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Abstract. Open Set Domain Adaptation (OSDA) bridges the domain
gap between a labeled source domain and an unlabeled target domain,
while also rejecting target classes that are not present in the source. To
avoid negative transfer, OSDA can be tackled by first separating the
known/unknown target samples and then aligning known target samples
with the source data. We propose a novel method to addresses both these
problems using the self-supervised task of rotation recognition. Moreover,
we assess the performance with a new open set metric that properly
balances the contribution of recognizing the known classes and rejecting
the unknown samples. Comparative experiments with existing OSDA
methods on the standard Office-31 and Office-Home benchmarks show
that: (i) our method outperforms its competitors, (ii) reproducibility for
this field is a crucial issue to tackle, (iii) our metric provides a reliable
tool to allow fair open set evaluation.

Keywords: Open Set Domain Adaptation · Self-supervised Learning

1 Introduction

The current success of deep learning models is showing how modern artificial
intelligent systems can manage supervised machine learning tasks with growing
accuracy. However, when the level of supervision decreases, all the limitations
of the existing data-hungry approaches become evident. For many applications,
large amount of supervised data are not readily available, moreover collecting
and manually annotating such data may be difficult or very costly. Different
sub-fields of computer vision, such as domain adaptation [8] and self-supervised
learning [11], aim at designing new learning solutions to compensate for this
lack of supervision. Domain adaptation focuses on leveraging a fully supervised
data-rich source domain to learn a classification model that performs well on
a different but related unlabeled target domain. Traditional domain adaptation
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methods assume that the target contains exactly the same set of labels of the
source (closed-set scenario). In recent years, this constraint has been relaxed in
favor of the more realistic open-set scenario where the target also contains sam-
ples drawn from unknown classes. In this case, it becomes important to identify
and isolate the unknown class samples before reducing the domain shift to avoid
negative transfer. Self-supervised learning focuses on training models on pretext
tasks, such as image colorization or rotation prediction, using unlabeled data
to then transfer the acquired high-level knowledge to new tasks with scarce su-
pervision. Recent literature has highlighted how self-supervision can be used for
domain adaptation: jointly solving a pretext self-supervised task together with
the main supervised problem leads to learning robust cross-domain features and
supports generalization [44, 5]. Other works have also shown that the output of
self-supervised models can be used in anomaly detection to discriminate normal
and anomalous data [17, 2]. However, these works only tackle binary problems
(normal and anomalous class) and deal with a single domain.

In this paper, we propose for the first time to use the inherent properties
of self-supervision both for cross-domain robustness and for novelty detection
to solve Open-Set Domain Adaptation (OSDA). To this purpose, we propose a
two-stage method called Rotation-based Open Set (ROS) that is illustrated in
Figure 1. In the first stage, we separate the known and unknown target samples
by training the model on a modified version of the rotation task that consists
in predicting the relative rotation between a reference image and the rotated
counterpart. In the second stage, we reduce the domain shift between the source
domain and the known target domain using, once again, the rotation task. Fi-
nally we obtain a classifier that predicts each target sample as either belonging to
one of the known classes or rejects it as unknown. While evaluating ROS on the
two popular benchmarks Office-31 [33] and Office-Home [41], we expose the re-
producibility problem of existing OSDA approaches and assess them with a new
evaluation metric that better represents the performance of open set methods.
We can summarize the contributions of our work as following:

1. we introduce a novel OSDA method that exploits rotation recognition to
tackle both known/unknown target separation and domain alignment;

2. we define a new OSDA metric that properly accounts for both known class
recognition and unknown rejection;

3. we present an extensive experimental benchmark against existing OSDA
methods with two conclusions: (a) we put under the spotlight the urgent need
of a rigorous experimental validation to guarantee result reproducibility; (b)
our ROS defines the new state-of-the-art on two benchmark datasets.

A Pytorch implementation of our method, together with instructions to replicate
our experiments, is available at https://github.com/silvia1993/ROS .

2 Related Work

Self-supervised learning applies the techniques of supervised learning on
problems where external supervision is not available. The idea is to manipu-
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Fig. 1. Schematic illustration of our Rotation-based Open Set (ROS). Stage I: the
source dataset Ds is used to train the encoder E, the semantic classifier C1, and the
multi-rotation classifier R1 to perform known/unknown separation. C1 is trained using
the features of the original image, while R1 is trained using the concatenated features
of the original and rotated image. After convergence, the prediction of R1 on the target
dataset Dt is used to generate a normality score that defines how the target samples
are split into a known target dataset Dknw

t and an unknown target dataset Dunk
t . Stage

II: E, the semantic+unknown classifier C2 and the rotation classifier R2 are trained
to align the source and target distributions and to recognize the known classes while
rejecting the unknowns. C2 is trained using the original images from Ds and Dunk

t ,
while R2 is trained using the concatenated features of the original and rotated known
target samples.

late the data to generate the supervision for an artificial task that is helpful to
learn useful feature representations. Examples of self-supervised tasks in com-
puter vision include predicting the relative position of image patches [11, 28],
colorizing a gray-scale image [48, 22], and inpainting a removed patch [30]. Ar-
guably, one of the most effective self-supervised tasks is rotation recognition [16]
that consists in rotating the input images by multiples of 90◦ and training the
network to predict the rotation angle of each image. This pretext task has been
successfully used in a variety of applications including anomaly detection [17]
and closed-set domain adaptation [44].

