
17 October 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Detection of encrypted cryptomining malware connections with machine and deep learning / Pastor, Antonio; Mozo,
Alberto; Vakaruk, Stanislav; Canavese, Daniele; Lopez, Diego R.; Regano, Leonardo; Gomez-Canaval, Sandra; Lioy,
Antonio. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 8:(2020), pp. 158036-158055.
[10.1109/access.2020.3019658]

Original

Detection of encrypted cryptomining malware connections with machine and deep learning

Publisher:

Published
DOI:10.1109/access.2020.3019658

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2844712 since: 2020-09-09T09:34:26Z

IEEE

Received July 18, 2020, accepted August 4, 2020, date of publication August 26, 2020, date of current version September 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3019658

Detection of Encrypted Cryptomining Malware
Connections With Machine and Deep Learning
ANTONIO PASTOR 1, ALBERTO MOZO 2, STANISLAV VAKARUK2, DANIELE CANAVESE 3,
DIEGO R. LÓPEZ 1, LEONARDO REGANO3, SANDRA GÓMEZ-CANAVAL2, AND
ANTONIO LIOY3, (Member, IEEE)
1Telefónica I+D, 28010 Madrid, Spain
2Departamento de Sistemas Informáticos, Universidad Politécnica de Madrid, 28031 Madrid, Spain
3Dipartimento di Automatica e Informatica, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Alberto Mozo (a.mozo@upm.es)

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Programme under Grant 833685
(SPIDER), and in part by the European Institute of Innovation and Technology (EIT) Digital’s Innovation Activity under Grant 18217-19
(Deep-Augur).

ABSTRACT Nowadays, malware has become an epidemic problem. Among the attacks exploiting the
computer resources of victims, one that has become usual is related to the massive amounts of computational
resources needed for digital currency cryptomining. Cybercriminals steal computer resources from victims,
associating these resources to the crypto-currency mining pools they benefit from. This research work
focuses on offering a solution for detecting such abusive cryptomining activity, just by means of passive
network monitoring. To this end, we identify a new set of highly relevant network flow features to be used
jointly with a rich set of machine and deep-learning models for real-time cryptomining flow detection. We
deployed a complex and realistic cryptomining scenario for training and testing machine and deep learning
models, in which clients interact with real servers across the Internet and use encrypted connections. A
complete set of experiments were carried out to demonstrate that, using a combination of these highly
informative features with complex machine learning models, cryptomining attacks can be detected on the
wire with telco-grade precision and accuracy, even if the traffic is encrypted.

INDEX TERMS Cryptomining detection, malware detection, cryptojacking detection, cryptocurrency
mining, netflow measurements, encrypted traffic classification, machine learning, deep learning.

I. INTRODUCTION
Malware is an epidemic problem based on a simple concept:
exploit computer resources of a victim. Throughout recent
history, malware evolution offersmore resilience and versatil-
ity to achieve multiple goals: denial of services (DoS), sensi-
tive data theft, anonymity for illegal activities between others.
But in general, the main motivation is economical. Malware
families have developed awide variety of techniques to profit,
from simple blackmail withDoSmenace, to sophisticate bank
trojans, with the expectation to reach in the end some fidu-
ciary money. In this unstoppable evolution [1] cybercriminals
search new models for quick profits. Digital currencies fit
very well in this strategy.

Bitcoin [2] was the first decentralized digital currency,
based on blockchain. Anyone with enough computational
capacity can participate and make profit, doing cryptographic

The associate editor coordinating the review of this manuscript and

approving it for publication was Jihwan P. Choi .

calculations to contribute to the blockchain. As a result of
this calculations, a variable reward is provided, using the very
same cryptocurrency. This is commonly named as crypto-
mining. Unfortunately, standalone cryptomining is no longer
profitable and the solution is to associate multiples computers
(or bots) using a new type of service, called mining pools.
These arrangements offer a percentage of the mining rewards
proportional to the computational resources offered by their
participants using a specific protocol (see Section III). Nowa-
days, multiple cryptocurrencies have been born and died [3],
offering multiple profitable ecosystems for mining. Precisely,
as part of this ecosystem proliferation, some cryptocurrencies
have generated an opposition to specialized hardware (ASIC)
devices, altering the algorithms [4], [5] to make them useless,
and opening the opportunity again to profit with normal
computer mining.

Cybercriminals can populate their cryptocurrency wal-
lets following two main approaches. First, by exploiting
the ransomware malware family to encrypt a victim’s data

158036 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2849-9782
https://orcid.org/0000-0001-9743-8604
https://orcid.org/0000-0002-4265-7743
https://orcid.org/0000-0002-8326-2000
https://orcid.org/0000-0001-7996-5507

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

and receive a payment using untraceable cryptocurrency in
order to let the victim to recover the encrypted information.
The second alternative consists of using botnets or executing
illegal processes in browsers (cryptojacking) to add surrepti-
tiously the computer resources of the victims, without their
consent, to an ASIC-resistant mining pool and spend com-
putational resources in the benefit of the criminal. The first
one has the inherent risk to attract attention from authorities
and depends in the victim willingness to pay, but also gives
punctual big benefits. On the contrary, the second approach
can operate for long periods of time generating constantly
increasing benefits [6].

The focus of our research is on the second approach, offer-
ing a solution to industry for detecting cryptomining activity
over the network. Mining traffic is often encrypted to avoid
detection, and botnets can use private proxy IPs to aggregate
and masquerade the mining pools.

FIGURE 1. Profiling network behaviour to detect cryptomining activity.

It is widely known that nowadays, more and more traffic
is being encrypted (> 80%) as encryption is been adopted
by many network protocols (e.g. TLS, SSH, QUIC, VPNs).
Additionally, governments concerned about privacy issues
are imposing limitations to telecom providers for accessing
user data or inspecting packet payload. In this context, we
present a novel approach for detecting cryptomining activity
over the network (Fig. 1) even if it is encrypted, based on pro-
filing the network behaviour of the mining clients by means
of machine and deep learning techniques, as opposed to
classic deep packet and payload inspection techniques ormin-
ing pool domain names identification. We propose to apply
supervised machine and deep learning techniques that will
exclude the usage of input features such as IP addresses, port
numbers or application level information, which may contain
personal and sensitive user data. In addition, encrypted traffic
will be utilised extensively during training and testing phases
of machine learning models as this type of traffic is going to
be the prevalent in the near future.

We selected Monero (XMR) as the cryptomining protocol
for this study because of several reasons. First, Monero is
by far the favorite cryptocurrency among cybercriminals in
the underground market [6]. Second the public commitment
by Monero developers to exclude ASIC from the mining
ecosystem, and the low amount of resources required (such as
the light mode in RandomX algorithm [5] that only requires
256 MiB of shared memory), has increased its adoption by

malware families. Finally, the Monero preference for CPU
mining makes more realistic the experimentation over stan-
dards clients with respect to GPUs or ASIC devices.

We demonstrate in a controlled but realistic environment
that a careful feature selection is crucial for obtaining good
detection performance with machine and deep learning mod-
els in traffic scenarios where cryptomining flows are present.
We compare machine learning performance using two differ-
ent sets of statistical features obtained from network traffic
flows. The first set is extracted using the Tstat tool, a well
known passive sniffer able to provide per flow statistics
at both the network and transport levels, and the second
is derived from the IETF standard NetFlow/IPFIX metrics,
which are widely used in the industry. To the best of our
knowledge, our research work is the first proposal to utilise
features obtained with Tstat as input to supervised machine
learning algorithms. We demonstrate that the first set pro-
vides more information than the second, which translates into
the fact that, independently of the machine learning model
utilised, predictions are more stable, accurate and precise.
Furthermore, we show that complex models (e.g. Random
Forest and Fully connected deep neural networks) are able to
detect cryptomining traffic activity with significantly greater
precision, accuracy and stability than simpler models (e.g.
Decision trees and Logistic Regression), even if the traffic
is encrypted. Finally, we conclude that complex machine
learning models, as those proposed in this article, using as
input a set of exhaustive features obtained with Tstat, identify
cryptomining traffic with the accuracy, precision and stability
required by industrial deployments.

The rest of the paper is structured as follows: Section II
presents themain contributions of this researchwork. Regard-
ing that in order to detect cryptomining traffic promptly
and with accuracy, the network is the best place to identify
this type of attack, Section III introduces the reader to the
details of cryptomining protocols that will be used later in
our experiments. Section IV summarises a few number of
previous works proposed in this topic and the problem setting
is depicted in Section V. The set of machine learning models
utilised in our experiments (Fully Connected Neural Net-
works, Random Forest, C4.5 and CART decision trees and
Logistic Regression) are detailed in Sections VI. Section VII
describes the approach and method that we adopted to create
our data set and train our models, while the experimen-
tal results are explained in Section VIII. We conclude in
Section IX.

II. CONTRIBUTION
The detection of cryptomining malware over the network is
still in its infancy and, to the best of our knowledge, there is
only one research work [7] that addresses this problem but
assuming a rather unrealistic scenario in which i) encrypted
traffic is not considered, ii) only a reduced set of traditional
machine learning models were proposed and iii) a set of
slightly uninformative features were used as input. Hence,
when the experiments were reproduced in our controlled

VOLUME 8, 2020 158037

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

environment, the obtained performance was very far from the
expected by the telecom industry.

In order to surpass the limitations of the current proposals,
our experimental work presents the following novelties:

• A complex and realistic cryptomining scenario that was
set up for training and testing machine learning models for
cryptomining flow detection. This scenario is composed of
typical Internet applications (e.g. web browsing, multime-
dia, file access via shared folders) and cryptomining clients
interacting with real mining server pools spread across the
Internet. This controlled setup allows to generate real net-
work traffic that can be automatically collected and tagged
with 100% of precision even if the traffic is encrypted. The
labelled traffic will be used for training and testingmachine
learning models for cryptomining flow detection that fulfill
the strict requirements of the telecom industry.
A distinguishing characteristic of our experimental setup
from existing works is the usage of encrypted connections
in addition to non-encrypted ones. Nowadays, more and
more applications are encrypting their communications and
the identification of their contents poses an additional chal-
lenge to machine learning classifiers and in particular to
cryptomining detectors.

