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Abstract: The physics of heat and mass transfer from an object in its wake has significant
importance in natural phenomena as well as across many engineering applications. Here, we report
numerical results on the population density of the spatial distribution of fluid velocity,
pressure, scalar concentration, and scalar fluxes of a wake flow past a sphere in the steady wake
regime (Reynolds number 25 to 285). Our findings show that the spatial population distributions of
the fluid and the transported scalar quantities in the wake follow a Cauchy-Lorentz or Lorentzian
trend, indicating a variation in its sample number density inversely proportional to the squared of
its magnitude. We observe this universal form of population distribution both in the symmetric
wake regime and in the more complex three dimensional wake structure of the steady oblique
regime with Reynolds number larger than 225. The population density distribution identifies the
increase in dimensionless kinetic energy and scalar fluxes with the increase in Reynolds number,
whereas the dimensionless scalar population density shows negligible variation with the Reynolds
number. Descriptive statistics in the form of population density distribution of the spatial distribution
of the fluid velocity and the transported scalar quantities is important for understanding the transport
and local reaction processes in specific regions of the wake, which can be used e.g., for understanding
the microphysics of cloud droplets and aerosol interactions, or in the technical flows where droplets
interact physically or chemically with the environment.

Keywords: sphere wake; steady flow; axisymmetric wake; oblique wake; lattice Boltzmann method;
direct numerical simulation; population density; Lorentzian distribution

1. Introduction

The interactions between spherical bodies, such as particles, bubbles, and drops, and the ambient
through which they move is a vast area of research, which has attracted attention over centuries
in various scientific disciplines [1,2]. The flow past a sphere presents different regimes at different
Reynolds number Re, based on the sphere diameter and the velocity of the incoming flow. The steady
axisymmetric structure of a wake at low Reynolds number, up to Re ∼ 210, was studied experimentally,
for example by Teneda (1956) [3] and numerically by Tomboulides and Orszag (2000) [4] among
others [5]. The steady axisymmetric regime is followed by a steady oblique wake structure, with Re
up to 280, which was observed experimentally by Magarvey and Bishop (1961) [6] and numerically
by Johnson and Patel (1999) [7], for example. An unsteady structure of the wake appears at higher
Re, and was reported by Fornberg (1988) among others [8,9]. The drag coefficient CD of a sphere,
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which varies with the roughness of the sphere surface and Re, was studied in detail, for example,
by Eichhorn and Small (1964) and others experimentally [10–13] and by Tabata and Itakura (1998) [14],
Birouk and Al-Sood(2007) [15] numerically. At present, how the drag, lift and pressure coefficients
vary both locally as well as globally with respect to the sphere is well known [4,15,16]. The two
dimensional structures of the streamlines, vorticity and pressure contours along the orthogonal central
planes through the sphere are also well known over various studies, such as, Tomboulides and Orszag
(2000) and others [4,7,17].

Many engineering applications and natural processes rely on understanding the interaction
between a sphere and the ambient, also involving transport of various scalar species, either passively
advected by the ambient flow or interacting actively with the flow through various physical processes,
for example, through evaporation and buoyancy. The rate of scalar transport, in particular the
convective heat transfer from spherical objects at various Re, has been investigated both numerically,
for example, by Bagchi et al. (2000) [17] and Richter and Nikrityuk (2012) [18] and experimentally
by Kramers (1946), among others [19–22] to determine the heat transfer coefficient. Similar to the
drag coefficient, attention was given to the dependence of the local Nusselt number (a ratio of the
convective and the diffusive (conductive) heat transfer) on the sphere surface and its global average
for different Re [17,22]. The profiles of the dimensionless temperature contours along the central
orthogonal plane for various Re have also been described in the studies by Bagchi et al. (2000) [17]
and Chouippe et al. (2019) [23]. A coupled system involving an interplay between different scalars
can also be present, for example, in case of the phase change during droplets evaporation or freezing
resulting in heat and mass exchange with the ambient air. Such interactions were also studied both
experimentally by Ranz and Marshall Jr. (1952) [24] and Friedlander (1957) [25] and numerically by
Dennis et al. (1973) [26] and Chouippe et al. (2019) [23]. All these studies are mainly concerned with
the average scalar flux at the surface of the sphere, which determines the mass and temperature change
rate of the sphere. However, a detailed description of the wake regarding the spatial evolution of the
fluid velocity and scalar populations, including the scalar concentrations and the convective fluxes,
both in two and three dimensions for various steady Re, have not been fully explored.