Anomaly detection, also known as outlier or novelty detection, aims at
learning a model from a set of normal samples to be able to detect out-of-
distribution (anomalous) instances. The research literature in this area is wide
with three main kind of approaches. Distribution-based methods [50, 21, 47, 51]
model the distribution of the available normal data so that the anomalous sam-
ples can be recognized as those with a low likelihood under the learned probabil-
ity function. Reconstruction-based methods [12, 4, 43, 49, 36] learn to reconstruct
the normal samples from an embedding or a set of basis functions. Anomalous
data are then recognized by having a larger reconstruction error with respect to
normal samples. Discriminative methods [37, 31, 20, 23] train a classifier on the
normal data and use its predictions to distinguish between normal and anoma-
lous samples.

Closed-set domain adaptation (CSDA) accounts for the difference be-
tween source and target data by considering them as drawn from two different
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marginal distributions. The literature of DA can be divided into three groups
based on the strategy used to reduce the domain shift. Discrepancy-based meth-
ods [26, 39, 45] define a metric to measure the distance between source and target
data in feature space. This metric is minimized while training the network to
reduce the domain shift. Adversarial methods [14, 40, 32] aim at training a do-
main discriminator and a generator network in an adversarial fashion so that the
generator converges to a solution that makes the source and target data indistin-
guishable for the domain discriminator. Self-supervised methods [15, 3, 5] train
a network to solve an auxiliary self-supervised task on the target (and source)
data, in addition to the main task, to learn robust cross-domain representations.

Open Set Domain Adaptation (OSDA) is a more realistic version of
CSDA, where the source and target distribution do not contain the same cat-
egories. The term “OSDA” was first introduced by Busto and Gall [29] that
considered the setting where each domain contains, in addition to the shared
categories, a set of private categories. The currently accepted definition of OSDA
was introduced by Saito et al . [34] that considered the target as containing all the
source categories and additional set of private categories that should be consid-
ered unknown. To date, only a handful of papers tackled this problem. Open Set
Back-Propagation (OSBP) [34] is an adversarial method that consists in train-
ing a classifier to obtain a large boundary between source and target samples
whereas the feature generator is trained to make the target samples far from the
boundary. Separate To Adapt (STA) [24] is an approach based on two stages.
First, a multi-binary classifier trained on the source is used to estimate the sim-
ilarity of target samples to the source. Then, target data with extreme high
and low similarity are re-used to separate known and unknown classes while the
features across domains are aligned through adversarial adaptation. Attract or
Distract (AoD) [13] starts with a mild alignment with a procedure similar to [34]
and refines the decision by using metric learning to reduce the intra-class dis-
tance in known classes and push the unknown class away from the known classes.
Universal Adaptation Network (UAN)4 [46] uses a pair of domain discrimina-
tors to both generate a sample-level transferability weight and to promote the
adaptation in the automatically discovered common label set. Differently from
all existing OSDA methods, our approach abandons adversarial training
in favor of self-supervision. Indeed, we show that rotation recognition
can be used, with tailored adjustments, both to separate known and
unknown target samples and to align the known source and target
distributions5.

4 UAN is originally proposed for the universal domain adaptation setting that is a
superset of OSDA, so it can also be used in the context of this paper.

5 See the supplementary for a discussion on the use of other self-supervised tasks.
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3 Method

3.1 Problem formulation

Let us denote with Ds = {(xs
j , y

s
j )}Ns

j=1 ∼ ps the labeled source dataset drawn

from distribution ps and Dt = {xt
j}

Nt
j=1 ∼ pt the unlabeled target dataset drawn

from distribution pt. In OSDA, the source domain is associated with a set of
known classes ys ∈ {1, . . . , |Cs|} that are shared with the target domain Cs ⊂ Ct,
but the target covers also a set Ct\s of additional classes, which are considered

unknown. As in CSDA, it holds that ps 6= pt and we further have that ps 6= pCst ,
where pCst denotes the distribution of the target domain belonging to the shared
label space Cs. Therefore, in OSDA we face both a domain gap (ps 6= pCst )
and a category gap (Cs 6= Ct). OSDA approaches aim at assigning the target
samples to either one of the |Cs| shared classes or to reject them as unknown
using only annotated source samples, with the unlabeled target samples available
transductively. An important measure characterizing a given OSDA problem
is the openness that relates the size of the source and target class set. For a
dataset pair (Ds,Dt), following the definition of [1], the openness O is measured

as O = 1− |Cs||Ct| . In CSDA O = 0, while in OSDA O > 0.

