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Abstract

Cell migration is fundamental in a wide variety of physiological and patho-
logical phenomena, being exploited in biomedical engineering as well. In this
respect, we here present a hybrid non-local integro-differential model where a
representative cell, reproduced by a point particle with an orientation, moves
on a planar domain upon signals coming from environmental variables. From
a numerical point of view, non-locality implies the need to evaluate integral
terms which may present non-regular integrand functions because of het-
erogeneities in the environmental conditions and/or in cell sensing region.
Having in mind multicellular applications, we here propose a robust com-
putational method able to handle such non-regularities. The procedure is
based on low order Runge-Kutta methods and on an ad hoc application of
the Gauss-Legendre quadrature rule. The accuracy and efficiency of the re-
sulting computational method is then tested by selected benchmark settings.
In this context, the ad hoc application of the quadrature rule reveals to be
crucial to obtain a high accuracy with a remarkably low number of quadrature
nodes with respect to the standard Gauss-Legendre quadrature formula, and
which thus results in a reduced overall computational cost. Finally, the pro-
posed method is further coupled with the cubic spline interpolation scheme
which allows to deal also with possible poor (i.e., point-wise defined) molec-
ular spatial information. The performed simulations (which accounts also
for different scenarios) show how the interpolation of the molecular variables
affects the efficiency of the overall method and further justify the proposed
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procedure.

Keywords: cell migration, non-local integro-differential model, quadrature
rules

1. Introduction

The migratory behavior of cells, considered either as single isolated in-
dividuals or as part of a collective systems, is fundamental in a wide range
of processes. During embryogenesis, the coordinated movement of cells from
different origins is crucial for organogenesis [21, 29]. In adult organisms, cell
migration is relevant, for instance, during inflammation or wound healing
[21]. Pathologies such as artheriosclerosis and cancer involve several aspects
of cell movement as well [40].

Cell motile behavior is determined by a complex set of interconnected
mechanisms, which act at different levels, see [23] and references therein. For
instance, cells respond to signals coming from the external environment, i.e.,
from other individuals or from the surrounding tissue, according to their spe-
cific biophysical determinants (such as elasticity, sensitivity, adhesiveness).
In particular, a critical role in guiding cell migration is played by molecular
substances which can be either diffusive or not. The former group includes
growth factors that behave as chemoattractants or chemorepellents, thereby
establishing a sort of cell directional cue. The latter group includes extra-
cellular matrix proteins (such as collagen, glycoproteins and glycosaminogly-
cans) which are organized in almost insoluble complex networks that provide
microstructural support for moving individuals [44]. In this respect, each cell
is able to sense the presence and the distribution of both fixed and diffusive
chemicals (and therefore to behave accordingly) in a given region around
its actual position, thanks to the activity of proper receptors clustered in
selected areas of its plasmamembrane (PM).

Such extracellular-to-intracellular signaling mechanisms are here repro-
duced by a hybrid model in the case of a single representative agent. In
particular, the moving individual is identified by a material point, whereas
the environmental molecular substances are given by a density (in the case
of ECM proteins) or by a concentration (in the case of a diffusive growth fac-
tor). Our approach can be therefore defined as multiscale, since it spans both
the cellular and the subcellular levels (as, among others, in [3, 10, 14, 33]).
Entering in more details, cell dynamics are given by a first-order ordinary
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differential equation (ODE, see [6, 17, 41] and reference therein), which dis-
tinguishes individual speed and direction of locomotion (identified by a po-
larization vector, as in [37]). The former quantity is assumed to depend on
the amount of extracellular proteins, the latter is instead established by the
distribution of the chemical factor. In both cases, it is indeed fundamental to
quantify the pattern of the molecular substances as perceived by the cell in
its surrounding (i.e., non-locally). To this end, both cell motility and orien-
tation are here determined by proper integrals that involve the local quantity
of ECM proteins and of soluble chemical substances, spatially weighted to
account for anisotropic aspects, and are evaluated over given cell sensing
regions (as, for instance, in [4, 9, 15, 46]).

The numerical evaluation of such integrals may not be trivial. In fact, the
integrand functions may loose regularity both because of non-regularities in
the distributions of the molecular elements and/or in the profile of the weight
functions characterizing cell sensing region. Further, the time discretization
of cell motion equations requires to compute these integrals at each time step,
thereby strongly affecting the overall computational cost. Moreover, these
numerical issues can in principle affect the accuracy of the approximated cell
trajectory, and therefore the validity of the modeling approach, decreasing
its realism.

In this work, we propose to tackle these problems by combining an explicit
classical solver for ODEs with an efficient quadrature formula which is able
to handle possible non-regularities of the integrand functions. Among all the
possibilities, we consider low order Runge-Kutta schemes (in particular the
explicit Euler and the Heun method), for the solution of the ODEs, and a
tailored (ad hoc) application of the Gauss-Legendre quadrature formula to
each subinterval where the integrand function is actually regular (rather than
its direct application to the entire domain of integration, as established by
the standard approach).

The use of the resulting numerical framework is however impossible if the
value of molecular variables is unknown at the quadrature nodes (involved
in the evaluation of the integral terms). Such a situation may occur, for
instance, when the concentrations of the diffusing chemical and the distribu-
tion of the ECM proteins are given by experimental measurements taken at
specific environmental points, or when they are numerically computed solv-
ing proper evolution laws for the environmental factors over a tensor grid
that does not match the discretization of the sensing region. To handle also
these situations, it is sufficient to couple the proposed numerical approach
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with a proper interpolating method. A possible choice that reasonably com-
bines (in terms of accuracy and computational cost) with the Runge-Kutta
methods and the tailored Gauss-Legendre quadrature formula is the spline
interpolation.

The rest of the paper is then organized as it follows. In Section 2, we
will present the modeling framework: in particular, we will introduce and
comment the numerical problems that will be first addressed in Section 3,
where the proposed computational method will be described in details. In
Section 4, the accuracy and the efficacy of our numerical technique will be
investigated by dealing with a selected benchmark test. Section 5, will be
then devoted to the inclusion of the interpolation method and to a series
of simulations involving several patterns of matrix proteins and chemical
substance. Conclusive remarks and some hints for the development of the
proposed approach, both from a modeling and from a numerical point of
view, will be given in Section 6. A discussion of the existence and uniqueness
of the solution of the proposed model, and its dependence on the initial
condition is finally reported in the Appendix.

2. Mathematical model

Having in mind the application to multicellular situations, the proposed
model focuses on the migratory behavior of a single cell represented by a
discrete point-wise element and guided by external signals. Given a simplified
bidimensional setting, the individual position at time t ∈ R+

0 (being R+
0 the

set of not negative real numbers) is identified by the vector x(t) ∈ R2. Its
dimensions are instead taken into account by a coefficient R which is set to
identify a maximum extension of its plasmamembrane protrusions.

We then differentiate the concepts, and the underlying mechanisms, of cell
polarization and motility, both fundamental for individual dynamics. The
former is related to the process of organization of cell cytoskeletal filaments,
which are able to align in response to internal (e.g., genetic [20]) and/or
external inputs (e.g., diffusible chemicals [24]) and therefore to identify a
preferred axis of the individual body, eventually establishing a direction of
locomotion. The motility of a cell instead designates the characteristic speed
of its movements, which depends on the frequency of retraction/expansion
cycles of its plasmamembrane motility structures, such as filopodia and pseu-
dopodia. Such a plasmamembrane ruffling is in turn highly controlled both
by intracellular cascades involving specific ions and molecules (e.g., calcium,
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Rac1, Rho, see [35, 36, 39] and references therein) and by the presence and
the density of extracellular matrix proteins (ECM), such as collagen, elastin
and laminin, which are grabbed and used as “climber hand anchors” by the
moving individual (through integrin-based adhesion sites, see [22, 26]). Tak-
ing all these considerations into account, the velocity of our representative
cell can be defined by

dx(t)

dt
= v(t)w(t) =: gx(t, x(t), w(t)), (1)

where the scalar v ∈ [0, Vmax] is its actual speed (being Vmax a maximal
plausible value), while w ∈ R2, such that ‖w‖ ≤ 1 (being ‖ · ‖ the Euclidean
norm in R2), is its polarization vector which, as seen, identifies also the
direction of motion.

From Eq. (1), it can be easily seen that the cell cannot move either if its
motility v is null nor if it is not polarized (i.e., if w = 0). Further, a partial
polarization (i.e., if ‖w‖ < 1) results in a slow down of cell displacement:
if the cytoskeleton is not fully organized, the effective migratory capacity of
the individual is in fact downregulated, since it is subjected to inputs coming
from different directions that may inhibit each other. A random term may
be easily added in Eq. (1) to account for isotropic Brownian crawling, typical
of biological individuals. However this effect will be not considered here.

For the sake of simplicity, we hereafter assume that cell polarization pro-
cesses are regulated only by the activity of an extracellular diffusive sub-
stance, which is sensed by specific cell membrane receptors and acts as a
directional chemoattractant triggering a proper alignment of cell cytoskeletal
filaments. On the other hand, the cell intrinsic motility is set to depend only
on the density (and the distribution) of a fixed substratum of ECM proteins.
In mathematical terms, we have indeed that

w(t) = w(t; c) and v(t) = v(t; m), (2)

where the functions c : R+
0 × R2 7→ R+

0 and m : R2 7→ [0, 1] define the local
amount of the diffusive chemical (for each instant of time t) and the local
fraction of the fixed extracellular proteins, respectively. Specifically, as done
in [2], it is reasonable to assume that m has a piecewise constant profile
since transitions between soft and stiff biological substrates are typically
sharp. Therefore, for simplicity, we hereafter deal with piecewise constant
distributions m of ECM proteins.
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2.1. Cell polarization

Entering in more details, the polarization vector of the representative cell
evolves according to

dw(t)

dt
=

1

τ

(
W(t, x(t), w(t))

‖W(t, x(t), w(t))‖+ χ
−w(t)

)
=: gw(t, x(t), w(t)), (3)

where W ∈ R2 is the direction along which its cytoskeletal filaments are
actually induced to align by the distribution of the external molecular signal
(as will be defined by Eq. (4) below). The parameter τ > 0 is instead a sort
of persistence time, i.e., the time needed by the cell to re-orient. In Eq. (3),
we use a Michaelis-Menten law, with 0 < χ� 1, to assure that the modulus
of the forcing term is smaller than one.

