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Data-driven disturbance estimation and control
with application to blood glucose regulation

Carlo Novara, Ivana Rabbone, Davide Tinti

Abstract—A data-driven control approach for nonlinear
systems is proposed, called Data-Driven Estimation and
Control (D2EC), which combines a disturbance estimator
and a nonlinear control algorithm. The estimator provides
a signal representing the unknown disturbances affecting the
plant to control. This signal is used by the control algorithm
to improve its performance. A real-data study is presented,
concerned with regulation of blood glucose concentration
in type 1 diabetic patients. Preliminary tests of the the
D2EC approach are also carried out using a diabetic patient
simulator, obtained from a revised version of the well-known
UVA/Padova model. Both the real-data and the simulator-
based studies indicate that the proposed approach has the
potential to become an effective tool in the context of diabetes
treatment and, more in general, in the biomedical field, where
accurate first-principle models can seldom be found and
relevant disturbances are present.

I. INTRODUCTION

Controlling a real-world system may be hard for several
reasons. Among the most relevant difficulties, we can
distinguish the following three: First, the plant to control
may be highly nonlinear, so that linear control techniques
are inappropriate. Second, the plant may be not well known
or too complex to model using first-principle equations.
Third, non-measured disturbances may be present, affect-
ing considerably the plant behavior.

These issues may prevent the classical control ap-
proaches from working properly. In the nonlinear case,
examples are Feedback Linearization [1], [2], Lyapunov
function based control [3], [4] and standard Nonlinear
Model Predictive Control (NMPC), [5], [6], [7]. These
approaches typically assume that an accurate first-principle
model describing the system dynamics is available and that
the involved disturbances are sufficiently small. However,
in many practical situations, deriving an accurate first-
principle model is difficult: the system dynamics may be
not well understood and/or too complex; there may be
parameters that are difficult to measure/estimate. In these
situations, only approximate/inaccurate first-principle mod-
els can be derived. Moreover, the presence of unmeasured
disturbances may lead to a significant degradation of the
plant performance.

Robust methods have been developed to deal with the
issue of approximate modeling, [8], [9], [10]. However,
deriving the required uncertainty models is not easy even
for Linear Time Invariant (LTI) systems (see e.g. [11] and
the references therein), and is still an open problem in the
case of nonlinear systems.
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and D. Tinti are with Ospedale Sant’Anna, Torino, Italy. Email:
carlo.novara@polito, ivana.rabbone@unito.it,
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Active Disturbance Rejection Control (ADRC) and Em-
bedded Model Control (EMC) proved to be quite effective
methods to deal with significant disturbances, [12], [13].
These methods rely on the knowledge of the plant physical
model structure and, in particular, on the assumption that
the plant model is affine in the control input (analogously
to what done in Feedback Linearization). However, such
assumptions on the model structure may not hold in several
real situations.

A change of paradigm is represented by data-driven
methods, which can be roughly classified in two main
categories (in the following, only works related to non-
linear systems are cited): indirect techniques, which em-
ploy the data to identify some model to use for control,
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23];
direct techniques, which obtain the controller directly
from the available input-output data, [24], [25], [26],
[27], [28], [29]. There is a third category, represented
by adaptive/reinforcement learning techniques, where the
controller (or the model or both of them) is tuned using
the data measured during online operations, [18], [30],
[31], [32], [33], [34], [35]; since adaptive/reinforcement
learning techniques can be employed within any more
general approach, this latter category can be seen as a sub-
category of the previous two.

Data-driven methods can effectively deal with highly
nonlinear systems and are not affected by the problem
of approximate modeling, since the controller is synthe-
sized from data, without requiring a first-principle model.
Notwithstanding these nice features, serious problems may
arise in the presence of relevant disturbances. Indeed, these
disturbances may not allow a sufficiently accurate model
identification (indirect techniques) and/or an effective con-
trol design (indirect and direct techniques). Even in cases
where some effective model and/or controller have been
found, the disturbances, if not properly accounted for, may
yield significant degradations of the control performance.

In this paper, a data-driven control design approach for
nonlinear systems is proposed, allowing us to overcome
the aforementioned problems. The approach combines the
blind identification technique of [36] and the Nonlinear
Inversion Control (NIC) algorithm of [37], [38]. The blind
identification technique allows us to derive an estimator
of the unknown disturbances, whose output is used by
the NIC algorithm to improve its control performance.
The overall controller is composed by an estimator and
a control algorithm, and both of them are synthesized
from experimental data, without requiring a first-principle
model. The method is here named Data-Driven Estimation
and Control (D2EC).
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Thanks to these features, the D2EC approach may
be particularly effective in the biomedical field, for the
treatment of various diseases, where deriving accurate
physiological models is difficult, there is a strong vari-
ability among the patient population and the disturbances
strongly affect the patient conditions. The D2EC approach
allows indeed the design of treatment strategies that are
personalized for each patient, avoiding the population vari-
ability problem. It does not require accurate physiological
models: control design can be carried out from a set of
data acquired in a preliminary phase of the treatment.
Disturbances are estimated on-line in order to improve the
control performance.

In summary, the main contributions of this paper are
two. The first one consists in the idea of combining a
data-driven disturbance estimator and a data-driven control
algorithm. To the best of our knowledge, no methods
can be found in the literature using a combination of a
disturbance estimator and a nonlinear controller, where
both these elements are designed from data. Note also
that the proposed technique for designing the disturbance
estimator is novel. Such a technique is based on a model
identified by the blind identification approach of [36] and
allows us to build an estimator with a NARX (Nonlinear
AutoRegressive with eXogenous inputs) structure, that is
able to recover the unknown disturbance in real-time. The
control algorithm is an extension of the one proposed in
[38] and the related closed-loop stability analysis is novel,
in the sense that it accounts for the estimator in the loop,
that is not present in [37], [38].

The second contribution is a real-data study, concern-
ing regulation of blood glucose concentration in type 1
diabetic patients. First, a model of a diabetic patient is
identified from a subset of the available experimental data.
This model represents the (unknown) patient, for which
a glucose regulator has to be designed. In other words,
this patient model is used instead of a real patient (future
activities will hopefully be devoted to test the D2EC
approach in clinical trials with real patients). Then, a
D2EC therapy control strategy is designed using a given
set of data, and afterward tested using fresh data, not
previously used for controller/estimator design. This study
shows that the D2EC strategy is effective in regulating
the blood glucose concentration of the patient model,
yielding a significantly better treatment quality with respect
to a “manual” strategy, where the insulin is injected by
the patient on the basis of his/hers experience and of
the indications coming from a semi-automated glucose
regulation device. The treatment quality of the D2EC
strategy is comparable with the one provided by an ideal
NMPC controller, which uses exact information on the
true patient model and on the disturbance. In the context
of blood glucose regulation, the D2EC approach is also
tested using a diabetic patient simulator, obtained from
a revised version of the well-known UVA/Padova model.
The obtained results are similar to those obtained using
our data-driven models, confirming that the approach can
work, also when the system to control is characterized by
a completely different model structure and a completely
different class of nonlinearities with respect to those used

by the D2EC approach.

II. NOTATION

A column vector x ∈ Rnx×1 is denoted by x =
(x1, . . . , xnx). A row vector x ∈ R1×nx is denoted by
x = [x1, . . . , xnx ] = (x1, . . . , xnx)

>, where > indicates
the transpose.

A discrete-time signal (i.e. a sequence of vectors) is
denoted with the bold style: x = (x1, x2, . . .), where
xt ∈ Rnx×1 and t = 1, 2, . . . indicates the discrete time;
xi,t is the ith component of the signal x at time t.