• A proposal for a new set of highly informative features to
be used as input to real-time cryptomining flow detection.
These features were derived from a set of forensic statistics
produced by Tstat, a tool conceived for producing statistical
data per connection from network packet traces. We modi-
fied the Tstat tool to derive a set of real-time flow features
to be input to ML classifiers for cryptomining detection.
In our experiments we demonstrated that when network
traffic is encrypted, the usage of the proposed new set
of features significantly increased ML performance with
respect to using standard features.

• A complete set of experiments that demonstrate that cryto-
mining attacks can be detected on the wire with telecom-
grade precision and accuracy even if the traffic is encrypted,
using the derived Tstat features jointly with complex
machine learning models.

III. CRYPTOCURRENCIES AND CRYPTOMINING
PROTOCOLS
Cryptocurrencies can be defined as digital media of
exchange, based on the use of cryptographic primitives to
both regulate the emission of new cryptocurrency units and
to verify transactions. The first and most widespread cryp-
tocurrency, Bitcoin (BTC), was introduced in the seminal
paper by Satoshi Nakamoto [2]. Cryptocurrencies are com-
pletely decentralized, with no control authority, a character-
istic shared with P2P file sharing networks. The validation
of transactions is based on a distributed ledger, implemented
with a blockchain (an immutable and shared data structure
[8]).When a cryptocurrency is spent, the related transaction is
added to the blockchain. Cryptocurrencies users (called min-
ers) can then validate the new block, i.e. a set of transactions,

FIGURE 2. Message flows involved in stratum protocol. Upper diagram
runs over a TCP connection, botton diagram over a TLS session.

with a computationally intensive cryptographic process, com-
monly known as mining, preventing unfair use of the cryp-
tocurrencies (e.g. double spending). Miners are encouraged
to participate in the validation of transactions with rewards
(i.e. new cryptocurrency units). However, the high level of
complexity of the validation process makes obtaining such
rewards feasible only for specialized hardware (ASIC) own-
ers. Mining pools try to overcome this limitation coordinating
the work and resources of different miners, who share their
computational power over a network. The most widespread
protocol used to distribute the mining process among the
mining pool participants is called Stratum [9], and have been
first used in the Slushpool mining pool [10].

The Stratum protocol, shown in Fig. 2, specifies a bidi-
rectional communication channel between the mining pool
server and its participants, with messages encoded following
the JSON-RPC 2.0 specification [11]. Following, we provide
a brief description of the typical Stratum protocol flow. First,
the client can initiate (or resume) a session with the mining
pool server, calling the subscribe RPC method on the server,
specifying in the request the mining software that the client
will use to solve the challenges that the server will subse-
quently send to the client. It should be noted that a min-
ing pool user may employ multiple devices (workers in the
Stratum terminology) in the mining process. Thus, the client
needs also to authorize the server to send challenges to each
worker, by calling the authorize RPC method on the server
for each worker, sending its username and password to the
server (step 1 in Fig. 2). Then, the server can send challenges
to workers, calling on them the submit RPCmethod (step 2 in
Fig. 2). If a worker finds a solution for a mining challenge,
he can send it to the server by calling on it the submit RPC
method (step 3 in Fig. 2). After verifying the correctness of
the solution, the server can send new challenges to the worker
that has solved the challenge, and also to other workers that
were trying to solve it, again calling on them the submit RPC

158038 VOLUME 8, 2020

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

method. Stratum messages may be sent in an encrypted form,
for example embedding them in TLS frames [12].

IV. RELATED WORK
In spite of being a hot topic in nowadays industrial scenar-
ios, the detection of cryptomining activities has been poorly
investigated in the current scientific literature. Most of the
current state-of-the-art works focuses primarily on detecting
a cryptomining or cryptojacking software module running on
a victim, by analyzing the behavior of the target node. Even
fewer works tries to detect Stratum or other cryptomining
protocols.

A. IDENTIFICATION OF CRYPTOMINING TRAFFIC
Very few research works are focused on detecting crypt-
mining activities by looking at the network traffic. The clos-
est work to our research was proposed by Muñoz et al.
in [7]. In this work, the authors evaluated four different
machine learning techniques (SVMs, Naïve Bayes, CARTs
andC4.5 decision trees) to identify non-encrypted cryptomin-
ing Stratum flows applying a non-DPI (Deep Packet Inspec-
tion) approach. They concluded that it is possible to identify
non-encrypted Stratum connections that are used for min-
ing five different cryptocurrencies (Bitcoin, Bitcoin-Cash,
DogeCoin, LiteCoin and Monero). Additionally, the authors
showed that some machine learning models (e.g. CART deci-
sion trees) were able to distinguish with accuracy these cryp-
tomining flows from normal traffic and also to classify the
cryptocurrency that was beingmined. Themain differences of
our research with respect to this work are that (a) we propose
more complex models (random forests and fully connected
neural networks) for detecting cryptomining activity, which
significantly increase stability, precision and accuracy of pre-
dictions, (b) conversely toMuñoz et al.’s approach, encrypted
traffic is also considered in our research in order to evaluate
machine learning performance in realistic scenarios, and (c)
we use a more informative set of 51 features derived with
the Tstat tool that produces significantly better results than
the approach followed by Muñoz et al. that utilised only
8 features derived from NetFlow/IPFIX metrics. Comparing
the results of the two proposals in the realistic scenario we
set up, it can be observed that the usage of simpler machine
learning algorithmswith Netflow features, as in [7], generates
instability and poor performance in machine learning predic-
tions. On the other hand, when complex machine learning
models are used jointly with more informative features, as the
ones proposed in our work, high performing, robust and stable
predictions are obtained.

Swedan et al. [13] proposed a set of more traditional
approaches for detecting and, eventually, blocking crypto-
mining connections. The authors proposed an architecture
named MDPS (Mining Detection and Prevention System)
for dropping non-encrypted cryptomining flows produced by
a browser (e.g. CoinHive, Crypto-Loot). Their approach is
based on deploying proxies that performs a DPI inspection on

connections in order to deny any suspicious flow, what it is
rather ineffective whenminers encrypt their communications.

B. IDENTIFICATION OF CRYPTOMINING SOFTWARE
MODULES
Most of the work for detecting cryptomining processes make
use of some kind of monitoring agent installed on a host
(usually inside a browser) which is continuously monitoring
the system resources and reacting if some odd behavior is
detected.

In the work of Konoth et al. [14], the authors proposed
an approach able to detect in-browser cryptomining activities
by statically analyzing the WebAssembly code found in web
pages. Cryptomining is based on computing multiple hash
values and these functions have peculiar patterns (e.g. long
sequences of XOR instructions or use of various crypto-
graphic primitive functions) that can be found by analyzing
the assembly opcodes. The authors proposed MineSweeper,
a component that analyzes all the WebAssembly instructions
loaded by a web page and reacts accordingly if the pattern
analysis reveals that a potential cryptominer is loaded. The
analysis of the code is not performed by machine-learning
techniques, but the authors manually investigated the most
common in-browser miners and hardcoded their patterns in
their tool.

Carlin et al. [15] used instead a dynamic approach to detect
in-browser cryptominers. Their approach makes use of traces
(list of instructions sent to the CPU) collected by launching a
browser (FireFox) with a debugger (OllyDbg). The opcodes
of the instructions in these traces are then counted and this
vector of integers is then used as the input features for a
random forest classifier. Their machine-learning model was
trained to be able to distinguish: cryptomining scripts, deac-
tivated cryptomining scripts (files without the start mining
function call), canonical scripts (not cryptomining related
files) and canonical injected scripts (a weaponized version
of the canonical scripts but with some cryptomining scripts
injected). Their method was able to score a nearly 100%
accuracy on each class.

Liu et al. [16] modified the kernel of a Chrome browser to
include their miner detection component named BMDetector.
This component analyzes the heap memory and the stack
traces of the browser and sends them to a LSTM (Long-Short
Term Memory) recurrent neural network that performs the
actual classification in two classes: mining and non-mining
scripts.

Other machine-learning models were also considered by
Kharraz et al. [17] to identify cryptojacking websites by
analyzing the browser behavior. Their monitoring agent,
Outguard, continuously checks the scripts loaded and exe-
cuted by a browser, computes simple numerical features
and sends them to a trained machine-learning model to
detect cryptomining scripts. Their features includes how
many parallel tasks are used by a script, if WebAssembly is
requested or how many WebSockets are created. They tested
both random forests and SVMs (Support Vector Machines)

VOLUME 8, 2020 158039

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

and experimentally found that the best results were obtained
by the SVMs.

V. PROBLEM SETTING
Victims usually do not perceive as a problem this type
of attacks, mainly because there is no direct economical
loss or ransom to pay. The identification of traffic generated
when cryptocurrencies are mined (in the so-called crypto-
mining process) can be useful both for companies and end
users. First, companies may be interested into detecting stra-
tum cryptomining messages exchanged on their corporate
network, since they can point out that one or more employees
are using company resources (e.g. company owned devices,
electrical power) to mine cryptocurrencies, thus obtaining an
illicit financial gain to the detriment of the company finances.
A second scenario regards the worrying menace of cryp-
tojacking, which endangers both end users and companies.
Cybercriminals are understanding the economic potential of
cryptomining and therefore, they spread malware that, after
having successfully infected the target device, hides a crypto-
mining process running on the victim device. Cryptomining,
especially when not limited, may be extremely detrimen-
tal for the end-user device performances, battery duration
in the case of mobile devices, and can lead to a narrower
lifespan of such devices. Furthermore, the identification of
cryptojacking-related traffic can be used as an Indicator of
Compromission (IoC) of the monitored device, even if the
responsible malware has not yet been included into anti-
malware applications databases.

