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Abstract—This paper investigates a dynamic and stochastic 

vehicle routing problem with time windows that considers the use 

of multiple delivery options and crowd drivers, reflecting the 

synchromodality in the urban context. We propose a multi-stage 

stochastic model, and we solve the problem by using a simulation-

optimization strategy. It relies on a Monte Carlo simulation and a 

large neighborhood search (LNS) heuristic for optimization. We 

conduct a case study in the medium-sized city of Turin (Italy) to 

measure the potential impact of integrating cargo bikes and crowd 

drivers in parcel delivery. Experimental results show that 

combining crowd drivers and green carriers with the traditional 

van to manage the parcel delivery is beneficial in terms of 

economic and environmental cost-saving, while the operational 

efficiency decreases. Besides, the green carriers and crowd drivers 

are promising delivery options to deal with online customer 

requests in the context of stochastic and dynamic parcel delivery. 

The resulting set of policies are part of the outcomes of the 

Logistics and Mobility Plan 2019-2021 in the Piedmont region. 

 
Index Terms—Crowdsourcing, Parcel delivery, Stochastic and 

dynamic VRPTW. 

 

I. INTRODUCTION 

RBAN logistics aims to find efficient and effective 

approaches to move freights in urban areas while 

considering the negative impacts on congestion, the 

environment, and safety. In recent years, the urban population 

growth, the rapid boom in e-commerce, the desire for efficiency 

in supply chains, and the rise of the sharing economy lead to 

new opportunities and challenges for urban logistics. Pushed by 

the increasing on-demand urban delivery service, many 

negative impacts are generated in the city, including traffic 

congestion, air pollution, greenhouse gas emissions, and noise 

disturbance. On average, traditional vans discharge 16-50% of 

total vehicle emissions in the city area [1]. The use of new 

delivery options emerges to fulfill the on-demand requests for 

parcel delivery while reducing its negative impact. 

Moreover, offering fast and cheap delivery has become an 

expectation for online customers and a challenge for logistics 
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companies. In this direction, companies started to adopt new 

business models based on more efficient and sustainable 

delivery options as cargo bikes, lockers, and mobile depots. In 

particular, crowdsourcing or the so-called “Uberization of the 

last mile” is an emerging application for parcel delivery that 

outsources the parcels to crowd drivers [2, 3]. They are a group 

of local and non-professional drivers who are willing to 

temporarily work for delivery companies and provide their 

assets (e.g., the vehicle) to perform the parcel delivery [4]. A 

certain amount of money, named compensation, is rewarded 

after completing the pickup or delivery tasks [5]. Crowd-drivers 

are required to have the driving ability and manage quickly the 

parcel delivery sometimes in less than an hour. The advantages 

of crowdsourcing are lower operation costs, higher flexibility, 

and lower emissions than traditional delivery options [6]. 

Indeed, it is a digital-driver business model with own-asset (i.e., 

the crowd-drivers bring their vehicles and provide for their 

maintenance), paperless operations reducing the overall costs 

and making the service attractive to the online customers. 

Besides, in real-world parcel delivery applications, customer 

demand, locations, and other attributes are usually unknown 

beforehand or known only probabilistically. The stochastic 

information on customers’ attributes becomes increasingly 

important, given its impact on the activities at the operational 

level. 

In this paper, we address the dynamic and stochastic features 

of parcel delivery. We consider multiple delivery options and 

crowd drivers as sources of delivery capacity. The potential 

benefits generated by addressing the dynamic or stochastic 

contexts in parcel delivery are related to the increase of solution 

quality, the cost, or travel distance saving [7, 8]. 

The contribution of this paper is three-fold. First, we 

formulate a multi-stage stochastic model to capture the 

stochastic elements that arise in parcel delivery, namely the 

Dynamic and Stochastic Vehicle Routing Problem with Time 

Windows (DS-VRPTW). We thus, consider the uncertainty of 

some attributes and the possibility that some requests appear 

during the day, requiring adjustments in the delivery plan.  
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Second, we introduce a simulation-optimization framework 

to solve the DS-VRPTW. The simulation can create realistic 

instances from real data, letting to simulate different policies 

and scenarios. We solve the problem using a Large 

Neighborhood Search (LNS) metaheuristic incorporating 

several solution improvement procedures. The reason is due to 

the complexity of the DS-VRPTW and the large size of the 

instances. Third, as mentioned before, we involve multiple and 

integrated transportation modes and delivery options, i.e., vans, 

cargo bikes, and crowd drivers. We also investigate the impact 

of varying customer demand. Thus, we conduct a case study in 

the medium-sized city of Turin (Italy) to analyze the potential 

influence of using multiple delivery options and crowd drivers 

in parcel delivery on operational cost, environmental cost, and 

delivery efficiency. The resulting managerial insights expressed 

in the form of a set of policies are part of the outcomes of the 

Logistics and Mobility Plan 2019-2021 led by the Regional 

Council of Piedmont (ICELab@Polito, the general 

confederation of Italian industry Confindustria, Piedmont 

Region, and LINKS Foundation). 

The characteristics of our approach reflect the 

synchromodality in the urban areas, i.e., the evolution of inter-

modal and co-modal transport concepts. In this context, 

stakeholders of the transport chain actively interact within a 

cooperative network to flexibly plan transport processes and to 

be able to switch in real-time between transport modes tailored 

to available resources [37]. Our model attempts to reduce 

transportation by vans in favor of cargo bikes and other delivery 

options and synchronize the transport flow. This would aid 

planners in reacting to disruptions or new requests while 

improving the quality and the sustainability of the service 

through the efficient utilization of available resources [9]. 

This paper is organized as follows. In Section 2, we review 

the literature on crowdsourcing and DS-VRPTW. In Section 3, 

we present the description and formulation of the investigated 

problem. Section 4 describes the methodology we adopt to 

solve the problem. In Section 5, we present a case study 

concerning parcel delivery in the city of Turin (Italy) and we 

show the experimental results. Finally, we discuss the 

conclusion and future directions in Section 6. 

II. LITERATURE REVIEW 

In this section, we review the literature on crowdsourcing and 

DS-VRPTW. Crowdsourcing is also known as crowd shipping 

[10] and crowdsourced delivery [11]. Various researchers in the 

literature have measured the impact of applying crowd-

resources to manage deliveries. 

Alnaggar et al. [12] provide a comprehensive review of 

crowdsourced delivery from current industry status and 

academic literature. They provide a taxonomy of available 

platforms based on their matching mechanisms, target markets, 

and compensation schemes. Based on the taxonomy, the 

authors identify four decisions that fall under operational (e.g., 

matching and routing) and tactical levels (e.g., scheduling and 

compensation) to enhance the crowdsourced delivery. Kafle et 

al. [13] propose a crowdsource-enabled system for urban parcel 

distribution. The cyclists and pedestrians are employed as 

crowd drivers for the first and last legs of delivery. The 

investigated problem is decomposed into a winner 

determination problem and a simultaneous pickup and delivery 

problem with soft time windows and solved based on the tabu 

search algorithm. The authors show the reduction of truck miles 

traveled and related total cost, by applying the crowdsource-

enabled system. Zhen et al. [14] propose six mathematical 

models to evaluate different operation modes of the 

crowdsourced delivery. The authors consider several realistic 

factors, such as the latest service time for each task, task 

cancellation rate, and range distribution of tasks. Extensive 

experiments validate the effectiveness of the proposed models 

and some managerial implications are outlined to help 

crowdsourced companies to make scientific decisions. Yıldız 

[15] proposes  a “courier friendly” crowd-shipping (CS) model 

to carry out express package deliveries in an urban area. This 

model uses transshipment points to enhance operational 

efficiency and a company-controlled backup delivery capacity 

to account for the uncertainty in the crowd-provided delivery 

capacity. The Monte-Carlo simulation approach is used to 

determine “shadow costs” of capacity utilization and use them 

in making the assignment (matching) decisions. Le et al. [16] 