The `p norm of a vector x = (x1, . . . , xnx) is defined
as

‖x‖p
.
=

{
(
∑nx
i=1 |xi|

p
)

1
p , p <∞,

maxi |xi| , p =∞.

The `0 quasi-norm of a vector is defined as the number of
its non-zero components.

The `p norm of a signal x = (x1, x2, . . .) is defined as

‖x‖p
.
=

{
(
∑∞
t=1

∑nx
i=1 |xi,t|

p
)

1
p , p <∞,

maxi,t |xi,t| , p =∞,

where xi,t is the ith component of the signal x at time t.
The Lp norm of a function with domain X ⊆ Rnx and

codomain in R, is defined as

‖f‖p
.
=


[∫
X
‖f (x)‖pp dx

] 1
p

, p ∈ (1,∞),

ess supx∈X ‖f (x)‖∞ , p =∞.

These norms give rise to the well-known `p and Lp
Banach spaces. For simplicity, the norms without the
subscript are defined as ‖·‖ .

= ‖·‖∞ for both the `∞ and
L∞ cases.

III. PROBLEM FORMULATION AND PROPOSED
APPROACH

Consider a nonlinear discrete-time system of the form

yt = h
(
u−t , y

−
t

)
+ ξt

u−t
.
= (ut−1, . . . , ut−n)

y−t
.
= (yt−1, . . . , yt−n)

(1)

where ut ∈ U ⊂ R is the input, yt ∈ R is the output,
ξt ∈ Ξ ⊂ R is an unknown disturbance, n is the
system order, t ∈ Z is the time index, h : R2n → R,
U

.
= {u ∈ R : |u| ≤ ū} and Ξ

.
=
{
ξ ∈ R : |ξ| ≤ ξ̄

}
.

Suppose that the system (1) is unknown, but a set of
noise-corrupted measurements is available:

DS
.
= {ũt, ỹt}0t=1−n−L (2)

where ũt ∈ U , ỹt ∈ Y , Y ⊂ R is a compact set, and the
tilde is used to indicate the collected data.

Let Y0 ⊆ Rn be a set of initial conditions of interest,
R ⊂ R a compact set, R .

= {r = (r1, r2, . . .) : rt ∈ R,∀t}
a set of output sequences of interest and Ξ

.
=

{ξ = (ξ1, ξ2, . . .) : ξt ∈ Ξ,∀t} the set of all possible dis-
turbance sequences.
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The problem is to design a controller for the system (1)
such that, for any ξ = (ξ1, ξ2, . . .) ∈ Ξ , and for any initial
condition y−0 ∈ Y0, the output sequence y = (y1, y2, . . .)
of the controlled system tracks any reference sequence r =
(r1, r2, . . .) ∈ R.

In this paper, we propose an approach to this problem,
that we call Data-Driven Estimation and Control (D2EC),
based on three main steps:

1) Data-driven estimator design (off-line). A distur-
bance estimator is synthesized off-line from the data
(2), allowing us to obtain an on-line estimate of the
disturbance ξt in (1).

2) Data-driven identification of a prediction model (off-
line). A prediction model for the plant (1) is iden-
tified off-line from the data (2). This model uses
on-line the estimator output as an input, in order to
improve the prediction accuracy.

3) Model inversion control (on-line). The control law
is obtained by on-line inversion of the prediction
model, via efficient optimization.

The complete control system structure is depicted in Figure
1, where “plant” is the system (1), H is the disturbance
estimator, K is the controller, yt is the output, rt+τ is a
reference value, u∗t is the command input, ξt is the true
disturbance and ξ̂t is the disturbance estimate.

Figure 1. Closed-loop control system.

IV. ESTIMATOR DESIGN VIA BLIND IDENTIFICATION

In this section, the blind identification method of [36] is
summarized and suitably adapted for the present context.
Then, a novel disturbance estimator is derived, based on
the model obtained using this method. The estimator output
is used as an input of the prediction model presented in
the next section, to improve its prediction accuracy.

The method of [36] allows us to derive models of the
form (1), with estimates ĥ and ξ̂nct of both the function h
and the disturbance ξt. Such estimates are given by

ĥ
(
w−t
)

=
∑P
i=1 aiχi

(
w−t
)

ξ̂nct =
∑M
i=1 biψi (t)

(3)

where w−t
.
=

(
u−t , y

−
t

)
= (ut−1, . . . , ut−n,yt−1, . . . , yt−n),

χi : R2n → R and ψi : Z→ R are known basis functions,
and ai ∈ R and bi ∈ R are parameters to identify.

The choice of the basis functions is clearly an important
step of the identification process, [39], [40], [41]. In some

cases of practical interest, the basis functions may be
known a priori. In other cases, the basis functions are not
known and their choice can be carried out considering the
numerous options available in the literature (e.g. Gaussian,
exponential, sigmoidal, wavelet, polynomial, trigonomet-
ric). Here, we adopt this latter approach, considering large
sets {φi}Ni=1 and {ψi}Mi=1 of basis functions, resulting in
over-parametrized models (3). As shown below, selection
of the most appropriate functions within these sets is
carried out by means of `1-norm minimization, [42], [43],
[44], [45].

According to (1), the data (2) can be described as

ỹt = h
(
w̃−t
)

+ ξt = ĥ
(
w̃−t
)

+ et, t = 1− L, . . . , 0
(4)

where w̃−t
.
= (ũ−t , ỹ

−
t ) = (ũt−1, . . . , ũt−n,ỹt−1, . . . , ỹt−n) is

the measured regressor, and et is an error/disturbance term
including ξt, the measurement errors corrupting yt and w−t ,
and possible modeling errors due to the parametrization
(3). Following a Set Membership philosophy ([46], [47],
[48], [49]), the sequence e .

= (e1−L, . . . , e0) is assumed
bounded:

‖e‖ ≤ ε (5)

for some ε ≥ 0. From this assumption and equations (3)
and (4), it follows that

‖Z − Λa−Ψb‖ ≤ ε (6)

where
Z
.
= (ỹ1−L, . . . , ỹ0) ∈ RL×1

a
.
= (a1, . . . , aP ) ∈ RP×1

b
.
= (b1, . . . , bM ) ∈ RM×1

Λ
.
=

 χ1

(
w̃−1−L

)
· · · χN

(
w̃−1−L

)
...

. . .
...

χ1

(
w̃−0
)
· · · χN

(
w̃−0
)
 ∈ RL×P

Ψ
.
=

 ψ1 (1− L) · · · ψM (1− L)
...

. . .
...

ψ1 (0) · · · ψM (0)

 ∈ RL×M .

(7)
The vectors a ∈ RP and b ∈ RM , whose entries are the
parameters of the model (3), are identified by means of the
following convex algorithm.

Identification algorithm 1: (a, b) = id_blind_1 (DS, ε).

Identification of the parameter vectors a and b is carried
out solving the following convex optimization problem:

(a, b) = arg min(â,b̂) ‖â‖1 +
∥∥∥b̂∥∥∥

1

s.t.
∥∥∥Z − Λâ−Ψb̂

∥∥∥ ≤ ε. (8)

The rationale behind this algorithm can be explained as
follows:

1) The constraint ‖Z − Λa−Ψb‖ ≤ ε guarantees con-
sistency between the measured data and the prior
assumption (6). If the ε bound is true, then although
there are multiple a and b that satisfy the ε bound,
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a much smaller subset of these will minimize the
`1 norm objective function. In fact, under very mild
assumptions, as given in [45], this set is a singleton,
and the solution is guaranteed to be unique. However,
an incorrect choice for ε has the effect of biasing the
parameter estimates, so it should be chosen using a
validation procedure such as in [50].