Therefore, detecting and blocking cryptomining activity
based on network traffic analysis allows to disable the former
impacts in IT resources and discourage the usage of illegal
cryptomining communications. Firstly, because no commu-
nication is possible and the mining process stops to consume
resources. Secondly, because if the computational transaction
cannot be ordered or collected using the network, the rewards
are not generated.

In order to detect with accuracy and precision different
types of cryptomining activity over the network, we propose a
controlled network environment using real clients and servers
to generate cryptomining related traffic competing with nor-
mal traffic (web surfing, video and audio streaming, cloud
storage, file transfer, email and P2P among others) over a
dedicated network and sharing Internet connectivity through
a residential broadband access. Normal traffic clients interact
both with servers located in the dedicated network and in
the Internet. Cryptomining clients connect to real mining
pools in the Internet. Being by far the favorite cryptocur-
rency between cybercriminals, Monero was chosen as the
cryptocurrency of our experiments. Two different Monero’s
clients were selected to provide implementation variety of
the Stratum protocol, which is by far the most widespread
protocol used to distribute the mining process among mining
pools. CPU and memory in client virtual machines were
assigned in the range of normal user computers, without any
support of specialised hardware such as GPU or ASIC, and

the same constraints were applied to server virtual machine
configurations. We configured all clients and servers with
capacity to establish plain or encrypted connections. In par-
ticular, cryptomining clients were connected to mining pools
that support both types of connections over the network.

Finally, we provided the capacity to capture and copy all
the network traffic crossing the controlled network environ-
ment by means of port mirroring functionality in a physical
switch. In this way, all the captured traffic can be labelled
and stored for training supervised machine learning mod-
els or directly used for testing purposes. Collected packets
are grouped into flows using the well-known 5-tuple: IP des-
tination, IP source, port destination, port source and transport
protocol. During the training phase of a machine learning
model, each time a new packet arrives, a set of flow statistics
(features) are generated and stored jointly with the corre-
sponding label in a dataset for training or testing purposes.
In production environments, the features are extracted from
the flow and input to a previously trained machine learning
model to predict the flow type (e.g. cryptomining or normal
flow) in the form of a probability value.

VI. MACHINE LEARNING MODELS
Aiming to find the best performing models, we considered
different supervised machine and deep learning classifiers
in order to take advantage of the specific characteristics of
each of them. Regarding that we do not assume either tem-
poral or spatial relation among the features to be input to
models, we decided to use deep learning architectures based
on Fully Connected Neural Networks (FCNNs). In addition,
we also considered several other well-known machine learn-
ing algorithms such as Logistic Regression models [18], [19],
Classification And Regression decision Trees (CART [20]
and C4.5 [21]) and Random Forests [22].

The Logistic Regression model is essentially a classifi-
cation algorithm which allows modelling binary outcomes
that have only one of two possible values. Several works
propose the application of this technique to protocol based
classification over Internet traffic ([23], [24]).

The Classification And Regression Tree (CART) [20] and
the C4.5 algorithm [21] are decision tree models able to clas-
sify data into different classes based on a tree of rules inferred
from both discrete and continuous features. These models
allow to classify a input feature vector giving the probability
to belong to a particular class based on the probability of the
resultant leaf of the tree.

Random Forest (RF) model [22] combines several
Decision Trees (specifically, CART trees) to produce a more
accurate classification using majority vote process through
bootstrap aggregating (bagging) and random selection fea-
tures for each tree. The RF Model is widely used due to its
non-linear classification capabilities, efficiency and robust-
ness ([25], [26]).

The Fully Connected Neural Network (FCNN)model [27],
[28], also known as MultiLayer Perceptron, is a type of feed
forward neural network that organises their nodes in layers

158040 VOLUME 8, 2020

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

with weighted connections feeding forward from one layer
to next. Input vectors are propagated from the input layer
through the hidden layers towards the output layer in order to
map the input into output vectors. The FCNNmodel has been
successfully used in a wide range of problems and domains
for recognizing complex patterns from a big amount of data.
Particularly, in [29] it was used to detect DDoS attacks over
network traffic.

VII. OUR APPROACH
Our goal is to distinguish cryptomining traffic from regular
Internet traffic, that is a variety of flows that consists of web
connections, e-mail transmissions, streaming videos, data
transfers from and to cloud services and so on. In order to
achieve this goal we used the workflow depicted in Figure 3
to generate a suitable data set and to train a set of machine
and deep learning models.

FIGURE 3. Our training workflow.

The first step in any machine learning based process is to
produce a high quality data set. We used Mouseworld [30],
a controlled NFV-based infrastructure, to set up and deploy
on it the cryptomining attack scenario that would generate
the traffic of our experiments. We installed a series of virtual
machines with some miners connected to the Internet to
produce the encrypted and non-encrypted Stratum flows and
used a variety of other methods to gather the regular traffic
(e.g. HTTP/HTTPS flows, multimedia streams). The TCP
flows were captured and analyzed by a modified version of
Tstat, a traffic analysis tool, in order to extract in real-time a
set of features derived from several connection statistics that
serve as the input features for our machine learning models.
Then, we added an ad-hoc code to a special Mouseworld
internal component, named Tagger, to automatically assign a
binary label to each TCP flow instance (0: normal traffic con-
nection, 1: cryptomining connection). After being labelled,
we used these samples to train and test a variety of machine
learning models. Before the actual model training, however,
we perform a feature selection phase in order to increase the
accuracy of our models and an hyperparameter optimisation
step to search for the optimal model configuration. In order to

validate the quality of our models we used a similar approach
to the one depicted in Figure 3, by using Mouseworld as our
network infrastructure in order to generate as many times
as needed a variety of new and realistic traffic samples to
be classified by our ML models. It worth noting that ML
model training was done in a separate environment where
specialised GPU cards were available for accelerating the
training process of deep neural networks.

The following paragraphs describes in more detail how
we built out data set and how we trained our models, while
Section VIII contains the results of our experiments.

A. DATA SET CREATION
As mentioned before, the basis for our network infrastructure
is the Mouseworld laboratory, a controlled environment set
up in Telefonica R&D premises for running experiments
that allow deploying complex network scenarios in a con-
trolled way and generate realistic labelled data sets for train-
ing supervised ML components and validate supervised and
unsupervised solutions. TheMouseworld Lab provides a way
to launch clients and servers, collect the traffic generated by
them even if they interact with clients and servers outside
the Mouseworld in the Internet, and finally add labels to
this traffic without operator intervention. This environment
is deployed on an NFV-enabled architecture, under the man-
agement of an orchestrator (NFVO), extending an ETSI NFV
MANO stack as necessary.

Figure 4 shows a detailed picture of the Mouseworld Lab
that is composed of four modules interacting in a pipeline:
Launcher, Data Collector, Feature extractor and Tagger.

The Launcher coordinates the Mouseworld environment
and runs experiments that generate real network traffic that
cross not only the Mouseworld internal network but also the
Internet. This component allows to produce three basic types
of regular traffic: web, video and file hosting (e.g. Dropbox,
OwnCloud) by running real clients installed in a batch of
Linux virtual machines. In addition, the Launcher can also
manage ad-hoc virtual machines, for instance the ones we set
up in our research work containingMonero miners, and it can
also run sessions to generate network traffic of a collection of
complementary Internet protocols using Ixia Breakingpoint,
a commercial tool that allows to generate complex patterns of
synthetic traffic.

The Data collector module gathers all the packets gener-
ated by a single experiment. The Feature Extraction module
groups the collected packets into flows based on the classic
five-tuple of source and destination IP-address/port number
and transport protocol and calls an external module to obtain
the set of features of each flow. In our experiment, we utilised
a modified version of the Tstat tool in order to to derive
from flow statistics a set of standard Netflow features jointly
with our proposal for a set of highly informative features.
The modified Tstat not only obtains flow features in forensic
mode at the end of the connection as it is done in the original
Tstat, but also in real-time at different instants of time, which
allows us to train and test machine learning components

VOLUME 8, 2020 158041

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

FIGURE 4. The Mouseworld Lab in Telefonica R&D premises.

that can identify cryptomining flows even when only a few
packets of the flow have been transmitted.

Last, the Tagger adds automatically and without human
intervention labels to each flow using external and log infor-
mation output by the Launcher during the execution of each
experiment. As flow tagging is highly dependent on the
machine learning task, this component is simply a wrapper
of the ad-hoc tagger that must be developed for each type of
scenario. In our experiments we coded this component using
the IP addresses and ports of the miners (clients) and cryp-
tomining server pools in order to differentiate cryptomining
flows from the rest containing normal traffic. Note that labels
are only collected for training and testing the machine learn-
ing models, which do not need labels to generate predictions
when they are running in a production environment.

The deployed infrastructure and configuration in Mouse-
world are described below. We deployed 30 VMs for the
generation of regular traffic (i.e. web, video and shared-
folder flows). Web and video requests are generated using a
Chrome headless browser and shared folder (i.e. file hosting)
requests are produced using specific clients for Dropbox and
OwnCloud. Using a configuration file in which the frequency
of each type of request is specified, web, video and shared-
folder requests are randomly generated from clients. These
requests are randomly send to internal Mouseworld servers
and to external servers located in the Internet. It is worth

noting that both encrypted (e.g. HTTPS requests) and non-
encrypted (e.g. HTTP requests) traffic requests were gener-
ated for all the services. In addition, the IXIA BreakingPoint
tool was also configured to generate and inject synthetic
patterns of various Internet network services (web, multime-
dia, shared-folder, email and P2P). The traffic generated by
BreakingPoint was also configured in order to be composed
of encrypted and non-encrypted flows.