develop and evaluate four different pricing and compensation 

schemes under different demand and supply scenarios for CS 

systems. The platform provider’s profits are found more 

sensitive with the increase of willingness to pay than the rise of 

expected to-be-paid. The insights are helpful for CS firms to 

attract and retain customers and couriers in the system, by 

setting up optimal prices and optimal compensations based on 

demand and supply levels as well as the firms’ expected profits 

and platform users’ presuming surplus. Devari et al. [5] 

investigate the potential of engaging friends or acquaintances in 

parcel delivery. They found that this strategy reduces total 

emissions and delivery costs. Dayarian and Savelsbergh [17] 

explore a form of crowdshipping in which in-store customers 

supplement company drivers to fulfill online orders for a same-

day delivery problem. The authors use myopic and sample-

scenario planning approaches to solve respectively, the static 

and dynamic variants of this problem. Archetti et al. [18] 

consider occasional drivers as additional couriers to complete 

delivery. They propose a multi-start heuristic to obtain the near-

optimal solution. The comprehensive computational study 

proves the potential advantages of applying occasional drivers 

for cost saving. Dahle et al. [19] investigate a pickup and 

delivery problem with time windows and occasional drivers 

that employes crowd drivers to take a detour to serve one or 

more customer requests. The authors model this problem 

through both load and flow formulation. It is then solved to 

optimality for up to 70 requests. The results show an average 

cost savings of 10-15% by engaging crowd drivers. Although 

good results have been reported in several papers, these 

researches do not capture the stochastic and dynamic features 

of parcel delivery. In a real-world application, there are many 

online requests from customers appearing dynamically. The 

requests information such as demand, location and time 

windows are revealed over time when would incur the change 

of planned routes or rescheduling during the execution process. 
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According to Ritzinger et al. [20], considering dynamic and 

stochastic information in VRPs performs the benefits mainly up 

to 20% of cost saving, carbon emissions reduction and 

efficiency improvement. Many papers have been published on 

DS-VRPTW [21, 22]. Bent and Van Hentenryck [23] 

investigate a dynamic VRPTW with stochastic customers, 

where the objective function is the maximization of the number 

of service customers. The authors propose a multiple scenario 

approach (MSA) to continuously generate the routing plans for 

scenarios, including known and future customer requests. The 

computational results show that MSA exhibits significant 

improvements over approaches not exploiting stochastic 

information. 

Florio et al. [24] develop a branch-price-and-cut algorithm 

for VRP with stochastic demands. Instances with up to 76 nodes 

are solved in a reasonable time (up to five hours). They 

demonstrate that the solution to the stochastic problem is up to 

10% less costly than the deterministic one.  

Subramanyam et al. [25] apply a robust optimization method 

to solve a broad class of heterogeneous VRPs under demand 

uncertainty. To hedge against this uncertain demand, they 

determine a robust solution that remains feasible for all 

anticipated demand realizations. Both heuristic and exact 

approaches are used to improve robust solutions. However, the 

trade-off between robustness and cost is highly dependent on 

the choice of the uncertainty set. 

Hvattum et al. [26] propose a dynamic stochastic hedging 

heuristic (DSHH) to solve a DS-VRP. Both locations and 

demands of the customer are assumed to be unknown. Thus, the 

Poisson distribution is applied to represent the number of 

customers revealing at each time interval. A multi-stage 

stochastic model, extending the two-stage one, is used to 

capture the stochastic and dynamic elements of the real-world 

case. When the information on customers is revealed, two 

recourse actions are used to rearrange the routing plans or start 

the new route. Comparing to a myopic dynamic heuristic 

(MDH) that does not consider future events, the DSHH can save 

more than 15% travel distances.  

Sarasola et al. [27] develop an extended variable 

neighborhood search (VNS) algorithm to investigate a VRP 

with stochastic demand and dynamic requests. By applying 

sampling-based VNS, they improve the results by 4.39% on 

average.  

The previous researches highlight how exploiting stochastic 

information creates many benefits for the routing plan in real-

world applications. However, to the best of our knowledge, 

there is no research combining crowdsourcing with DS-

VRPTW.  

The main idea behind this combination is to investigate the 

potential benefits of employing crowd drivers in parcel delivery 

with stochastic and dynamic customer requests. In this paper, 

we model this problem as a multi-stage programming problem 

with recourse. The first recourse action uses crowd drivers to 

collect the demand of stochastic customers. Then, the second 

recourse action aims to relocate the customers in planned 

routes. We develop a simulation-optimization-based multi-

stage heuristic that gradually constructs routes by exploiting 

statistical information on future customer demand. 

III. PROBLEM DESCRIPTION 

In this section, we present the problem setting and the 

mathematical model.  

Different researches and projects on urban logistics have 

highlighted that freight networks should rely on the 

interoperability of several business models, stakeholders, and 

modes of transportation for managing the parcel delivery in the 

last mile [28-30]. This concept of urban synchromodality refers 

to the optimization and synchronization of both the modes of 

transport and the parcel flows generated by online shopping, 

including reverse logistics. This would result in an 

improvement of the economic and environmental sustainability 

and resilience of multimodal networks. In particular, we 

consider a decision-maker represented by a traditional courier 

company (i.e., using vans) that performs a set of customers 

deliveries with a limited and heterogeneous fleet of vehicles 

within one day. In doing so efficiently, it outsources the 

management of some parcels to a green courier company (i.e., 

using cargo bikes) and crowd-sourced drivers. 

We suppose that the traditional courier and the green courier 

start their operations from a satellite center (usually located in 

existing urban areas) and a mobile depot in the city center, 

respectively, where the parcels are consolidated. While the 

crowd drivers start the journey to pick up and deliver parcels in 

urban areas, from their original place (e.g., their home). To offer 

the parcel delivery services, the crowd operators require 

compensation that usually depends on the number of parcels 

delivered. A crowd driver may not be available in certain 

timeslots or, on the contrary, is available only in a specific 

timeslot. 

Reflecting the real practices on the market, we suppose that 

a great part of customers’ orders arises the day before the 

planning process and thus, they are known to the couriers at the 

beginning of the working day. On the contrary, other 

customers’ requests could appear dynamically during the day. 

These requests are managed according to real-time routing 

decisions, making considerably difficult the quantification a 

priori of time and costs. The described problem is an extended 

variant of vehicle routing problems (VRPs) [31] that aims to 

generate a fleet of vehicle routes to serve customers with 

minimum costs.  
The DS-VRPTW problem combines aspects of both the 

Dynamic VRP and Stochastic VRP. The number of stochastic 

customers, their reveal time as well as other attributes (e.g., time 

window, demand, and location) are only known by their 

probability distributions. The problem can be firstly solved as 

the deterministic VRPTW, generating an initial plan for these 

requests. When the stochastic customers reveal dynamically, 

some recourse actions must be taken. We allow that the 
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dynamic customers can be inserted into the initially planned 

routes or reassigned to a crowd driver who is available to 

complete the service. If none of the two actions are feasible, the 

customer requests are thus rejected. Note that if a vehicle has 

already moved to a new customer, then this customer must be 

served by that vehicle, i.e., the preemption of customers is not 

allowed. 