2) `1-norm minimization of a and b is used to enforce
sparsity of the coefficient vectors a and b, [51], [45],
[43], [44].

a) Sparsity of a is useful to obtain a model with
a low complexity, i.e., described by a limited
number of basis functions (those corresponding
to non-zero entries of a), selected within a
“large” set.

b) Sparsity of b is important to correctly recover
the true disturbance ξt in situations where this
signal can be represented as a superposition of
a small number of basis functions (for example,
these functions can represent the meals in a
diabetic patient, see Section VII).

Conditions verifiable in practice, under which the
proposed `1 minimization problem gives a maxi-
mally sparse solution can be obtained by minor
modifications of Theorem 1 in [52]. Under these con-
ditions, the minimization problem is able to provide
a low complexity model ĥ (i.e., with a minimum
number of basis functions) and to correctly find
the most appropriate basis functions that define the
disturbance ξt.

Remark 1: The parameter ε in (5) can be systematically
estimated using the validation procedure in [50]. This
procedure relies on the so-called validation surface, i.e., a
surface constructed from the available data, that separates
the parameter values that are validated by the data from
those that are not. The parameters (ε in this case) are
chosen in the validated region by means of a simple
criterion which, in the present context, can be suitably
defined to obtain an optimal trade-off between model
accuracy and complexity. �

Remark 2: The identification algorithm proposed above
can be used also in cases where a reliable system model
ĥ is already available and it is of interest to recover the
disturbance ξk. This can be done solving the optimization
problem (8) only with respect to b, being a the coefficient
vector of ĥ (see Section VII-E, where this technique is used
for estimating the unknown disturbance, given mainly by
meals and physical activities, in diabetic patients). �

Remark 3: When a large number of parameters/basis
functions is used in a model, the issue of over-fitting
may arise. In practice, it may happen that the model is
extremely accurate on the data used for its identification
but has a poor generalization capability, resulting in a low
accuracy when applied to fresh data. To avoid this issue,
two operations can be useful: (i) including a regularization
term in the model identification algorithm; (ii) performing
extensive validations of the model on data not used for
identification. Our identification algorithms (one presented

in this section, the other presented in Section V) feature
`1 regularization terms, allowing also a reduction of the
model complexity. Moreover, in the application presented
below about blood glucose regulation in diabetic patients,
the identified models are validated using fresh data in order
to have a certain level of confidence that no over-fitting
occurs. �

Solving the optimization problem (8) and using the
identified parameters in (3), a non-causal estimate of the
unknown disturbance is derived: the estimate ξ̂nct at time
t is obtained using the past, current and future data.
Obviously, non-causal estimates cannot be performed on-
line. Hence, a causal estimate is obtained by means of the
following estimation algorithm.

Estimation algorithm 1: ξ̂t = H
(
w−t , yt

)
.

ξ̂t = H
(
w−t , yt

) .
= yt − ĥ

(
w−t
)

(9)

where ξ̂t is the estimate of the unknown disturbance ξt
affecting the system (1), yt is the measured output, w−t

.
=(

u−t , y
−
t

)
, and u−t and y−t are the corresponding measured

input and output regressors. The function ĥ in (9) is given
by (3), where the parameters ai are identified by means of
algorithm 1.

Note that the estimator H in (9) is characterized by a
NARX (Nonlinear AutoRegressive with eXogenous inputs)
structure. Future research activities will be devoted to in-
vestigate a NARMAX (Nonlinear AutoRegressive Moving
Average with eXogenous inputs) structure, which could
help to improve the estimator performance.

V. PREDICTION MODEL

In this section, a prediction model for the system (1) is
identified from the data (2). This model uses the estimator
output as an input, in order to improve its prediction
accuracy. The control law presented in the next section is
obtained through on-line inversion of the prediction model,
via efficient optimization.

Consider that the system (1) can be represented in the
τ -step ahead prediction form

yt+τ = g
(
u+
t , u

−
t , y

−
t , ξ

v
t

)
u+
t
.
= (ut+τ−1, . . . , ut)

ξvt
.
= (ξt+τ−1, . . . , ξt−n)

(10)

where g (·) .
= hτ+1 (·) is obtained by τ + 1 iterations of

equation (1) and τ is the prediction horizon.
We introduce a prediction model, obtained as an approx-

imation of the system (10), of the form

ŷt+τ = f
(
ut, q

−
t

)
q−t

.
=
(
u−t , y

−
t , ξ̂

−
t

)
ξ̂−t

.
=
(
ξ̂t−1, . . . , ξ̂t−n

)
(11)

where f : R2n+1 → R and ξ̂t is the estimate given by 9.
For simplicity, this model is supposed of the same order
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as the system (10). The generalization to the case where
the order is different is straightforward.

A parametric structure is taken for the function f :

f (·) =

N∑
i=1

αiφi (·) (12)

where φi : R2n+1 → R are polynomial basis functions, αi
are parameters to identify. As discussed above, the basis
function choice is in general a crucial step, [39], [40], [41].
Here, the motivations for choosing polynomial functions
are mainly two: 1) polynomials have proven to be effective
approximators in a huge number of problems; 2) as we will
see later, they allow a very efficient controller evaluation.
A systematic procedure for the choice of the order n, the
prediction horizon τ and the polynomial degree is currently
under development.

The model parameters αi are identified from the data
(2) by means of convex optimization. Define

z
.
= (ỹ1+τ−L, . . . , ỹ0) ∈ R(L−τ)×1

α
.
= (α1, . . . , αN ) ∈ RN×1

Φ
.
=

 φ1

(
ũ1−L, q̃

−
1−L

)
· · · φN

(
ũ1−L, q̃

−
1−L

)
...

. . .
...

φ1

(
ũ−τ , q̃

−
−τ
)
· · · φN

(
ũ−τ , q̃

−
−τ
)


where Φ ∈ R(L−τ)×N and the tilde denotes the samples
obtained from the data set (2). Define also the set

SC(γ, σ)
.
= {β ∈ RN :

|ỹi+τ − ỹj+τ + (Φj −Φi)β|
≤ γ

∥∥ỹ−i − ỹ−j ∥∥+ 2σ, j ∈ T , i ∈ Υj}

where Φk is the kth row of Φ, T .
= {1−L, . . . ,−τ}, Υk

is the index set

Υk
.
=
{
i :
∥∥(ũk, ũ−k )− (ũi, ũ−i )∥∥ ≤ ζ}

and ζ is the minimum value for which every set Υk

contains at least two elements. Note that SC is defined by
a set of linear inequalities in β and σ, and is thus convex
in β and σ. In this paper, the following notation for norms
is used: ‖·‖ ≡ ‖·‖∞ is the vector `∞ norm; ‖·‖p is in
general the vector `p norm.

The vector α ∈ RN , whose entries are the parameters of
the model (11)-(12), is identified by means of the following
convex algorithm. Note that the algorithm is “self-tuning”,
in the sense that most of the required parameters are
automatically chosen, without involving extensive heuristic
procedures.

Identification algorithm 2: α = id_poly_1 (DS, γ̂∆).

Compute α as follows:

1) Solve the preliminary optimization problems

σ0 = min
β∈RN

‖z −Φβ‖

β0 = arg min
β∈RN

‖β‖1
s.t. ‖z −Φβ‖ ≤ σ0 + ρ ‖z‖

where the `1 norm and ρ are used to penalize models
with high complexity (a simple choice can be ρ =
0.01).

2) Solve the optimization problem

(α, σ̂∆) = arg min(β,σ) σ
s.t. (i) β ∈ SC(γ̂∆, σ)

(ii) ‖z − Φβ‖p ≤ σΛ

(iii) ‖β‖1 ≤ η0

where η0
.
= ‖β0‖1 and Λ

.
=
‖z−Φβ0‖p
‖z−Φβ0‖ . Typical

choices of p are p = 2 or p =∞.