In addition we created three cryptomining Linux virtual
machines. We installed both xmr-stak [31] and xmrig [32]
in all the three virtual machines and configured them to
use both encrypted and non-encrypted Stratum connections.
We used all these clients to mine the Monero [33] (XMR)
cryptocurrency, commonly used for illegal purposes [6]. The
cryptomining clients use default settings to connect with
public mining pools using non encrypted TCP and encrypted
TLS connections. Each miner was forcibly disconnected and
reconnected each hour in order to simulate a fresh mining
pool connection.

We designed four experiments combining the Launcher
and BreakingPoint tools with different cryptomining clients
and protocols. Each experiment was run for one hour with an
average packet rate of approximately 1000 packets per second
generating data sets with 8 millions of TCP flows of which
4 thousands are related to Stratum. In particular:

• in experiment 1 the BreakingPoint tool was run jointly
with two xmr-stak clients using TLS encrypted con-
nections and one xmrig client establishing only non-
encrypted TCP connections;

• in experiment 2 the real clients running in Mouseworld’s
virtual machines were launched to interact with servers
located in the Internet and in the Mouseworld internal
network; in addition one xmr-stak client using TLS
encrypted connections and two xmrig clients using non-
encrypted TCP connections were deployed;

• in experiment 3 a combination of real clients with two
xmr-stak clients using TLS encrypted connections and
one xmrig client establishing only non-encrypted TCP
connections was launched;

• finally, in experiment 4 the BreakingPoint tool was run
jointly with one xmr-stak client using TLS encrypted
connections and two xmrig clients using non-encrypted
flows.

The four obtained data sets were split in two separate sub-
sets for training and testing purposes. Specifically, data sets
from experiments 1 and 4 were joined in DS1 (training) data
set and the other two data sets collected in experiments 2 and
3 were combined into DS2 (testing) data set. In this way,
DS1 and DS2 can be considered to be of the same nature
as they contain similar percentages of encrypted and non-
encrypted traffic, types of internet services and cryptomining
protocol flows. It is worth noting that regarding the small
amount of traffic that cryptomining protocols generate when
compared with normal traffic, an unbalance on the number of
cryptomining flows against the normal traffic (1:5000) will

158042 VOLUME 8, 2020

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

appear in all data sets, which poses an extra challenge for
training ML classifiers.

The DS1 dataset (16 million of examples) was shuffled
and split in two sets, training (85%) and validation (15%) for
the hyperparameter optimisation. DS2 dataset (16 million of
examples) was kept only for final testing purposes.

B. MODEL TRAINING
For each of our data sets, the first step towards a proper train-
ing and testing of a ML model is a feature selection phase.
Traditionally, deep packet inspection techniques for traffic
classification techniques acquire features from inspection of
port numbers or by interpretation of packet payloads contents.
However, these techniques tend to be increasingly limited due
to the pervasive use of encryption methods to encapsulate
packet contents (including TCP or UDP port numbers) and
the governments increasingly introducing privacy regulations
in order to constraint the access to packet payload data. To
overcome these restrictions, more recent machine and deep
learning techniques use flow descriptions as input to machine
learning models. These descriptions are composed of a set
of features, which are statistical data obtained from exter-
nally observable traffic attributes such as per-flow duration
and volume, inter-packet arrival time, packet size and byte
profiles [34].

Choosing informative, discriminating features is a crucial
step for effective machine learning algorithms in different
tasks such as classification. In particular, the performance
of machine learning classifiers depends not only on the
differences among models and their specific configuration,
but also on the selection of input features. Nowadays, there is
no strong consensus in research and industrial communities
on a reliable set of features that can perform well with
machine learning in all scenarios. Nevertheless, proposals
based on time-based statistical features such as sizes and
inter-packet times of the packets of a flow, or entropy of
byte distribution in packet headers or payload, are gaining
momentum ([35], [36]).

In the last years, network traffic analysis is facing emerging
challenges related to the incursion of new, more sophisticated
and unknown traffic. In particular, it is not easy to identify
an adequate set of features that can help to obtain stable and
highly performing machine learning models for new scenar-
ios such as the cryptomining flow detection. For that reason
we decided to compare two different sets of features with the
aim to determine their impact in machine learning perfor-
mance and to demonstrate that using more informative fea-
tures, a significant increase in machine learning performance
can be obtained. Both sets of features are not specifically
tailored for criptomining attacks as they reflect parameters
of a network flow and therefore they could be used in other
network traffic scenarios (e.g. network traffic flow classifi-
cation). As our goal was to detect cryptomining attacks on
the network, flow (e.g. TCP connections) identification using
flow features seems to be the adequate approach.

The first set of 51 features is proposed as a novel contribu-
tion of our work and was derived from a subset of the Tstat
tool statistics.The set of these features is detailed in Table 1,
where CS represents client-to-server and SC server-to-client
traffic. The Tstat tool [37] allows the extraction of a large
number of classification statistics from the transport and
application layers and is not tailored for any specific type of
network traffic or application.

Considering the initial assumption of not inspecting packet
payloads, we will not use either IP addresses or port num-
bers or features derived from statistics of the application layer
data. In addition, and in order to derive the set of features,
we selected Tstat statistics using the following criteria: First,
we did not consider Tstat statistics showing a constant value
for all connections in different instants of time as they do
not contain any information (e.g. c_rst_cnt, s_rst_cnt, c_isint,
s_isint). Second, we applied a linear correlation analysis on
data in order to identify and remove highly correlated vari-
ables. In this case, we followed a rather conservative approach
when discarding a Tstat statistic using this criteria as the
correlation analysis only showed linear correlations among
variables and neural networks tend to discover interesting
non-linear relationships among variables. Therefore, we did
not remove any Tstat statistic using this criteria in order to
give an opportunity to all machine learning models and in
particular to neural network models to discover non-linear
relationships among features. Finally, we applied our pre-
vious expertise in networks and protocols to discard Tstat
statistics that could not be beneficial for the application of
machine learning. In particular, statistics such as net_dup
(number of network packet duplicates), reordering (num-
ber of packet reordering observed), rtx_RTO (Number of
retransmitted segments due to timeout expiration) and rtx_FR
(Number of retransmitted segments due to Fast Retransmit,
three dup-ack) among others were removed as they represent
statistics of network traffic congestion situations appearing
in a specific period of time that may not appear at other
times.

In addition, as a double-checking mechanism, we obtained
feature importance values after training models with Random
Forests models and we observed values ranging from 0.12 to
0.01 for nearly all features with the exception of s_tm_opt
(Timestamp option sent by the server) that revealed a very
small value of 0.0000184. This result emphasizes that there is
not any subset of features that are more important than others,
and on the contrary, all the selected Tstat derived features are
contributing to the high performance of the complex models.
It is worth noting that when deep neural networks are used,
feature importance cannot be obtained so easily and therefore,
the recommended approach is to provide all the input features
to the neural network and let the optimization algorithm find
by itself what features are the most informative. Regard-
ing that interpretability and explainability of neural network
decisions and their relationship with the input features is
nowadays a topic under research, we decided to keep the set
of initial 51 Tstat derived features as the input to all machine

VOLUME 8, 2020 158043

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

TABLE 1. Tstat selected features.

learning models in order to evaluate them under the same
conditions.

The second set of features will be derived from the IETF
standard NetFlow/IPFIX metrics. This set of eight features
was recently proposed in [7] for detecting cryptomining activ-
ity using machine learning. These derived features are:

• inbound and outbound packets / second;
• inbound and outbound bits / second;
• inbound and outbound bits / packet;
• bits-inbound / bits-outbound ratio;
• packets-inbound / packets-outbound ratio.

Therefore, we evaluated our machine learning models with
three sets of features:

• in scenario A the NetFlow/IPFIX metrics were utilised;
• in scenario B only the features derived from Tstat statis-
tics were used;

• finally in scenario C both the Tstat derived and Net-
Flow/IPFIX features were jointly used.

After the feature selection phase we perform an hyperpa-
rameter optimisation stage in order to find the optimal hyper-
parameters to achieve a highly accurate model. Optimising
hyperparameters is considered to be one of the trickiest parts
of building machine learning models as it is virtually impos-
sible to obtain the optimal parameters while building a model
by simply guessing and testing several combinations of these
values. On the other side, trying all the combinations of values
for a set of hyperparameters is not scalable as the number
of combinations to be tested grows exponentially with the

number of hyperparameters and the ranges of the values to
be tested in each of them. There exist several heuristics that
can help to find these optimal hyperparameters, being random
search one of the most popular and efficient approach. As its
name suggests the evaluated combinations of hyperparame-
ters are chosen at random from a hyperparametermultidimen-
sional grid.

The basic strategy for random search consists in evaluating
the validation score for each hyperparameter value combina-
tion and recording the results along with the hyperparameter
combination. At the end of searching, the hyperparameters
that yielded the highest validation score are chosen and the
model is trained on all the training data set. Finally, predic-
tions are made with this model on the test data set. Each time
random search is run, the hyperparameter space is used as
input and the algorithm produces a random combination of
hyperparameter values to try. There are no requirements for
random search other than that the next values are selected
at random among the available ones in the hyperparameter
space.

In our experiments we used a Random Search algorithm
(RS) to find optimal combinations of hyperparameters values
for training each model. After having trained each model a
significant number of times and with a sufficient number of
hyperparameter combinations, we selected the models with
the highest F1-scores on validation. At least several dozens
of different combinations were used for each machine learn-
ing model. Random search was stopped after observing that
search results were stabilised (i.e. a better model did not

158044 VOLUME 8, 2020

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

appear after several random search iterations) Table 2 shows
the ranges and the hyperparameters that we optimised for
each model.