3.2 Overview

When designing a method for OSDA, we face two main challenges: negative trans-
fer and known/unknown separation. Negative transfer occurs when the whole
source and target distribution are forcefully matched, thus also the unknown
target samples are mistakenly aligned with source data. To avoid this issue,
cross-domain adaptation should focus only on the shared Cs classes, closing the
gap between pCst and ps. This leads to the challenge of known/unknown sepa-
ration: recognizing each target sample as either belonging to one of the shared
classes Cs (known) or to one of the target private classes Ct\s (unknown). Follow-
ing these observations, we structure our approach in two stages: (i) we separate
the target samples into known and unknown, and (ii) we align the target sam-
ples predicted as known with the source samples (see Figure 1). The first stage
is formulated as an anomaly detection problem where the unknown samples are
considered as anomalies. The second stage is formulated as a CSDA problem
between source and the known target distribution. Inspired by recent advances
in anomaly detection and CSDA [44, 17], we solve both stages using the power
of self-supervision. More specifically, we use two variations of the rotation clas-
sification task to compute a normality score for the known/unknown separation
of the target samples and to reduce the domain gap.

3.3 Rotation recognition for open set domain adaptation

Let us denote with rot90(x, i) the function that rotates clockwise a 2D image x
by i×90◦. Rotation recognition is a self-supervised task that consists in rotating
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a given image x by a random i ∈ [1, 4] and using a CNN to predict i from
the rotated image x̃ = rot90(x, i). We indicate with |r| = 4 the cardinality of
the label space for this classification task. In order to effectively apply rotation
recognition to OSDA, we introduce the following variations.

Relative rotation: Consider the images in Figure 2. Inferring by how much
each image has been rotated without looking at its original (non-rotated) version
is an ill-posed problem since the pens, as all the other object classes, are not
presented with a coherent orientation in the dataset. On the other hand, looking
at both original and rotated image to infer the relative rotation between them is
well-defined. Following this logic, we modify the standard rotation classification
task [16] by introducing the original image as an anchor. Finally, we train the
rotation classifier to predict the rotation angle given the concatenated features of
both original (anchor) and rotated image. As indicated by Figure 3, the proposed
relative rotation has the further effect of boosting the discriminative power of
the learned features. It guides the network to focus more on specific shape details
rather than on confusing texture information across different object classes.

Multi-rotation classification: The standard setting of anomaly detection con-
siders samples from one semantic category as the normal class and samples
from other semantic categories as anomalies. Rotation recognition has been suc-
cessfully applied to this setting, but it suffers when including multiple seman-
tic categories in the normal class [17]. This is the case when coping with the
known/unknown separation of OSDA, where we have all the |Cs| semantic cate-
gories as known data. To overcome this problem, we propose a simple solution:
we extend rotation recognition from a 4-class problem to a (4× |Cs|)-class prob-
lem, where the set of classes represents the combination of semantic and rotation
labels. For example, if we rotate an image of category ys = 2 by i = 3, its la-
bel for the multi-rotation classification task is zs = (ys × 4) + i = 11. In the
supplementary material, we discuss the specific merits of the multi-rotation clas-
sification task with further experimental evidences. In the following, we indicate
with y, z the one-hot vectors respectively for the class and multi-rotation labels.
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3.4 Stage I: known/unknown separation

To distinguish between the known and unknown samples of Dt, we train a CNN
on the multi-rotation classification task using D̃s = {(xs

j , x̃
s
j , z

s
j )}4×Ns

j=1 . The net-
work is composed of an encoder E and two heads: a multi-rotation classifier
R1 and a semantic label classifier C1. The rotation prediction is computed on
the stacked features of the original and rotated image produced by the encoder
ẑs = softmax

(
R1([E(xs), E(x̃s)])

)
, while the semantic prediction is computed

only from the original image features as ŷs = softmax
(
C1(E(xs)

)
. The network

is trained to minimize the objective function L1 = LC1
+ LR1

, where the se-
mantic loss LC1

is defined as a cross-entropy and the multi-rotation loss LR1

combines cross-entropy and center loss [42]. More precisely,

LC1 = −
∑
j∈Ds

ys
j · log(ŷs

j), (1)

LR1
=
∑
j∈D̃s

−λ1,1zs
j · log(ẑs

j) + λ1,2||vs
j − γ(zs

j)||22, (2)

where ||.||2 indicates the l2-norm operator, vj indicates the output of the penul-
timate layer of R1 and γ(zj) indicates the corresponding centroid of the class
associated with vj . By using the center loss we further encourage the network
to minimize the intra-class variations while keeping far the features of different
classes. This supports the following use of the rotation classifier output as a
metric to detect unknown category samples.