The rationale of the algorithm can be explained as
follows: The goal of step 1 is to initialize several pa-
rameters that are needed in step 2. Thanks to step 1, the
whole algorithm requires only two inputs: the identification
data and γ̂∆. An optimization problem is then solved in
step 2, providing the model parameters. This optimization
problem, representing the core of the algorithm, can be
explained as follows:

1) The constraint (i) forces the function ∆
.
= g − f to

have a Lipschitz constant non larger than γ̂∆: a result
in [28] shows that this condition can be theoretically
guaranteed for a sufficiently large number of data
L. On the other hand, Theorem 1 below shows that
choosing this constant smaller than 1 allows us to
guarantee closed-loop stability.

2) Reducing the prediction error ‖z − Φβ‖p yields a
“small” tracking error (the more accurate is the
prediction, the more precise is the control action,
provided closed-loop stability). Here, a trade-off
between stability and tracking performance arises: to
satisfy the constraint (i) with γ̂∆ < 1, a large value
of σ̂ may be required, resulting in a large tracking
error. Note that any vector norm p in (ii) can be
used to reduce the prediction error (typical choices
are p = 2 or p = ∞). Λ is a factor allowing us
to normalize, according to the selected `p norm, the
right-hand side of the inequality in (ii).

3) Bounding the `1 norm leads to a sparse vector α,
i.e. a vector with a limited number of non-zero
elements, [42], [43], [53], [45]. Sparsity is important
to ensure a low model complexity, reducing well
known issues such as over-fitting and the curse of
dimensionality. Sparsity leads also to an efficient
implementation of the model/controller on real-time
processors, which may have limited memory and
computation capacities. The parameter ρ in step 1
determines the trade-off between model accuracy and
sparsity: larger values than 0.01 lead to sparser (but
less accurate) models.

VI. CONTROL ALGORITHM AND CLOSED-LOOP
STABILITY ANALYSIS

In this section, a control algorithm for nonlinear systems
is presented. This algorithm is an extension of the NIC
algorithm proposed in [37], [38] to the case where the
disturbance estimation is used as an input of the controller
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to improve its performance. A closed-loop analysis is also
carried out and sufficient stability conditions are derived.

A. Control algorithm

The basic idea of the algorithm is to invert the prediction
model (11): at each time t > 0, given a reference rt+τ
and the current regressor q−t , a command u∗t is looked for,
such that the model output ŷt+τ is close to rt+τ . Such a
command input is found solving the optimization problem

u∗t = arg min
u∈Uτ

J
(
u, rt+τ , q

−
t

)
(13)

J
(
u, rt+τ , q

−
t

) .
=
(
rt+τ − f

(
u, q−t

))2
+ µu2 (14)

where q−t
.
=
(
u−t , y

−
t , ξ̂t

)
and ξ̂t is the estimate of the

unknown disturbance ξt in (1) obtained by the estimator
(9). The quantity µ ≥ 0 is a design parameter, determining
the trade-off between tracking precision and command
activity. The D2EC control law is fully defined by (13).

It is important to observe that the objective function
(14) is in general non-convex. Moreover, the optimization
problem (13) has to be solved on-line, and this may take
a long time compared to the sampling time used in the
application of interest. To overcome these problems, an
efficient algorithm is now proposed.

Consider that, for given rt+τ and q−t , the objective
function (14) is a polynomial in the scalar variable u.
Its minima can thus be found computing the roots of its
derivative, as done in the following algorithm.

Control algorithm 1: u∗t = K
(
J, rt+τ , q

−
t

)
.

Compute the optimal input as

u∗t = arg min
u∈Us

J
(
u, rt+τ , q

−
t

)
(15)

where

Us
.
=
(
Rroots

(
J ′
(
u, rt+τ , q

−
t

))
∩ U

)
∪ {u, u} ,

J ′ is the derivative of J wrt u, Rroots (J ′) denotes the set
of all real roots of J ′, and u and u are the boundaries of
U .

Remark 4: The derivative J ′ can be computed analyt-
ically. Moreover, Us is composed by a small number of
elements:

card (Us) < deg
(
J
(
u, rt+τ , q

−
t

))
+ 2

where card is the set cardinality and deg indicates the
polynomial degree. The evaluation of u∗ through Algo-
rithm 1 is thus extremely fast, since it just requires to find
the real roots of a univariate polynomial whose analytical
expression is known and to compute the objective function
for a small number of values. �

The block diagram of the closed-loop system is shown
in Figure 1, where “plant” is the system (1), H is the
disturbance estimator and K is the controller (13), imple-
mented through the optimization algorithm 1, providing the
command input u∗t .

D2EC can be seen as a particular instance of NMPC,
see, e.g., [5], [6], [7]. This is evident from the fact that
the command input is chosen on the basis of a prediction
model via on-line optimization. However, D2EC has two
advantages wrt standard NMPC: 1) It does not need a
physical model; 2) it is in general numerically more
efficient. Non-standard NMPC approaches that are more
similar to D2EC are those presented in [54], [55]. They use
polynomial models that can be identified from data, and
thus might avoid the need of a physical model. However,
these approaches do not give a priori stability/accuracy
guarantees. In summary, D2EC can be seen as a data-driven
efficient NMPC.

B. Closed-loop stability analysis

In this section, we study the behavior of the closed-loop
system formed by the feedback connection of the plant
(1), the controller (15) and the estimator (9); that is, the
system where the plant (1) is controlled by the input is
ut = u∗t given by the control law (15), and u∗t depends on
the output of the estimator (9), see Figure 1.

A basic assumption for this closed-loop analysis is
that the function h in (1) is Lipschitz continuous on the
compact set Un × Y n. This assumption is reasonable:
a large number of real-world systems are described by
functions that are Lipschitz continuous on a compact set.
Without loss of generality, we also assume that Un × Y n
contains the origin.

Let us now define the functions
∆
(
q∆
t , y

−−
t

) .
= g

(
u+
t , u

−
t , y

−
t , ξ

v
t

)
− f

(
ut, u

−
t , y

−
t , H

−
t

)
F
(
rt+τ , q

F
t , y

−−
t

) .
= rt+τ − f

(
ut, u

−
t , y

−
t , H

−
t

)
(16)

where
H−t

.
= (Ht−1, . . . ,Ht−n) ∈ Rn

Ht
.
= H

(
u−t , y

−
t , yt

)
∈ R

q∆
t
.
= (u+

t , u
−−
t , ξvt ) ∈ Q∆

qFt
.
= (ut, u

−−
t ) ∈ QF

y−−t
.
= (yt−1, . . . , yt−2n) ∈ R2n

u−−t
.
= (ut−1, . . . , ut−2n) ∈ U2n.

From Lipschitz continuity of h (by assumption) and f
(by definition), it follows that ∆ and F are Lipschitz
continuous on Ω∆

.
= Q∆ × Y 2n and ΩF

.
= QF × Y 2n+1,

respectively. Note that Q∆ and QF are compact sets,
since q∆

t and qFt are bounded vectors. From the Lipschitz
property, it follows that constants γ∆ < ∞ and γF < ∞
exist such that

γ∆ :
∣∣∆ (q∆, y

)
−∆

(
q∆, y′

)∣∣ ≤ γ∆ ‖y − y′‖ ,
∀y, y′ ∈ Y 2n, ∀q∆ ∈ Q∆

γF :
∣∣F (r, u, y)− F

(
r, qF , y′

)∣∣ ≤ γF ‖y − y′‖ ,
∀y, y′ ∈ Y 2n, ∀qF ∈ QF ,∀r ∈ Y.