Descriptive statistics on the spatial structure of the wake is of primary importance if the extent of
the wake with certain properties needs to be quantified. Supersaturation in the wake of precipitating
cloud water droplets, which have important implications for cloud life cycle as investigated by
Bhowmick et al. (2020) [27] and Krayer et al. (2020) [28], requires for example a detailed analysis of
the transported scalar population in the wake. To quantify the extent of the supersaturated volume in
the wake of a cloud droplet, where aerosols can grow by the deposition of the excess water vapor in
the supersaturated wake and can be activated due to sufficiently long exposure to supersaturation
in the droplet wake [27]; the details of the scalar population in the wake need to be known with
a quantification on the scalar transport and its population distribution. In this paper, we present
a comprehensive numerical study on the details of the momentum and scalar transport in the wake
of a sphere using a population density distribution for the steady axisymmetric and oblique wake
regimes. A brief introduction of the numerical methods and computational details are described in
Section 2. Results are presented and discussed in Section 3. Finally, conclusions are given in Section 4.

2. Physical Model, Numerical Method and Boundary Conditions

We consider the flow which develops past a sphere, placed in incompressible viscous fluid with
velocity u∞ = (u∞, 0, 0), pressure p∞, and a constant density ρ. Together with the balances of mass
and momentum, we also consider the transport of passive scalars, which are any contaminants present
in low concentration so that they do not influence the flow. Such dynamics are described in an Eulerian
framework by an advection–diffusion (AD) equation. If ds is the diameter of the sphere, θ the passive
scalar concentration, θs and θ∞ are the scalar concentration on the surface of the sphere and in the
external flow respectively, the problem can be suitably made dimensionless by using dp, u∞ and
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θs − θ∞ as scales, and therefore by defining the dimensionless position, time, velocity, pressure, and scalar
concentration as,

x∗ =
x
ds

, t∗ =
tu∞

ds
, u∗ =

u
u∞

, p∗ =
p− p∞

ρu2
∞

, θ∗ =
θ − θ∞

θs − θ∞
.

Therefore, the dimensionless incompressible Navier-Stokes (NS) equations and the one-way
coupled AD equation for the scalar are,

∇∗ · u∗ = 0, (1)
∂u∗

∂t∗
+ u∗ · ∇∗u∗ = −∇∗p∗ +

1
Re
∇∗2u∗, (2)

∂θ∗

∂t∗
+ u∗ · ∇∗θ∗ =

1
Re Sc

∇∗2θ∗, (3)

where Re = u∞ds/ν is the Reynolds number (ν is the kinematic viscosity) and Sc = ν/κθ is the Schmidt
number, the ratio between the kinematic viscosity and the scalar diffusivity κθ . These equations are
complemented by uniform flow boundary conditions far from the sphere (u∗ → (1, 0, 0), θ∗ → 0)
and no slip boundary conditions on the surface of the sphere with a constant scalar concentration
(u∗ = 0, θ∗ = 1). From now on the ∗ will be dropped and all variables are in their dimensionless form.