Once the training is complete, we use E and R1 to compute the normality
score N ∈ [0, 1] for each target sample, with large N values indicating normal
(known) samples and vice-versa. We start from the network prediction on all the
relative rotation variants of a target sample ẑi

t = softmax
(
R1([E(xt), E(x̃t

i)])
)
i

and their related entropy H(ẑt
i) =

(
ẑt
i · log(ẑt

i)/ log |Cs|
)
i

with i = 1, . . . , |r|. We
indicate with [ẑt]m the m-th component of the ẑt vector. The full expression of
the normality score is:

N (xt) = max

{
max

k=1,...,|Cs|

( |r|∑
i=1

[ẑt
i]k×|r|+i

)
,

(
1− 1

|r|

|r|∑
i=1

H(ẑt
i)

)}
. (3)

In words, this formula is a function of the ability of the network to correctly
predict the semantic class and orientation of a target sample (first term in the
braces, Rotation Score) as well as of its confidence evaluated on the basis of the
prediction entropy (second term, Entropy Score). We maximize over these two
components with the aim of taking the most reliable metric in each case. Finally,
the normality score is used to separate the target dataset into a known target
dataset Dknw

t and an unknown target dataset Dunk
t . The distinction is made

directly through the data statistics using the average of the normality score over
the whole target N̄ = 1

Nt

∑Nt

j=1Nj , without the need to introduce any further
parameter: {

xt ∈ Dknw
t if N (xt) > N̄

xt ∈ Dunk
t if N (xt) < N̄ .

(4)
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It is worth mentioning that only R1 is directly involved in computing the nor-
mality score, while C1 is only trained for regularization purposes and as a warm
up for the following stage. For a detailed pseudo-code on how to compute N and
generate Dknw

t and Dunk
t , please refer to the supplementary material.

3.5 Stage II: domain alignment

Once the target unknown samples have been identified, the scenario gets closer to
that of standard CSDA. On the one hand, we can use Dknw

t to close the domain
gap without the risk of negative transfer and, on the other hand, we can exploit
Dunk

t to extend the original semantic classifier, making it able to recognize the
unknown category. Similarly to Stage I, the network is composed of an encoder
E and two heads: a rotation classifier R2 and a semantic label classifier C2. The
encoder is inherited from the previous stage. The heads also leverage on the previ-
ous training phase but have two key differences with respect to Stage I: (1) C1 has
a |Cs|-dimensional output, while C2 has a (|Cs|+ 1)-dimensional output because
of the addition of the unknown class; (2) R1 is a multi-rotation classifier with
a (4× |Cs|)-dimensional output, R2 is a rotation classifier with a 4-dimensional
output. The rotation prediction is computed as q̂ = softmax

(
R2([E(x), E(x̃)])

)
while the semantic prediction is ĝ = softmax

(
C2(E(x)

)
. The network is trained

to minimize the objective function L2 = LC2
+ LR2

, where LC2
combines the

supervised cross-entropy and the unsupervised entropy loss for the classification
task, while LR2 is defined as a cross-entropy for the rotation task. The unsuper-
vised entropy loss is used to involve in the semantic classification process also the
unlabeled target samples recognized as known. This loss enforces the decision
boundary to pass through low-density areas. More precisely,

LC2
= −

∑
j∈{Ds∪Dunk

t }

gj · log(ĝj)− λ2,1
∑

j∈Dknw
t

ĝj · log(ĝj), (5)

LR2
= −λ2,2

∑
j∈Dknw

t

qj · log(q̂j) . (6)

Once the training is complete, R2 is discarded and the target labels are simply
predicted as ctj = C2(E(xt

j)) for all j = 1, . . . , Nt.

4 On reproducibility and open set metrics

OSDA is a young field of research first introduced in 2017. As it is gaining
momentum, it is crucial to guarantee the reproducibility of the proposed methods
and have a valid metric to properly evaluate them.

Reproducibility: In recent years, the machine learning community has become
painfully aware of a reproducibility crisis [19, 10, 27]. Replicating the results of
state-of-the-art deep learning models is seldom straightforward due to a com-
bination of non-deterministic factors in standard benchmark environments and
poor reports from the authors. Although the problem is far from being solved,
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several efforts have been made to promote reproducibility through checklists [7],
challenges [6] and by encouraging authors to submit their code. On our side, we
contribute by re-running the state-of-the-art methods for OSDA and compare
them with the results reported in the papers (see Section 5). Our results are
produced using the original public implementation together with the parame-
ters reported in the paper and, in some cases, repeated communications with the
authors. We believe that this practice, as opposed to simply copying the results
reported in the papers, can be of great value to the community.