Lipschitz continuity of ∆ and F in turn implies that
constants σ∆ <∞ and σF <∞ exist, such that∣∣∆ (q∆

t , y
−−
t

)∣∣ ≤ σ∆∣∣F (rt+τ , qFt , y−−t )∣∣ ≤ σF (17)

for any u = (u1, u2, . . .) ∈ U∞, any r = (r1, r2, . . .) ∈ R
and any ξ = (ξ1, ξ2, . . .) ∈ Ξ .
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The following result provides sufficient conditions for
finite-gain stability of the closed-loop system (1)-(9)-(15)
and a worst-case bound on the tracking error.

Theorem 1: Assume that

γc
.
= γ∆ + γF < 1 (18)

Y ⊇ R⊕ E (19)

where ⊕ indicates the set sum, with

E
.
= {η ∈ Rny : ‖η‖ ≤ ē}

ē
.
= 1

1−γc

(
σ∆ + σF + γξ ξ̄

)
,

and γξ is the Lipschitz constant of g wrt ξvt . Then:
(i) The closed-loop system (1)-(9)-(15) is finite-gain `∞

stable on
(
Y0,R, Ξ

)
; that is, finite non-negative constants

γyr, γyξ and λy exist such that

‖y‖ ≤ γyr ‖r‖+ γyξ ‖ξ‖+ λy

for any (y−0 , r, ξ) ∈ Y0 ×R×Ξ .
(ii) The tracking error signal e = (e1, e2, . . .), with et

.
=

rt − yt, is bounded as

‖e‖ ≤ ē (20)

for any
(
y−0 , r, ξ

)
∈ Y0 ×R×Ξ .

Proof. The proof can be obtained by minor modifica-
tions of the proof of Theorem 1 in [38]. �

This theorem shows that two key conditions are suffi-
cient to guarantee closed-loop stability. The first one, i.e.,
inequality (18), is satisfied if:

(i) γ∆ < 1. This requires the model f to be an accurate
approximation of the true function g. In particular, f must
be accurate in describing the dependence on yt (being
γ∆ the Lipschitz constants wrt y−−t of ∆). An important
point is that the identification algorithm 2 provides models
satisfying this condition when the number of data is
sufficiently large, see the discussion below the algorithm.

(ii) γF < 1 − γ∆. This condition is satisfied if µ = 0
and rt+τ is reachable (i.e., in the range of f

(
·, q−t

)
) for

all t. Indeed, in this case, solving problem (13) makes an
exact model inversion. That is, ŷt+τ = rt+τ for all t, and
thus γF = 0. If µ is chosen sufficiently small and rt+τ
is sufficiently close to a reachable value, supposing that
γF satisfies the assumption is reasonable. On the contrary,
if these requirements are not met, condition (18) may be
not satisfied, leading to an unstable behavior and possibly
to a diverging tracking error. Clearly, if non-reachable
trajectories have to be tracked, the only solution is to
physically change ut and/or U , in order to increase the
control authority. This means that the actuators of the
plant to control have to be changed. The constant γF
can be estimated from the available data by means of the
validation procedure in [50], thus allowing the verification
of (18).

The second stability condition, i.e., the set inclusion
(19), has a quite intuitive interpretation: It essentially
requires the set explored by the data (i.e., Y ) to be
sufficiently large to contain the set where the trajectories of
interest are defined (i.e., R), plus a border region bounded
by ē.

VII. BLOOD GLUCOSE REGULATION FOR TYPE 1
DIABETIC PATIENTS - DATA-DRIVEN PATIENT MODELS

Type 1 diabetes (T1DM) is a chronic autoimmune
disease characterized by insulin deficiency and resultant
hyperglycemia. Insulin is the mainstay of therapy and
requires frequent dosing adjustments to maintain a good
glycemic control. Despite the advance in care, hypo-
glycemia and ketoacidosis are persistent potentially life-
threatening acute complications in T1DM patients. Hy-
perglycemia is the primary risk factor for chronic mi-
crovascular disease that manifest primarily as retinopathy,
neuropathy and nephropathy and can also affect cognitive
functions, the heart and other organs.

The concept of Artificial Pancreas (AP) has been in-
troduced, aimed at reducing (or possibly solving) the
above problems, offering significant improvements in the
life quality of T1DM patients [56]. An AP is a device
that controls the blood glucose concentration in diabetic
patients. Among the existing AP construction approaches,
the closest one to implementation is the so-called medical
equipment approach, where the glucose regulation func-
tions of the pancreas are replicated by a fully artificial
device. This device incorporates glucose concentration
measurements, micro pumps and delivery mechanisms for
insulin (and possibly other hormones), and computational
and communication devices for implementing a suitable
control strategy.

Control of blood glucose concentration has thus a fun-
damental role in terms of patient wellness and integrity of
organs that may be damaged due to T1DM [57], [58], [59],
[60], [61]. Control in general implies the availability of
reliable models able to predict and/or simulate the behavior
of the metabolic system. Different models and modeling
techniques have been proposed in the literature, where
physiology equations are used to describe the glucose and
insulin kinetics in the body [62], [63]. However, although
important to understand and analyze the blood glucose
dynamics and kinematics, these models cannot in general
be very accurate as their equations do not take into account
all the dynamics, parameters and disturbances involved in
the patient system. Moreover, physiological models do not
allow us to properly cope with the high variability among
patients.

Nevertheless, the most effective control strategy at
present in the diabetes context appears to be MPC (or
NMPC). This strategy has already been tested in clinical
trials, see, e.g., [64], [65], [66], [67]. The methodologies
carried out in these works are valuable and the results
obtained in the clinical trials are very promising. However,
it seems that the blood glucose regulation results could be
further improved, mainly during the day, where the un-
known disturbances (meals, emotions, physical activities,
...) strongly affect the metabolic system of diabetic patients
(more than during the night).

We think that the D2EC approach presented in this
paper may help to obtain some improvement in blood
glucose regulation, representing a possible solution to
the aforementioned issues (difficult modeling of the pa-
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tient, presence of strong unknown disturbances, variability
among patients). In the following, after a brief description
of the available experimental data, a model of a T1DM
patient is identified from a subset of these data. This
model, not to be confused with the prediction model of
the D2EC algorithm, represents the (unknown) patient, for
which a glucose regulator has to be designed. In other
words, this patient model is used instead of a real patient
(future activities will hopefully be devoted to test the data-
driven D2EC approach in clinical trials with real patients).
After patient model identification, a disturbance estimator
is derived, allowing the estimation of the unknown signals
that typically affect a diabetic patient (e.g. food, physi-
cal activity, emotions, ...). Next, a D2EC controller for
glucose regulation is designed, which takes advantage of
the information given by the disturbance estimator. Then,
the controller is tested on fresh data, not previously used
for model identification and controller/estimator design.
Such a procedure is repeated for six different patients and,
for each patient, the D2EC controller is compared with
other versions of this controller, with a “manual” strategy
and with an ideal MPC controller. Finally, a robustness
analysis is performed to test if the D2EC controller can
work correctly even when some slight change occurs in
the dynamics/kinematics of the patient metabolic system.

In a real scenario, the data needed for con-
troller/estimator design can be collected in a preliminary
phase of the diabetes treatment, where a “manual” reg-
ulation strategy is adopted. For example, in this phase,
the insulin can be injected by the patient on the basis
of his/hers experience and of the physician indications.
After this preliminary phase, the designed controller can be
applied to the patient, allowing a fully-automated treatment
of T1DM.

A. Experimental datasets

Experimental measurements, collected from six T1DM
kid patients, have been considered. The measured input
ũt is the rate of insulin injected in the patient body. An
insulin pump was used to perform subcutaneous injection
of insulin. The measured output ˜̃yt is the blood glucose
concentration, measured by a Continuous Glucose Mon-
itoring (CGM) sensor Dexcom G4. This sensor worked
continuously for about 13 days, procuring a set of 3744
measurements of blood glucose concentration, collected
with a sampling time Ts = 5 min.