These governing equations are numerically solved with the lattice Boltzmann method
(LBM) [29,30]. A code is developed based on the open-source library, Palabos [31]. In LBM, the particle
distribution function f (x, t) is governed by

fi(x + ci∆t, t + ∆t) = fi(x, t) + Ωi(x, t), Ωi(x, t) = −∆t
τ ( fi(x, t)− f eq

i (x, t)). (4)

Here i is the index of the discrete velocity c, which defines the structure of lattice; x and t
are the location of a lattice node and the time respectively. The collision operator Ωi(x, t) models
the redistribution of the particle populations at each lattice node. In this study, we consider the
Bhatnagar-Gross-Krook (BGK) collision operator [32], with which the population fi(x, t) relaxes
towards its equilibrium state f eq

i (x, t) according to the time scale τ defined below, which determines
the relaxation of this equilibration process for the fluid particle distribution function [30]. f eq

i (x, t) and
τ are defined as,

f eq
i (x, t) = wiρ(1 +

ci · u
c2

s
+

(ci · u)2

2c4
s

+
u · u
2c2

s
), ν = c2

s (τ −
∆t
2
).

Here wi is the weight, cs is the speed of sound. The macroscopic quantities, such as the
density ρ and velocity u are moments of fi(x, t), according to ρ = ∑i fi(x, t) = ∑i f eq

i (x, t) and
ρu = ∑i ci fi(x, t) = ∑i ci f eq

i (x, t) respectively. For solving the fluid velocity field, the D3Q19 lattice
is chosen which is a three dimensional velocity set at each lattice node with one rest-velocity and
18 non-rest velocities. Since the non-linear momentum advection corrections are not very significant in
the steady axisymmetric or oblique wake flows, D3Q19 lattice is a good choice for our simulations [33].

The one-way coupling between the fluid momentum ρu and the scalar concentration θ is solved
by another LBM equation similar to Equation (4), but with a distribution function gi(x, t) for the scalar.
To recover the AD equation, the equilibrium distribution function geq

i (x, t) [34] and the relaxation
time scale τg, which determines the speed of the equilibration process for the scalar distribution
function [30], are used as,

geq
i (x, t) = wiθ(1 +

ci · u
c2

s
), κθ = c2

s (τg −
∆t
2
).
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The scalar concentration θ is calculated according to θ = ∑i gi(x, t) = ∑i geq
i (x, t). Since only the zeroth

and the first order moments of gi(x, t) are used to recover the AD equation from the LBM equation,
a D3Q7 lattice is used for solving the scalar field [30].

The sphere is set in the origin of the reference frame, and the dimensionless domain is
[−5, 20]× [−3.5, 3.5]× [−3.5, 3.5] in size (5 diameters upstream, 20 diameters downstream and
7 diameters in the transversal directions) as shown in Figure 1. The domain is discretized with
a uniform Cartesian mesh with a grid size equal to 1/32 of the sphere diameter. Dirichlet and
Neumann boundary conditions are considered for the inlet and outlet boundaries, respectively. For the
lateral boundaries in transversal directions, periodic boundary conditions are applied. A second order
extrapolation scheme, proposed by Guo et al. (2002) [35], is adopted for the curved boundary of
the sphere.

y
xz

(-5,0,0)

(20,0,0)

(20,-3.5,0)

(20,0,3.5)

(-5,-3.5,0)

(-5,0,3.5)

u
-0.49 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 1.00

Re=200

Figure 1. Sketch of the computational domain used in the simulations. The centre of the sphere is in the
origin of the coordinate system. The flow moves from the left to the right in the picture. Two streamlines
at Re = 200 are shown as an example.