The cell preferred axis W, as well as the direction of motion w, is in-
deed established by the spatial distribution of the diffusive substance c, as
perceived by the individual. In particular, the cell is coherently assumed to
be able to sense the extracellular chemotactic stimuli only within a bounded
neighborhood, which is reasonably contained in a circular area S centered at
x with radius R (being, as seen, R the maximum extension of the individual
PM protrusions). In this respect, we define:

W(t, x, w) =

=

∫
S(x)

K

(
‖y − x‖, y − x

‖y − x‖
· w

‖w‖

)
c(t,y)

y − x

‖y − x‖
dy

=

∫ R

0

r

∫ 2π

0

K

(
r, n(θ) · w

‖w‖

)
c (t,x + rn(θ))n(θ) dθ dr,

(4)

where n(θ) = (cos θ, sin θ) for any θ ∈ [0, 2π], see Fig. 1 (panel A). In Eq. (4),
the scalar kernelK : [0, R]×[−1, 1] 7→ [0, 1] is a weight function that measures
the capacity of the cell to sense the diffusive substance c in a non-local
and non-isotropic way, since its support actually identifies the individual
sensing region. Specifically, we hypothesize that the local amount of chemical
receptors of the representative individual: (i) decreases with the distance
from its center of mass (identified by the positional vector x) and (ii) is
higher towards its front/head (identified by the polarization vector w) than
towards its rear/tail. In mathematical terms, such considerations, along with
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Figure 1: Panel A: Cell polarization process (i.e., the actual polarization vector w and
the preferred axis W) is regulated only by the spatial distribution c of an extracellular
diffusive substance (see the orange shadow) within cell sensing region S(x(t)) (see the
blue circle), as perceived by the individual according to the weight function K (see the
green shadow), cf. Eqs. (3)-(6). Panel B: Cell intrinsic motility (i.e., v(t), see the red
segments) depends only on the spatial distribution m(t,y) of ECM proteins (see the grey
shadow) non-locally perceived at its leading front (i.e., over the blue segments joining x
and x+R w

||w|| ), cf. Eqs. (7)-(9). Panel C: Representative case where the distribution of c

is defined only over a finite amount of points (i.e., the orange dots) which do not coincide
with the quadrature nodes (i.e., the blue dots) required to evaluate W.

an independence assumption of the two variations, suggest to choose

K (r, u) = Kr (r) Kθ (u) , (5)

being Kr : [0, R] 7→ [0, 1] a not increasing law, and Kθ : [−1, 1] 7→ [0, 1] an
even function, which is not increasing over the interval [0, 1]. Eq. (4) can be
therefore rewritten as

W(t, x, w) =

=

∫ R

0

r Kr (r)

∫ 2π

0

Kθ

(
n(θ) · w

‖w‖

)
c (t,x + rn(θ)) n(θ) dθ dr,

(6)

where the weight function components, Kr and Kθ, and the chemical profile,
c, should be suitably defined to result in a Riemann integrable integrand
function. In this respect, for the sake of simplicity, we hereafter assume that
the integrand functions in Eq. (6) are piecewise regular.
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2.2. Cell motility

The effect of the ECM substrate on the behavior of the representative
cell is finally included by the following constitutive law for its motility:

v(t) = v(t;m) = Vmax f(t;m), (7)

where, as already defined, Vmax is a maximal cell speed. In particular, the
scalar function f : R+

0 × [0, 1] 7→ [0, 1] measures the amount of matrix compo-
nents non-locally (i.e., within its sensing region) perceived by the individual
through specific adhesive receptors (i.e., integrins) that are typically clus-
tered at its actual leading front (again identified by the polarization vector
w). Among all the possible choices, we define

f(t;m) = 4M(t, x(t), w(t)) (1−M(t, x(t), w(t)))+ , (8)

where ( · )+ stands for the positive part of the quantity within the brackets,
and M , which is given by

M(t, x(t), w(t)) =
1

R

∫ R

0

m

(
x(t) + r

w(t)

‖w(t)‖

)
dr, (9)

measures the mean ECM ahead up to the maximum protrusion distance R,
see Fig. 1 (panel B). Specifically, Eq. (8) gives a bimodal relation between
cell motility and the amount of sensed ECM. This assumption is consistent
since at low density of matrix elements (i.e., M ≈ 0), the cell is unable to
find sufficient collagen-like sites to hold onto and to use for traction, being
therefore unable to significantly displace [22, 26]. At the other extremum, an
abundance of ECM proteins (i.e., M ≈ 1) typically leads to the formation
of stable focal adhesions and, hence, low detachment and migration rates,
as provided by the experimental literature [19, 25]. Intermediate amounts of
ECM densities instead result in optimal attachment-detachment cycles and
maximal cell speed [8, 38].

Summarizing, the model in Eqs. (1) and (3), with the closure assumptions
in Eqs. (6) and (7)-(9), is a system of non-linear integro-differential equations,
which entail the following numerical issues.

(i) The accurate numerical approximation of the integrals W in Eq. (6)
and M in Eq. (9) requires suitable quadrature formulas, i.e., able to
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handle possible non-regularities of the integrand functions (which de-
pends on the concentration c of the diffusive chemical, on the weight
functions Kr and Kθ, and on the distribution m of the fixed ECM pro-
teins, respectively). As a remark, according to the above assumptions,
the integrand functions in Eqs. (6) and (9) (i.e., r KrKθ c and m) are
piecewise regular and piecewise constant, respectively, and therefore
Riemann integrable.

(ii) The time integration of the proposed model involves at each time step
the evaluation of non-linear and integral terms at the r.h.s. of Eqs. (1)
and (3). Accounting also for point (i), it is thus important to identify a
numerical scheme that minimizes both the number of evaluations of W
and M per instant of time and the total amount of time steps, being
therefore characterized by a sufficiently fast convergence and a good
degree of accuracy.

(iii) Furthermore, if the distributions c and m are defined, at any t ∈ [0, T ],
only over a finite amount of points (e.g., if they are experimental mea-
surements taken at selected places), then the values of the molecular
variables at the quadrature nodes (required to evaluate W and M , see
point (i)) may be unknown, see Fig. 1 (panel C). In this case, it is neces-
sary to use a suitable interpolation method to approximate the missing
data, preserving the accuracy and efficiency of the overall numerical
scheme.

In order to handle all these numerical issues, we will first propose, in Sec-
tion 3, a numerical approach that takes into account points (i) and (ii), i.e.,
based on the simplified assumption that c ad m are known in analytical form.
The proposed approach will be then applied, in Section 4, to a selected bench-
mark test, in order to show that it is effective to obtain an accurate solution
of the problem with a low computational cost. In Section 5, we will finally
add and couple to the proposed method an interpolation scheme useful to
address issue (iii). The overall computational approach will be finally applied
to selected biological settings.

3. Numerical approach

In this section, we present a numerical procedure to solve the system of
non-linear integro-differential equations in Eqs. (1) and (3), that is able to
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take into account the numerical issues (i) and (ii) highlighted in the previous
section. As a remark, we here assume that the distributions c and m are
known, for any instant time t ∈ [0, T ], at any point y ∈ R2 (i.e., they are
known in analytical form).

The main idea of the proposed approach is to tackle point (ii) with an
explicit solver for ODEs, able to handle the non-linear integral forcing terms
(i.e., gx in Eq. (1) and gw in Eq. (3)), and to address point (i) with an
efficient quadrature formula that accounts for regularity properties of the
integrand functions of W in Eq. (6) and of M in Eq. (9).

In particular, to tackle point (ii), for the solution of the ODEs, we discard
implicit methods due to the presence of non-linear integral forcing terms, and
we consider the first and second-order explicit Runge-Kutta methods, known
as Euler and Heun method respectively (see [30]). By a comparison in terms
of efficiency, we will show that the Heun method turns out to be a reasonable
choice, being it sufficiently accurate with an acceptable computational cost.

On the other hand, for the numerical integration of the piecewise regular
functions involved in integrals W and M (i.e., to deal with point (i)), we
propose a tailored application of the Gauss-Legendre formula, consisting of
applying the latter in each subregion of the integration domains (S and [0, R],
respectively) where the integrand functions are actually smooth. Having
in mind that the accuracy of a Gaussian quadrature rule depends on the
smoothness of the integrand function (i.e., the higher the regularity of the
integrand function is, the faster the convergence of the quadrature formula
is), we expect that such ad hoc approach turns out to be more accurate
and efficient than a standard application of the quadrature formula to the
entire domain of integration. In the following, we will refer to the proposed
tailored/ad hoc strategy by using the acronym “hoc”, while the other one,
i.e., the standard approach, will be denoted by the acronym “std”.

3.1. Time discretization with Runge-Kutta methods

In order to apply a Runge-Kutta method, Eqs. (1) and (3) are first rewrit-
ten in the following canonical form

dz(t)

dt
= F(t, z(t)), t ∈ (0, T ];

z(0) = z0,

(10)
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by setting z(t) := (x(t), w(t))T and F(t, z(t)) := (gx(t, x(t), w(t)), gw(t, x(t), w(t)))T ,
where, as seen, gx and gw denote the right hand sides of Eqs. (1) and (3),
respectively. We then introduce a uniform partitioning of the time interval
(0, T ] into N subintervals of equal length ∆t = T/N , and we denote by
tn = n∆t, with n = 0, . . . , N , the time instants associated to the above dis-
cretization. The approximated values of z(tn), x(tn) and w(tn) are hereafter
denoted by zn, xn and wn, respectively. We apply the r-stage Runge-Kutta
method to Eq. (10)

zn+1 = zn + ∆t

r∑
i=1

biKi, n = 0, . . . , N − 1;

K1 = F(tn, zn);

K2 = F(tn + c2∆t, zn + ∆ta2,1K1);

...

Kr = F(tn + cr∆t, zn + ∆t(ar,1K1 + ar,2K2 + · · · ar,r−1Kr−1)),

(11)
where the coefficients bi, ci, ai,j, 1 ≤ j < i ≤ r are defined by the well known
Butcher tableau (see [30]). In particular, in the forthcoming numerical tests
we will apply and compare the Euler and Heun schemes, retrieved by choosing
in (11) the parameters r = 1, b1 = 1 and r = 2, b1 = b2 = 1/2, c2 = 1 and
a2,1 = 1, respectively. It is worth noting that, at each time step, the methods
require one and two evaluations of the functions gx and gw, respectively.
These involve the computation of the integrals W in Eq. (6) and M in
Eq. (9). This further highlights that the choice of an efficient quadrature
formula is a key issue to obtain an accurate approximation of cell trajectory,
avoiding excessive overall computational costs.