A. Model formulation 

In this section, we model the problem as a new variant of the 

DSVRPTW. In particular, we propose a two-stage stochastic 

model with recourse that extends the deterministic VRPTW 

model. Table 1 summarizes the symbols used in the model.  

The model relies on the following assumptions. Firstly, the 

depot {0} is operating during a given time horizon [𝑒0, 𝑙0], and 

there is a single known moment 𝑡 ∈ [𝑒0, 𝑙0]  at which all 

unknown information is revealed. At this moment, several 

recourse actions can be considered so that new  customers are 

served. Let the set of initial locations be denoted by 𝑁=C ∪ {0}, 

where 𝐶 = {1, 2, . . . , n}  represents the initially known 

customers. 

 

Table 1. Notation  

Symbol Definition

Initially known customers and stochastic customers

Maximum capacity of vehicles and crowd drivers

Set of initial and total locations

Set of heterogeneous vehicles and crowd drivers

Random variable vector of customer location and demand

Random variable vector of earliest and latest arrival time

Travel cost and travel time from i  to j  by vehicle k

Earliest and latest arrival time of customer i  or depot 0

Binary variable on whether vehicel k moves from i to j

Binary variable on whether i  is served by a crowd driver v

Binary variable on whether customer j  is rejected

The time at which the service of  i  is exactly completed by k

Time interval and its corresponding operational decision

Random variable distribution and expected value of travel cost

Binary variable on whether vehicle k  moves  from i  to j  in

second-stage recourse action but not in the first-stage solution

Binary variable on whether vehicle k  moves from i  to j in the

first-stage solution but not after recourse action

The time at which the service of  i  has completed by k  based

on the second-stage recourse actions

𝐶, 𝐶 

  ,   

𝑁, 𝑁  

 , 

𝑒 , 𝑙 
    

    
 

    
 

   

  

   

   
 

    , 𝑡   

𝐶  ,   

   ,    

h,   

  ,    
 

Let the set of stochastic customers revealed at time 𝑡  be 

denoted by 𝐶 = {𝑛 + 1, n+2, . . . , n+n }. We can then denote 

the set of all locations as 𝑁′=C' ∪ {0}, where C'=C ∪ 𝐶 . Every 

pair of locations 𝑖, 𝑗 ∈ 𝑁′ is associated with the travel time 𝑡    

and the travel cost      for the vehicle 𝑘. Note that the service 

time is included in 𝑡   . Each customer 𝑖 ∈ 𝐶′ has a demand 𝑑  

and a time window [𝑒 , 𝑙 ]. The service of a customer 𝑖 must be 

started after 𝑒  and before 𝑙 . Waiting at a customer 𝑖 is allowed 

while violating the latest time window 𝑙  would incur a penalty. 

A set of heterogeneous vehicles  = {1, 2, . . . , 𝑘} , each of 

maximum capacity   , starts at and returns depot between time 

horizon [𝑒0, 𝑙0] after completing all the services. Besides, a set 

of crowd drivers V={1, 2, . . . , v}, each of capacity   , starts at 

their original place 𝑂  to visit the assigned customers. Let  ′
=  ∪   represents all the available delivery options. The 

crowd drivers with limited service radius are employed to 

collect the demand of stochastic customers, and consolidate it 

at one of the customers locations. Let   = (𝐶  ,    ,     ,    ) be 

the random variable vector and  = (𝐶 ,   ,   ,   ) is one of 

its particular realizations.  

The two-stage stochastic programming problem can be defined 

as follows: 

 𝑚𝑖𝑛     [∑ ∑ ∑     

 ∈𝐾 ∈𝑁 ∈𝑁

    +  ( ,  ,  ,   )]                       (1) 

 ( ,  ,  ,   ) = ∑ ∑ ∑     

 ∈𝐾′ ∈𝑁′ ∈𝑁′

(    
 −     

 ) + 𝐻 ∑ ∑    

 ∈𝑉 ∈𝐶 ′

+ 𝑃 ∑   

 ∈𝐶 ′

                                                    (2) 

s.t 

∑ ∑     = 1   ∀𝑗 ∈ 𝐶                                                            (3)

 ∈𝐾 ∈𝑁

 

∑  0  

 ∈𝑁

= 1   ∀𝑘 ∈                                                                   (4) 

∑     

 ∈𝑁

− ∑     

 ∈𝑁

= 0   ∀ℎ ∈ 𝐶, ∀𝑘 ∈                                  (5) 

∑   0 

 ∈𝑁

= 1   ∀𝑘 ∈                                                                     (6) 

∑ ∑(    +     
 −     

 ) = 1   ∀𝑗 ∈ 𝐶

 ∈𝐾′ ∈𝑁′

′                              (7) 

∑( 0  +  0  
 −  0  

 )

 ∈𝑁′

= 1   ∀𝑘 ∈  ′                                   (8) 

∑(    +     
 −     

 )

 ∈𝑁′

− ∑(    +     
 −     

 )

 ∈𝑁′

= 0          

                                    ∀ℎ ∈ 𝐶 ′, ∀𝑘 ∈  ′                       (9) 

∑(  0 +   0 
 −   0 

 )

 ∈𝑁′

= 1   ∀𝑘 ∈  ′                                  (10) 

∑ 𝑑 ∑     

 ∈𝑁 ∈𝐶

≤      ∀𝑘 ∈                                                     (11) 

∑ 𝑑 ∑(    +     
 −     

 )

 ∈𝑁 ∈𝐶

≤      ∀𝑘 ∈  ′                     (12) 

    
 ≤        ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈                                                   (13) 

    
 = 0   ∀𝑖, 𝑗 ∈ 𝐶𝑡 , ∀𝑘 ∈                                                      (14) 

𝑡    
 ≤       ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈                                                   (15) 

   + 𝑡  − 𝑀  (1 −     ) ≤       ∀𝑗 ∈ 𝐶, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈  (16) 

𝑒 ≤    ≤ 𝑙    ∀𝑖 ∈ 𝑁, ∀𝑘 ∈                                                   (17) 

   + 𝑡 0 − 𝑀 0(1 −   0 ) ≤ 𝑙0   ∀𝑖 ∈ 𝐶, ∀𝑘 ∈                   (18) 
   

 + 𝑡  − 𝑀  (1 −     −     
 +     

 ) ≤    
    ∀𝑗 ∈ 𝐶 ′, ∀𝑖

∈ 𝑁 ′, ∀𝑘 ∈  ′                                               (19) 

𝑒 ≤    
 ≤ 𝑙    ∀𝑖 ∈ 𝑁 ′, ∀𝑘 ∈  ′                                               (20) 

   
 + 𝑡 0 − 𝑀 0(1 −   0 −   0 

 +   0 
 ) ≤ 𝑙0   ∀𝑖 ∈ 𝐶 ′, 

                                                                 ∀𝑘 ∈  ′                       (21) 

 0 = 𝑒0   ∀𝑘 ∈                                                                          (22) 

 0 
 = 𝑒0 + (𝑡 − 𝑒0) 00    ∀𝑘 ∈  ′                                          (23) 
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    = 0   ∀𝑖 ∈ 𝐶, ∀𝑘 ∈                                                            (24) 