The numerical setup is validated by comparing the drag coefficient, the length of the
recirculating zone, and the angle of separation with the existing research for the fluid velocity
field. Mesh independent tests were performed with different mesh spatial resolutions, including
ds/24, ds/32, ds/40 and ds/48. The drag coefficient, the length of the recirculating zone and
the angle of separation have shown negligible difference for the grid size of ds/32 and lower,
with maximum variation in the length of the recirculating zone, up to 0.7%. The domain size
independence tests are conducted for various transversal and stream-wise extents of the domain,
from [−5, 35] × [−5, 5] × [−5, 5] to [−5, 35] × [−3.5, 3.5] × [−3.5, 3.5] (changing the transversal
extent), and from [−5, 35]× [−3.5, 3.5]× [−3.5, 3.5] to [−5, 20]× [−3.5, 3.5]× [−3.5, 3.5] (changing the
stream-wise extent) with grid size ds/32. The domains have shown variation only in the length
of the recirculating zone, which is up to 0.71% longer for the wider domain. For example,
in Figure 2a, the drag coefficient CD obtained from our simulation is compared with empirical
equations (Equations (5) and (6)) of Clift et al. (1978) [1] and with the numerical results of
Johnson and Patel (1999) [7]. The drag coefficient deviates from the empirical equations maximum at
Re = 25, with relative error 3.5%, which is further reduced with higher Re, e.g., less than 1% at Re = 200.
Figure 2b presents the results of the normalized wake length LW along with the numerical results of
Johnson and Patel (1999) [7], Tomboulides and Orszag (2000) [4], and experimental data of Taneda
(1956) [3], which reported transition to unsteady wake for Re ≥ 130. The scalar field is validated by
comparing the normalized scalar profiles with other numerical simulations, which for example shows
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a maximum of 2 lattice node difference from the temperature profiles of Chouippe et al. (2019) [23] at
a similar scalar diffusivity of Sc = 0.7 (not shown here).

CD =
24
Re

(1 + 0.1935 · Re0.6305), if 20 ≤ Re ≤ 260. (5)

log10 CD = 1.6435− 1.1242 · log10 Re + 0.1558 · (log10 Re)2, if 260 ≤ Re ≤ 1500. (6)

 0.5

 1

 1.5

 2

 2.5

 3

 0  50  100  150  200  250  300

Re

C
D

Clift et al. (1978) empirical model
Johnson & Patel 1999 simulations

Present Simulations

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  50  100  150  200  250

Re

L W

Tomboulides & Orszag 2000
Johnson & Patel 1999

Taneda 1956
Present Simulations

(b)

Figure 2. (a) Drag coefficient CD and (b) wake length LW normalized with sphere diameter ds for
various steady axisymmetric and oblique Re with existing research [1,3,4,7].

3. Results on Spatial Structure of Steady Wake

Our work focuses on the wake behind a wet sphere in the steady axisymmetric regime
(0 ≤ Re ≤ 220) and the steady oblique regime (225 ≤ Re ≤ 285). The difference in the overall
features of these regimes can be appreciated from Figure 3, which visualizes the stream-wise velocity
u in color together with the contours of two advected scalar fields θ1 in black and θ2 in white of
different scalar diffusivities in two perpendicular planes (z, x) and (y, x) passing through the center
of sphere in parallel to the incoming flow. The Schmidt numbers for the scalars are 0.71 and 0.61,
respectively, which correspond to the diffusivities of temperature and water vapor in air. The increase
in Re features the thinning of the boundary layer, as well as a shrinking in the lateral extent of the wake
and a stretching in the stream-wise direction as in Figure 3 up to Re = 220. In the oblique regime, a tilt
from the centerline (y = z = 0) along the (y, x) plane is observed, which is symmetric along (z, x) plane,
see also [7,23]. This tilt in the oblique regime increases with Re until the wake becomes unstable and
starts shedding vortices at Re ≥ 290. The apparent decrease in the stream-wise length of the wake in
the top panel of Figure 3 from Re = 225 to 275 is attributed to the tilting of the wake. The transport of
any scalar θ is described by the same Equation (3). The only difference lays in their Schmidt numbers,
which govern their relative diffusivities. The different diffusivities govern the profiles of the scalars at
the intermediate values of the dimensionless concentration, which shows difference in the external
part away from the sphere boundary and in the far wake (for θ ∼ 0.2 to 0.4), as shown in Figure 3.
Due to the Schmidt numbers, the gradient of θ1 is less steep than the gradient of θ2. This feature,
however, becomes less distinctive at higher concentrations of θ1 and θ2 near the sphere surface.
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Figure 3. Spatial distribution of the dimensionless stream-wise component of fluid velocity u in color
and the contour lines of a scalar θ1 in black (Sc = 0.71) and another scalar θ2 in white (Sc = 0.61) for
various steady axisymmetric and oblique Re. The visualization is across two central orthogonal planes
(z, x) and (y, x) passing through the center of the sphere with an extent of [−1.5,1.5] along the horizontal
axes and [−1.5,7.5] along the vertical x axis. Contour lines for θ1 and θ2 are plotted at magnitudes of
0.2, 0.35, 0.45, 0.6, 0.7, 0.8 and 0.9, ascending from the ambient towards the sphere.