Before running the random search we made some prelimi-
nary evaluations with different deep learning models based
on Fully Connected neural network (FCNN) architectures.
We run these preliminary evaluations using up to 10 hidden
layers in FCNNs using forward bypass connections and batch
normalisation in order to avoid vanishing gradients. It was
observed that using a large number of layers (e.g. 8 to 10) did
not produce better values than when we trained FCNNs with
few layers (2 to 4). Therefore, during the random search we
reduce the search range for FCNN layers from 1 to 5. There-
fore, we trained and tested shallow (1-2 hidden layers) and
deep (3-5 hidden layers) Fully Connected neural networks.

TABLE 2. Hyperparameter values.

Note that Class weight hyperparameter was defined to
manage the imbalanced nature of the datasets in the context
of the cryptomining use case. As previously commented,
the ratio of normal connections with respect to cryptomining
ones is approximately 5,000, which negatively impacts to
the final results of the training process. Therefore, different
values of this parameter were tried during training in FCNN
models to modulate the behaviour of the optimization algo-
rithm. Random Forest and Logistic regression were trained
using Scikit-learn library implementations, in which class-
weigth parameter tries to cope with this problem. In addition,
FCNN models used Rectified Linear Units (ReLU) as activa-
tions functions and therefore, no hyperparameter search was
made on this parameter.

VIII. EXPERIMENTAL RESULTS
We carried out a set of experiments in order to evaluate
the performance of several machine and deep learning mod-
els detecting cryptomining flows and differentiating them
from normal traffic connections. Two complementary goals
were defined at the beginning of the experiments. Firstly,
to demonstrate that complex machine learning models (e.g.
deep neural networks) perform better than simpler models
and secondly, to show that the set of Tstat features (Table 1)
we are proposing increases significantly the performance of

these models when compared with previous feature propos-
als. As representatives of simpler models we selected the ML
models proposed in [7] (SVM, Naive Bayes and CART and
C4.5 trees) with the aim to compare their results with complex
deep learning models in a more realistic scenario as the one
deployed in our experiments. In addition, Random Forest was
selected as it is widely accepted as one of the best performing
ML techniques and Logistic Regression as the representative
of a extremely simple method.

In the next paragraphs we describe the results that we
obtained by using the data set creation and model training
procedures detailed in Section VII.

A. MACHINE LEARNING SETUP
Our target problem aims at predicting cryptomining flows and
differentiating them from other network flows. Therefore,
this problem is modelled as a classifier where the expected
output is a binary value: 1 corresponds to a cryptomining
connection identified by the classifier whilst 0 is assigned to
the rest of connections.

In order to be able to classify with accuracy these two
types of connections, we trained and tested machine an deep
learning classifiers based on the ones previously introduced
in Section VI. In particular, we evaluated Fully Connected
neural networks (FCNN) and compared against traditional
machine learning techniques such as Logistic Regression
(LR), CART and C4.5 decision trees (CART, C4.5) and
Random Forest (RF). It is worth noting that in preliminary
experiments we included SVM and Naive Bayes classifiers in
the set of machine learning techniques to be evaluated. How-
ever, we observed that both techniques underperformed when
comparedwith CART andC4.5 trees. Therefore, Naive Bayes
and SVM were excluded from the experimental comparison
we made with the rest of the models. In addition, SVM
training times took two days using only a small percentage
of the training dataset (1/100 of 16 millions of examples).
As it can be seen in Table 6, the rest of the models took in the
worst case no more than 40 minutes to train the model using
the whole dataset (16 millions of examples).

We used the training procedure detailed in Section VII-B
and for each model, the following steps were applied: 1) per-
form a feature selection phase; 2) run a random search on the
hyperparameter space and train the model using the obtained
hyperparameter combinations; 3) rank the best performing
models using the F1-score on the validation set; 4) test the
best models on the testing (DS2) dataset.

In order to compare and rank the obtained results in valida-
tion and testing, we compute a set of quality metrics widely
used in classification problems ([38], [39]): accuracy, macro
and micro versions of precision, recall and F1-score and
confusion matrices. Additionally, ROC and P-R Areas under
Curve (AUC) are calculated and their corresponding curves
are plotted. These metrics allow us to measure the quality
with which our models can identify and detect cryptomining
flows among a heterogeneous set of Internet connections.

VOLUME 8, 2020 158045

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

Traditional machine learning models (LR, CART and RF)
were trained using the available Python code versions in
the well-known scikit-learn library. Not having available a
C4.5 implementation in the scikit-learn library, we utilised
the J48 version of C4.5 that was included in the Weka tool
[40]. Deep learning models (FCNN) were implemented in
Python using Keras framework [41] over Tensorflow [42]
to take advantage of GPU acceleration. All neural networks
were trained using the Adam optimiser [27], minimising
cross-entropy loss. In this case, the training process consisted
of a sequence of training iterations. Each training iteration
comprised 5 epochs and at the end of each iteration F1-score
was computed on the validation set and used as early stopping
criterion (i.e. after 10 iterations with no enhancement in the
validation metric the training process stopped). In any case,
the training stopped after 500 iterations. In addition note that
when training FCNNs, a small amount of the training data
(15%)was set aside and utilised for early stopping the number
of epochs during the training process and therefore avoiding
overfitting and local minimum stagnation.

B. RESULTS AND COMPARATIVE ANALYSIS OF MODELS
Using the random search procedure described previously and
DS1 dataset, we trained and validated 15model combinations
of LR, CART, C4.5 and RF and 74 of FCNN for each scenario
A, B and C. Having neural network models a greater num-
ber of hyperparameters, more hyperparameter combinations
were required to find out a significant number of models with
a decent performance.

The obtained results for scenarios A, B and C are shown
in Tables 3, 4 and 5 respectively. In these tables, each column
shows the testing results of the best representative for each
model (FCNN, RF, CART, C4.5 and LR) on the testing
dataset (DS2). The best representative for each model was
selected among all model combinations using their ranked
results in the validation dataset. Each model’s representative
is identified with a summary of its hyperparameters, includ-
ing architectural details, that are described using a compact
notation as in the following example:

#1/75 FCNN
[722, 847, 710]

0.001500, 0.000002
0.000012, 2;

F1 (macro) 0.9886)

The applied nomenclature is as follows:

• (1st line) #X /YmodelName: X and Y indicate respec-
tively the model position in the test ranking and the total
number of model combinations that were trained. Recall
that models shown in tables are always the best models
on validation. Therefore, a figure X close to 1 indicates
that a model obtaining good performance in the vali-
dation phase, performs consistently when tested with a
different DS2 dataset. Hence, we can be confident about
the performance of a model combination in real-time

production scenarios if the model was chosen among the
top models on validation.

• FCNN models add the following values:
– (2nd line) A list of values describing the neural net-

work architecture: [X0,X1, . . . ,Xi, . . . ,Xn] where n
is the number of layers and Xi is the number of units
in the layer i.

– (3rd and 4th lines) Dropout, L2 regularization value,
Adam learning rate and the value for the Class weight
(i.e. the weight of the cryptomining flow class with
respect to the normal traffic flow class as defined
in Table 2).

• Random Forest models include:
– The number of trees
– The Maximum depth limit for trees.

• Logistic Regressionmodels show the applied regulariza-
tion coefficient.

• CART models indicate the maximum depth for trees.
• C4.5 models include the confidence value (C) and the
minimum number of instances in the two most popular
branches (M).

• (last line) All models show the F1-score (macro) value
obtained in validation.

Tables 3, 4 and 5 show for each model the quality metrics
computed on the testing dataset. F1-score, Precision and
Recall macro values are presented jointly with Accuracy and
RoC and P-R Areas Under Curve (AUC ROC and AUC
P-R). Last row shows the Confusion Matrix in which the
values of cyptomining connections are disaggregated in two
figures for a better analysis. SSL value represents the number
of cryptomining encrypted flows and NoSSL represents the
non-encrypted ones.
From a global perspective, it can be observed that: a) com-

plex models -deep neural networks (FCNN), Random Forest
and C4.5- obtain much better results than simpler strategies
- CART and LR- in all scenarios; and b) the best results
were obtained in Scenario B, which proposes to utilise Tstat
features as input to machine learning models. Furthermore,
Scenario C, which utilised a combination of Tstat and Net-
Flow features, did not obtain any observable advantage with
respect to use only Tstat features (Scenario B).
Random Forest (RF) and C4.5 are the only models that

obtain decent results even in the context of Scenario A.
Using a less expressive set of features (NetFlow features),
RF obtained a satisfactory F1-score value of 0.9724 that is
however worse than the one obtained in Scenarios B and C
(0.9964 and 0.9957). RF superior performance when com-
pared with simpler approaches as CART decision trees is
explained by the usage of boosting techniques that make
it more resistant to problems such as noise [22]. It can be
observed that 77 flows of normal traffic were classified as
cryptomining (false positives) in Scenario A but only 31 and
25 in Scenarios B and C. However 393 false negatives (cryp-
tomining flows that are not detected) were produced in Sce-
nario A, which is more than 10 times the number of false

158046 VOLUME 8, 2020

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

TABLE 3. Scenario A: Overall results with the testing dataset (DS2 dataset) of the best models chosen based on the validation dataset using Netflow
feature selection method.

TABLE 4. Scenario B: Overall results with the testing dataset (DS2 dataset) of the best models chosen based on the validation dataset using Tstat feature
selection method.

TABLE 5. Scenario C: Overall results with the testing dataset (DS2 dataset) of the best models chosen based on the validation dataset using Netflow and
Tstat feature selection method.

