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Modelling and simulation of a tethered UAS*

Emilio Dicembrini1, M. Scanavino2, F. Dabbene3 and G. Guglieri2

Abstract— Battery lifetime is one of the most challenging
problems for Unmanned Aircraft System (UAS) applications.
Multi-rotor platforms usually suffer limited payload capabilities
and flight time. To overcome this problem, tethered vehicle
solutions have been developed. In this paper, we propose a
mathematical model able to describe the dynamic behaviour
of a tethered UAS. The approach is based on the Finite
Element Method and Lagrange’s Equation of motion. The cable
is divided into segments linked to each other by spherical
joints. An additional virtual element is used to represent the
vehicle dynamics. Compared to other works, a variable cable
length is implemented as well as wind effects on overall system
are included. Simulation results corroborate that the proposed
approach is able to simulate how the cable and UAS work in
different operating conditions, such as take-off and hovering in
both still air and wind scenario.

I. INTRODUCTION

In the past years the use of Unmanned Aircraft Sys-
tems (UAS) has become widespread. In particular, multi-
rotor vehicles have gain momentum and today they are
able to support or even substitute traditional air vehicles in
both civil and military applications [1]. The reason can be
summarized in three aspect: Vertical Take-Off and Landing
(VTOL) capability, simplified propulsion system and reduced
flight control complexity. The technology level reached by
autopilot control boards, as well as sensor miniaturization
and cost reduction have enabled a lot of applications in
which Unmanned Aerial Vehicles (UAVs) can get involved.
Considering commercial operations, precision farming, pho-
togrammetry as well as delivery are typical examples in
which unmanned systems provide benefits thanks to their
flexibility and low cost. Many research activities ([2], [3],
[4]) exploit UAS platforms for monitoring purposes such
as air pollution tracking, traffic management or water river
analysis.

Battery lifetime is one of the main limitation when
considering rotary wing UAS operations. Moreover, unlike
fixed wing architecture, multi-rotor vehicles are affected by
a lower aerodynamic efficiency, resulting in limited flight
time or payload capabilities. Different solutions have been
proposed in literature to overcome this challenge. As reported
by [5], solar cells and hydrogen fuel cells are possible
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alternatives to replace LiPo batteries. Solar cells are preferred
for fixed wing UAV due to wide wing surface [6]; on the
other hand, the total weight of a hydrogen fuel cell system
(7 kg) would be reasonable for UAS with a maximum take
off in the range from 10 kg to 35 kg [7]. The complexity of a
hydrogen fuel cell propulsion system (tank, fuel, cooling and
management) would not be suitable for small scale vehicles.

A promising solution to increase the energy available on-
board UAVs is to power the vehicle with a cable from ground.
Tethered UAS can exploit a virtually unlimited flight time.
Moreover, a secure and stable data transmission is possible
as no radio link is required. On the other hand, the main
disadvantage is related to the limited flight range. However,
for monitoring or surveillance applications where endurance
is the driving requirement, tethered UAS have great potential.
This is further enhanced by industrial platforms commer-
cially available in the market: Aquila 100 by Eagle Sky Light
[32] or Orion by Elistair are just a few examples.

The main objective of this work is the preliminary mod-
elling and simulation of a tethered UAS to investigate the
cable and vehicle dynamics. In literature, several works
concerning the dynamic modelling and simulation of tethered
underwater robots are available. Choo and Casarella in [9]
present different approaches to describe tethered underwater
systems. They identify the Finite Element Method as the
most versatile. It can be used to simulate whatever unsteady
cable’s motion. The elements of the cable can be modelled
as a rigid or extensible thin rod lumped mass. Newton’s law
([28]) or Lagrange’s Equation ([18], [21]) are the primary
way to derive the dynamic equations. Another method is
based on the fundamental equations of structural mechanics.
The tension along the cable is given as function of the longi-
tudinal strain ([27], [30], [29], [31]). In this case, the Hooke’s
law is commonly leveraged. This can be used to represent
unsteady cable motion; however, due to the complexity of
the problem this simplification is not always suitable and
other constitutive laws must be adopted. Sometimes, the
Linearization Method can be exploited to simulate small
deviations from an equilibrium state ([15], [23]). However,
this solution does not fulfill the purpose of the present work.
Finally, it is possible to describe the cable neglecting its
mass. In this approach, the degree of freedom are the cable’s
stretch and its orientation as reported in [25] and [26]. As
a result, the cable is modelled as a single elastic element
between the vehicle and the attachment point.