To provide a detailed description of the flow field, we use a population density approach. For any
variable, such as the longitudinal velocity component u, its population density distribution N(u) at a
u0 magnitude is defined as N(u0) = dVu(u0)/du, where Vu(u0) is the volume of the region in which
u is lower that u0. The distribution of u is shown in Figure 4 for three different Reynolds numbers
(Re =75, 175 and 275). Figure 4a,b present the contour lines of u = 0.95 in solid lines and of pressure
p = 0 in dashed thin lines across the (z, x) and (y, x) orthogonal planes respectively. The domain
can be divided into two main parts: an upstream zone where the flow approaches the sphere and a
downstream zone dominated by the presence of the wake. The dotted horizontal black line in panels
a and b of Figure 4, located at x = −0.325, intersects the sphere where the dimensionless pressure p
changes sign and distinguishes the two zones. The velocity component u in the upstream zone (p ≥ 0)
does not show significant changes with Re, but the above mentioned lateral thinning is visible in the
downstream zone, which has mostly negative p. Tilting is also observed in Figure 4b for Re = 275.
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Figure 4c,d presents the population density distribution N(u) of the longitudinal velocity
component u in these two zones, computed along the entire orthogonal (z, x) and (y, x) planes of
the computational domain, respectively. The distribution was determined by dividing the range of u in
1000 bins, a resolution which allows for a smooth sample distribution while preserving its trend. In the
upstream zone (bottom sets of curves in Figure 4c,d, N(u) shows a sharp decrease in population density
as u decreases from the external ambient value of 1 towards the no-slip zero boundary condition at
the sphere surface following a Lorentzian function, given in Equation (7). Some sample population
with u ≥ 1 is also observed which resembles the region of highest velocity magnitudes near the
p ∼ 0 contour line. To create a visible scale separation, the N(u) of the downstream zone is shifted
for the middle set of curves in Figure 4c,d. Negative values of velocity identify the recirculation
zone behind the sphere. A large extent of the simulated wake can be well fitted by a Lorentzian
distribution. The crescent-like trend right after the ambient u = 1 is a result of the finite size of the
simulation domain. Similar to the N(u) of the upstream zone, some sample population with u ≥ 1 is
also observed in this downstream distribution, which are also coming from the p ∼ 0 region. N(u) of
the entire plane is shifted for the top sets of curves in Figure 4c,d with an amplification of its original
magnitudes. As plotted in the insets, the two highest peaks at u ∼ 1 of the entire plane are the
individual contributions from both the upstream and the downstream populations.

The Lorentzian or Cauchy-Lorentz distribution y(u; A, uc, b, y0) is a single peak bell-shaped curve,
defined as

y(u; A, uc, b, y0) = y0 + 2
A

πb
b2

4(u− uc)2 + b2 , (7)

where y(u; A, uc, b, y0) is the population density of samples of variable u, A is its integral over all
possible values of u, uc is the position of its maximum where y takes the value 2A/(πb), with b being
the width between its half maximums. Parameter y0 is just an offset value, which allows for a non zero
asymptotic limit of the Cauchy-Lorentz distribution. In the distribution of u, Figure 4c,d, a Lorentzian
trend is observed in the intermediate range, which corresponds to the boundary layer and to the region
external to the wake. An increase in N(u) is observed with increasing Reynolds numbers, indicating
an increase in the dimensionless kinetic energy in this region. The out of plane tilting induced by the
oblique wake at Re = 275 produces small spikes on top of an overall Lorentzian trend of the sample
population along the (y, x) plane, as seen in Figure 4d. However, the oblique wake regime retains a
symmetric structure along the (z, x) plane in our simulations in Figure 4c but the out of plane tilting
impacts the sample population. Therefore, N(u) in Figure 4c for Re = 275 only indicates a lower yet a
smooth Lorentzian trend.