VOLUME 8, 2020 158047

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

negatives observed in Scenarios B and C (33 and 50). This
means that using only Netflow features, RF fails to detect
10 times the number of cryptomining flows not detectedwhen
using Tstat features (Scenarios B and C). Regarding that one
of the main goals of this work is to provide machine learn-
ing methods for detecting with accuracy as many (malware)
cryptomining flows as possible, this result demonstrates that
MLmodels using only Netflow features (Scenario A) seem to
fail in their purpose when compared with ML models using
Tstat features (Scenarios B and C). The best results with RF
were obtained with a small of estimators (between 25 and
100 trees) and with modest tree depth limits (between 40 and
200 with one case of no depth limit). The best C4.5 model
obtained nearly identical F1-score and confusion matrix val-
ues and therefore, we can conclude that their performance is
roughly the same in the three scenarios.

FCNN deep models performed in a similar range than RF
in Scenarios B and C, obtaining F1-score (macro) values
of 0.9902 and 0.9910 respectively and approximately equal
figures for false positives and negatives. From an architectural
point of view, only three hidden layers with approximately
700-800 neurons in each layer were needed in order to obtain
the best performance. However, FCNN produced signifi-
cantly bad results when using NetFlow features (Scenario
A). The best configuration only achieved a F1-score value
of 0.6387 reflecting the appearance of a big number of false
positives of the cryptomining class (3697) with respect to the
true positives detected for this class (727). In addition, note
that the number of false positives was significantly smaller
in the case of RF (393). We conjecture that the existing
class unbalance jointly with the moderate quality of Netflow
features did not allowed the NN optimization algorithm to
reduce in similar proportions the number of false negatives
and positives and to increase the true positives of the crypto-
mining class.

In all three scenarios, CART models showed greater F1-
score values in training (0.9739, 0.9975 and 0.9963) than in
testing (0.8970, 0.6767 and 0.6762), which clearly indicates
that these models tend to overfit training datasets. In addition,
a extremely high number of false negatives (1338) and false
positives (16032 and 16055) were observed respectively in
scenario A and in scenarios B and C. Therefore, we would
discourage CART usage for detecting cryptomining flows in
production environments due to the lack of generalization
and the high number of false positives and negatives that
these models exhibited in all scenarios. It is interesting to
note that these models seem to generalise slightly better when
only Netflow features are used as in Scenario A (0.8970 F1-
score in testing). We conjecture that Netflow features utilised
in Scenario A provide less information during training than
Tstat ones and therefore, the resultant overfitting is not so
severe than in Scenarios B and C.

Logistic Regression models could only be correctly trained
with Tstat features (Scenarios B and C), obtaining decent
F1-score values of 0.9805 and 0.9789 respectively. However,
in Scenario A, LR models were not able to identify any

cryptomining flow as all flows were classified as normal
traffic. Confusion matrices of Scenarios B and C show a
greater number of false positives and negatives than RF and
FCNN. This fact could preclude the usage of these simple
models in cybersecurity scenarios in which the reduction of
false positives and negatives is essential. It is worth noting
that using a significant regularization, this model generalised
much better than CART models when Tstat features were
used (Scenarios B and C).

Regarding that the ratio of encrypted (SSL) versus non-
encrypted (NoSSL) cryptomining connections in the testing
dataset is approximately 2:1 - figures can be found in Con-
fusion Matrix cells in the left bottom corner in Tables 3, 4
and 5 -, the proportion of false positives with SSL network
traffic in Scenario A is more than two times the original ratio:
this ratio is approximately 7:1 in RF, 6.5:1 in C4.5, 10:1 in
CART and 4:1 in FCNN. For Logistic Regression this value is
irrelevant because the model failed to classify anything as all
traffic was predicted as class 0 (Normal traffic). When Tstat
features were used in scenarios B and C, the SSL/NoSSL ratio
of false positives in cryptomining flows was 2:1 for Random
Forest and CARTmodels, 3:1 for C4.5, approximately 3:1 for
FCNN model and 4:1 for Logistic Regression model, which
clearly indicates that Tstat features helped to consistently
identify cryptomining flows even when they were encrypted.

Figures 6 and 7 clearly show that RF C4.5, and FCNN
models exhibit very good separability values for the decision
function in ROC and P-R curves when Tstat features are
used, as their areas under the ROC/P-R curves are both above
0.99 for RF and 0.98 for FCNN and C4,5. Note that P-R
curves tend to be rather sensitive to unbalanced distributions
as the ones we are considering in our experiments. In this
context, it can be observed in the P-R figures that CART trees
do not achieve a good separability behaviour with small AUC
values of 0.6 and curve shapes very close to the diagonal. It is
worth noting that when Netflow features are used (figure 5)
only RF and C4.5 showed decent separability results and
conversely, FCNN generated a highly unstable behaviour as
shown in a P-R curve that abruptly went to zero both on the
left and on the right due to precision reaching values very
close to zero. This instability was caused because (a) the
number of true positives (for the cryptomining class) went
to zero when the decision threshold was greater or equal
than 0.6 (and therefore, precision was also zero), and (b)
the number of false positives abruptly moved from 86 to
205,048 when decision threshold was less than 0.5, being the
number of true positives around 700 (and therefore, precision
was approximately zero).

At the light of these results we can conclude that (a) the
set of Netflow features used in Scenario A produced less
accurate models than when Tstat features were selected as
input (Scenarios B and C), and (b) RF, C4.5 and FCNN mod-
els consistently obtained better results than simpler models
such as CART and Logistic Regression. In particular, the best
results were obtained using Tstat features and RF, C4.5 and
FCNN models. These models achieved a F1-macro value of

158048 VOLUME 8, 2020

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

FIGURE 5. ROC and P-R curves for the testing dataset of the best models chosen based on the validation dataset. Features
extraction method ‘‘NetFlow’’.

FIGURE 6. ROC and P-R curves for the testing dataset of the best models chosen based on the validation dataset. Features
extraction method ‘‘Tstat’’.

FIGURE 7. ROC and P-R curves for the testing dataset of the best models chosen based on the validation dataset. Features
extraction method ‘‘Combined’’.

approximately 0.99 reflecting that only a very small number
of false positives and negatives were produced - less than
4% of the total number of cryptomining flows -. Conversely,
using only Netflow features the number of false negatives
tripled the true positives which highlighted a lack of precision
when identifying cryptomining flows. Additionally, the ratio
of SSL/Non_SSL cryptomining flows appearing as false neg-
atives was greater than in the whole set of cryptomining
flows, which reflects the inability of these features for the
precise identification of encrypted (SSL) cryptomining flows.

Future scenarios, in which more and more cryptomining
flows are expected to be encrypted, will not suggest the solely
utilisation of this limited set of features.

Finally, it is worth noting that the high accuracy of the
best models was not achieved at the expense of long training
sessions. It is the combination of highly informative features
(i.e. Tstat features) with complex machine learning models
that achieves high values of accuracy, precision and recall.
Regarding that the same training processes were applied for
the three feature sets, it can be observed that the performance

VOLUME 8, 2020 158049

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

FIGURE 8. Models training time computed with 10 random search executions on an PC workstation.

FIGURE 9. Models prediction speed computed with 10 random search executions on an PC workstation.

decreased significantly when we used less informative fea-
tures (Netflow feature set). Figures 8 and 9 present train-
ing times and prediction speeds of each model (mean and
standard deviation are plotted in the figures). A modest PC
workstationwith an Intel i5-9400F at 2.90GHzwith 6 threads
cpu, 64 Gbytes of RAM and equipped with a GTX1080 GPU
was used for training and testing. It can be observed that the
training times for all models are always below 40 minutes for
16 millions of examples and tend to be proportional to the
number of input features. Similarly, predictions are inversely
proportional to the model complexity and in the range of mil-
lions per second using the same hardware. Note that C4.5 was

run using the J48 version available in the Weka tool and
therefore, its prediction performance was significantly worse
than the rest of the models that were coded directly in Python.

C. RESULTS SEGREGATED BY NUMBER OF PACKETS AND
CONNECTION DURATION
With the aim to study how stable the predictions of a model
are along the whole life of flows, we present the previous
testing results of the best performing configurations in val-
idation for each model and scenario segregated by ranges
of transmitted packets and flow duration. In Figure 10 we

158050 VOLUME 8, 2020

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

FIGURE 10. F1 (macro) score on testing segregated by packet ranges.

FIGURE 11. F1 (macro) score on testing segregated by connection duration ranges.

TABLE 6. Number of network flows (total number and percentage over
the total) and number of cryptomining flows segregated by packet ranges.

present the testing metrics computed for the networks flows
contained in the testing dataset, grouping flows by ranges of
transmitted packets. In this way, we can determine how many
flow packets are needed to be transmitted in order to be able

TABLE 7. Number of network flows (total number and percentage over
the total) and number of cryptomining flows segregated by connection
duration in seconds.

to predict with a specific precision whether the flow is normal
traffic or a cryptomining connection. Additionally, we show
metrics for the networks flows in the testing dataset grouping
flows by periods of time measured in seconds in Figure 11.

VOLUME 8, 2020 158051

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

These metrics allow us to estimate how many seconds are
needed to identify with a certain precision whether a flow is
a cryptomining or a normal connection.

Figure 10 shows the macro F1-Score values obtained in
testing for the best performing models’ configurations in val-
idation for scenarios A, B andC. The results are segregated by
intervals of packets that represent the sum of all packets sent
from a client to a server and from a server to a client during a
connection. Note that the establishment of a TCP connection
involves the transmission of 3 packets and the set up of an
encrypted new SSL connection involves the transmission of
at least 4 additional packets (without resumption). Therefore,
it is practically impossible to identify whether a SSL connec-
tion carries a normal or a cryptomining flow with less than
7 packets. Moreover, for a non-encrypted TCP connection we
need at least 4 packets to identify it as the first three packets
are common to all (encrypted and non encrypted) TCP con-
nections. Recall that, as a basic assumption of our analysis,
we did not use as input features either IP addresses or ports.
Table 6 shows the number of flows included in each range
of packets as absolute value and percentage of total jointly
with the number of cryptomining flows falling in this
interval.