Open set metrics: The usual metrics adopted to evaluate OSDA are the aver-
age class accuracy over the known classes OS∗, and the accuracy of the unknown

class UNK. They are generally combined in OS= |Cs|
|Cs|+1×OS∗+ 1

|Cs|+1×UNK as a

measure of the overall performance. However, we argue (and we already demon-
strated in [25]) that treating the unknown as an additional class does not provide
an appropriate metric. As an example, let us consider an algorithm that is not
designed to deal with unknown classes (UNK =0.0%) but has perfect accuracy
over 10 known classes (OS∗=100.0%). Although this algorithm is not suitable
for open set scenarios because it completely disregards false positives, it presents
a high score of OS=90.9%. With increasing number of known classes, this effect
on OS becomes even more acute, making the role of UNK negligible. For this
reason, we propose a new metric defined as the harmonic mean of OS∗ and UNK,
HOS = 2OS∗×UNK

OS∗+UNK . Differently from OS, HOS provides a high score only if the
algorithm performs well both on known and on unknown samples, independently
of |Cs|. Using a harmonic mean instead of a simple average penalizes large gaps
between OS∗ and UNK.

5 Experiments

5.1 Setup: Baselines, Datasets

We validate ROS with a thorough experimental analysis on two widely used
benchmark datasets, Office-31 and Office-Home. Office-31 [33] consists of three
domains, Webcam (W), Amazon (A) and Dslr (D), each containing 31 object
categories. We follow the setting proposed in [34], where the first 10 classes in
alphabetic order are considered known and the last 11 classes are considered
unknown. Office-Home [41] consists of four domains, Product (Pr), Art (Ar),
Real World (Rw) and Clipart (Cl), each containing 65 object categories. Unless
otherwise specified, we follow the setting proposed in [24], where the first 25
classes in alphabetic order are considered known classes and the remaining 40
classes are considered unknown. Both the number of categories and the large
domain gaps make this dataset much more challenging than Office-31.

We compare ROS against the state-of-the-art methods STA [24], OSBP [34],
UAN [46], AoD [13], that we already described in Section 2. For each of them,
we run experiments using the official code provided by the authors, with the
exact parameters declared in the relative paper. The only exception was made
for AoD for which the authors have not released the code at the time of writing,
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thus we report the values presented in their original work. We also highlight that
STA presents a practical issue related to the similarity score used to separate
known and unknown categories. Its formulation is based on the max operator
according to the Equation (2) in [24], but appears instead based on sum in
the implementation code. In our analysis we considered both the two variants
(STAsum, STAmax) for the sake of completeness. All the results presented in this
section, both for ROS and for the baseline methods, are the average over three
independent experimental runs. We do not cherry pick the best out of several
trials, but only run the three experiments we report.

5.2 Implementation Details

By following standard practice, we evaluate the performances of ROS on Office-
31 using two different backbones ResNet-50 [18] and VGGNet [38], both pre-
trained on ImageNet [9], and we focus on ResNet-50 for Office-Home. The hyper-
parameters values are the same regardless of the backbone and the dataset used.
In particular, in both Stage I and Stage II of ROS the batch size is set to 32
with a learning rate of 0.0003 which decreases during the training following an
inverse decay scheduling. For all layers trained from scratch, we set the learning
rate 10 times higher than the pre-trained ones. We use SGD, setting the weight
decay as 0.0005 and momentum as 0.9. In both stages, the weight of the self-
supervised task is set three times the one of the semantic classification task, thus
λ1,1 = λ2,2 = 3. In Stage I, the weight of the center loss is λ1,2 = 0.1 and in Stage
II the weight of the entropy loss is λ2,1 = 0.1. The network trained in Stage I is
used as starting point for Stage II. To take into consideration the extra category,
in Stage II we set the learning rate of the new unknown class to twice that of the
known classes (already learned in Stage I). More implementation details and a
sensitivity analysis of the hyper-parameters are provided in the supplementary
material.

5.3 Results

How does our method compare to the state-of-the-art? Table 1 and 2 show the
average results over three runs on each of the domain shifts, respectively of
Office-31 and Office-Home. To discuss the results, we focus on the HOS metric
since it is a synthesis of OS* and UNK, as discussed in Section 4. Overall, ROS
outperforms the state-of-the-art on a total of 13 out of 18 domain shifts and
presents the highest average performance on both Office-31 and Office-Home.
The HOS improvement gets up to 2.2% compared to the second best method
OSBP. Specifically, ROS has a large gain over STA, regardless of its specific max
or sum implementation, while UAN is not a challenging competitor due to its
low performance on the unknown class. We can compare against AoD only when
using VGG for Office-31: we report the original results in gray in Table 2, with
the HOS value confirming our advantage.