The existence of such a trend in the distribution of a variable indicates the existence of a matching
region where the variable shows an algebraic variation from the values in the wake to the values in the
external ambient. If the flow is axisymmetric and the flow structures are elongated in the stream-wise
direction, this variation is in the radial direction proportional to (y2 + z2)−1 (inverse of the square of
the lateral distance from the axis). This algebraic matching region is not only present in the longitudinal
velocity field, but also in the associated pressure field and in the passively transported scalars.
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Figure 4. Distribution of the dimensionless stream-wise velocity component u for various Re. u = 0.95
contours are drawn in solid lines along with p = 0 pressure contours in dashed thin lines along the
orthogonal (a) (z, x) and (b) (y, x) planes. A horizontal dotted line at x = −0.325 is drawn to divide the
upstream spatial structure of u from the downstream one. Normalized population density function
N∗(u) = N(u)/A (A is the area of the orthogonal plane) for the u sample population across the
orthogonal (z, x) and (y, x) planes are plotted respectively in (c,d). N∗(u) for the upstream, downstream
and the entire planes are respectively plotted as the bottom, middle and the top sets of curves. A scale
difference is created by amplifying the N∗(u) of the downstream and the entire domain 30 and 900 times
respectively. Sample extent in (a,b) is [−3, 3] along the horizontal and [−3, 11] along the vertical axes,
whereas, in (c,d) it is [−3.5, 3.5] along the horizontal and [−5, 20] along the vertical axes.

Figure 5 presents the spatial distribution of the pressure p and the transversal component of
velocity v along the orthogonal (y, x) plane for various Re. In the axisymmetric regime, in Figure 5a,
the modulus of v is symmetric across the y = 0 plane but not the v. Similarly the modulus of w is
also symmetric across the z = 0 plane in the axisymmetric regime, but not w. Complexity arises in
the oblique regime, as neither p nor the modulus of v remains symmetric in Figure 5b. This is also
seen in the population density distribution of v in Figure 5d, where the positive magnitudes of v show
dominance similar to Figure 5b. The transversal components of velocity v and w, however, do not
show a Lorentzian distribution in its number density. It can be seen in Figure 5a,b that the population
of v for the similar magnitudes is present in three different locations which resulted in non-Lorentzian
evolution in the number density of the v and w (shown in Figure 5c for v). In contrast to v, the positive
and negative magnitudes of p are rather concentrated near the sphere respectively in the upstream
and the downstream zones as in Figure 5a,b. Similar to Figure 4c,d, the N(p) of the upstream zone
(p ≥ 0 population) does not show significant variability with Re and exhibits a Lorentzian distribution.
The N(p) of the downstream zone however shows local peaks at around p = −0.1, which marks the
discontinuity in the sample population in Figure 5a,b.
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Figure 5. Distribution of the pressure p and velocity component v for various Re. The spatial
distribution of v in color along with the contour lines of p at 0.1, 0.05, 0.0,−0.05,−0.1 magnitudes
respectively in red, orange, white, cyan, and blue solid lines along the orthogonal (y, x) plane for the
axisymmetric Re = 175 in (a) and for the oblique Re = 275 in (b). Normalized population density
of pressure N∗(p) across the entire orthogonal (y, x) central plane is plotted in (c), whereas N∗(v) is
plotted in (d). The sample extent is similar to Figure 4.