For each patient, the resulting dataset was partitioned in
two subsets:

• Identification dataset (first 4 days):

IS
.
=
{
ũt, ˜̃yt

}0

t=−1151

used for model identification and controller design.

• Validation dataset (last 9 days):

V S
.
=
{
ũt, ˜̃yt

}2592

t=1

used for model validation and controller final test.

B. Patient model identification

In the diabetes context, a relevant problem common
to all modeling approaches is that a patient is a system
affected by unmeasured (or not easily measurable) inputs,
and the techniques frequently used for model identification
are in general not able to recover or to account for such
unmeasured signals. Indeed, modeling of a diabetic patient
can be seen as a blind identification problem: not only the
patient system has to be identified but also some of its
input signals [68].

In this section, we focus on a single T1DM patient, that
we call Patient 1. A model of this patient was derived
from the identification set IS, using the blind approach
shown in Section IV. This approach provides models of
the form (1), with estimates of both the function h and the
disturbance ξt. The model was identified from the Patient
1 identification set IS, and is given by

yt = hp
(
u−t , y

−
t

)
+ ξ̂nct (21)

where ut is the rate of insulin injected in the patient body,
yt is the patient blood glucose concentration, ξt is a dis-
turbance describing the effects of all unknown inputs (e.g.
food, physical activity, emotions, etc.), hp is a function
describing the metabolic system kinematics and dynamics.
The identified function and disturbance are of the form (3),
where hp = ĥ and the parameters were estimated by means
of the identification algorithm (8). A model order n = 9
has been assumed, since giving the best trade-off between
accuracy and complexity (no accuracy improvements were
observed for larger orders). Polynomial basis functions χi
with degree ranging in the interval [0, 2] were considered
for the function h. Indeed, no accuracy improvements
were observed for larger degrees. On the other hand, a
model accuracy degradation was observed on the validation
set, using only linear functions (degree 1). Gaussian basis
functions ψi (t) = e−β(t−i)2 were used for the disturbance
ξ̂nct , with i = 1, . . . , 1152 and β = 0.03 (this value of β
was chosen through a trial-and-error procedure).

Several simulations were carried out to test the patient
model:

• Simulation 1: The model was performed on the val-
idation set V S, using as inputs the measured insulin
signal ũt and the disturbance ξ̂nct estimated from the
validation set. This estimation was carried out solving
the optimization problem (8), only with respect to b,
with a fixed and equal to the one previously estimated
on the identification set. Figure 2 shows the estimated
disturbance (upper plot), the measured insulin input
(middle plot), and the output simulated by the model
compared with the measured one (bottom plot). The
root mean square error resulting from the simulation
is RMSE = 14.4 mg/dl.

• Simulation 2. For a further verification, the model
was tested on completely fresh data (collected in
the two days subsequent to the 4 + 9 days already
considered). The disturbance ξ̂nct was estimated as
done for Simulation 1. The results obtained on the
fresh data i simulation are similar to those obtained
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on the validation set, with a RMSE value equal to
13.9 mg/dl.

• Simulation 3: The model was fed by the disturbance
signal ξ̂nct estimated from the validation set and by a
null insulin input ut. Being this signal characterized
by several positive peaks (presumably corresponding
to meals), the output resulting from this simulation be-
came very large, according to a typical hyperglycemia
behavior.

• Simulation 4: The model was fed by a null disturbance
ξ̂nct and by the measured insulin input ũt, taken from
the validation set. The output moved towards low
values, according to a typical hypoglycemia behavior.

• Simulation 5: Starting from an initial output yt = 130
mg/dl, the model was fed by a filtered step disturbance
signal ξ̂nct of amplitude 1.6 mg/dl and by a small
constant insulin input ut of amplitude 0.2 mg/dl. An
increase of about 50 mg/dl, corresponding to the step
disturbance, was observed on the output.

All these simulations demonstrate that the identified patient
model has a quite reasonable behavior form a physiological
point of view.

Note that the patient model is characterized by a gain
from the disturbance dt to the output yt. This gain can
be moved equivalently from the model to the disturbance,
without any relevant effect. The disturbance dt does not
describe directly the variations of blood glucose concen-
tration but it is a “virtual” signal that accounts for all
disturbances acting on the patient. What is important is
that, as verified in the various simulations we have carried
out, the effect of this disturbance on the output is realistic.

In the present paper, the model (21) represents the “true”
patient for which a glucose regulator has to be designed.
This model is assumed unknown (as it happens in a real
situation). Only the following data are used for regulator
design:
• Design dataset (first 4 days):

DS
.
= {ũt, ỹt}0t=−1151

used for estimator and controller design. ũt is the
measured insulin signal of IS and ỹt is the blood
glucose concentration simulated by the patient model
(21), fed by ũt and the recovered disturbance signal
ξ̂nct . Note that, in the case where not a patient model
but a real patient is under therapy, the sets IS and
DS coincide.

C. Disturbance estimator design

A disturbance estimator was designed, whose output
was used as an input of the D2EC controllers of Section
(VII-D), in order to enhance its performance.

The estimator is of the form (9), with

ĥ
(
w−t
)

= ĥp
(
u−t , y

−
t

)
=
∑P
i=1 âiχi

(
u−t , y

−
t

)
being χi polynomial basis functions with maximum degree
2. The parameters âi were estimated from the design set
DS by means of the optimization problem in [36]. For this
estimator, an order n = 6 has been chosen to mimic a real

Figure 2. Upper: estimated disturbance. Middle: insulin signal. Lower:
comparison between patient model and measured output.

situation, where the order of the true system (i.e., n = 9)
is not known.

D. Therapy control design

Four controllers for the regulation of blood glucose in
Patient 1 were designed (or implemented in the case of the
“manual” strategy described below). These controllers are
described below, after a schematic summary of the design
procedure adopted.

Control design procedure 1
1) Prediction model identification. A prediction model

is identified from the design set DS, using the
identification algorithm 2. The prediction model is of
the form (11), with q−t

.
=
(
u−t , y

−
t , ξ̂

−
t

)
, where ξ̂−t

is the regressor of the on-line disturbance estimate
ξ̂t.

2) Controller design. From the prediction model iden-
tified in step 1, a D2EC controller is designed and
implemented, according to the control algorithm 1.

3) Controller preliminary test. The controller designed
in step 2 is tested in closed-loop on the patient
model (21), according to the scheme of Figure 1.
The glucose concentration reference value rt = 130
mg/dl, ∀t, and the recovered disturbance ξt of the
design dataset DS are used.

4) Parameter tuning. Steps 1-3 are repeated several
times considering prediction model orders in the
range [2, 12], prediction horizons in the range [1, 20],
polynomial degrees in the range [1, 4] and values
of µ in the range [0, 1]. The parameters providing
the best closed-loop performance are chosen. The
performance is evaluated through the AUC , AAC
and PSI indexes defined below in (22) and (23).

D2EC1 controller. This controller was designed by means
of the approach described in the previous sections, fol-
lowing the above procedure to choose the required design
parameters. The parameters selected by means of the
procedure are: model order n = 5, prediction horizon
τ = 8, polynomial basis functions up to degree 2, µ = 0.1.
Note that the procedure (including prediction model iden-
tification, controller design, preliminary test and parameter
tuning) only uses data from the design set DS.
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D2EC2 controller. This controller is similar to D2EC1
but the prediction model was identified from the set IS,
where the output signal is the real one, measured from the
patient, and not the one provided by the patient model.