3.2. Standard and ad hoc application of the Gauss-Legendre quadrature for-
mula to W and M

To compute the double integral W(tn, xn, wn) in Eq. (6), we consider a
ν× ν̄ Gauss-Legendre product quadrature rule, with suitable numbers ν and
ν̄ of quadrature nodes. The generic formula reads∫ b

a

h1(r)

∫ d

c

h2(r, θ) dθ dr ≈
ν∑
p=1

wp h1(rp)
ν̄∑
q=1

w̄q h2(rp, θq), (12)
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where wp and rp, with p = 1, . . . , ν, (as well as w̄q and θq, with q = 1, . . . , ν̄)
denote the weights and the nodes of the ν-point (or ν̄-point) Gauss-Legendre
formula (see [12]). Following the standard approach, the quadrature for-
mula (12) can be directly applied to the double integral in Eq. (6) by setting

h1(r) = r Kr(r), h2(r, θ) = Kθ

(
n(θ) · wn

‖wn‖

)
c (tn,xn + rn(θ)) n(θ),

(13)
and [a, b] = [0, R], [c, d] = [0, 2π]. On the other hand, in the case of piece-
wise regular integrand functions, we propose an ad hoc application of the
quadrature rule which consists in splitting [0, R] and [0, 2π] into subinter-
vals of regularity of h1 and h2, and in applying the quadrature formula (12)
to each one of the resulting double integrals. The following remarks then
highlight two properties of this tailored approach.

Remark 3.1. The total number of quadrature nodes νhoc
tot involved in the

ad hoc approach depends on the number of regularity sub-domains of the
integrand functions. Conversely, for the standard quadrature approach, the
total number of quadrature nodes νstd

tot is always equal to ν × ν̄ regardless of
the specific choice of the weight functions Kr and Kθ, and the distribution c
of the diffusing chemical. The efficiency of the two approaches can be then
measured in terms of ν∗tot, with ∗ ∈ {hoc, std}.

Due to the well known properties of Gaussian quadrature rules, the pro-
posed tailored procedure results in an increased accuracy of the approxi-
mation of W(tn,xn,wn) (w.r.t. the standard approach) and in a desirable
convenience (or at least equality) in terms of computational cost (i.e., in
terms of the total amount of quadrature nodes).

For what concerns the computation of the single integral M(tn,xn,wn)
in Eq. (9), we can in principle proceed analogously as before. In particular,
we can apply a ν-point Gauss-Legendre quadrature rule to each regularity
subinterval of the integrand function m. However, since we will consider m
piece-wise constant, the corresponding integral M is evaluated analytically.

In the forthcoming sections we will perform numerical simulations where,
for the sake of simplicity, we will fix ν̄ = ν, in order to have only one dis-
cretization parameter related to the approximation of double integrals.
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4. Validation of the proposed numerical approach

The aim of the numerical results presented in this section is to validate the
proposed numerical procedure focusing on a selected benchmark test where
the chemical profiles c and m are known, for any instant time t ∈ [0, T ], at
any point y ∈ R2. In particular, in Section 4.2, we will first give an idea
of the computational advantages provided by the ad hoc application of the
Gauss-Legendre quadrature rule (w.r.t the standard approach) to estimate
W(tn,xn,wn). Then, in Sections 4.3 and 4.4, we will deal with the numerical
resolution of the system of non-linear integro-differential equations in Eqs. (1)
and (3). Specifically, we will investigate how the quadrature approach affects
both the accuracy of cell trajectory and the overall computational cost. As
a remark, the integral M(tn,xn,wn) will be always analytically evaluated
as specified in the previous section, since the ECM profile m is piecewise
constant.

4.1. Simulation details

Benchmark test. Given a bounded numerical domain Ω = [0, L]× [0, L], with
L = 700 µm (that reproduces a Petri dish used in [43]), our benchmark test
includes

(i) a horizontally diffusing chemical, which is produced at the left border of
Ω, is completely absorbed at its right edge, and decays with a constant
rate;

(ii) a piecewise constant distribution of ECM proteins characterized by high
values at the left half of Ω, and intermediate densities elsewhere,

see Fig. 2 (panel A). Specifically, denoting by y1, y2 the components of y ∈ Ω,
i.e., y = (y1, y2), we consider

c(t,y) = c0

exp(
√

1/δ y1)− exp(
√

1/δ (2L− y1))

1− exp(2L
√

1/δ)
, (14)

where c0 is the amount of diffusive substance located at the left edge of the
domain, δ is the diffusion length. Accounting for the measurements reported
in [42], we here set c0 = 0.0004 µM and δ = 492.6 µm2.
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Figure 2: Settings of the benchmark test used to validate the proposed numerical approach.
Panel A: Computational domain Ω. Panel B and C: Profiles of the weight function K =
KrKθ with Kr as in Eq. (16) and as in Eq. (17), respectively, while Kθ is constantly taken
as in Eq. (18) with α = 1/2.

The distribution of the fixed ECM substance conversely reads as

m (y) =

{
0.75, if y1 ≤ L/2;

0.5, otherwise.
(15)

The final time T will be specified in the following. We remark that it will
be chosen to avoid that the cell (as well as its sensing region) reaches the
boundary domain.

Explicit forms for the weight functions. Given the distribution c defined in
Eq. (14), the regularity of the integrand function in Eq. (6) depends on the
explicit form of the weight functions Kr and Kθ. In this respect, among all
the possible options, we consider the following alternative choices for Kr:

Kr(r) =


0, if r = 0;

1

r
, if r ≤ R,

(16)

and

Kr(r) =


0, if r = 0;

1

r
, r ≤ R

3
;

3

2r

(
1− r

R

)
, if

R

3
< r ≤ R.

(17)
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On the opposite, Kθ is constantly taken equal to

Kθ (u) =

{
u2, if u > α;

0, otherwise,
(18)

with α ∈ [0, 1). We notice that Kr in Eq. (17) vanishes for r = R and involves
non-regularities for r = R/3, while the one in Eq. (16) does not, see Fig. 2
(panel B and C). Moreover, unless α = 0, Kθ is discontinuous.

Model parameter values. The representative cell is able to reach a maximum
speed of Vmax = 0.009 µms−1 and to re-orient in a period τ equal to 300 s,
according to the observations reported in [31] and [34], respectively. The
Michaelis-Menten constant χ in Eq. (3) is conversely arbitrarily fixed to 0.001
for all numerical simulations. The extension of cell PM protrusions R (which
defines also where the cell perceives the diffusive chemical and the fixed
ECM proteins, respectively) is assumed equal to 20 µm as in [6]. Finally, a
reasonable span of cell sensing region is fixed by setting α = 1/2 in Eq. (18),
corresponding to a sensing angle of 60◦.

4.2. Standard vs. ad hoc quadrature approach in computing W.

In this section, we compare the accuracy of the standard and of the ad
hoc quadrature approaches in computing W(tn,xn,wn) at a given instant of
time tn (i.e., for a fixed xn and wn). To this aim, we denote by W∗,ν the
approximated value of the integral W(tn,xn,wn) obtained by applying the
approach ∗ ∈ {std, hoc} with ν quadrature nodes per single integral. The
accuracy of each procedure is then estimated through the relative error

err∗,νW =
‖Whoc,64 −W∗,ν‖
‖Whoc,64‖

, (19)

where ∗ ∈ {std, hoc} and Whoc,64 (i.e., the value obtained applying the ad
hoc procedure with ν = 64 quadrature nodes) is arbitrary assumed as the
reference one. Specifically, to give an idea of the advantages provided by
the ad hoc strategy in the case of piecewise integrand functions, the above
estimate is performed twice by alternatively assuming Kr as in Eq. (16) or
in Eq. (17).

Going into details, as defined in Section 3, Wstd,ν is obtained by directly
applying the ν × ν Gaussian quadrature rule (i.e., Eq. (12) with ν̄ = ν) to
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Eq. (6), regardless of the specific form of Kr and Kθ. Conversely, Whoc,ν

is here computed by splitting [0, R] and [0, 2π] into the subintervals where
Kr and Kθ are smooth, respectively, and by applying the ν × ν Gaussian
quadrature formula to each one of the resulting double integrals.

In this perspective, the regularity sub-intervals of the proposed weight
functionsKr are explicitly given by their definitions, i.e., by Eqs. (16) and (17).
Contrarily, the regularity subintervals of Kθ cannot be explicitly evinced from
Eq. (18), but their determination requires to solve a trigonometric inequal-
ity. In particular, for any α ∈ [0, 1), the condition n · wn

‖wn‖ > α identifies the
sectors S1 and S2 such that S = S1 ∪ S2. In particular, we have

S1 :=

{
(θmin, θmax), if wn,1 + α‖wn‖ > 0;

(0, θmin) ∪ (θmax, 2π), if wn,1 + α‖wn‖ < 0,
(20)

where θmin = 2 minε∈{−1,1}{atan ζε}, θmax = 2 maxε∈{−1,1}{atan ζε} and wn =
(wn,1,wn,2), with

ζε =
wn,2 + ε ‖wn‖

√
1− α2

wn,1 + α‖wn‖
, ε ∈ {−1, 1}. (21)

The case wn,1 +α‖wn‖ = 0 conversely leads to a first order inequality, which
can be analogously treated.

Summing up, if Kr reads as in Eq. (16), Whoc,ν is obtained by applying
the ν × ν Gaussian quadrature rule to each double integral in the following
expression

W(tn,xn,wn) =

=

∫ R

0

rKr(r)

∫
S1

[
Kθ

(
n(θ) · wn

|wn|

)
c(tn,xn + rn(θ))n(θ) dθ

]
dr,

(22)

where [0, 2π] reduces to S1, since Kθ, as defined in Eq. (18), is null over S2.
The total number of quadrature nodes νhoc

tot here results equal to ν × ν, as in
the standard approach (see Remark 3.1). However, in the ad hoc approach
the quadrature nodes are distributed only over the actual cell sensing region
(i.e., the angular sector S1) rather than over all S.