A three dimensional spatial structure of the velocity components v and w for the oblique Re = 275
and the axisymmetric Re = 175 cases are shown in Figure 6, where the complexity in the oblique wake
flow structure can be appreciated. The previously mentioned symmetry in the modulus of v and w
is confirmed in Figure 6d for the steady axisymmetric flow with Re = 175; and the three different
zones with similar magnitudes of v and w, both positive and negative, can also be seen. The transition
to a complex flow structure for the steady oblique Re = 275 case is seen in Figure 6a–c, where the
spatial distributions of v and w show differences. Despite the structural differences, both the v and w
populations are symmetric along the (z, x) planes but non-symmetric along the (y, x) planes, which is
typical of the steady oblique regime.
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Figure 6. Three dimensional spatial structure of velocity components, v and w. The surface contours of
w = −0.06 and 0.06 are plotted respectively in cyan and yellow in (a), and v = −0.06 and 0.06 contours
are plotted respectively in blue and red in (b). (c,d) present both the v and w contours for the oblique
Re = 275 and axisymmetric Re = 175 flow fields respectively.

Figure 7 presents the population density distribution of the scalar fields N(θ1) and N(θ2) across
two central orthogonal planes (z, x) and (y, x) (similar to the previous Figures). Since the boundary
conditions for the dimensionless scalars have a zero value in the ambient and a unit value on the sphere
surface, their population density distribution shows the highest population around zero in Figure 7,
followed by a domain induced crescent zone, and then a Lorentzian distribution in the intermediate
values gradually approaching the surface unit value. The Lorentzian trend is again visible in the
scalar population density, due to the similitude of the advection-diffusion equation for the scalars
to the dynamics of momentum in regions with small pressure gradients. In the upstream region,
the behaviour of velocity and scalars is very different due to the strong pressure gradient, while in
the downstream region the difference is much milder. A closer look at the density distributions in
the insets show that the steady axisymmetric cases do not show a well distinguishable difference in
the number density at different scalar magnitudes with the increase in Re, but only the threshold
magnitude for the start of the Lorentzian trend increases. The shift in the threshold of Lorentzian trend
is attributed due to the finite and a similar size of the simulation domain for all the Re cases and due
to the shrink in the lateral extent of the wake but a stretch in the stream-wise direction with increasing
Re. The decrease in the sample population for the oblique cases in the left panel of Figure 7 for the
orthogonal (z, x) plane is however due to the out of plane tilt of the wake which reduces the sample
population. Whereas in the right panel for the orthogonal (y, x) plane, we see a step-wise perturbation
on top of an overall Lorentzian trend in the oblique wake regime as a result of its tilt in this plane.



Symmetry 2020, 12, 1498 11 of 14

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  0.2  0.4  0.6  0.8  1

θ1

N
∗ (
θ 1

)

Re = 75
125
175
225
250
275

(z, x) plane

Lorentzian Function

(a)

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  0.2  0.4  0.6  0.8  1

θ1

N
∗ (
θ 1

)

Re = 75
125
175
225
250
275

(y, x) plane

Lorentzian Function

(b)

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.06  0.07  0.08  0.09  0.1  0.11
θ1

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.06  0.07  0.08  0.09  0.1  0.11
θ1

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.06  0.07  0.08  0.09  0.1  0.11
θ2

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.06  0.07  0.08  0.09  0.1  0.11
θ2

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  0.2  0.4  0.6  0.8  1

θ2

N
∗ (
θ 2

)

Re = 75
125
175
225
250
275

(z, x) plane

Lorentzian Function

(c)

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  0.2  0.4  0.6  0.8  1

θ2

N
∗ (
θ 2

)

Re = 75
125
175
225
250
275

(y, x) plane

Lorentzian Function

(d)

Figure 7. Spatial evolution of the normalized population density of scalar N∗(θ1) along the (z, x) plane
is presented in (a) and along the (y, x) plane in (b). Evolution N∗(θ2) along the (z, x) plane is plotted in
(c) and along the (y, x) plane in (d). These orthogonal planes pass through the center of the sphere and
extends to the entire simulated domain of [-3.5:3.5] in the horizontal y, z, and [-5:20] in the stream-wise
x directions.