    
 = 0   ∀𝑖 ∈ 𝐶 ′, ∀𝑘 ∈  ′                                                        (25) 

    ∈ {0,1}   ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈                                                 (26) 

    
 ,     

 ∈ {0,1}   ∀𝑖, 𝑗 ∈ 𝑁 ′, ∀𝑘 ∈  ′                                    (27) 

   ∈ {0,1}   ∀𝑣 ∈  , ∀𝑖 ∈ 𝐶 ′                                                    (28) 
  ∈ {0,1}   ∀𝑗 ∈ 𝐽                                                                       (29) 

   ∈[𝑒0, 𝑙0]   ∀𝑖 ∈ 𝐶, ∀𝑘 ∈                                                      (30) 

   
 ∈[𝑒0, 𝑙0]   ∀𝑖 ∈ 𝐶 ′, ∀𝑘 ∈  ′                                                  (31) 

 
The objective function (1) minimizes the expected value     

of total travel costs for the distribution of   . The random 

quantity  ( ,  ,  ,   ) is the expected cost at the second stage, 

which includes the cost for adjusting the routing, using crowd 

drivers and a penalty 𝑃 to paid for the customer rejection. The 

value of 𝑃 would be set very high so that the minimization of 

the objective function would result in minimizing the number 

of rejected customers as well. Note that a high value of 𝑃 would 

make the rejection of a customer request unaffordable. Thus, in 

some cases, a suitable value of 𝑃 should be considered. 

Constraints (3)-(6) are similar to (7)-(10) and ensure that all 

customers are served once, and any vehicle must start and end 

at one depot, respectively. Constraints (5) and (9) guarantee 

flow conservation. Constraints (11) and (12) ensure that the 

vehicle capacities are not violated in both first and second stage 

solutions. Constraints (13)-(15) ensure that a tour between the 

customer 𝑖 and 𝑗 in the first-stage solution cannot be skipped in 

second stage solution recourse if the service in departure 

location is finished before time 𝑡  where  𝐶𝑡 denotes the 

customers revealed at time 𝑡. Constraints (16)-(18) ensure that 

the time windows of both customers and depot are not violated, 

where 𝑀   is a sufficiently large constant, e.g., 𝑀  = 𝑙 + 𝑡  −

𝑒 . Constraints (19)-(21) are applied to track the time at which 

service is finished in the second-stage solution. Constraints (22) 

and (23) ensure that vehicle 𝑘 cannot leave the depot before 

time 𝑡 in the second stage decision if it does not leave the depot 

in the first stage. Finally, constraints (26) to (31) express the 

domain of decision variables.  

Note that the crowd drivers can be considered as sources of 

special delivery capacity that move within the city. When they 

are employed to pick up the demand from customers, 

constraints such as capacity, time windows, start and return at 

the original place, are akin to the constraints of traditional 

drivers. Note that the crowd drivers have limited service 

distance. The stochastic requests are assigned to crowd drivers 

by checking the service distance and feasibility in terms of 

capacity and time windows constraints. We assume that crowd 

drivers should consolidate the parcels to a traditional van at one 

of the nearest customer location or a mobile depot. As the 

schedules of both vans and crowd drivers are tight, waiting for 

consolidation would incur the violation of time window 

constraints. The synchronization between crowd drivers and 

traditional vans is thus crucial to maintain the parcel delivery 

functioning, i.e., the crowd drivers and vans should arrive at a 

selected customer location or mobile depot at the same time to 

complete the consolidation.  

In this paper, we assume that the operational context of parcel 

delivery can be divided into a predefined number of time 

intervals ℎ. The problem is modified with information revealed 

during each interval. A multi-stage model can thus be extended 

from a two stage-stochastic model into an ℎ-stage model for 

any given ℎ by adding additional variables and constraints for 

each stage [26]. 

IV. METHODOLOGY DESCRIPTION 

The exact approach for multi-stage stochastic VRPs 

currently fails to solve the problem with a large number of 

customers. The evaluation of recourse cost function (2) can 

become extremely difficult, depending on the distribution of 

random variables. Developing a practical heuristic is thus one 

of the promising approaches to solve this complex and large-

size problem. Instead of assuming particular distributions of 

stochastic variables, we develop a simulation-optimization 

based multi-stage heuristic based on sample information. 

Sample scenarios are first generated using a Monte Carlo 

simulation and then applied to guide a heuristic approach that 

constructs a routing plan for each time interval in turn. We 

suppose that the time horizon can be divided into ℎ intervals 

𝐻1, . . . , 𝐻 , which is related to stages in the multi-stage model. 

At the beginning of each interval, the algorithm aims to 

generate a routing plan that minimizes the expected travel cost 

of serving both known and stochastic customers. More 

precisely, at each time interval ℎ ∈ [𝐻1, 𝐻 ], an action    must 

be decided. Each action    contains two parts: first, for each 

customer 𝑖 ∈ 𝐶′  revealed at a time interval ℎ , the action    

must accept or reject the customer based on the given 

constraints. Second, the action    must provide the operational 

decisions for traditional vehicles or crowd drivers at time 

interval ℎ (i.e., service a customer, travel to the next customer, 

or wait at the current position). Before the online execution, the 

first action  1 at time interval 𝐻1 is computed based on a set of 

known offline customers. A solution is a sequence of actions 

 1...  that covers the whole operational horizon. On the one 

hand, we consider the rescheduling and adoption of the crowd 

drivers as two recourse actions to deal with the dynamic feature 

of the problem. On the other hand, using stochastic information 

during the planning is to capture the stochastic elements. The 

key idea is to solve each sample scenario as a deterministic 

VRPTW and then select the distinguished plan from the 

solutions [23]. A post-optimization procedure is finally applied 

to compute additional key performance indicators (KPIs).  

Figure 1 depicts the framework, and the remaining part of 

this section describes the details of this algorithm. 

A. Operational context generation 

The operational context is defined by using different sources 

of information, e.g., city network, vehicle fleet and travel time, 

customer attributes, and the company’s objective and 
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constraints. The city network is generated considering: i) the 

city map provided by the local government; ii) geographical 

coordinates and empirical distributions of customers and depots 

by courier companies. The data related to the vehicle fleet are 

provided by courier companies and include the specific 

attributes of vehicles such as capacity, speed, fuel consumption. 

Travel times are measured through the sensors spread in the 

city. We also collect customer attributes, i.e., locations, 

demand, and time windows. In dynamic applications, stochastic 

knowledge is known as the probability distributions (e.g., 

demand and service time). The objective and constraints are 

defined based on the specific optimization problem.  

Data collection and
 Operational context generation

Phase One

Requests data  
(type,weight,q

uantity...)

Delivery 
options

(capacity, 
speed, costs)

City network 
(road segment

,depot)

Travel time 
for different 

options

Time 
distribution of 

the requests

Available 
crowd drivers

Scenarios generation and Simulation

Phase Two

Sample 
scenorios

Monte Carlo 
simulation

Optimization
Phase Three

Route 
construction

Ruin 
solutions

Recreate 
solutions

Select
Solutions

Phase Four
Post-Optimization

KPIs

Target system 
generation

Results analysis

 
Figure 1. Simulation-Optimization Framework 

Some data may be stochastic since the uncertainty of some 

components in the operational context is involved. These data 

can be described by random variables including service or 

travel time, customer demand, etc. and they are typically 

obtained from the historical data gathered by delivery 

companies. In other words, these data describe the structure of 

the problem which would be solved in the next few phases.  