IfKr reads as in Eq. (17), Whoc,ν is instead computed by applying Eq. (12)
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Figure 3: Plots of the relative errors errstd,ν
W (red solid lines) and errhoc,ν

W (blue dashed
lines) defined in Eq. (19) obtained by setting that, at the generical instant time tn, the
representative cell is placed at xn = (L/2, L/2) and is oriented in the direction wn = (0, 1).
Left panel: Kr reads as in Eq. (16) and νstd

tot = νhoc
tot = ν × ν. Right panel: Kr is given by

Eq. (17) and νstd
tot = ν × ν, while νhoc

tot = 2ν × ν.

to each double integral in

W(tn,xn,wn) =

=

∫
[0,R3 ]∪[R3 ,R]

[
rKr(r)

∫
S1
Kθ

(
n(θ) · wn

|wn|

)
c(tn,xn + rn(θ))n(θ)dθdr

]
(23)

where, according to the definition of Kθ in Eq. (18), the integral over S2 is
again omitted being null. In this case, we have a total number of quadrature
nodes νhoc

tot equal to 2ν×ν, which all fall within the actual cell sensing region,
while the standard approach still results in νstd

tot = ν × ν nodes distributed
over the entire area S.

In Fig. 3, we report the relative errors err∗,νW obtained by arbitrarily as-
suming that, at the generic time instant tn, the representative cell is placed
at xn = (L/2, L/2) and is oriented in the direction wn = (0, 1) (so that S
is completely embedded in Ω). Specifically, the results in the left panel of
Fig. 3 have been obtained dealing with the weight function Kr defined in
Eq. (16), while those in the right panel of Fig. 3 refer to the explicit form of
Kr provided in Eq. (17). In both cases, the relative errors err∗,νW are plotted
with respect to increasing total amount of quadrature nodes ν∗tot.

As expected, in both cases, the errors produced by the ad hoc approach
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are much smaller than those obtained with the standard one, for any consid-
ered value of ν∗tot. In particular, the standard approach provides errors in the
range [10−1, 102] regardless of the number of quadrature nodes. Conversely,
the accuracy of the ad hoc procedure rapidly improves with the increase of
νhoc

tot and almost reaches the machine precision (that in our case is of magni-
tude order 1.0e− 16) with a reasonably low number of quadrature nodes of
about ν = 20. Moreover, an extensive numerical testing (not shown to avoid
redundances) has also highlighted that, in our benchmark test, the ad hoc
procedure with ν = 20 quadrature nodes is able to estimate W(tn,xn,wn)
with machine precision, for any choice of xn and wn.

4.3. Standard vs. ad hoc quadrature approach in computing cell trajectory.

Taking advantage of the considerations presented in previous section,
we here turn to investigate the influence of the numerical integration of
W(tn,xn,wn) on the approximation of cell trajectory, i.e., on the accuracy of
the overall solver for the system of non-linear integro-differential equations in
Eqs. (1) and (3), for both Euler and Heun methods. In this perspective, for
the sake of simplicity, we here deal only with the explicit form of Kr defined
by Eq. (16).

To give an idea of the error introduced in cell trajectory by the standard
and ad hoc quadrature approaches, we here deal with an arbitrarily selected
scenario: the representative cell is initially located at x(0) = (3L/4, L/4)
with w(0) = (0, 1). The period of observation T is set equal to 16 h.

The accuracy of cell trajectory obtained with the two quadrature ap-
proaches is then estimated through the relative error

err∗,νx = max
n=0,...,N

‖xhoc,20
n − x∗,νn ‖
‖xhoc,20

n ‖
, (24)

where x∗,νn , with n = 1, . . . , N , denotes the cell trajectory obtained by ap-
plying the ∗ ∈ {hoc, std} quadrature procedure with ν quadrature nodes
per single integral in the computation of W(tn,xn,wn). The value xhoc,20

n

is instead assumed as reference solution according to the considerations pre-
sented in the previous section. Specifically, the number of time steps N is
here arbitrarily fixed to 100 (both for the reference and for the approximate
solutions obtained by the Euler and Heun approaches), which results in a
plausible reference trajectory (see the magenta lines in Fig. 4 corresponding
to the trajectories obtained by the Heun method).
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ν νstd
tot errstd,ν

x ν νhoc
tot errhoc,ν

x

Euler Heun Euler Heun
4 16 4.84e− 01 4.84e− 01 4 16 3.14e− 03 3.13e− 03
8 64 3.55e− 01 3.53e− 01 6 36 4.19e− 06 4.14e− 06

16 256 9.37e− 01 9.39e− 01 8 64 1.91e− 09 1.89e− 09
32 1024 9.57e− 01 9.58e− 01 10 100 3.21e− 13 3.22e− 13
64 4096 8.62e− 01 8.63e− 01 12 144 6.85e− 16 1.93e− 15

128 16384 1.45e− 01 1.47e− 01 14 196 −− −−
256 65536 5.38e− 02 5.77e− 02
512 262144 3.37e− 03 6.87e− 03

1024 1048576 2.78e− 03 5.96e− 03
2048 4194304 6.79e− 04 3.55e− 04

Table 1: Relative errors err∗,νx defined in Eq. (24) and associated to the trajectories (ob-
tained with the Euler and Heun approaches) of a cell initially located at x(0) = (3L/4, L/4)
with w(0) = (0, 1). The period of observation T is set equal to 16 h, and it is divided into
N = 100 time steps both for the reference and the approximate solutions. The explicit
form of Kr is given in Eq. (16). The symbol “−−” means that the full accuracy (i.e.,
double precision) has been reached.

The values of err∗,νx reported in Table 1 and the dashed black trajecto-
ries plotted in Fig. 4 clearly highlight that, for both ODE solvers, the two
quadrature approaches considerably differ one from each other. In particular,
the ad hoc method quickly converges upon increments in ν (see the values in
Table 1) and reaches the machine accuracy with only ν = 14 nodes per in-
tegral (i.e., with νhoc

tot = 196). On the opposite, the standard procedure with
similar values of ν (e.g., ν = 16) provides larger relative errors (see Table 1)
showing that the obtained solution dramatically differs from the reference
trajectory (see Fig. 4, left panel). Moreover, the values of errstd,ν

x reported
in Table 1 show that a significative increase in ν does not rapidly improve
the accuracy of the approximation. The standard approach then turns out
to be not competitive with the ad hoc one in terms of computational cost,
and hence of overall efficiency.

It is worthwhile noting that, in general, a sufficiently accurate (and not
excessively expensive) approximation of the cell trajectory is reasonably iden-
tified by a relative error approximatively 5.0e-03. In our benchmark test, this
is in fact achieved by considering, for both ODE solvers, at least ν = 1024
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Figure 4: Cell trajectories of a cell initially located at x(0) = (3L/4, L/4) with w(0) =
(0, 1), obtained by the Heun method, by applying either the standard (left panel) or the
ad hoc (right panel) approach in computing W(tn,xn,wn). The period of observation T
is set equal to 16 h, and it is divided into N = 100 time steps both for the reference and
the approximate solutions. The explicit form of Kr is given in Eq. (16). In each panel, the
magenta line denotes the reference trajectory, the dashed black lines are the approximated
trajectories obtained with ν quadrature nodes per single integral.

quadrature nodes per single integral if we apply the standard approach (see
Fig. 4, left panel) and at least ν = 4 quadrature nodes when we deal with
the ad hoc procedure (see Fig. 4, right panel).

Interestingly, similar results are obtained also assuming Kr as in Eq. (17),
thereby justifying the following remark.

Remark 4.1. According to the considerations presented in Sections 4.2 and
4.3, in the forthcoming examples, we will apply only the ad hoc procedure
by choosing ν = 20 for the reference solution and a proper value of ν for
the approximate one. This latter will depend on the desired accuracy of the
overall method and will be specified within the numerical examples, according
to the results of Table 1. Hereafter, we therefore omit the superscripts ad
hoc and ν, in xhoc,ν

n , denoting by xn the reference solution and by xn the
approximate one.

4.4. Convergence of Runge-Kutta methods with the ad hoc quadrature ap-
proach.

We here turn to deal with the convergence of the Euler and Heun time
marching schemes for the solution of ODEs, and by the ad hoc approach for
the numerical evaluation of the integrals W(tn,xn,wn) at each time step.
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Specifically, we consider the biological scenario introduced previously (with
c and m as given in Eqs. (14) and (15), see Fig. 1, and initial condition
x(0) = (3L/4, L/4) and w(0) = (0, 1)), assuming the explicit form for Kr

defined in Eq. (17), since it is characterized by non-regularities and, hence,
is more interesting from a numerical point of view.

Going into details, we assume as reference trajectory the solution obtained
with a very high number of time steps, i.e., N = 102400, and we consider
a sequence of approximated cell trajectories obtained with N time steps.
To easily compare the resulting approximated trajectories with the reference
one, in all forthcoming simulations, we require that N is a divisor of N (i.e.,
there exists k ∈ N such that N = kN). The convergence of both methods is
then evaluated through the relative error

errNx = max
n=0,...,N

‖xkn − xn‖
‖xkn‖

, (25)

where xkn, with n = 0, . . . , N , denotes the reference cell trajectory obtained
by using the ad hoc quadrature formula with ν = 20 and N = 102400
time steps. The approximated trajectory xn, with n = 0, . . . , N , is instead
computed with N time steps and by applying the ad hoc quadrature formula
with ν = 12, which guarantees the computation of the integrals up to the
machine precision (see Table 1). In this way the optimal convergence order
of the overall method, for both Euler and Heun solvers, is ensured.