D2EC3 controller. This controller is similar to D2EC1 but
the prediction model is linear.

D2C controller. This controller is similar to D2EC1 but the
prediction model does not use the disturbance estimation
as an input. The prediction model is of the form (11), with
q−t

.
=
(
u−t , y

−
t

)
.

Ideal-MPC controller. A nonlinear MPC controller was
designed on the basis of the true patient model (21),
assuming a prediction horizon τ = 8 (as done for the
D2EC1 controller). This controller uses the true distur-
bance signal as an input. The true disturbance is used in
a non-causal way, in the sense that, at a given time, past,
current and future disturbance values are assumed to be
known. Clearly, this is an ideal controller that cannot be
implemented in a real situation, where the true model and
disturbance are not known. Nevertheless, this controller is
useful as a term of comparison, to individuate the ideal
performance that could be attained in the present setting,
under the non-realistic assumption that the true system and
disturbance are known.

Manual Controller. A “manual” regulation strategy was
implemented, where the insulin is injected by the patient
on the basis of his/hers experience and possibly of the
indications coming from a semi-automated glucose regu-
lation device. To be close to a real situation, the measured
insulin signal ũt of the validation set V S was used for this
purpose.

E. Blood glucose regulation for a diabetic patient

The controllers designed in Section VII-D were tested on
the model of Patient 1, according to the scheme of Figure
1. In the figure, “plant” is the patient model (21), H is the
disturbance estimator, K is the controller, yt is the patient
blood glucose concentration, rt is a desired reference
value, u∗t is the insulin rate, ξt is a disturbance describing
the effects of all unknown inputs (e.g. food, physical
activity, emotions, etc.) and ξ̂t is the disturbance estimate.
The glucose concentration reference value rt = 130 mg/dl,
∀t, was imposed, and the recovered disturbance ξt of the
validation set V S was used. This disturbance was obtained
solving the optimization problem (8) only with respect to
b, being a the coefficient vector of of the already identified
model ĥp.
Typically, the goal of regulation is too keep the value
of the blood glucose concentration yt inside the interval
[70, 180] mg/dl which, in diabetes treatment medicine, is
commonly considered a safe interval. Thus, the following
indexes were used to measure the quality of the treatment:

AUC
.
= 1

LV

∑LV
t=1(yt < 70)(70− yt)

AAC
.
= 1

LV

∑LV
t=1(yt > 180)(yt − 180)

(22)

where (yt < 70) and (yt > 180) are logical operators
and LV is the validation data set length. These indexes,

called area under the curve (AUC) and area above the
curve (AAC), respectively, measure the amount of glucose
exceeding the bounds. Another index that is commonly
used is the percentage of time (or samples) spent in the
safe interval [69], defined as

PSI
.
=

100 card{t ∈ [1, LV ] : 70 ≤ yt ≤ 180}
LV

(23)

where card is the set cardinality. A more complete set of
metrics (including the PSI index) has been identified by
members of the JDRF Artificial Pancreas Project Consor-
tium, in collaboration with other representatives of the AP
community, to measure the effectiveness of blood glucose
control algorithms [69]. For the sake of brevity, within this
set, only the PSI index is considered in the present study.
The values of the AUC, AAC and PSI indexes obtained
by the control therapy strategies, with the disturbance ξt
of the validation set V S affecting the patient model, are
reported in Table I. The glucose concentration signals for
the D2EC1 and manual strategies are shown in Figure
4 (bottom plot). In the figure, also the corresponding
disturbance and insulin input signals are shown (upper and
middle plot), where the insulin input is given by the D2EC1
controller. A comparison between the true and estimated
disturbance is shown in Figure 3, for a portion of the
validation set. It can be noted that the estimated disturbance
has a delay wrt the true one but it is able to capture its
behavior quite effectively.
These results demonstrate that the D2EC strategies are
effective in regulating the blood glucose concentration of
the identified patient model, yielding significantly lower
values of AAC and higher values of PSI with respect
to the manual strategy. Note that the manual strategy is a
real one, actually applied to a real diabetic patients, and
the dot-dashed signal in Figure 4 (bottom plot) represents
quite accurately what happened to the blood glucose con-
centration in the real patient. The D2EC1 strategy is not
far from the ideal strategy and both of them are quite better
than the others. This demonstrates that (i) using a nonlinear
prediction model helps to improve the control performance
(this is reasonable, since the patient model is nonlinear);
(ii) using the estimated disturbance helps to improve the
control performance. The D2EC2 strategy also provides
satisfactory results (although not the best ones), thus show-
ing interesting robustness properties: the strategy worked
well when applied to the patient model even if the data
used for its design where produced by a different patient
(the true human patient). This situation should not occur
in a real application of a D2EC strategy, since a D2EC
therapy control applied to a real patient should be designed
from data generated by the same patient (personalized
therapy). However, if the patient glucose dynamics and/or
kinematics change for some unexpected reason, robustness
is important to ensure that the therapy control in any case
continues to work (even if not at best), regulating the
blood glucose concentration so to avoid hypoglycemia or
hyperglycemia phenomena. A more exhaustive robustness
analysis, involving 50 different patient models, is carried
out in Section VII-G.
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AUC AAC PSI

D2EC1 0.069 0.505 95
D2EC2 0.064 2.634 88
D2EC3 0.061 2.914 86

D2C 0.102 1.759 92
Ideal-MPC 0.067 0.107 98

Manual 0.100 13.762 66
Table I

DIABETES TREATMENT RESULTS FOR A PATIENT (DATA-DRIVEN
MODEL).

Figure 3. Disturbance on-line estimation.

It is important to remark that the AUC values cannot
be reduced significantly, because insulin only allows us
to decrease the blood glucose concentration but not to
increase it. In other words, this input can only regulate the
glucose concentration in one direction. Improvements in
terms of AUC reduction may be expected using additional
control inputs, such as Glucagon, which, together with
insulin, may enable the controller to regulate the glucose
in two directions.

F. Blood glucose regulation for 5 patients

All the operations described in Sections VII-B-VII-E have
been repeated for other 5 diabetic patients. In particu-
lar, for each patient, a model was identified representing
his/her blood glucose behavior. A disturbance estimator
was designed from the data generated by the patient
model. Six controllers/strategies (D2EC1-D2EC3, D2C,
ideal-MPC and manual) where designed/implemented, as
done in Section VII-D. Then, all these controllers were
tested in closed-loop on the patient model, using distur-
bance signals estimated from the validation set. The AUC,
AAC and PSI indexes, averaged over the 5 patients, are
reported in Table II. The worst-case values obtained for
these indexes are shown in Table III.
These results confirm what obtained for the first patient and
show that the D2EC approach can provide quite uniform
results, when applied to different diabetic patients. An
important aspect is that the approach allows a personalized
treatment for each patient, where the insulin delivery
strategy is synthesized from the data that contain a relevant
information about the patient metabolic system behavior.

G. Robustness analysis

The patient model identification procedure of Section
VII-B was repeated for 50 trials, considering different

AUCavg AACavg PSIavg

D2EC1 0.066 0.508 95
D2EC2 0.067 2.687 88
D2EC3 0.064 2.914 86

D2C 0.111 1.789 92
Ideal-MPC 0.063 0.486 98

Manual 0.101 13.101 67
Table II

DIABETES TREATMENT QUALITY FOR FIVE PATIENTS (DATA-DRIVEN
MODEL). AVERAGE PERFORMANCE INDEXES.