We remark that the original data for generating the 

operational context is provided in the work [32]. 

B. Scenarios generation and simulation 

To estimate the expected (or recourse) costs we use the 

Monte Carlo simulation or multi-scenarios approach. An 

approximation algorithm for deterministic VRPTW is thus 

applied by evaluating a solution on a set of scenarios. 

Metaheuristic such as LNS and artificial bee colony algorithm 

[33] can be efficiently engaged with sampling approaches to 

implement a simulation-based multi-stage stochastic 

optimization approach, 

The scenarios are generated based on the well-defined 

operational context as well as the knowledge about the 

probability distributions of the stochastic variables. Each 

scenario corresponds to a specific realization of all the random 

variables in an operational context. The distributions of 

demand, reveal time, time windows and locations are used to 

create possible future customer requests. Monte Carlo sampling 

is used to generate a set of instances. Each instance contains 

both the known customers and the stochastic ones drawn from 

the given distributions. These sample instances show that likely 

events are associated with a high probability. For any given 

time interval ℎ , solutions of these sample instances are 

generated using simple local search algorithms such as 

insertion heuristic and regret heuristic. The implementation 

starts with the routes which are already executed. In particular, 

each start depot matches the vehicles’ current position, while 

each vehicle capacity is calculated by reducing the weight of 

goods collected up to the current time. The end depot remains 

the same, and time windows are appropriately modified. The 

feasibility of assigning the customers to crowd drivers are also 

checked based on service distance and other constraints. The 

frequently visited customers among the sample instances are 

identified, and a decision is thus made to serve these customers 

during ℎ  in the final plan. We implement the Google Earth 

application programming interfaces (APIs) through a 

georeference module to generate more accurate travel time 

matrices. 

C. Optimization 

The optimization algorithm is an extended meta-heuristic that 

combines the ruin and recreate principle and a group of general 

heuristics proposed by [34] and [35]. It aims to generate and 

improve the routing plans for multiple scenarios ruin and 

recreate operations. We first suppose that an initial solution   

has been constructed through a simple insertion heuristic. Then, 

a quantity 𝑞 of customers is removed from the solution. We 

conduct the ruin and recreate operations on the current solution 

 𝑛𝑒𝑤, to diversify the search space and improve the solution. 

The algorithm ends when it reaches a certain number of 

iterations (i.e., 5000 iterations). Since the parameter 𝑞 

determines the neighborhood size, we select an appropriate 

value 𝑞  that balances the computational efforts and solution 

quality. In our case, we set 𝑞 equal to 10% of the maximum 

customers for each instance. The performance and robustness 

of LNS are dependent on the selected ruin and recreate 

operations. Note that in each ruin and recreate operation process, 

only one heuristic is selected, according to the well-known 

roulette wheel selections. We describe more details about the 

whole process in the following subsections. 

1) Construct an initial solution 

For the given scenario, the algorithm starts with an initial 

solution generated by the basic greedy heuristic. This heuristic 

aims to repeatedly insert a request at the cheapest possible 

position. It means that the request is always inserted into a 

position with a minimum insertion cost in each iteration. More 

formally, let 𝑈 be the set of unserved customers and ∆𝑓   be the 

change of objective value generated by inserting request 𝑖 ∈ 𝑈 

at the cheapest position in the vehicle 𝑘, if request 𝑖 fails to 

insert in the vehicle 𝑘, the value ∆𝑓   is set to infinite. We thus 

calculate all the potential insertion and insert request 𝑖  in 

vehicle 𝑘 at its minimum cost position as follows: 

(𝑖, 𝑘) ≔ arg𝑚𝑖𝑛 ∈𝑈, ∈𝐾 (∆𝑓  )            (32) 

Note that only one route is changed in each iteration and the 

process does not end until all requests are inserted, or no 
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feasible requests exist. As a simple construction heuristic, the 

basic greedy heuristic has the potential problem of postponing 

the placement of expensive customers (i.e., with larger ∆𝑓  ) to 

the last iterations. It makes it difficult to serve expensive 

customers. Indeed, many routes might have no space at the last 

iterations, leading to creating new routes or reject customers. 

To overcome this potential issue, we consider an alternative 

approach presented in subsection 3).  

2) Ruin operations 

After constructing the initial solution for each scenario, we 

apply the following four ruin strategies to destroy the initial 

solution: random removal, worst removal, related removal, and 

cluster removal. These heuristics take a given solution   as 

input and then output a partial solution together with 𝑞 removed 

requests.    

The random removal is the simplest heuristic that selects 𝑞 

requests randomly and removes them from the current solution. 

This process aims to diversify the search space.  

The worst removal selects some requests that have high costs 

in their current position. Given a solution   and a request 𝑖, we 

define 𝑓( , 𝑖)  as the objective value that request 𝑖  has been 

removed from solution  . The change of objective value ∆𝑓   is 

defined as ∆𝑓  = 𝑓( ) − 𝑓( , 𝑖).  The worst removal 

repeatedly selects a new request 𝑖 with the highest cost of ∆𝑓   

until 𝑞 requests are removed. The purpose of the worst removal 

heuristic aims to remove the requests at the worst positions and 

insert them at other positions to obtain better objective value in 

the recreate process. However, it is important to maintain the 

randomization of this heuristic, in case the same customers with 

expensive costs are removed repeatedly. This is achieved by 

using a parameter  ≥ 1 that controls the selection process. A 

less expensive customer associated to a high value of  , may be 

selected. This probability decreases with the value ∆𝑓  . It 

means that if the value of   is small, then the most expensive 

customer is chosen.  

The related removal is used to remove the requests that are 

similar to each other in some sense. The motivation of this 

heuristic is that we may not obtain any improvement when 

reinserting the removed requests in the case they are very 

different from each other. The similarity of request 𝑖  and 

request 𝑗 is defined as relatedness 𝑅(𝑖, 𝑗). The main idea is to 

measure the similarity by calculating the difference value in 

terms of capacity, service-starting time, and distance between 

requests 𝑖 and 𝑗, as indicated in the equation (33). 

𝑅(𝑖, 𝑗) = 𝜑   + 𝜎(|  −   |) + 𝜏(|𝑞 − 𝑞 |)          (33) 

Note that all terms in this equation are normalized in the 

range [0,1]. The related removal procedure removes a random 

customer, and in the next iterations, it selects customers that are 

similar to the already removed customers. The parameter   is 

again used to control the selection process as we do in the worst 

removal. For further details on the heuristic, the interested 

reader can refer to [36, 37]. 

Finally, the cluster removal, as a variant of the related 

removal, is applied to remove clusters of related requests from 

a few routes. The purpose of this heuristic is to remove the 

clusters of requests entirely from different routes in case the 

single removed request would be inserted back into the route. 