Moreover, we evaluate the Estimated Order of Convergence (EOC), given
by

EOC = log2(errNx /err
2N
x ). (26)

The values reported in Table 2 show that the accuracy of the approxi-
mated cell trajectory improves for increasing values of N , for both solvers,
and that the EOC coincides with the theoretical linear order of convergence
of the Euler method and quadratic order of the Heun one. This result is
a further confirmation of the ad hoc procedure efficiency. Furthermore, to
compare the two solvers in terms of computing times, in the last column of
Table 2 we report the ratio RCPU between the CPU time required by the
Heun solver over the Euler one. As expected, since the former involves twice
the number of integral evaluations per time step, for N large enough the
ratio is approximatively 2. However, it is worth noting that, by fairly com-
paring the two approximate solutions in terms of accuracy, the Heun method
reveals to be more efficient than the Euler one. Indeed, for example, if we
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Euler Heun
N errNx EOC errNx EOC RCPU

100 2.44e− 03 2.06e− 04 3.4
1.0 3.0

200 1.26e− 03 2.62e− 05 2.8
1.0 2.0

400 6.27e− 04 6.82e− 06 1.6
1.0 2.0

800 3.13e− 04 1.74e− 06 1.5
1.0 2.0

1600 1.57e− 04 4.34e− 07 2.2
1.0 2.0

3200 7.83e− 05 1.09e− 07 2.3
1.0 2.0

6400 3.92e− 05 2.72e− 08 1.9
1.0 2.0

12800 1.96e− 05 6.74e− 09 1.9
1.0 2.0

25600 9.79e− 06 1.60e− 09 1.8

Table 2: Relative errors errNx , defined in Eq. (25), and estimated orders of convergence
EOC, given in Eq. (26), of the Euler and Heun time marching schemes, obtained by using
the ad hoc procedure (νhoc

tot = 2ν × ν), when c and m are given by Eqs. (14) and (15),
respectively, and Kr by Eq. (17). The reference solution is obtained by using the ad hoc
quadrature formula with ν = 20 and N = 102400 time steps. The approximate solutions
are obtained by using the ad hoc quadrature formula with ν = 8 and N time steps.

fix the accuracy to the magnitude order 1.0e − 04 (retrieved by Euler with
N = 800 and by Heun with N = 100), we get RCPU ≈ 1.7e − 01; by fixing
the accuracy order to 1.0e− 05 (retrieved by Euler with N = 12800 and by
Heun with N = 200), we get RCPU ≈ 3.2e− 02. In percentage terms, Heun
saves the 83% of the computing time in the first case and 97% in the second
one.

Finally we highlight that, by testing smaller choices of N (i.e., larger
time steps ∆t), the smallest value, which guarantees a realistic approximated
trajectory xn, is N = 94, for both Euler and Heun solvers. As an example,
in Fig. 5 we report cell trajectories obtained only by the Heun method with
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Figure 5: Trajectory of a cell initially located at x(0) = (3L/4, L/4) with w(0) = (0, 1).
The period of observation T is set equal to 16 h. The explicit form of Kr is given in
Eq. (17). Cell trajectory obtained by the Heun method with N = 100 (magenta line)
recovers the reference solution obtained with N = 102400. Cell trajectory computed with
N = 90 (dashed black line) conversely, after initial time steps, diverges from the reference
solution.

N = 100 (magenta line) and with N = 90 (dashed black line). In the former
case, the approximated cell trajectory (magenta line) recovers the reference
solution while, in the latter case, the numerical method fails. This is a clear
example of how a not sufficiently accurate method can lead to implausible
biological conclusions. In this respect, in the absence of a computationally
more expensive reference solution, the trajectory obtained with N = 90 time
steps could be in fact wrongly interpreted as the representation of cell random
wandering, rather than as the result of numerical errors.

According to the above comparison in terms of accuracy and efficiency,
in the forthcoming numerical examples we will apply only the Heun method,
being this choice a good compromise among accuracy and computational
cost.

5. Extension of the numerical approach for experimental data

This section is devoted to the numerical issue (iii) presented in Section 2.
In this respect, we recall that if the distributions of the diffusive chemical
and/or of the fixed ECM proteins are constantly known only over a given set
of points that, in general, do not coincide with the quadrature nodes needed
to compute W(tn,xn,wn) and M(tn,xn,wn) (see Fig. 1, panel C), then the
approach proposed in Section 3 has to be coupled with a proper interpolation

23



method to retrieve the unknown data.
Obviously, in this context, the accuracy of the resulting overall numerical

method may be strongly affected by the choice of the interpolation technique.
On the other hand, such an accurate interpolation scheme should be also not
too expensive, since it has to be coupled with the Heun method and the ad
hoc quadrature approach. In this respect, accounting for the considerations
reported in Section 4, a reasonable choice is to interpolate the unknown
nodal values of the molecular variables c and m with a bi-dimensional and
mono-dimensional cubic spline, respectively, using not-a-knot conditions (see
[13]).

In the rest of this section, we will first give an idea of how experimental
data (treated with spline interpolation) affect the accuracy of the ad hoc
quadrature approach and of the convergence of the overall numerical method.
To this aim, we will deal with a modified version of the benchmark test
analyzed in Section 4. Successively, taking advantage of these results, we
will further test the efficacy of the proposed numerical method, by applying
it to solve Eqs. (1) and (3) in selected scenarios.

For the sake of simplicity, the interpolation scheme is here used to approx-
imate only the concentration of the diffusive chemical c: since the distribution
of the ECM proteins m is always given in analytical form, M(tn,xn,wn) is
computed as specified in Section 3. By considering the domain Ω and the
model parameter values introduced in Section 4.1, in all forthcoming numer-
ical simulations, we assume that, at any instant time t, the diffusive chemical
is known only at the points yij ∈ Ω of a Λ × Λ tensor grid with the length
step ∆y = L/Λ in both directions. In particular, we introduce

cΛ(t) =
{
cij(t), with i, j = 1, . . . ,Λ : cij(t) = c(t,yij)

}
, (27)

where c is a given continuous profile, which will be used to compute the
corresponding reference solution.

5.1. Errors introduced by experimental data treated with spline interpolation

To highlight how the spline interpolation of cΛ affects the accuracy of the
ad hoc approximation of W(tn,xn,wn) and the convergence of the overall
method, we here deal with a modified version of the benchmark test analyzed
in Section 4. Specifically, we here assume that, at any instant time t ∈ [0, T ],
the concentration of the diffusing chemical is point-wise defined as in Eq. (27),
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Figure 6: Relative errors errhoc,ν,Λ
W (solid lines) defined in Eq. (28) associated to piecewise

distribution cΛ defined in Eq. (27) with c as in Eq. (14). For the reader’s convenience,

we here report also the error errhoc,ν
W (dashed blue line) already plotted in Fig. 3, and we

remark that ∆y = L/Λ. Left panel: Kr reads as in Eq. (16) with νhoc
tot = ν × ν. Right

panel: Kr is given by Eq. (17) with νhoc
tot = 2ν × ν.

with c given in Eq. (14). The distribution of the ECM proteins m is still
defined in Eq. (15).

Experimental data and the ad hoc approach in computing W. The accu-
racy of the ad hoc approximation of the cell preferred direction, i.e., of
W(tn,xn,wn), when the diffusive chemical is point-wise defined, is here es-
timated through the relative error

errhoc,ν,Λ
W =

‖Whoc,64 −Whoc,ν,Λ‖
‖Whoc,64‖

. (28)

In Eq. (28), Whoc,ν,Λ is computed by replacing c in W(tn,xn,wn) with the
cubic spline interpolation of cΛ, and then by applying the ad hoc quadrature
approach with ν nodes for each single integral. Whoc,64 is instead the refer-
ence solution already introduced in Eq. (19) (i.e., it is obtained by using the
analytical expression of c given in Eq. (14)).

In Fig. 6, we then report the relative errors obtained for different values of
Λ (and of the relative length step ∆y), assuming that, at a generical instant
time tn, the representative cell is placed at xn = (L/2, L/2) and is oriented
in the direction wn = (0, 1) (as already done in Section 4.2). Specifically,
the results in the left panel have been obtained by dealing with the weight
function Kr defined in Eq. (16), while those in the right panel refer to the

25



explicit form of Kr provided in Eq. (17). In both cases, it emerges that, for
any fixed choice of ν, the error errhoc,ν,Λ

W reasonably decreases as Λ increases
(i.e., as the length step ∆y decreases). Indeed, it is well known that the
smaller the length step is, the smaller the interpolation error is. On the other
hand, for any considered value of Λ, an increment in the total amount of the
quadrature nodes νhoc

tot results in an initial drop of errhoc,ν,Λ
W , until it reaches

the maximum possible accuracy allowed by the interpolation method which,
as known, actually depends on the length step ∆y. Interestingly, regardless
of the value of Λ, the maximal accuracy is here reached with ν ≤ 10, i.e., as
the error introduced by the ad hoc quadrature formula almost converges to
the machine precision (i.e., errhoc,ν

W < 10−12, see Fig. 3 and Table 1).

Experimental data and the convergence of the overall method. We here turn
to investigate how the use of experimental data cΛ, retrieved with spline
interpolation, influences the accuracy of cell trajectory. To this aim, we
introduce the relative error

errN,Λx = max
n=0,...,N

‖xkn − xΛ
n‖

‖xkn‖
, (29)

where xΛ
n , with n = 0, . . . , N , denotes the approximated cell trajectory ob-

tained by applying, at any time step, the ad hoc procedure with ν = 8 nodes
(see Remark 4.1), and by replacing the molecular variable c with the cubic
spline interpolating function of cΛ. Conversely, xkn, with n = 0, . . . , N , de-
notes the reference solution obtained by dividing the period of observation
into N = kN = 3200 time steps, and by using, in computing cell desired
direction, the ad hoc quadrature formula with ν = 20 (see Remark 4.1) and
the analytic expression of c in Eq. (14).

Referring to the numerical simulations performed in Section 4.4, we here
consider again a cell initially located at x(0) = (3L/4, L/4) with w(0) =
(0, 1), whose capacity to radially sense the diffusive chemical Kr reads as in
Eq. (17). The period of observation T is set equal to 16 h and divided into
N = 3200 time steps (so that the reference solution xkn is actually the same
used in Section 4.4).

In Table 3, we thus report the relative errors obtained with different
values of both discretization parameters Λ and N (and relative ∆y and ∆t,
respectively). Again, we also compute the estimated order of convergence

EOCΛ = log2(errN,Λx /err2N,Λ
x ). (30)
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N errN,10
x EOC10 errN,25

x EOC25 errN,35
x EOC35

100 2.24e− 04 2.06e− 04 2.07e− 04
2.8 3.0 3.0

200 3.20e− 05 2.62e− 05 2.62e− 05
0.6 2.0 2.0

400 2.12e− 05 6.75e− 06 6.72e− 06
0.1 2.0 2.0

800 1.92e− 05 1.70e− 06 1.64e− 06
0.1 1.7 2.2

1600 1.86e− 05 5.23e− 07 3.60e− 07

Table 3: Relative error errN,Λx defined in Eq. (29) and estimated order of convergence
EOCΛ given in Eq. (30). The cell is initially located at x(0) = (3L/4, L/4) with w(0) =
(0, 1), with Kr defined as in Eq. (17). The period of observation T is set equal to 16 h,
while the concentration of the diffusive chemical is point-wise defined by Eq. (27) with c
as in Eq. (14). ECM proteins distribution m is finally given analytically as in Eq. (15).