AUCwc AACwc PSIwc

D2EC1 0.073 0.621 93
D2EC2 0.074 2.913 86
D2EC3 0.072 3.243 85

D2C 0.155 1.961 91
Ideal-MPC 0.067 0.579 98

Manual 0.135 15.002 64
Table III

DIABETES TREATMENT QUALITY FOR FIVE PATIENTS (DATA-DRIVEN
MODEL). WORST-CASE PERFORMANCE INDEXES.

model orders, polynomial degrees and disturbance ba-
sis functions. In particular, in each trial, we assumed
a model order chosen randomly in the range [7, 11], a
polynomial degree chosen randomly in the range [1, 4],
and a coefficient β (appearing in the disturbance basis
functions) chosen randomly in the range [0.01, 0.05]. From
these trials, a set of 50 different models was obtained,
representing a set of 50 perturbations of a diabetic patient.
Then, the D2EC1 control strategy designed in Section
VII-D was tested on all these models. Note that the
controller was not re-designed for each model but was
always the same. This kind of test is interesting to assess
the robustness properties of the controller. As discussed
above, robustness may be important when the patient glu-
cose dynamics and/or kinematics slightly change for some
unexpected reason. In this case, robustness can ensure
that the therapy control continues to properly regulate the
blood glucose concentration (although not in an optimal
way), avoiding dangerous hypoglycemia or hyperglycemia
phenomena. Clearly, once the change of dynamics and/or
kinematics has been detected, a new D2EC strategy have
to be designed, in order to restore an optimal regulation of
the blood glucose.
The AUC, AAC and PSI indexes, averaged over the 50
patients, are reported in Table IV. The worst-case values
obtained for these indexes are shown in Table (V).
These results confirm what obtained above by the D2EC2
strategy: they show that a D2EC therapy control strategy
can be quite robust versus possible slight changes in the
patient metabolic system.

AUCavg AACavg PSIavg

D2EC1 0.083 3.711 83
Table IV

ROBUSTNESS TEST FOR THE D2EC1 STRATEGY (DATA-DRIVEN
MODEL). AVERAGE PERFORMANCE INDEXES.
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Figure 4. Diabetes treatment results for a patient (data-driven model).

AUCwc AACwc PSIwc

D2EC1 0.094 4.273 79
Table V

ROBUSTNESS TEST FOR THE D2EC1 STRATEGY (DATA-DRIVEN
MODEL). WORST-CASE PERFORMANCE INDEXES.

VIII. BLOOD GLUCOSE REGULATION FOR A TYPE 1
DIABETIC PATIENT - PHYSIOLOGICAL PATIENT MODEL

In this section, the D2EC approach is tested on the simu-
lator of a Type 1 diabetic patient presented in [70], called
here T1DMS (Type 1 diabetes metabolic simulator). The
simulator is obtained from a revised version of the well-
known UVA/Padova model, a world-recognized benchmark
tool for testing blood glucose regulation algorithms, also
approved by the Food and Drug Administration (FDA)
[71].
T1DMS is a quite complex physiological model, account-
ing for several aspects of the metabolic process, and is
composed by several subsystems such as: glucose sub-
system, insulin subsystem, glucose rate of appearance,
endogenous glucose production, glucose utilization, renal
excretion, subcutaneous insulin kinetics, subcutaneous glu-
cose kinetics, glucagon kinetics and secretion, subcuta-
neous glucagon kinetics and glucose sensor model (with
measurement errors). In [70], all the T1DMS equations are
summarized and simulation results are reported, validating
the simulator in comparison with the UVA/Padova model.
The equations are not reported here for the sake of brevity.
In this section, T1DMS is also called the “patient model”
and is assumed to be unknown.
A simulation of the patient model corresponding to a
duration 13 days was carried out and a set of input-output
data was collected with a sampling time Ts = 1 min.
The output ỹt is the blood glucose concentration. The
input ũt is the rate of insulin injected in the patient body,
modeled as a constant signal (basal dose) plus a sequence
of square signals of short duration, corresponding to insulin

injections. The patient model was also affected by a
disturbance ξt (assumed to be not measured), representing
the rate of ingested carbohydrates, modeled as a sequence
of impulsive signals, each corresponding to a meal. The
signals ũt and ξtused here are similar to those used in [70]
in terms amplitude, duration and frequency of occurrence
of injections and meals. The total dataset was partitioned
in two subsets:
• Design dataset (first 4 days):

DS
.
= {ũt, ỹt}0t=−5759

used for estimator/controller design.

• Validation dataset (last 9 days):

V S
.
=
{
ũt, ˜̃yt

}12960

t=1

used for estimator/controller test.
The operations described in Sections VII-C-VII-E have
been repeated using these data. In particular, a disturbance
estimator with order 6 and polynomial basis functions with
maximum degree 2 was designed. Two controllers (D2EC1
and manual) where then designed/implemented, as done in
Section VII-D. The two controllers are the following:

D2EC1 controller. This controller was designed by means
of the D2EC approach from the design dataset, following
the procedure of Section VII-D to choose the required
design parameters. The parameters selected by means of
the procedure are: model order n = 8, prediction horizon
τ = 90, polynomial basis functions up to degree 2,
µ = 0.1. Note that here the controller sampling time is
Ts = 1 min.

Manual Controller. A “manual” regulation strategy was
implemented, where the insulin is injected by the patient
on the basis of his/hers experience and possibly of the indi-
cations coming from a semi-automated glucose regulation
device. Here, insulin and meal signals were chosen similar
to the ones of [70]. Note that these input signals applied
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AUC AAC PSI

D2EC1 0.053 1.975 89
Manual 0.033 13.329 72

Table VI
DIABETES TREATMENT RESULTS FOR A PATIENT (UVA/PADOVA

MODEL).

to the patient model provided an output signal ỹt quite
realistic, with a behavior close to the one observed from
the real data of Section VII-A.

The two controllers were tested on the patient model
(T1DMS), using the validation dataset. The resulting
AUC, AAC and PSI indexes are reported in Table VI.
The glucose concentration signals for the D2EC1 and
manual strategies are shown in Figure 5 (bottom plot). In
the figure, also the corresponding disturbance and insulin
input signals are shown (upper and middle plot), where the
insulin input is given by the D2EC1 controller.
These results are similar to those obtained in Section
VII-E, confirming that the D2EC approach can be effective,
also when applied to a patient model based on first-
principle equations, characterized by a completely different
model structure and a completely different class of nonlin-
earities with respect to those used by D2EC for estimation
and control.
Clearly, the simulation made here with T1DMS repre-
sents a preliminary study. Future research activities will
be dedicated to run extensive Monte Carlo simulations
using the UVA/Padova simulator, where different patients
and scenarios will be considered, investigating relevant
properties, such as robustness (versus small patient pertur-
bations), sensitivity to noises/errors and trade-off between
personalization and robustness.
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IX. CONCLUSIONS

An approach to nonlinear system control has been pre-
sented, based on three main steps: In the first step (off-
line), a disturbance estimator is designed from data. In the
second step (off-line), a prediction model for the plant to
control is identified from the same data. In the third step
(on-line), the control law is obtained by inversion of the
prediction model, via efficient optimization.
The approach has been applied to a real data case study,
regarding insulin regulation in type 1 diabetic patients. It
has also been preliminarily tested using a diabetic patient
simulator, obtained from a revised version of the well-
known UVA/Padova model. In both the real data and sim-
ulator studies, the results indicate that the approach could

become a useful tool in the context of diabetes treatment.
It must be remarked that these results are preliminary and
further validations are needed before testing the approach
in clinical trials. In this view, future activities will be
dedicated to (i) running extensive Monte Carlo simulations
using the UVA/Padova simulator; (ii) developing estima-
tors with a NARMAX structure; (iii) performing hardware-
in-the-loop tests of the D2EC approach; (iv) in the case of
success in all the tests and simulations, using if possible
the D2EC approach in clinical trials.
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