3) Repair operations 

After applying the ruin operation, a group of repair operation 

is used to generate new solutions for each scenario. The 

operation is conducted in parallel since there are different 

scenarios. The basic greedy heuristic is applied again to 

recreate the new solutions. However, this simple heuristic may 

insert some requests back in their previous position. The regret 

heuristics are then used to prevent this problem by using a kind 

of look-ahead information. Let ∆𝑓 
𝑞
 be the change of objective 

value generated by inserting customer 𝑖 at its best position in 

the 𝑞th cheapest route for customer 𝑖. The value of ∆𝑓 
2 is thus 

the change of objective value by inserting customer 𝑖 into the 

route where the customer could be inserted second-cheapest. In 

each iteration, the customer 𝑖  is selected based on 𝑖 ≔

arg𝑚   ∈𝑁 (∆𝑓 
2 − ∆𝑓 

1). This operation aims to maximize the 

difference in the cost of inserting customer 𝑖 at its best route and 

second-best route. This process is repeated until no more 

customers can be inserted. Instead of using a simple acceptance 

criterion that only accepts the solution with better objective 

value, the simulated annealing strategy is used to select the 

solutions based on a varying probability. The detail of this 

strategy can be found in the work by [34].  

These steps described above are repeated until the given 

termination criterion is met, i.e., reach the maximum running 

time or have no improvement for continuous iterations. As 

phase 3 continues, a set of plans is maintained at each interval. 

To decide which customers should be fixed in the routes for the 

current interval, a natural operation is used to exploit the 

common features among the maintained routing plans, i.e., find 

the customer that is most frequently visited in the current time 

interval in the multiple sample scenarios. Once these customers 

are identified, the action    is then fixed to visit these 

customers during the current time interval ℎ in the final plan. 

At the end of the last time interval, a post-optimization and 

results analysis are conducted in phase 4, and we compute the 

related KPIs. 

V. CASE STUDY 

In this section, we analyze the potential impact of 

crowdsourcing and multiple delivery options in terms of 

economic, environmental, and operational sustainability for on-

demand parcel delivery. In doing so, we conduct a real case 

study related to urban logistics in the city of Turin (Italy). We 

first present the description of the case study and the related 

operational context. Then, we discuss the computational results 

to provide useful insights for decision-makers. 

A. Description of the operational context 

Last mile presents serious challenges to the operations of the 

supply chain network. Thus, alternative distribution systems 
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architectures have been proposed to tackle these challenges and 

enhance the efficiency of last-mile distribution. A promising 

solution that we consider in this study is the adoption of a two-

tier system[38]. In the first level, trucks perform deliveries from 

distribution centers located in a strategic node of the city to 

Urban Consolidation Centers named satellite. They are 

generally transshipment points situated in the proximity of a 

city center. At the second level, orders are consolidated in city 

freighters, i.e., small vehicles that can move easily along any 

street in the city center area managed even partially with 

crowdsourcing contracts [39]. 

In this case study, we consider four benchmarks integrating 

van, bike, and crowdsourcing: 

• Benchmark 1 (B1): only traditional vans (fossil-fueled) 

are used to manage the parcel delivery. 

• Benchmark 2 (B2): green carriers, such as drivers using 

cargo bikes or bicycles with the messenger bag, are used 

as an environment-friendly delivery option, providing 

economic and operational benefits for parcel delivery. In 

the B2, we consider both van and bike as transportation 

modes. 

• Benchmark 3 (B3): we consider crowdsourcing as a 

flexible delivery option. The crowd driver plays the role 

of additional capacity to meet the on-demand requests. 

In practice, the delivery tasks are assigned based on the 

distance between crowd drivers and customers.  

• Benchmark 4 (B4): all the above delivery options are 

integrated.     

The urban distribution setting and data used in the paper are 

inspired from the analysis of a real case study of the city Turin 

conducted by the CARS@Polito [40], and the ICELab@Polito 

[41], with the collaboration of the Torino Living Lab project 

[42] and the Amazon Innovation Award. The managerial 

insights coming from this work will be part of the new Logistics 

and Mobility Plan to be activated in 2022 in the Piedmont 

region, for which one of the authors is responsible. 

In particular, to generate specific operational contexts, we have 

fused the parameters and data coming from the following 

sources: 

• URBeLOG project for the distribution of customers and 

real (and anonymized) information about their location 

[43]; 

• Municipality of Turin for what concerns the satellite 

location, city map and data on the road network from 

sensors in the city; 

• the study by [32], regarding vehicle characteristics, costs 

and revenue structure of parcel delivery companies. 

In particular, the city network presented in Figure 2 is 

generated using a 2.805 × 2.447 km2 area in Turin that includes 

both the center of the city and a semi-central area. We consider 

that area because, according to [44], it is the area in which the 

different modes can coexist sustainably (from economic, 

environmental, social, and operational perspectives) and is also 

the most populated area of the city, covering more than the 80% 

of the total population. We use a distribution center located on 

the outskirts of the city to serve the traditional carriers while a 

mobile depot in the city center is a satellite facility for the green 

carrier and crowd drivers. Road segments of this network are 

represented by two sequential connected points. The roads’ 

information is extracted from the shapefiles provided by the 

local public authority in Turin. The average speed on each road 

segment is monitored by the speed sensors around the city area. 

Each point on this network is associated with a unique ID 

number and real GPS coordinates.  

Table 2 presents the values of the capacity, speed and service 

time for each delivery option. As these parameters are provided 

by an international parcel delivery company operating in Turin, 

their values are assumed to be fixed and thus, we consider them 

as input in our case study. The crowd drivers move within the 

city. We thus randomly generate the location of crowd drivers 

on this graph. We conduct some preliminary experiments to 

obtain a suitable number of available crowd drivers. The aim is 

to test and analyze the impact of the different numbers of 

available crowd drivers for B4. The detailed results are 

represented in subsection V.B.1. We classify the parcels based 

on their weights as mailers (0-3kg), small parcels (3-6kg), and 

large parcels (over 6kg), while the percentage of total parcels 

for each type is defined as 57%, 13%, and 30% respectively, 

according to [28]. 

In the operational context, we separate the eight working 

hours as four time buckets with the same length, according to 

the current standard for timeslots in time-sensitive urban 

delivery (e.g., Amazon Prime Now, Uber Freight). Each bucket 

is split by 1 minute time unit. For each potential customer, the 

demand is generated based on its parcel type while the time 

window is specified for the time bucket by the simulator. 

In our simulation, we consider instances with 550, 350, and 

150 potential customers, respectively. For each context, there 

are 70% offline requests which are known before scheduling. 

Meanwhile, 30% of potential customers are assigned as prime 

members with a priority which restricts their time window to 

the first two time buckets. The expected behavior of each 

potential customer for the investigated problem is described. 

Mailers
small

parcels

large

parcels

Van 70 700kg NA 40 4 4 5

Cargo Bike 15 70kg NA 20 2 2 —

Crowd Driver 6 4 Parcels 2 15 2 — —

Table 2. Input parameters

Service time(min) 
Delivery

Options

Maximum

parcel

size(kg)

Capacity
Coverage

(km)

Speed

(km/h)
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For each potential customer location 𝑖 and each time unit 𝑡 of 

the time horizon, a probability is associated with an online 

request (i.e., picking up a parcel) that may reveal at a time 𝑡 for 

location 𝑖. 

Once all the locations are defined, the mutual distances 

between these customers and depots in the network are then 

generated. Instead of using Euclidean distance, the distance 

matrix among the points is calculated using Dijkstra’s shortest 

path method. The travel time matrixes are generated based on 

these distance matrixes and original speed among the road 

segments in the input data.  

We consider three different degrees of dynamism (DOD) to 

address dynamic online requests, i.e., 15%, 30%, and 45%. For 

example, DOD-15% means that there are 15% of dynamic 

requests in total customers. For each operational context, we 

thus obtain three different sub-contexts, which are used to 

measure the impact of DOD. For each sub-context, we generate 

10 independent scenarios with 10 sets of dynamic online 

requests, obtained sampling their probability distributions. 