In this paper we propose a mathematical model able to
simulate the dynamic behaviour of the cable and the tethered
UAS. Compared to other works where the cable has a
fixed length, we provide a solution to describe the cable



unwinding. Based on the work in [24], our model is able to
simulate the complete dynamic system (cable and UAV) in a
three dimensional space. Moreover, we introduce the effect
of wind force in both UAS and cable. Simulations results
are discussed to evaluate the overall system behaviour in
wind and still air conditions. The overall system modelling is
presented in Section II where the focus is given to the Finite
Element Method, the reference systems as well as variable
cable length and UAV model. Section III provides details
on Lagrange’s Equation approach, including assumptions
and related simplifications owing to the reference systems
adopted. Moreover, the aerodynamic forces acting on the
cable and UAS are presented to the reader. Simulation
results are discussed in Section IV. Take-off and hovering
in still air and wind conditions are simulated to corroborate
the proposed approach. Conclusions and future works are
reported in Section V.

Fig. 1: Tethered UAS by Eagle Sky Light [32]

II. SYSTEM MODELLING
The dynamic modelling of the cable leverage the Finite

Elements Method (FEM) as proposed in [9]. The cable
is divided into n segments linked to each other at their
extremities by a spherical joint. These points are called
nodes. The spherical joints allow the exchange of forces
between contiguous elements. Based on the assumption of
an in-extensible cable, each segment of the cable is modelled
as a weightless rigid rod and a lumped mass to its extremity
as in Figure 2. The cable is considered as a system of n rigid
bodies connected end to end, with the first element bound to
the ground. Figure 3 shows schematically a cable subdivision
in three elements. An inertial reference system is fixed in the
connection point between the cable and ground; moreover,
for each segment a local reference frame is defined. The
UAS dynamics is solved simultaneously with the cable. The
aerial vehicle is modeled as a virtual segment of the cable,

as proposed in [21], so that the overall system (cable and
UAS) is made by (n + 1) elements. The virtual segment,
corresponding to the UAS, is connected to the last element
of the cable. The length of this virtual element is equal to the
distance between the connection point and the center of mass
of unmanned aerial vehicle. Moreover, the inertial properties
of the virtual element correspond to the mass and moment
of inertia of the UAS. Each element of the cable is linked
to the preceding one by a spherical joint, which allows free
rotation without translation in any direction. For this reason,
the whole system (cable and UAS) has 3(n+ 1) degree of
freedoms (DOFs).

yj

zj

xj

LRFj  

mj

Fig. 2: Isolated cable element with its local reference frame
and lumped mass to the extremity.

A. Reference Systems

The Inertial Reference Frame (IRF), labeled XY Z, is
centered on the link between the first element of the cable
and the ground. For each segment of the cable, a Local
Reference Frame (LRF) xyz is defined with the z− axis
aligned along the axial direction of the element. In this
local frame the lumped mass is located in (0,0, l), where
l is the length of the element. The rigid body orientation is
represented by means of Euler Angles. The LRF orientation
is obtained with three successive rotations starting from the
IRF. The first rotation is above the inertial reference frame
X axis of an angle φ to achieve the rotated reference frame
x′y′z′. This intermediate reference system is rotated by an
angle θ around the y′ axis obtaining the RF x′′y′′z′′. Finally
the LRF xyz is achieved rotating the previous RF above the
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Fig. 3: Example of cable subdivision in three elements.



z′′ axis by an angle ψ (Figure 4). Gimbal lock occurs when
θ = ±π

2 [19]. This condition corresponds to the z−axis of
the local reference frame parallel to the XY plane. In other
words, the cable is placed on the ground or the UAS propeller
plane is perpendicular to ground.

The rotational matrix which transforms the j-th local RF
into the inertial RF is Rφθψ = Rφ Rθ Rψ , where Rφ , Rθ and
Rψ are the individual matrix corresponding to the rotations
previously described. Recalling that the origin of the ( j+1)th

RF is centered on the jth lumped mass m j, the coordinate of
the kth segment lumped mass can be expressed in the inertial
RF as in Equation 1.

Fig. 4: Euler angles and reference system rotation.

Xk
Yk
Zk

=
k

∑
j=1

R−1
φ j ϑj ψj

0
0
l j

 k = 1, . . . ,n+1 (1)

Equation 1 is in its general form; exploiting the chosen
LRF, the position of the kth lumped mass is independent
from the angle ψ as reported in Equation 2.

Xk = ∑
k
j=1−l j sϑj

Yk = ∑
k
j=1−l j sφj cϑj

Zk =−∑
k
j=1 l j cφj cϑj

k = 1, . . . ,n+1 (2)

B. Variable Cable Length

In order to model a variable cable length, the dimension
of the first segment is set as a function of time, l1 = l1(t). All
the other segments have fixed length equal to l. l1 is bounded
between lmin and lmax. When the UAS is climbing, the cable
length will increase. As l1 reaches lmax a new element is
added in the cable model. Vice versa, when the UAS is
landing, the cable length is reduced by removing the first
element as soon as l1 reaches lmin. Our method is the same
as reported in [24]; however, we extended the formulation for
a three dimensional problem representation. This approach
guarantees an easier derivation of the Lagrange’s Equations,

since only the length of one element is function of time:

l̇1 =
dl1
dt
6= 0

l̈1 =
d2l1
dt2 6= 0

The first segment velocity and its acceleration are sup-
posed known. In this way a winch model can be implemented
separately from the cable/UAV system with a feedback of
the force acting from the cable to the drum. This solution is
configurable for different winch models.