A more in-depth analysis indicates that the advantage of ROS is largely re-
lated in its ability in separating known and unknown samples. Indeed, while
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Table 1. Accuracy (%) averaged over three runs of each method on Office-31 dataset
using ResNet-50 and VGGNet as backbones

Office-31

ResNet-50

A → W A → D D → W W → D D → A W → A Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STAsum [24]
92.1 58.0 71.0 95.4 45.5 61.6 97.1 49.7 65.5 96.6 48.5 64.4 94.1 55.0 69.4 92.1 46.2 60.9 94.6 50.5 65.5±0.3

STAmax 86.7 67.6 75.9 91.0 63.9 75.0 94.1 55.5 69.8 84.9 67.8 75.2 83.1 65.9 73.2 66.2 68.0 66.1 84.3 64.8 72.5±0.8
OSBP [34] 86.8 79.2 82.7 90.5 75.5 82.4 97.7 96.7 97.2 99.1 84.2 91.1 76.1 72.3 75.1 73.0 74.4 73.7 87.2 80.4 83.7±0.4
UAN [46] 95.5 31.0 46.8 95.6 24.4 38.9 99.8 52.5 68.8 81.5 41.4 53.0 93.5 53.4 68.0 94.1 38.8 54.9 93.4 40.3 55.1±1.4

ROS 88.4 76.7 82.1 87.5 77.8 82.4 99.3 93.0 96.0 100.0 99.4 99.7 74.8 81.2 77.9 69.7 86.6 77.2 86.6 85.8 85.9±0.2

VGGNet

A → W A → D D → W W → D D → A W → A Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

OSBP [34] 79.4 75.8 77.5 87.9 75.2 81.0 96.8 93.4 95.0 98.9 84.2 91.0 74.4 82.4 78.2 69.7 76.4 72.9 84.5 81.2 82.6±0.8
ROS 80.3 81.7 81.0 81.8 76.5 79.0 99.5 89.9 94.4 99.3 100.0 99.7 76.7 79.6 78.1 62.2 91.6 74.1 83.3 86.5 84.4±0.2

AoD [13] 87.7 73.4 79.9 92.0 71.1 79.3 99.8 78.9 88.1 99.3 87.2 92.9 88.4 13.6 23.6 82.6 57.3 67.7 91.6 63.6 71.9

Table 2. Accuracy (%) averaged over three runs of each method on Office-Home
dataset using ResNet-50 as backbone

Office-Home

Pr → Rw Pr → Cl Pr → Ar Ar → Pr Ar → Rw Ar → Cl
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STAsum [24]
78.1 63.3 69.7 44.7 71.5 55.0 55.4 73.7 63.1 68.7 59.7 63.7 81.1 50.5 62.1 50.8 63.4 56.3

STAmax 76.2 64.3 69.5 44.2 67.1 53.2 54.2 72.4 61.9 68.0 48.4 54.0 78.6 60.4 68.3 46.0 72.3 55.8
OSBP [34] 76.2 71.7 73.9 44.5 66.3 53.2 59.1 68.1 63.2 71.8 59.8 65.2 79.3 67.5 72.9 50.2 61.1 55.1
UAN [46] 84.0 0.1 0.2 59.1 0.0 0.0 73.7 0.0 0.0 81.1 0.0 0.0 88.2 0.1 0.2 62.4 0.0 0.0

ROS 70.8 78.4 74.4 46.5 71.2 56.3 57.3 64.3 60.6 68.4 70.3 69.3 75.8 77.2 76.5 50.6 74.1 60.1

Rw → Ar Rw → Pr Rw → Cl Cl → Rw Cl → Ar Cl → Pr Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STAsum 67.9 62.3 65.0 77.9 58.0 66.4 51.4 57.9 54.2 69.8 63.2 66.3 53.0 63.9 57.9 61.4 63.5 62.5 63.4 62.6 61.9±2.1
STAmax 67.5 66.7 67.1 77.1 55.4 64.5 49.9 61.1 54.5 67.0 66.7 66.8 51.4 65.0 57.4 61.8 59.1 60.4 61.8 63.3 61.1±0.3
OSBP 66.1 67.3 66.7 76.3 68.6 72.3 48.0 63.0 54.5 72.0 69.2 70.6 59.4 70.3 64.3 67.0 62.7 64.7 64.1 66.3 64.7±0.2
UAN 77.5 0.1 0.2 85.0 0.1 0.1 66.2 0.0 0.0 80.6 0.1 0.2 70.5 0.0 0.0 74.0 0.1 0.2 75.2 0.0 0.1±0.0
ROS 67.0 70.8 68.8 72.0 80.0 75.7 51.5 73.0 60.4 65.3 72.2 68.6 53.6 65.5 58.9 59.8 71.6 65.2 61.6 72.4 66.2± 0.3

our average OS* is similar to that of the competing methods, our average UNK
is significantly higher. This characteristic is also visible qualitatively by look-
ing at the t-SNE visualizations in Figure 4 where we focus on the comparison
against the second best method OSBP. Here the features for the known (red)
and unknown (blue) target data appear more confused than for ROS.