Each online request is associated with its location, demand, 

time windows, and the time when they appear in the time 

horizon. This yields a total of 360 instances. They are available 

on the Github repository at the following link: 

https://github.com/gcmswm/Benchmarks. 

The objective function minimizes first the total travel cost 

(expected) of parcel delivery and second the number of rejected 

requests.  

 
Figure 2. City network in the case study. Note that the red square 

represents the mobile, while the blue circles are the offline customers. 

B. Numerical analysis 

In this section, we analyze the impact of adopting crow 

drivers and multimodality on the sustainability of the parcel 

delivery. 

We conduct experiments based on some randomly generated 

test problems. For each benchmark and operational context, we 

perform 10 independent tests. Therefore, we solve the 360 

instances independently, by the optimization procedure. To 

measure the experimental results, we calculate different KPIs 

that reflect the mix of economic, environmental, and 

operational facets of the service: 

• Economic sustainability. According to the current real 

practices, the delivery cost is associated with the number 

of parcels served by different delivery options since 

different options have different contract costs for each 

parcel. We define the KPI as cost per delivery for each 

option: 

o cost per delivery (van), the unit cost of each parcel 

delivered by traditional van; 

o cost per delivery (bike), the unit cost of each parcel 

served by bike. 

For the sake of simplicity of exposition and brevity, we 

refer to costs structure analyzed in [44]. In particular, we 

consider the operating costs related to the vans and cargo 

bikes. The latter are usually adopted by crowdrivers.  

These costs are computed per kilometer traveled in the last 

mile segment of the supply chain, and include both 

variable costs (e.g., gasoline) and the total cost of 

ownership of the vehicle [44]. In particular, we consider 

both costs directly related to the vehicles (e.g., purchase 

cost, taxes, insurance, fuelling, and maintenance costs) 

and  personnel costs (e.g., drivers/bikers salaries and 

related taxes). The typical contract scheme in the parcel 

delivery industry imposes then the conversion from a cost 

per kilometer to a cost per stop. 

In the crowdsourcing, we also consider the compensation per 

delivery that reflects the unit paid by the company to crowd 

driver for each delivered parcel. The exact compensation is 

dependent on many factors such as distance, weight, and the 

local market. However, for the medium distance, inter-city 

market, we follow the investigation from [6] and use an average 

value (i.e., 1.8€ per delivery) as compensation for crowd drivers. 

• Environmental sustainability. We consider the emissions 

and costs of the overall last-mile chain, according to the 

latest regulation, the ISO/TS 14067:2013 “Greenhouse 

gases - Carbon footprint of product - Requirements and 

guidelines for quantification and communication”. In 

particular, we consider three types of emissions: direct 

emissions from the fuel combustion process, indirect 

emissions, emitted by the fuel production process, and the 

long-haul shipment of the fuel, CO2 equivalent to 

including pollutants, such as nitrogen oxide. Thus, we 

calculate the CO2 emission saved in B2, B3, and B4, based 

on the lower travel distance by applying green delivery 

options (i.e., bike and crowdsourcing). 

• Operational sustainability. The operational efficiency of 

the delivery system is normally evaluated in terms of 

fulfilled deliveries. It becomes challenging when the 

demand increases. We thus use the total number of parcels 

served per hour (𝑛𝑆/ℎ)  to measure operational 

sustainability.  

1) Preliminary analysis for crowdsourcing 

This section conducts a preliminary experiment to measure 

the suitable number of crowd drivers in our case study. The 

average distance traveled by vans and the total average 

economic cost are calculated for comparison. In this 

https://github.com/gcmswm/Benchmarks
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experiment, the number of crowd drivers is set equal to 5, 10, 

15, 20, and 25, while their locations are randomly generated 

spreading within the urban area. The experiment is analyzed by 

using benchmark B4 with 350 potential customers.  

In general, there are some limitations to the number of crowd 

drivers in real-world applications due to different reasons: the 

customers’ requests, the availability and motivation of crowd 

drivers, and suitable compensation strategies.  

To find a proper number of crowd drivers in our case study, 

we analyze the results shown in Figure 3. In particular, the 

values in Figure 3a highlight that when the number of available 

crowd drivers is low (i.e., 5 drivers), and the degree of 

dynamism is low (i.e., 15%), these drivers are used to manage 

the online requests given their flexibility. When the degree of 

dynamism increases while the number of available crowd 

drivers is still low and thus, insufficient to cope with the high 

online requests, vans remain the promising choice.  

Increasing the number of crow drivers, they are adopted to 

manage a greater part of the requests than the previous scenario, 

also when the degree of dynamism increases. This leads to a 

reduction of the distances traveled by vans (e.g., when DOD is 

45%, increasing the number of crowd drivers from 5 to 25, the 

average van distance decreases by 20%). Moreover, when the 

number of crowd workers is equal to 20, we obtain a reduction 

of the average van distance for all the DODs. In particular, for 

DOD equals to 15%, we reach the lowest value of the distance 

traveled using vans. This is reflected in the lowest value of the 

economic costs faced by the traditional courier company 

(Figure 3b). While the economic cost for DOD-30% and DOD-

45% has no significant variation for the different number of 

crowd drivers. 

We thus decide to use 20 as the baseline number for crowd 

drivers for our case study. This choice is based on two reasons 

in the real-world application. First, when the number of crowd 

drivers is too large, some of the crowd drivers cannot receive 

enough delivery tasks during the execution, which will decrease 

their motivation for participating in the parcel delivery. Second, 

if the number of crowd drivers is too small, there can a lack of 

available crowd drivers in some local areas so that the expected 

service quality may not be guaranteed. 

However, the optimal capacity planning of crowd drivers is 

a complex problem due to many factors including the 

compensation of delivery, the motivation of crowd drivers, and 

the available customer requests. The interested readers are 

referred for more details to [45]. 

 

 
Figure 3a. Comparison of van distance 

 

 
Figure 3b. Comparison of economic cost 

 

2) Performance comparison for benchmarks 

To demonstrate the performance of using different options for 

parcel delivery, we calculate the percentage of each KPI 

compared with benchmark B1. Figure 4 presents the 

performance of the traditional vans in B2, B3, and B4. The 

figures are calculated as a percentage variation of each KPI to 

the value of the same KPI in B1. The operating and 

environmental cost savings obtained by using cargo bikes and 

crowdsourcing are denoted by 𝛥𝑂𝐶  and 𝛥 𝐶  respectively. 

While 𝛥 fficiency refers to the reduction of efficiency due to  

the reduced number of services (see [25] for a detailed 

description of the computation of the KPIs). 