Figure 7: Role of the spatial discretization parameter Λ (and ∆y) on the approximated cell
trajectory. In all panels: the reference solution (magenta line) is computed by applying
the ad hoc approach (ν = 20), with N = 3200 and c given by Eq. (14). The approximated
cell trajectories (dashed black line) are obtained by the ad hoc approach (ν = 8), with
N = 100 and by replacing c with the cubic spline interpolation of cΛ. Panel A: Λ = 10
(i.e., ∆y = 70 µm). Panel B: Λ = 35 (i.e., ∆y = 20 µm).

As expected, to obtain the theoretical quadratic order of convergence
of the Heun method when the spline interpolation of cΛ is considered, it
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is necessary to use a sufficiently refined underlying tensor mesh, i.e., we
need a high enough amount of length steps Λ (i.e., sufficiently small ∆y).
Interestingly, among the considered cases, the choice Λ = 35 (i.e., ∆y =
20 µm) returns the same errors of the analytic case (reported in Table 2).
However, it is worthwhile noting that the quadratic order of convergence
is not mandatory to obtain a realistic cell trajectory. In fact, as shown in
Fig. 7, to have a good approximation of cell dynamics, it is sufficient to choose
∆y = 70 µm, which corresponds to the very coarse discretization parameter
Λ = 10 (see Fig. 7, panel A), while Λ = 35 (i.e., ∆y = 20 µm) returns a very
accurate trajectory (see Fig. 7, panel B).

Interestingly, the values reported in Table 3 further indicate that the
stability of the global method depends only on the choice of the temporal
discretization (i.e., of N and ∆t), according to the considerations reported in
the previous paragraph. Conversely, the accuracy of the solution is affected
also by the tensor mesh refinement (i.e., by the values of Λ and ∆y), namely
by the interpolation error.

5.2. Application of the overall method to selected scenarios

Taking advantage of the results presented in previous sections, we here
finally apply the overall numerical method to three distinct scenarios, where
the concentration of the diffusive chemical is defined only over a tensor grid
with Λ = 70 (i.e., with ∆y = 10 µm, so that the interpolation error does
not affect the global accuracy), while the distribution of the ECM proteins
is instead always known in analytic form. First, we fix cΛ as defined in Sec-
tion 5.1, and we alternatively consider two piecewise constant distributions
of m that implement an abundance of ECM proteins respectively within a
vertical stripe at the middle of the domain Ω (Case 1); and within a small
square at the center of Ω (Case 2). Finally, in Case 3, we introduce a proper
explicit form of cΛ describing the equilibrium distribution of a diffusive chem-
ical produced at the center of the domain and completely absorbed at the
domain boundary; while the ECM is either assumed uniformly distributed
over all the domain or as defined in Eq. (15).

In all forthcoming examples, cell capacity to non-locally sense the diffusive
substance c is here assumed to radially vary according to the explicit form
of Kr defined in Eq. (16). Referring again to Remark 4.1, the approximate
solutions xn, with n = 0, . . . , N , are computed by applying, at each step
of the Heun scheme, the ad hoc procedure with ν = 8 quadrature nodes
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Figure 8: Case 1. Cell trajectory associated to c defined in Eq. (14) (reference solution,
magenta line) and the relative point-wise distribution cΛ in Eq. (27) with Λ = 70 (ap-
proximated solution, dashed black line). m is given by Eq. (31) with ` = 0.5 (left panel),
` = 0.75 (central panel) and ` = 0.9 (right panel). The circle, square, diamond and triangle
symbols indicate the cell position at the time instants t = 0, 4, 8, 12 h, respectively.

per single integral in W(tn,xn,wn) where c is replaced by the cubic spline
interpolation of cΛ. The reference solutions xkn, with n = 0, . . . , N and
kn = N , are obtained by using the ad hoc procedure with ν = 20 quadrature
nodes per single integral in W(tn,xn,wn), where c is used in its analytical
form. The number of time steps is defined below, according to the considered
final instant time of the specific test: however, we constantly choose N̄ = N
for the reference solution.

Case 1. In this first case, the diffusive chemical is assumed point-wise defined
by Eq. (27) with c as in Eq. (14). The distribution of ECM protein conversely
reads

m (y) =

{
`, if y ∈ [L/2− ε, L/2 + ε]× [0, L];
0.5, otherwise,

(31)

where ε is fixed equal to 50 µm, while ` is alternatively set equal to 0.5,
0.75 and 0.9. The former value actually results into a uniform distribution of
the ECM substance over Ω, while the others implement the presence at the
middle of the domain of a vertical stripe of abundant ECM proteins. In all
cases, we deal with a cell initially located at x(0) = (3L/4, L/4) and oriented
along the direction w(0) = (1, 0). In Fig. 8, we plot cell trajectories obtained
by setting T = 16 h and by dividing the period of observation into N = 100
time steps.

Interestingly, regardless of the value of `, the approximated solutions re-
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cover the reference one: this is a further justification of the proposed method
and of the chosen discretization parameters, i.e., ν, ∆t and ∆y.

Comparing the three numerical outcomes, we can also notice that varia-
tions in the distribution of ECM proteins affect the length of cell trajectory
rather than its shape. In particular, cell positions at t = 4, 8, 12 h (indicated
in Fig. 8 by square, diamond and triangle symbols, respectively) highlight
that a uniform distribution of the ECM proteins (i.e., ` = 0.5, see Fig. 8,
left panel) does not affect cell speed (according to Eqs. (7)-(9)). Conversely,
cell net displacement decreases as the amount of ECM proteins at the central
stripe increases: the abundance of fixed matrix elements in fact results in the
formation of cell stable focal adhesions, thereby slowing down the individual
motion. After the slowing down in the central area, the migrating cell then
recovers its initial speed as soon as it reaches the left part of the domain.
We finally remark that, assuming ` = 0.25 or ` = 0.1 in Eq. (31) would
result in the asymmetric bimodal cell behavior (i.e., low speed, then acceler-
ated speed, and finally decelerated movement), as obtained with ` = 0.75 or
` = 0.9, respectively.

Case 2. The diffusive chemical is here again assumed point-wise defined by
Eq. (27) with c as in (14), while the ECM proteins are distributed according
to

m (y) =

{
0.9, if y ∈ [L/2− ε, L/2 + ε]× [L/2− ε, L/2 + ε];
0.5, otherwise,

(32)

with ε = 50 µm. In Fig. 9, we plot five cell trajectories obtained in indepen-
dent realizations, performed by starting from distinct choices of the initial
conditions, i.e.,

x(1)(0) = (150, 100), and w(1)(0) =
(

1√
2
, 1√

2

)
;

x(2)(0) = (400, 100) and w(2)(0) = w(1)(0);

x(3)(0) = (600, 100) and w(3)(0) = w(1)(0);

x(4)(0) = (650, 380) and w(4)(0) = (−1, 0);

x(5)(0) = (650, 500) and w(5)(0) = w(4)(0),

(33)
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Figure 9: Case 2. Cell trajectories associated to c as defined in Eq. (14) (reference solution,
magenta line) and the relative point-wise distribution cΛ introduced in Eq. (27) with
Λ = 70. m is given by Eq. (32). The circle, square, diamond and triangle symbols indicate
the i-cell position for i = 1, . . . , 5 and at the time instants t = 0, 4, 8, 12 h, respectively.

where the superscript “(·)” denotes the specific realization. In all simulations,
the period of observation is T = 16 h, by setting N = 100 as in Case 1.

We first notice that, regardless of the specific initial condition, there is no
visual difference between the reference solution (magenta lines) and the ap-
proximated one (dashed black lines), i.e., all approximated solutions coincide
with the respective reference one (thereby further highlighting the accuracy
of the numerical approach). Going into details, we have that in tests (3),
(4) and (5) the representative cell crosses the central square, while in test
(1) and (2) it does not. Due to the absence of random effects, such a dis-
tinction actually depends on the selected initial condition. Specifically, cell
positions at t = 4, 8, 12 h (indicated in Fig. 9 by square, diamond and triangle
symbols, respectively) highlight that the trajectories obtained in realizations
(1) and (2) have the same length, while in other cases cell migration results
in shorter paths. In these latter cases, the representative individual indeed
slows down as soon as its sensing region (i.e., the segment which goes from
xn to xn+R wn

‖wn‖) intersects the central square. Consistently with Case 1, an
abundance of ECM proteins in fact results in an increased formation of cell
stable focal adhesions that anchor the individual to the substrate, therefore
decreasing its migratory potential.
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Figure 10: Case 3. Cell trajectories associated to c defined in Eq. (34) (reference solution,
magenta line) and the relative point-wise distribution cΛ with Λ = 70 (approximated
solution, dashed black line). Left panel: m(x) = 0.75 for any x ∈ Ω. Right panel: m is
given by Eq. (15).

Case 3. In this last test, the point-wise distribution cΛ reads as in Eq. (27),
with c given by

c(t,y) = c0 exp

(
−20 ((y1 − L/2)2 − (y2 − L/2)2)

L2

)
. (34)

The distribution of ECM is instead alternatively assumed uniform over all
the domain, i.e., m(y) = 0.75 for any y ∈ Ω, or piecewise constant according
to Eq. (15). In both cases, the cell is initially placed at x(0) = (3L/4, L/4)
and oriented in the direction w(0) = (−1, 0). The period of observation T is
finally set equal to 126 h and it is divided into N = 1000 time steps.

As expected, the trajectories reported in Fig. 10 show that, in both cases
the approximated solutions (dashed black lines) recover the reference ones
(magenta lines). More in details, regardless of the explicit expression of
m, cell moves around the central region of the domain where there is the
higher concentration of the diffusive chemical, i.e., the maximal chemotactic
stimulus. In particular, it does not stop where c reaches the maximum con-
centration, because of the presence of a persistence time (a sort of biological
inertia), see Eq. (3). This means that the representative cell overcomes the
center of the domain and takes a given time before reorienting toward the
source of the molecular substance. Interestingly, in the presence of a uniform
distribution for m (see Fig. 10, left panel), the maximum distance from the
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center reached by the individual is always the same. Conversely, in the case
of a piecewise constant distribution m (see Fig. 10, right panel), we have a
different behavior according to the actual amount of ECM: in particular, in
the left half of Ω, the cell, being slowed by the abundance of extracellular
proteins, moves away from the center less than it does in the right half of the
domain.