Analyzing the obtained results using Netflow features, it
can be observed that neither model achieves good results in
any interval with the exception of RF and C4.5 that need at
least 200 packets to be transmitted in order to obtain a F1-
score greater than 0.99. This result of RF and C4.5 models is
not very useful in practice considering that the transmission
rate of cryptomining flows is extremely low if compared
with normal traffic rates and therefore, it would take approx-
imately 30-45 minutes from its creation to identify a cryp-
tocurrency flow with high precision (F1-score of 0.99). In
addition, CART model exhibits a significant lack of stability
because F1-score starts decreasing in flows with more than
300 packets. However, F1-score values in FCNN, C4.5 and
RF models show a monotonically increasing behaviour and
never destabilise as CART model does. Logistic Regression
could not be trained using these features and therefore, an F1-
score of 0.5 was obtained consistently in all intervals. Con-
versely, by using Tstat features FCNN, C4.5 and RF obtain
an F1-score of 1 (100% of accuracy, precision and recall)
after a small number of packets (10 for RF and C4.5 and
75 for FCNN). CART and LR also achieved an F1-score
of 1 with few packets but as in the former scenario, they
destabilise (decreasing their F1-score) when the number of
packets increased (200 packets in CART and 400 packets in
LR). Results using combined Netflow and Tstat features in
Scenario C show similar results than in Scenario B with a
slight enhancement in the case of FCNN that achieved an F1-
score of 1 with only 20 packets.

Figure 11 shows the F1-score (macro) results per model
and segregated by time intervals. In each time interval we
include flows that have been alive since their establishment a
number of seconds falling in such range. Therefore, the same
flow can be sampled at different instants of time with its

features appearing several times in the same dataset and
in different time intervals. For example, a TCP connection
with a total duration of 200 seconds, will appear as different
flow occurrences in the intervals [0,1], [1,60], [60,120] and
[120,300]. Table 7 shows the total number and percentage of
flows jointly with the number of cryptomining flows appear-
ing in each interval.

Reported results in Figure 11 are similar to the ones
obtained when segregating results by packet ranges. When
using Netflow features, only the RF and C4.5 models behave
nicely but achieving an F1-score of .999 only when the flow
duration is greater than 2400 seconds. Note that in the set of
flows that last for 1200 seconds or more, the percentage of
cryptomining connections is much greater than in the rest of
intervals including flows with a shorter existence (Table 7).
This significant difference is explained by the fact that cryp-
tomining protocols tend to set up connections for long periods
of time which are not so frequent in normal traffic flows.
Therefore, the classification with a greater precision of long-
lasting flows is easier than in the rest of time intervals. Using
Tstat features, RF and C4.5 obtain perfect classification (F1-
score of 1) after 60 seconds and FCNN needs some extra
time (300 seconds). CART and Logistic Regression exhibit
the previously commented destabilisation when the flows are
long-lasting. When both set of features are combined in Sce-
nario C no significant differences appeared when compared
with models using only Tstat features.

At the light of the obtained results when flows are seg-
regated by packet or time intervals, we can conclude that
(a) the best results (F1-score of 1) are achieved using Tstat
features and in the case of RF and C4.5 models as soon as
the flow has transmitted 10 packets or after having passed
only 60 seconds from the flow creation and (b) RF, C4.5 and
FCNN models do not destabilise even when only Netflow
features are used (i.e., in these models, F1-score increases
monotonically with the number of packets transmitted in
the flow. However, CART and Logistic Regression models
exhibited an unstable behavior when the number of packets
in flows reached 200 packets in CART and 400 in LR, orwhen
flows are alive more than 1200 seconds in CART and 2400 in
LR, which might preclude their usage in real production
environment.

IX. CONCLUSION AND FUTURE WORK
We designed, trained and tested a set of machine and
deep learning models for detecting cryptomining activity.
We selected several complex models such as Deep Neural
Networks, Random Forest and C4.5 in order to compare
their performance with known research. As a novelty with
respect to other proposals and in order to evaluate machine
learning performance in realistic scenarios, encrypted and
non-encrypted flows of normal and cryptomining traffic
were considered in our experiments. As a main contribu-
tion, we proposed a new set of highly informative features
derived from the Tstat tool statistics to test whether using
highly informative features can increase machine learning

158052 VOLUME 8, 2020

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

performance of complex models. We used the Tstat tool to
derive this set of 51 features per flow and a second set of 8
features was extracted from IETF standart NetFlow/IPFIX
metrics.

We set up a controlled network environment in the Mouse-
world Lab at Telefonica R&D premises, using real clients and
servers to generate realistic experiments with cryptomining
traffic competing with normal traffic (web surfing, video
and audio streaming, cloud storage, file transfer, email and
P2P among others) over a dedicated network with Internet
connectivity. Cryptomining clients were connected to real
mining pools in the Internet and Monero was chosen as the
cryptocurrency of our experiments as it is by far the favorite
cryptocurrency among cybercriminals. Monero clients run
the Stratum protocol, which is the most widespread protocol
used to distribute the mining process. Both encrypted and
plain connections were established not only for the Stratum
protocol but also for the rest of traffic in order to generate
realistic traffic traces. The traffic generated by the exper-
iments was utilised for two different tasks. Firstly, traffic
was captured, labelled and stored for training supervised
machine learning models. Later, traffic was input in real
time to machine learning models for testing purposes. Three
scenarios were configured, the first using the Netflow derived
features, the second only with Tstat derived features and the
last joined both sets of features.

The best results were obtained using the set of features
derived from Tstat and it is worth noting that joining the
two sets of features (Tstat + Netflow) we did not obtain
any observable advantage with respect to using only Tstat
features. Conversely, the set of Netflow derived features,
which represent the current state of the technique, produced
instability and bad performance in predictions and therefore,
we suggest that industry should adopt more exhaustive fea-
tures when usingmachine and deep learning in order to obtain
the expected performance and stability. Furthermore, when
Random Forest, C4.5 and Deep Neural Networks were used
in conjunction with Tstat features, the detection of encrypted
cryptomining connections was done with a similar perfor-
mance than with plain (non-encrypted) connections. On the
other hand, when simpler machine learning models or Net-
flow features were used, the detection of encrypted crypto-
mining flows suffered from a lack of precision and accuracy
that was proportionally greater than the obtained with non-
encrypted cryptomining flows.

In the light of the obtained results it can be concluded
that our proposal of using sufficiently exhaustive features
as input to complex machine learning models, such as
Random Forest, C4.5 or Fully Connected Deep Neural net-
works, allows to deploy precise, accurate and stable mech-
anisms for detecting cryptomining activity as required by
industry.

Future work will extend current research with new
experiments using different cryptomining protocols and cryp-
tocurrencies, which could imply the design of more complex
models to learn new patterns of cryptomining activity.

REFERENCES
[1] J. Lewis, The Economic Impact of Cybercrime—No Slowing Down.

Santa Clara, CA, USA: McAfee, 2018.
[2] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.

[Online]. Available: https://git.dhimmel.com/bitcoin-whitepaper/.
[3] Deadcoins. Deadcoins Curated List of Cryptocurrencies and ICOs.

Accessed: Feb. 23, 2020. [Online]. Available: https://deadcoins.com
[4] L. Ren and S. Devadas, ‘‘Bandwidth hard functions for ASIC resis-

tance,’’ in Theory of Cryptography, (Lecture Notes in Computer Science),
vol. 10677. Cham, Switzerland: Springer, 2017, pp. 466–492.

[5] GithubRepository, Tevador. (2019). RandomX: Experimental Proof of
Work Algorithm Based on Random Code Execution. [Online]. Available:
https://github.com/tevador/RandomX

[6] S. Pastrana and G. Suarez-Tangil, ‘‘A first look at the crypto-mining
malware ecosystem: A decade of unrestricted wealth,’’ in Proc. Internet
Meas. Conf., Oct. 2019, pp. 73–86.

[7] J. Z. I. Munoz, J. Suarez-Varela, and P. Barlet-Ros, ‘‘Detecting cryptocur-
rency miners with NetFlow/IPFIX network measurements,’’ in Proc. IEEE
Int. Symp. Meas. Netw. (M&N), Jul. 2019, pp. 1–6.

[8] S. Haber and W. S. Stornetta, ‘‘How to time-stamp a digital document,’’
J. Cryptol., vol. 3, no. 2, pp. 99–111, Jan. 1991.

[9] Braiins Systems. Stratum V2 | The Next Generation Protocol for
Pooled Mining. Accessed: Jan. 23, 2020. [Online]. Available:
https://stratumprotocol.org/

[10] Braiins Systems. Stratum Mining Protocol. Accessed: Jan. 23, 2020.
[Online]. Available: https://slushpool.com/help/topic/stratum-protocol/

[11] JSON-RPC Working Group. JSON-RPC 2.0 Specification. Accessed:
Feb. 23, 2020. [Online]. Available: https://www.jsonrpc.org/specification

[12] R. Recabarren and B. Carbunar, ‘‘Hardening stratum, the bitcoin pool
mining protocol,’’ Proc. Privacy Enhancing Technol., vol. 2017, no. 3,
pp. 57–74, Jul. 2017.

[13] A. Swedan, A. N. Khuffash, O. Othman, and A. Awad, ‘‘Detection and
prevention of malicious cryptocurrency mining on Internet-connected
devices,’’ in Proc. 2nd Int. Conf. Future Netw. Distrib. Syst. (ICFNDS),
2018, pp. 23:1–23:10.

[14] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel, H. Bos,
and G. Vigna, ‘‘MineSweeper: An in-depth look into drive-by cryptocur-
rency mining and its defense,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Jan. 2018, pp. 1714–1730.