Is it possible to reproduce the reported results of the state-of-the-art? By analyz-
ing the published OSDA papers, we noticed some incoherence in the reported
results. For example, some of the results from OSBP are different between the
pre-print [35] and the published [34] version, although they present the same de-
scription for method and hyper-parameters. Also, AoD [13] compares against the
pre-print results of OSBP, while omitting the results of STA. To dissipate these
ambiguities and gain a better perspective on the current state-of-the-art meth-
ods, in Table 3 we compare the results on Office-31 reported in previous works
with the results obtained by running their code. For this analysis we focus on
OS since it is the only metric reported for some of the methods. The comparison
shows that, despite using the original implementation and the information pro-
vided by the authors, the OS obtained by re-running the experiments is between
1.3% and 4.9% lower than the originally published results. The significance of
this gap calls for greater attention in providing all the relevant information for
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(a) ResNet-50 (c) ROS(b) OSBP

Fig. 4. t-SNE visualization of the target features for the W→A domain shift from
Office-31. Red and blue points are respectively features of known and unknown classes

Table 3. Reported vs reproduced OS accuracy (%) averaged over three runs

Reproducibility Study

Office-31 (ResNet-50) Office-31 (VGGNet)

STAsum UAN OSBP
OSreported OSours gap OSreported OSours gap OSreported OSours gap

92.9 90.6±1.8 2.3 89.2 87.9±0.03 1.3 89.1 84.2 ±0.4 4.9

reproducing the experimental results. A more extensive reproducibility study is
provided in the supplementary material.

Why is it important to use the HOS metric? The most glaring example of why
OS is not an appropriate metric for OSDA is provided by the results of UAN.
In fact, when computing OS from the average (OS*,UNK) in Table 1 and 2, we
can see that UAN has OS=72.5% for Office-Home and OS=91.4% for Office-
31. This is mostly reflective of the ability of UAN in recognizing the known
classes (OS*), but it completely disregards its (in)ability to identify the unknown
samples (UNK). For example, for most domain shifts in Office-Home, UAN does
not assign (almost) any samples to the unknown class, resulting in UNK=0.0%.
On the other hand, HOS better reflects the open set scenario and assumes a high
value only when OS* and UNK are both high.

Is rotation recognition effective for known/unknown separation in OSDA? To
better understand the effectiveness of rotation recognition for known/unknown
separation, we measure the performance of our Stage I and compare it to the
Stage I of STA. Indeed, also STA has a similar two-stage structure, but uses a
multi-binary classifier instead of a multi-rotation classifier to separate known and
unknown target samples. To assess the performance, we compute the area under
receiver operating characteristic curve (AUC-ROC) over the normality scores N
on Office-31. Table 4 shows that the AUC-ROC of ROS (91.5) is significantly
higher than that of the multi-binary used by STA (79.9). Table 4 also shows the
performance of Stage I when alternatively removing the center loss (No Center
Loss) from Equation (2) (λ1,2 = 0) and the anchor image (No Anchor) when
training R1, thus passing from relative rotation to the more standard absolute
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Table 4. Ablation Analysis on Stage I and Stage II

Ablation Study

STAGE I (AUC-ROC) A → W A → D D → W W → D D → A W → A Avg.

ROS 90.1 88.1 99.4 99.9 87.5 83.8 91.5
Multi-Binary (from STA [24]) 83.2 84.1 86.8 72.0 75.7 78.3 79.9
ROS - No Center loss 88.8 83.2 98.8 99.8 84.7 84.5 89.9
ROS - No Anchor 84.5 84.9 99.1 99.9 87.6 86.2 90.4
ROS - No Rot. Score 86.3 82.7 99.5 99.9 86.3 82.9 89.6
ROS - No Ent. Score 80.7 78.7 99.7 99.9 86.6 84.4 88.3
ROS - No Center loss, No Anchor 76.5 79.1 98.3 99.7 85.2 83.5 87.1
ROS - No Rot. Score, No Anchor 83.9 84.6 99.4 99.9 84.7 84.9 89.6
ROS - No Ent. Score, No Anchor 80.1 81.0 99.5 99.7 84.3 83.3 87.9
ROS - No Rot. Score, No Center loss 80.9 81.6 98.9 99.8 85.6 83.3 88.3
ROS - No Ent. Score, No Center loss 76.4 79.8 99.0 98.3 84.4 84.3 87.0
ROS - No Ent. Score, No Center loss, No Anchor 78.6 80.4 99.0 98.9 86.2 83.2 87.7
ROS - No Rot. Score, No Center loss, No Anchor 78.7 82.2 98.3 99.8 85.0 82.6 87.8

STAGE II (HOS) A → W A → D D → W W → D D → A W → A Avg.