6. Conclusions

Due to the increasingly recognized importance of cell migration processes
in physio-pathological phenomena (both during embryogenesis and in adult
life) and its exploitation for therapy and for tissue engineering, an increasing
number of models have been developed.

The fact that cells determine both their polarization and speed by non-
locally sensing their environment implies that several models proposed in the
literature are characterized by the presence of integral terms. This feature
may considerably increase the computational cost, especially when modeling
collective phenomena that involve hundreds of cells or more. To overcome
such difficulties our analysis suggests to combine the Heun method with tai-
lored Gauss-Legendre formulas, possibly associated with interpolation tech-
niques in the case of information on the environmental cues that are either
poor or non-matching from the point of view of the numerical discretization.

The efficacy of the proposed method (also in terms of computational cost)
has been then tested with several simulations, reproducing cell trajectories
upon different micro-environmental conditions. In this respect, we remark
that, among several well known methods with similar features, we chose the
Heun method as it represents a right compromise among accuracy and com-
putational cost. Moreover, the choices concerning the quadrature nodes and
the polynomial interpolation degree are related to the accuracy of the Heun
method. However, in principle, a different ODE method can be considered as
well, taking into account that the accuracy of the quadrature and interpola-
tion methods might be accordingly returned. For example, if a higher (lower)
order ODEs solver is chosen, to preserve the global accuracy and efficiency,
it might be necessary to consider a higher (lower) number of quadrature
nodes, and/or a higher (lower) piece-wise interpolant polynomial degree for
the approximation of the diffusive chemical.

It is finally worth to remark that the proposed ad hoc Gauss-Legendre
quadrature formula is able to handle discontinuous distributions of the en-
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Figure 11: The extension of the proposed model to collective migration phenomena implies,
for each time step, at least the evaluation of the integral terms W and M for each individual
and eventually the computation of a non local cell-cell interaction velocity term.

vironmental cues (arising, for instance, when diffusive-based evolution laws
for micro-environmental molecular variables are included), provided that the
resulting integrand function is Riemann-integrable and that possible singu-
larities are detectable.

Possible model and computational improvements and developments. From a
pure modeling perspective, it would be interesting to extend the model to
achieve a more realistic description of the distribution of fixed matrix pro-
teins. In fact, it has been widely shown that the efficiency of cell migration
is highly affected by the orientation and the spacing of ECM components.
For instance, several experimental models have demonstrated the cell pref-
erence to migrate along aligned matrix fibers within 3D environments, such
as fibroblasts in collagen [16] or neuronal cells in fibrin substrates [18]. Sim-
ilarly, in vivo intravital imaging studies of carcinoma cells in the mammary
fat pad have pointed out the preferential chemotactic movement of invasive
malignant cells along thick bundles of collagen [11], while, in the lymph node
paracortex, the aligned microarchitecture of fibronectin elements significantly
influences the migratory behavior of T-cells [5].

Finally, the migratory behavior of cells is also affected by their prote-
olytic activity that impacts on the distribution of the matrix components
[45]. This would amount to add a proper remodeling law for the fixed ECM
elements as well as a reaction-diffusion equation for the low-diffusing cell
matrix metalloproteinases.

From a numerical point of view, it would be interesting to analyze the
extension of the presented computational procedure to cellular ensembles to
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describe, in particular, collective migration phenomena (see, among others,
[6, 7, 15, 32]). Referring to Fig. 11, the evolution of a system of N non-
interacting particles can be obtained by solving Eqs. (1) and (3) for each
individual. The overall computational cost of the proposed approach there-
fore obviously scales with N (unless parallel computing techniques are used).
However, the dynamics of cellular ensembles are strongly affected by mutual
interactions. On one hand, cells tend in fact to move away from other individ-
uals, when they are excessively close, in order to preserve the minimal space
they need to live. On the other hand, cells are also able to form adhesive
bounds with surrounding agents to maintain the cohesion of an aggregate.
A multiagent extension of our method therefore calls for the introduction in
Eqs. (1) and (3) of proper interaction terms, which may have non-local char-
acteristics, that have to be evaluated at each time step. For instance, each
individual may be affected by the presence of all other agents falling within
a suitable sensing regions. This may in turn amount to set a interaction
velocity term which is given by the sum of pairwise contributions. From a
numerical point of view, in the case of N cells, the direct evaluation of such
sums would require a computational complexity of order O(N2). In this re-
spect, computational strategies able to increase the numerical efficacy would
be convenient (e.g., the so called fast summation methods, see for instance
[1, 27, 28]).

Another non-trivial issue arising when cell dynamics is coupled with the
evolution laws of some molecular quantity is that their dynamics are typically
characterized by different spatio-temporal scales. From a numerical point
of view, in these cases it is then crucial to choose suitable computational
strategies able to both preserve a good degree of accuracy and avoid excessive
costs. As an example, it may be convenient to use different tensor grids (and
specific interpolation schemes) to deal with c and m. Analogously, differences
in temporal scales may be tackled by choosing distinct time steps or time
discretization schemes (e.g., implicit or adaptive schemes) for cell dynamics
and for the molecular variables, and by properly coupling them. It is however
clear that the proper numerical approach strongly depends on the explicit
form of the mathematical model, as well as on the required accuracy.

Appendix A. Analytical results

This section is devoted to the discussion of the existence and uniqueness
of the solution of the proposed model, and its dependence on the initial
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condition. In this perspective, we first introduce two preliminary results and
details on the notation used in this Section.

Preliminary results and notation

Proposition 1. If the initial polarization vector w(0) is such that ‖w(0)‖ =:
w0 ∈ (0, 1], Eq. (3) ensures that cell polarization w(t) has ‖w(t)‖ ≤ 1 for
any t > 0.

Proof. The inner product of Eq. (3) by w gives

w(t) · dw(t)

dt
=

1

τ

(
W(t, x(t), w(t)) ·w(t)

‖W(t, x(t), w(t))‖+ χ
− ‖w(t)‖2

)
≤ 1

τ

(
‖W(t, x(t), w(t))‖
‖W(t, x(t), w(t))‖+ χ

− ‖w(t)‖
)
‖w(t)‖.

(A.1)

Since w(t) · dw(t)
dt

= ‖w(t)‖d‖w(t)‖
dt

, Eq. (A.1) becomes

d‖w(t)‖
dt

≤ 1

τ

(
‖W(t, x(t), w(t))‖
‖W(t, x(t), w(t))‖+ χ

− ‖w(t)‖
)
≤ 1

τ
(1− ‖w(t)‖) ,

(A.2)
which gives ‖w(t)‖ ≤ 1−(1−w0) exp(−t/τ), and thus implies the thesis.

Proposition 2. For any w1,w2 ∈ R2 such that ‖w1‖, ‖w2‖ ≥ w0, with
w0 ∈ (0, 1], there exists a constant Cw0 > 0 such that∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥ ≤ Cw0‖w1 −w2‖. (A.3)

Proof. Let us assume that ‖w1‖ < ‖w2‖,∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥ =
1

‖w1‖

∥∥∥w1 −
‖w1‖
‖w2‖

w2

∥∥∥ ≤ ‖w1 −w2‖
‖w1‖

≤ ‖w1 −w2‖
w0

.

(A.4)
Analogous considerations hold when ‖w2‖ < ‖w1‖.

Notation. Taking in account the above preliminary results, we denote by
I := [0, T ] the time interval such that, given an initial condition w(0) with
‖w(0)‖ = w0 ∈ (0, 1], it results ‖w(t)‖ ≥ w0 for any t ∈ I. In this respect,
we introduce the set D := {w ∈ R2 such that ‖w‖ ∈ [w0, 1]} ⊂ R2, i.e., the
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set of possible cell polarization vectors. Moreover, in the rest of this section,
cell speed v(t) will by denoted by v(t,x,w), in order to highlight that it
depends on the actual position x(t) and on the polarization vector w(t) of
the cell, see Eqs. (7)-(9).

Main results

Let us introduce a set of assumptions that ensures existence and unique-
ness of the solution of the system in Eq. (10) (and specified in Eqs. (1) and
(3)), as well as its continuous dependence on the initial condition. This is
stated by the following Theorem and relative proof.

Assumption 1. m : R2 7→ [0, 1] in Eq.(9) is Lipschitz continuous on R2.

Assumption 2. c : R+
0 × R2 7→ R+

0 in Eq.(6) is bounded and Lipschitz
continuous on R2.

Assumption 3. Kθ : [−1, 1] 7→ [0, 1] in Eq.(6) has compact support over
(−α, α), with α ∈ [0, 1), and is Lipschitz continuous on its support.

Assumption 4. z0 := (x(0),w(0))T in Eq. (10) is such that ‖w(0)‖ = w0 ∈
(0, 1].

Remark 1. We further remark that the kernel Kr : [0, R] 7→ [0, 1] in Eq.(6)
is bounded on [0, R].

Theorem 1. If the system in Eq. (10), and specified in Eqs. (1) and (3),
satisfies Assumptions 1-4, the following statements hold true

1. F : R+
0 ×R2 ×D 7→ R2 ×D is Lipschitz continuous on R2 ×D for any

t ∈ I;

2. (existence and uniqueness) Eq. (10) admits unique solution on I;

3. (dependence on the initial condition) let Z1(t) = (x1(t),w1(t))T : I 7→
R2 × D and Z2(t) = (x2(t),w2(t))T : I 7→ R2 × D denote two cell
trajectory-polarization pairs obtained when the initial condition is set
equal to z0,1 := (x1(0),w1(0))T ∈ R2×D and z0,2 := (x2(0),w2(0))T ∈
R2 ×D, respectively, it then results that

‖Z1(t)− Z2(t)‖2×2 ≤ exp(Lip(F) t) ‖z0,1 − z0,2‖2×2 (A.5)

for any t ∈ I, being ‖ · ‖2×2 the norm on R2 × R2 defined by ‖z‖2×2 =
‖x‖+ ‖w‖ for any z = (x,w)T .
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Proof. By recalling that classical Cauchy-Lipschitz Theorem and the Grönwall’s
Lemma ensure that the Lipschitz continuity of F implies Statements 2 and
3, we have to demonstrate Statement 1 only.

Step 1. Lipschitz continuity of F. Let us first remark that F : R+
0 ×

R2 ×D 7→ R2 ×D is Lipschitz continuous on R2 ×D for any t ∈ I, if
its components gx : R+

0 × R2 × D 7→ R2 and gw : R+
0 × R2 × D 7→ R2

(defined in Eq. (1) and (3), respectively) are both Lipschitz continuous
on R2 × D for any t ∈ I. We therefore focus on each component,
separately.