[15] D. Carlin, P. OrKane, S. Sezer, and J. Burgess, ‘‘Detecting cryptomining
using dynamic analysis,’’ in Proc. 16th Annu. Conf. Privacy, Secur. Trust
(PST), Aug. 2018, pp. 1–6.

[16] J. Liu, Z. Zhao, X. Cui, Z. Wang, and Q. Liu, ‘‘A novel approach for
detecting browser-based silent miner,’’ in Proc. IEEE 3rd Int. Conf. Data
Sci. Cyberspace (DSC), Jun. 2018, pp. 490–497.

[17] A. Kharraz, Z. Ma, P. Murley, C. Lever, J. Mason, A. Miller, N. Borisov,
M. Antonakakis, and M. Bailey, ‘‘Outguard: Detecting in-browser
covert cryptocurrency mining in the wild,’’ in Proc. World Wide Web
Conf. (WWW), 2019, pp. 840–852.

[18] J. Berkson, ‘‘Application of the logistic function to bio-assay,’’ J. Amer.
Stat. Assoc., vol. 39, no. 227, pp. 357–365, Sep. 1944.

[19] J. Cramer, ‘‘The origins of logistic regression,’’ Tinbergen Inst. Discuss.
Papers 02-119/4, 2002.

[20] D. Steinberg, ‘‘CART: Classification and regression trees,’’ in The Top
Ten Algorithms Data Mining, X. Wu and V. Kumar, Eds. London, U.K.:
Chapman & Hall, 2009, ch, 10.

[21] J. R. Quinlan, C4.5: Programs for Machine Learning. Amsterdam,
The Netherlands: Elsevier, 2014.

[22] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[23] T. En-Najjary, G. Urvoy-Keller, M. Pietrzyk, and J.-L. Costeux,
‘‘Application-based feature selection for Internet traffic classification,’’ in
Proc. 22nd Int. Teletraffic Congr. (lTC), Sep. 2010, pp. 1–8.

[24] T. En-Najjary and G. Urvoy-Keller, ‘‘A first look at traffic classification in
enterprise networks,’’ in Proc. 6th Int. Wireless Commun. Mobile Comput.
Conf. ZZZ (IWCMC), 2010, pp. 764–768.

[25] Y. Wang and S.-Z. Yu, ‘‘Machine learned real-time traffic classifiers,’’
in Proc. 2nd Int. Symp. Intell. Inf. Technol. Appl., vol. 3, Dec. 2008,
pp. 449–454.

[26] J. Li, S. Zhang, Y. Xuan, and Y. Sun, ‘‘Identifying skype traffic by random
forest,’’ in Proc. Int. Conf. Wireless Commun., Netw. Mobile Comput.,
Sep. 2007, pp. 2841–2844.

VOLUME 8, 2020 158053

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

[27] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic
optimization,’’ 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

[28] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning
internal representations by error propagation,’’ in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, vol. 1.
Cambridge, MA, USA: MIT Press, 1986, pp. 318–362.

[29] A. Saied, R. E. Overill, and T. Radzik, ‘‘Detection of known and unknown
DDoS attacks using artificial neural networks,’’Neurocomputing, vol. 172,
pp. 385–393, Jan. 2016.

[30] A. Pastor, A. Mozo, D. R. Lopez, J. Folgueira, and A. Kapodistria, ‘‘The
mouseworld, a security traffic analysis lab based on NFV/SDN,’’ in Proc.
13th Int. Conf. Availability, Rel. Secur. (ARES), 2018, pp. 57:1–57:6.

[31] fireice-uk. FIREICE-UK/XMR-STAK: Free Monero RandomX Miner and
Unified CryptoNight Miner. Accessed: Dec. 28, 2019. [Online]. Available:
https://github.com/fireice-uk/xmr-stak/

[32] Xmrig Team. XMRIG/XMRIG: RandomX, CryptoNight, AstroBWT and
Argon2 CPU/GPU Miner. Accessed: Jan. 23, 2020. [Online]. Available:
https://github.com/xmrig/xmrig

[33] The Monero Project. Home | Monero-Secure, Private, Untraceable.
Accessed: Feb. 23, 2020. [Online]. Available: https://www.getmonero.org/

[34] T. T. T. Nguyen and G. Armitage, ‘‘A survey of techniques for Internet
traffic classification using machine learning,’’ IEEE Commun. Surveys
Tuts., vol. 10, no. 4, pp. 56–76, 4th Quart., 2008.

[35] A. Dainotti, A. Pescape, and K. Claffy, ‘‘Issues and future directions in
traffic classification,’’ IEEE Netw., vol. 26, no. 1, pp. 35–40, Jan. 2012.

[36] A. Habibi Lashkari, G. Draper Gil, M. S. I. Mamun, and A. A. Ghorbani,
‘‘Characterization of tor traffic using time based features,’’ in Proc. 3rd Int.
Conf. Inf. Syst. Secur. Privacy, 2017, pp. 253–262.

[37] A. Finamore, M. Mellia, M. Meo, M. M. Munafo, P. D. Torino, and
D. Rossi, ‘‘Experiences of Internet traffic monitoring with tstat,’’ IEEE
Netw., vol. 25, no. 3, pp. 8–14, May 2011.

[38] G. Shobha and S. Rangaswamy, ‘‘Machine learning,’’ in Computational
Analysis and Understanding of Natural Languages: Principles, Meth-
ods and Applications (Handbook of Statistics), vol. 38, V. Gudivada
and C. Rao, Eds. Amsterdam, The Netherlands: Elsevier, 2018, ch. 8,
pp. 197–228.

[39] A.Mozo, I. Segall, U. Margolin, and S. Gomez-Canaval, ‘‘Scalable predic-
tion of service-level events in datacenter infrastructure using deep neural
networks,’’ IEEE Access, vol. 7, pp. 179779–179798, 2019.

[40] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, ‘‘The WEKA data mining software: An update,’’ ACM
SIGKDD Explor. Newslett., vol. 11, no. 1, pp. 10–18, 2009.

[41] F. Chollet. (2015). Keras. [Online]. Available: Available: https://keras.io
[42] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, ‘‘Tensorflow: A system
for large-scale machine learning,’’ in Proc. 12th USENIX Symp. Oper. Syst.
Design Implement. (OSDI), 2016, pp. 265–283.

ANTONIO PASTOR received the M.Sc. degree
in industrial engineering from the University Car-
los III of Madrid (UC3M), Spain, in 1999. Since
then, he has been with Telefónica I+D (Research
and Development), Spain, where he works on the
engineering of different worldwide Telefónica net-
works. From 2006 to 2011, he worked as an Expert
in network security for Telefónica. Since 2012, as a
part of the Telefónica Global CTIO, he has been
leading innovation activities in network security

based on network virtualization, SDN, and artificial intelligence, where he
has produced several patents and scientific articles. Additionally, he holds
several certifications from ISACA and GIAC in this area.

ALBERTO MOZO received the M.Sc. and Ph.D.
degrees in computer science from the Universidad
Politécnica de Madrid. He is currently a Professor
with the Universidad Politécnica de Madrid. His
current research interests include network proto-
cols and machine learning. He has been involved
in the technical leadership of several research
projects funded by the European Commission
related to the application of machine learning to
cybersecurity, network, and cloud management

scenarios.

STANISLAV VAKARUK received the B.Eng.
degree in computer science and the M.Sc. degree
in artificial intelligence from the Universidad
Politécnica deMadrid. He is currently pursuing the
Ph.D. degree in artificial intelligence. He is also a
Research Personnel in training. His research inter-
ests include unconventional computing models,
parallel and distributed algorithms, and machine
learning.

DANIELE CANAVESE received the M.Sc. and
Ph.D. degrees in computer engineering from the
Politecnico di Torino, in 2010 and 2016, respec-
tively. He is currently a Research Assistant with
the Politecnico di Torino. His research interests
include securitymanagement viamachine learning
and inferential frameworks, software protection
systems, public key cryptography, and models for
network analysis.

DIEGO R. LÓPEZ joined Telefónica I+D,
in 2011, as a Senior Technology Expert. He is
currently in charge of the technology exploration
activities within the GCTIO Unit. Before joining
Telefónica, he spent some years in the academic
sector, dedicated to research on network services,
and was appointed as a member of the High-Level
Expert Group on Scientific Data Infrastructures by
the European Commission. His current research
interest includes applied research applicable to

network infrastructures, with a special emphasis on virtualization, data-
enhanced management, new architectures, and security. He chairs the ETSI
ISGs on Network Function Virtualization and Permissioned Distributed
Ledgers.

LEONARDO REGANO received the M.Sc. and
Ph.D. degrees in computer engineering from the
Politecnico di Torino, in 2015 and 2019, respec-
tively. He is currently a Research Assistant with
the Politecnico di Torino. His current research
interests include software security, applications
of artificial intelligence and machine learning to
cybersecurity, analysis of security policies, and
assessment of software protection techniques.

158054 VOLUME 8, 2020

A. Pastor et al.: Detection of Encrypted Cryptomining Malware Connections

SANDRA GÓMEZ-CANAVAL received theM.Sc.
degree in software engineering and the Ph.D.
degree in computer science and artificial intel-
ligence from the Universidad Politécnica de
Madrid. She is currently an Associate Professor
with the Universidad Politécnica de Madrid. Her
research interests include unconventional comput-
ing models, parallel and distributed algorithms,
and machine learning. Her research results have
been published in specialized journals and inter-

national conferences in these areas.

ANTONIO LIOY (Member, IEEE) received the
M.Sc. degree (summa cum laude) in electronic
engineering and the Ph.D. degree in computer
engineering from the Politecnico di Torino. He
is currently a Full Professor with the Politecnico
di Torino, where he leads the TORSEC Cyber-
security Research Group. His research interests
include network security, public-key infrastructure
(PKI), electronic identity, and policy-based system
protection.

VOLUME 8, 2020 158055