ROS 82.1 82.4 96.0 99.7 77.9 77.2 85.9
ROS Stage I - GRL [14] Stage II 83.5 80.9 97.1 99.4 77.3 72.6 85.1
ROS Stage I - No Anchor in Stage II 80.0 82.3 94.5 99.2 76.9 76.6 84.9
ROS Stage I - No Anchor, No Entropy in Stage II 80.1 84.4 97.0 99.2 76.5 72.9 85.0

rotation. In both cases, the performance significantly drops compared to our full
method, but still outperforms the multi-binary classifier of STA.

Why is the normality score defined the way it is? As defined in Equation (3),
our normality score is a function of the rotation score and entropy score. The
rotation score is based on the ability of R1 to predict the rotation of the target
samples, while the entropy score is based on the confidence of such predictions.
Table 4 shows the results of Stage I when alternatively discarding either the
rotation score (No Rot. Score) or the information of the entropy score (No Ent.
Score). In both cases the AUC-ROC significantly decreases compared to the full
version, justifying our choice.

Is rotation recognition effective for domain alignment in OSDA? While rotation
classification has already been used for CSDA [44], its application in OSDA,
where the shared target distribution could be noisy (i.e. contain unknown sam-
ples) has not been studied. On the other hand, GRL [14] is used, under different
forms, by all existing OSDA methods. We compare rotation recognition and
GRL in this context by evaluating the performance of our Stage II when replac-
ing the R2 with a domain discriminator. Table 4 shows that rotation recognition
performs on par with GRL, if not slightly better. Moreover we also evaluate the
role of the relative rotation in the Stage II: the results in the last row of Ta-
ble 4 confirm that it improves over the standard absolute rotation (No Anchor
in Stage II) even when the rotation classifier is used as cross-domain adaptation
strategy. Finally, the cosine distance between the source and the target domain
without adaptation in Stage II (0.188) and with our full method (0.109) confirms
that rotation recognition is indeed helpful to reduce the domain gap.

Is our method effective on problems with a high degree of openness? The standard
open set setting adopted in so far, presents a relatively balanced number of
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Fig. 5. Accuracy (%) averaged over the three openness configurations.

shared and private target classes with openness close to 0.5. Specifically it is
O = 1 − 10

21 = 0.52 for Office-31 and O = 1 − 25
65 = 0.62 for Office-Home. In

real-world problems, we can expect the number of unknown target classes to
largely exceed the number of known classes, with openness approaching 1. We
investigate this setting using Office-Home and, starting from the classes sorted
with ID from 0 to 64 in alphabetic order, we define the following settings with
increasing openness: 25 known classes O = 0.62, ID:{0-24, 25-49, 40-64}, 10
known classes O = 0.85, ID:{0-9, 10-19, 20-29}, 5 known classes O = 0.92, ID:{0-
4, 5-9, 10-14}. Figure 5 shows that the performance of our best competitors,
STA and OSBP, deteriorates with larger O due to their inability to recognize the
unknown samples. On the other hand, ROS maintains a consistent performance.

6 Discussion and conclusions

In this paper, we present ROS: a novel method that tackles OSDA by using
the self-supervised task of predicting image rotation. We show that, with simple
variations of the rotation prediction task, we can first separate the target samples
into known and unknown, and then align the target samples predicted as known
with the source samples. Additionally, we propose HOS: a new OSDA metric
defined as the harmonic mean between the accuracy of recognizing the known
classes and rejecting the unknown samples. HOS overcomes the drawbacks of
the current metric OS where the contribution of the unknown classes vanishes
with increasing number of known classes.

We evaluate the perfomance of ROS on the standard Office-31 and Office-
Home benchmarks, showing that it outperforms the competing methods. In addi-
tion, when tested on settings with increasing openness, ROS is the only method
that maintains a steady performance. HOS reveals to be crucial in this evalu-
ation to correctly assess the performance of the methods on both known and
unknown samples. Finally, the failure in reproducing the reported results of ex-
isting methods exposes an important issue in OSDA that echoes the current
reproducibility crisis in machine learning. We hope that our contributions can
help laying a more solid foundation for the field.
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