for

example in survivability studies. On the other hand, mooring 

loads and heave response are represented with acceptable accuracy, 

at a fraction of computational time required by fully-nonlinear 

models. Since power conversion capabilities of point absorbers 

wave energy converters are strictly correlated to mooring loads 

and heave response, the NLFK model finds i ts best application in 

control or power optimization studies, where medium fidelity at low 

computational time is a crucial requirement.
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