Figure 4 illustrates the improvement of economic and 

environmental sustainability when applying different delivery 

options (vans, cargo bikes, and crowdsourcing) for parcel 

delivery. As shown in Figure 4, the adoption of cargo bikes 

(B2), crowdsourcing (B3), and their combination (B4) lead to 

the reduction of economic and environmental costs. In 

particular, these reductions are obtained by reducing the 

number of vans and their total travel distance, which leads to 

25%, 21%, and 44% reduction of average economic cost for B2, 

B3, and B4, respectively. Meanwhile, the average decreases of 

CO2 emissions for B2, B3, and B4 are 116.68kg, 115.01kg, and  
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  Figure 4. Performance comparison of different benchmarks

297.05kg that contribute to 17%, 16%, and 46% total average 

reductions of the environmental cost, respectively. In particular, 

when the degree of dynamism is equal to 45%, the 𝛥 𝐶 values 

are larger than the other two counterparts, i.e., DOD-15% and 

DOD-30%. According to the results, the potential benefits of 

applying cargo bikes and crowdsourcing as green carriers are 

demonstrated for investigated three benchmarks. The most 

significant finding is that combining both cargo bikes and 

crowdsourcing into traditional van delivery reaches the highest 

reduction of economic and environmental costs. In addition, the 

loss of efficiency for B2, B3, and B4 is 25%,11%, and 33% on 

average, respectively. B3 reaches the minimum loss of 

efficiency for parcel delivery, while the economic and 

environmental cost saving is promising, i.e., 21% and 16% on 

average. Though the B4 reaches the maximum average loss of 

efficiency at 33%, the maximum economic and environmental  

cost savings (44% and 46%) are reached. In practice, when 

crowd drivers and cargo bikes are involved with traditional 

vans, there should be a balance between the increase in profits 

and service quality. The integration of different delivery options 

should be managed wisely in terms of balancing the workload, 

working conditions, efficiency, and service quality.  

In this paper, we consider two strategies to deal with the high 

demand for dynamic requests. The first one is to assign the 

online requests to the spreading crowd drivers according to the 

available recourse actions proposed by the optimization solver.  

The second is to accommodate the online requests to the 

existing vehicles with spare capacity.  

To analyze the impact of crowd drivers for on-demand parcel 

delivery, we compare the rejected customer requests for each 

benchmark. Figure 5 presents a boxplot of the results for the 

four benchmarks. This figure represents the case with 550 

potential customers, as there are no rejected requests in  

 

instances with 150 and 350 customers. Three different DODs 

are considered since the different number of dynamic requests  

may have different influences on the number of rejected 

requests. As shown in Figure 6, the number of rejected requests 

in B1 is the largest independently by the DOD. When the DOD 

increases, the number of rejected requests increases 

significantly. This result shows that only using traditional vans 

as the delivery option would cause more rejected requests when 

the dynamic requests are higher. When the cargo bikes are 

integrated, as shown in B2, the number of rejected requests 

decreases while the result has the same trend with B1 since the 

number of rejected requests is also increased with DOD. 

However, the trend in B3 and B4 is different. The number of 

rejected requests in both B3 and B4 remains stable for different 

DODs. Note that the results of B4 are better than B3 for each 

DOD since they have a lower minimum, average and maximum 

number of rejected requests according to the boxplot. In 

addition, there are only a few numbers of rejected requests in 

both B3 and B4. This result indicates that introducing crowd 

drivers as a delivery option can significantly reduce the number 

of rejected requests for our investigated instances. Therefore, 

considering these results, we conclude that green carriers and 

crowd drivers are promising delivery options to deal with online 

customer requests in the context of stochastic and dynamic 

parcel delivery. 

3) Influence of different customer demand 

To illustrate the influence of varying customer demand on 

sustainability performance (i.e., operational cost, 

environmental cost and efficiency), we conduct a group of 

experiments on B4 by changing customer demand. We decide 

to conduct a sensitivity analysis on this parameter as the 

uncertainty on the composition of the demand will affect in the 

near future the congestion and the development of urban areas 

[28, 46].  

In doing so, we create three new groups of customer demand 

varying the composition of the demand as follows: 
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• reduction of 20% resulting in a market downturn; 

• increase of 20% and 40% to suppose a market 

expansion.  

The results are represented in Table 3, with respect to the 

current situation of demand. 
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Figure 5. Comparison of rejected requests for different benchmarks 

The values of 𝛥𝑂𝐶 , 𝛥 𝐶 and 𝛥 fficiency  represent the 

percentage variations of operational cost, environmental cost 

and efficiency, respectively, between the normal customer 

demand and three other different groups of demand. As shown 

in Table 3, when the customer demand decreases to 80%, the 

operational cost, environmental cost and delivery efficiency of 

the delivery system decrease for all investigated instances. On 

the other hand, when the customer demand increases to 120%, 

the operational cost increases ranging from 7.8%-14.1% for the 

investigated instances. The environmental cost increases by 

9.7%, 17.3% and 14.8% for three different instance sizes. The 

efficiency of parcel delivery is witnessed to a few increases 

ranging from 0.2%-6.3%. Moreover, the demand expansion of 

40%, has the most significant change among other instances. 

For example, the operational cost increases by 17.1%, 18.2%, 

and 14.6%, respectively, and the environmental cost increases 

by 35.6%, 34.7%, and 28.2%, respectively.  

The delivery efficiency has a significant increase in all 

instances. The results show that customer demand has a 

significant impact on operational cost as well as environmental 

cost. When the customer demand decreases/increases, 

operational and environmental cost decreases/increases. The 

potential reason behind this phenomenon is that the total 

required vehicles are changed in terms of both vans and bikes 

as well as crowdsourcing. However, it is not a linear function 

between customer demand and costs since many other factors 

must be considered. Thus, it is difficult for companies to decide 

how many vehicles should be prepared for varying customer 

demand. To solve this issue, one of the potential solutions, we 

believe, is to introduce more flexible delivery options like cargo 

bikes from a third party, or crowd drivers from the social 

community. Both two options are suitable for the on-demand 

market and would not cause much more fixed costs for delivery 

companies.   
 

 

 

 

 

 

Table 3. Impact of different customer demand 

Demand instance size △OC △EC △Efficiency

150 13.9% 9.4% 10.0%

350 5.3% 13.8% 29.1%

550 3.9% 12.5% 36.7%

150 -7.8% -9.7% -6.3%

350 -14.1% -17.3% -0.2%

550 -8.2% -14.8% -2.6%

150 -17.1% -35.6% -18.7%

350 -18.2% -34.7% -11.7%

550 -14.6% -28.2% -8.1%

80%

120%

140%

 
 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, we addressed a DSVRPTW problem with 

crowdsourcing for on-demand parcel delivery. This research 

topic is inspired by the practice in the parcel delivery market 

including the advent of crowdsourcing in our community. 

Indeed, we integrate multiple delivery options into this problem 

together with crowd drivers.  

To cope with this research topic, we proposed a multi-stage 

stochastic model, and the problem is solved by following a 

simulation-optimization framework.  

We conducted a case study in the medium-sized city of Turin 

(Italy) to measure the potential impact of using cargo bikes, 

crowdsourcing in parcel delivery. The numerical experiments 

show that combining crowd drivers and green carriers into 

traditional van delivery is beneficial thanks to economic and 

environmental cost-saving, while the delivery efficiency 

decreases. In particular, the total travel distance and CO2 

emissions are reduced in our investigated instances. Besides, 

green carriers and crowdsourcing are promising and flexible 

solutions when dealing with many online requests. We varied 

the customer demand investigating its potential impacts on the 

system. The results show that operational costs and 

environmental costs are sensitive to variations of customer 

demand.  

Future directions will consider the optimal workforce 

capacity planning in crowdsourcing applications as well as their 

compensation strategies, i.e., hourly compensation, per-

delivery compensation, and driver-determined compensation 

[12]. Besides, it is promising to address the stochastic and 

dynamic pickup and delivery problem with time windows, 

especially for tighter and overlapping time windows. 
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