Step 2. Lipschitz continuity of gx. Let us fix t ∈ I, for any x1,x2 ∈ R2

and w1,w2 ∈ D, we have that

‖gx(t,x1,w1)− gx(t,x2,w2)‖ = ‖v(t,x1,w1)w1 − v(t,x2,w2)w2‖

≤ |v(t,x1,w1)| ‖w1 −w2‖+ |v(t,x1,w1)− v(t,x2,w2)|‖w2‖.
(A.6)

Recalling Eq. (7)-(9) and thatm : R2 7→ [0, 1], it results thatM(t,x,w) ∈
[0, 1] and, in turn, that v(t,x,w) ∈ [0, Vmax] for any (t,x,w) ∈ I×R2×
D. On the other hand, the Lipschitz continuity of m (see Assumption 1)
implies the Lipschitz continuity of M(t,x,w) on R2×D for any t ∈ I.
Indeed, we have

|M(t,x1,w1)−M(t,x2,w2)|

≤ 1

R

∫ R

0

∣∣∣m(x1 + r
w1

‖w1‖

)
−m

(
x2 + r

w2

‖w2‖

) ∣∣∣dr
≤ Lip(m)

R

∫ R

0

(
‖x1 − x2‖+ r

∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥)dr
≤ Lip(m) max

{
1,
R

2

}(
‖x1 − x2‖+

∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥)
≤ Lip(m) max

{
1,
R

2
Cw0

}
︸ ︷︷ ︸

=: Lip(M)

(
‖x1 − x2‖+ ‖w1 −w2‖

)
,

(A.7)
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where the last inequality follows from Proposition 2 and the definition
of I. It is then easy to verify that also v(t,x,w) results Lipschitz
continuous on R2 ×D for any t ∈ I:

|v(t,x1,w1)− v(t,x2,w2)| ≤ 8Vmax|M(t,x1,w1)−M(t,x2,w2)|

≤ 8VmaxLip(M)︸ ︷︷ ︸
=: Lip(v)

(
‖x1 − x2‖+ ‖w1 −w2‖

)
.

(A.8)

Eq. (A.6) therefore reads

‖gx(t,x1,w1)− gx(t,x2,w2)‖

≤ Lip(v) max{1, Vmax}
(
‖x1 − x2‖+ ‖w1 −w2‖

)
.

(A.9)

Step 3. Lipschitz continuity of gw. Let us fix again t ∈ I, for any
x1,x2 ∈ R2 and w1,w2 ∈ D, it results

‖gw(t,x1,w1)− gw(t,x2,w2)‖

≤ 1

τ

(∥∥∥∥ W(t,x1,w1)

‖W(t,x1,w1)‖+ χ
− W(t,x2,w2)

‖W(t,x2,w2)‖+ χ

∥∥∥∥+ ‖w1 −w2‖
)
.

(A.10)

Since χ > 0, we have that (‖W(t,x,w)‖+ χ)−1 ≤ χ−1 and therefore∥∥∥∥ W(t,x1,w1)

‖W(t,x1,w1)‖+ χ
− W(t,x2,w2)

‖W(t,x2,w2)‖+ χ

∥∥∥∥
≤ 2‖W(t,x2,w2)‖+ χ

χ2
‖W(t,x1,w1)−W(t,x2,w2)‖.

(A.11)

It is then straightforward to verify that the boundedness of c, Kθ, and
Kr imply the boundedness of W. Specifically, it results ‖W(t,x,w)‖ ≤
c0πR

2 =: CW for any (t,x,w) ∈ I × R2 × D. Concerning instead the
last norm in Eq. (A.11), we now show that the Lipschitz continuity
of W follows from the boundedness and Lipschitz continuity of c and
Kθ (stated in Assumptions 2 and 3), and the boundedness of Kr (see
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Remark 1). Specifically, we start by setting

‖W(t,x1,w1)−W(t,x2,w2)‖

≤
∥∥W(t,x1,w1)−W(t,x2,w1)

∥∥+
∥∥W(t,x2,w1)−W(t,x2,w2)

∥∥,
(A.12)

and recalling the definition of W(t,x,w) given in Eq. (6). On one
hand, dealing with the first term in Eq. (A.12), i.e.,∥∥W(t,x1,w1)−W(t,x2,w1)

∥∥
=
∥∥∥∫
S(x1)

Kr(‖y − x1‖)Kθ

(
y − x1

‖y − x1‖
· w1

‖w1‖

)
c(t,y)

y − x1

‖y − x1‖
dy

−
∫
S(x2)

Kr(‖y − x2‖)Kθ

(
y − x2

‖y − x2‖
· w1

‖w1‖

)
c(t,y)

y − x2

‖y − x2‖
dy
∥∥∥,

(A.13)

we take the advantage that the direction of polarization w1 is fixed.
Proper changes of variables (i.e., y = x1 + ξ in the first integral and
y = x2 + ξ in the second one) in fact allow us to rewrite both integrals
on the circular area S(0) centered at the origin and with radius R, and
hence to use the boundedness of kernels Kr and Kθ, and the Lipschitz
continuity of c. Specifically, we have

(A.13) =
∥∥∥∫
S(0)

Kr(‖ξ‖)Kθ

(
ξ

‖ξ‖
· w1

‖w1‖

)(
c(t,x1 + ξ)

− c(t,x2 + ξ)
) ξ

‖ξ‖
dξ
∥∥∥

≤
∫
S(0)

∣∣∣Kr(‖ξ‖)
∣∣∣ ∣∣∣Kθ

(
ξ

‖ξ‖
· w1

‖w1‖

) ∣∣∣ ∣∣∣c(t,x1 + ξ)

− c(t,x2 + ξ)
∣∣∣ dξ

≤ R2 acosαLip(c)︸ ︷︷ ︸
=: Lip(Wx)

‖x1 − x2‖.

(A.14)
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On the other hand, the second term in Eq. (A.12), where cell position
x1 is fixed, reads as follows∥∥W(t,x1,w1)−W(t,x1,w2)

∥∥
=
∥∥∥∫
S(x1)

Kr(‖y − x1‖)Kθ

(
y − x1

‖y − x1‖
· w1

‖w1‖

)
c(t,y)

y − x1

‖y − x1‖
dy

−
∫
S(x1)

Kr(‖y − x1‖)Kθ

(
y − x1

‖y − x1‖
· w2

‖w2‖

)
c(t,y)

y − x1

‖y − x1‖
dy
∥∥∥

≤
∫
S(x1)

∣∣∣Kr(‖y − x1‖)
∣∣∣ ∣∣∣Kθ

(
y − x1

‖y − x1‖
· w1

‖w1‖

)

−Kθ

(
y − x1

‖y − x1‖
· w2

‖w2‖

) ∣∣∣∣∣∣c(t,y)
∣∣∣ dy,

(A.15)

and thus the boundedness of c and Kr imply that

(A.15) ≤ c0

∫
S(x1)

∣∣∣Kθ

(
y − x1

‖y − x1‖
· w1

‖w1‖

)

−Kθ

(
y − x1

‖y − x1‖
· w2

‖w2‖

) ∣∣∣dy. (A.16)

Recalling that Kθ is Lipschitz continuous over its support (see As-
sumption 3), we denote by Ux,w the support of the integrand function
in Eq. (6), and define three subsets of S(x1): A1,2 := Ux1,w1 ∩ Ux1,w2 ,
(which results not empty if the angle between w1 and w2 is sufficiently
small), A1 := Ux1,w1 \ A1,2 and A2 := Ux1,w2 \ A1,2 (see the sketch in
Fig. A.12). Eq. (A.16) then becomes

41



w1

w2

A2

A1,2

A1

x1

S(x1)

Ux1,w1

Ux1,w1

Figure A.12: Representation of the circular sectors Ux1,w1 and Ux1,w2 , when w1 and w2

are sufficiently close to have not empty intersection A1,2 := Ux1,w1
∩Ux1,w2

(yellow area).
The other circular sectors are A1 := Ux1,w1

\ A1,2 (orange area) and A2 := Ux1,w2
\ A1,2

(green area).

(A.16) ≤ c0

(∫
A1

∣∣∣Kθ

(
y − x1

‖y − x1‖
· w1

‖w1‖

) ∣∣∣dy
+

∫
A1,2

∣∣∣Kθ

(
y − x1

‖y − x1‖
· w1

‖w1‖

)
−Kθ

(
y − x1

‖y − x1‖
· w2

‖w2‖

) ∣∣∣dy
+

∫
A2

∣∣∣Kθ

(
y − x1

‖y − x1‖
· w2

‖w2‖

) ∣∣∣dy),
(A.17)

and the Lipschitz continuity of Kθ on A1,2, and its boundedness on A1
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and A2 give

(A.17) ≤ c0

(
Lip(Kθ)

∫
A1,2

∣∣∣ y − x1

‖y − x1‖
·
( w1

‖w1‖
− w2

‖w2‖

)∣∣∣dy + 2

∫
A1

dy
)

≤ c0

(
Lip(Kθ)

∫
A1,2

∥∥∥ y − x1

‖y − x1‖

∥∥∥∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥dy
+ 2R2

∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥)
= c0R

2 (Lip(Kθ)acosα + 2)
∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥
≤ c0R

2 (Lip(Kθ)acosα + 2)Cw0︸ ︷︷ ︸
Lip(Ww)

‖w1 −w2‖.

(A.18)

Specifically, in Eq. (A.18), the area of the circular sector A1 is bounded
by R2‖w1/‖w1‖ − w2/‖w2‖‖, and the last inequality follows from
Proposition 2 and the definition of I. Summing up, Eqs. (A.12)-(A.18)
give

‖W(t,x1,w1)−W(t,x2,w2)‖

≤ max {Lip(Wx),Lip(Ww)}︸ ︷︷ ︸
Lip(W)

(
‖x1 − x2‖+ ‖w1 −w2‖

)
, (A.19)

and Eq. (A.10) thus reads

‖gw(t,x1,w1)− gw(t,x2,w2)‖

≤ 1

τ

(
(2CW + χ)Lip(W)

χ2
+ 1

)(
‖x1 − x2‖+ ‖w1 −w2‖

)
.

(A.20)

Eqs. (A.9) and (A.20) then imply the Lipschitz continuity of F on R2 × D
for any t ∈ I and, as already said, Statements 2 and 3.
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