Figure 8 presents the spatial distribution of the convective scalar flux Q̇ in the stream-wise
direction x, which is a product between θ and u. Spatial distribution of Q̇ along the orthogonal
(y, x) plane in Figure 8a,b is someway different from the other flow quantities, since it shows highest
positive Q̇ in the boundary layers and a negative Q̇ in the recirculating zone due to negative u.
The non-symmetric spatial structure of the oblique (Re = 275) scalar flux is visible in Figure 8b.
The population density distribution N(Q̇) along the orthogonal (z, x) and (y, x) planes shows a different
structure as expected. A Lorentzian trend is observed for a few limited sample populations, for example,
for the samples between the white and pink contour lines in Figure 8a and b respectively for Re = 175
and 275. These two contour lines correspond to the Q̇ magnitudes from Figure 8d marking the
beginning and the end of the Lorentzian trend for each individual Re. Overall an increase in the sample
population of Q̇ is observed with increasing Re within the zone with Lorentzian distribution.
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Figure 8. Spatial distribution of convective scalar flux Q̇ = u · θ1 for various Re. Spatial distribution of
Q̇ in color along the orthogonal (y, x) plane for the axisymmetric Re = 175 in (a) and for the oblique
Re = 275 in (b). The white contour lines represent Q̇ = 0.069 in (a) and Q̇ = 0.077 in (b), while the pink
contour lines are at Q̇ = 0.11 in (a) and Q̇ = 0.096 in (b) respectively. Normalized population density
of convective scalar flux N∗(Q̇) across the entire orthogonal (z, x) and (y, x) central planes are plotted
respectively in (c,d). The sample extent is similar to Figure 4.

4. Discussions and Concluding Remarks

We present a detailed numerical analysis on the spatial structure of the wake flow using population
density distribution for various Reynolds number in the steady wake regime. The incompressible
Navier-Stokes equation is solved for the flow velocity and the one-way coupled advection-diffusion
equations are solved for the scalars using the Lattice Boltzmann Method (LBM). The spatial evolution
of various flow quantities, such as, longitudinal velocity component u, pressure p, passive scalar
θ, convective scalar flux Q̇ in the wake of the steady axisymmetric regime (Re ≤ 220) and the
oblique regime (225 ≤ Re ≤ 285) using a population distribution function N, shows a Lorentzian
distribution which is proportional to the inverse of the square of the flow quantity (for example,
N(p) ∝ p−2). This Lorentzian trend exhibits an algebraic decay in the number density of populations
with different magnitudes of fluid quantities from the external ambient to the boundary layer in the
wake and dominates the spatial distribution of the flow quantities outside the recirculating region.
The transversal components of fluid velocity, v and w, whereas show different spatial distributions
not attributable to a Lorentzian one. Transition to the oblique wake regime at Re ≥ 225 in our
simulations shows a complex three dimensional spatial evolution of the flow quantities, which also
show a Lorentzian trend. The population density distribution for the longitudinal velocity component
u, shows an increase in its number density with increasing Re. Whereas the number density of the
scalar populations remains the same for various steady axisymmetric Re. This feature however changes
in case of the convective scalar flux, where an increase in its number density is observed again with
an increase in Re.



Symmetry 2020, 12, 1498 13 of 14

Descriptive statistics in the form of population density distributions of the fluid velocity
and the transported scalar quantities in the wake of a sphere is important for understanding
the transport and local reaction processes in specific regions of the wake. This can be used e.g.,
for understanding the microphysics of cloud droplets and aerosol interactions, but should also find
applications in engineering flows e.g., in which droplets interact with their environment. In cloud
physics, the quantification of scalar transport in the wake of spherical hydrometeors was used by
Bhowmick et al. (2020) [27] to understand the spatial distribution of supersaturation in the wake
of precipitating cloud hydrometeors. In the future, we plan to extend this methodology to study
the influence of wake-induced supersaturation on aerosol activation within clouds, by introducing
microphysical models for different steady-state and transient wake regimes and studying their effects
on the life cycle of clouds. Moreover, as mentioned earlier, our findings will also have application in
process engineering, where droplets interact with the environment physically or chemically.
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