C. Simplified UAS model

The unmanned aerial vehicle is modelled as a virtual
element of the cable. As previously explained, the length
of this virtual element is equal to the distance between
the center of mass of the UAS and the connection point
with the last segment of the cable. The inertial properties
of the UAS are applied to the virtual elements, including
mass and inertia. Thrust generated by the UAS propellers
are introduced into the model as external forces acting along
the z-axis of the UAS LRF. The thrust of each propeller is
computed leveraging the Blade Element Theory (BET) (et.
al [12], [11]), while brushless motors are modelled as simple
first order mechanical systems. The dynamics of the electric
motors are neglected since they are much faster than the
mechanical one.

Moments acting on the x and y UAV axes are calculated
considering the differential thrust generated by the propellers,
assuming a X vehicle configuration. The moment respect the
Z axis is equal to the sum of the reaction moments from the
propellers to the motors ([11]).

Altitude and attitude controllers are included in the model.
A Proportional, Integrative and Derivative (PID) control
algorithm is used to keep a stable attitude and the desired
altitude. The controllers compute the required a thrust and
moments and transform them into set-point angular speeds
for each motors to reach the references.

III. LAGRANGE’S EQUATIONS

To compute the dynamic behaviour of the cable, the
Lagrange’s Equation approach is leveraged as in Eq. 3.

d
dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= Q′i (3)

where qi are the generalized coordinates, Q′i are the gener-
alized forces and, L = Ekinetic−Epotential . The total kinetic
energy is given by the sum of translational and rotational
terms.

A. Potential Energy

Based on the assumption of null potential energy in the
XY -plane (Z = 0), the total potential energy of the multi-body
system is:

Epotential =
n+1

∑
k=1

mkZkg (4)



where mk is the mass of the kth cable segment and Zk is its
elevation with respect to the inertial RF. Recalling that the
potential energy Eq. (4) depends only on the position of the
lumped cable mass segment, Equation (3) can be rearranged
as in Eq. (5).

d
dt

(
∂Ekinetic

∂ q̇i

)
− ∂Ekinetic

∂qi
= Q′i−

∂Epotential

∂qi
(5)

where Qi is defined in Eq. 6.

Qi = Q′i−
∂Epotential

∂qi
(6)

B. Translational Kinetic Energy

The translational kinetic energy of the multi-body system
is sum of the translational kinetic energy of its elements.

Etrans =
1
2

n+1

∑
k=1

mk

∣∣∣~Vk

∣∣∣2, (7)

where ~Vk is the velocity vector of the kth cable segment
in the inertial reference frame

∣∣∣~Vk

∣∣∣2 =~V T
k
~Vk = Ẋ2

k + Ẏ 2
k + Ż2

k (k = 1, . . . ,n+1),

where Ẋk,Ẏk, Żk are the derivative of (2) with respect to time.

C. Rotational Kinetic Energy

Assuming each element has a null cross moment of inertia,
the inertia tensor of the jth segment is diagonal in the local
RF. The rotational kinetic energy of the multi-body system
can be written as sum of the rotational kinetic energy of its
elements:

Erot =
1
2

n+1

∑
j=1

~ω ′ jI j~ω j =
1
2

n+1

∑
j=1

(Ix jω
2
x j + Iy jω

2
y j + Iz jω

2
z j) (8)

where ~ω j is the angular velocity of the jth segment into
the local reference frame. This angular velocity is calculated
with the rotational matrices Rφ ,Rθ ,Rψ as in Equation 9.

~ω j =

 0
0
ψ̇j

+Rψj

 0
ϑ̇j
0

+RψjRϑj

φ̇j
0
0

 (9)

The previous equation can be simplified as reported in Eq.
10.

~ω j =

ϑ̇j sψj + φ̇j cψj cϑj

ϑ̇j cψj− φ̇j cϑj sψj

ψ̇j− φ̇j sϑj

 (10)

In Equation 8, Iz j is the element moment of inertia with
respect to the z− axis of the local RF. Since the cable
elements are thin rods, Iz j can be neglected. This is not true
for the virtual segment corresponding to the UAS, where the
inertia moments of the vehicle are imposed.

Iz j = 0 j = 1, . . . ,n

From Equation 7 and 8, the total energy kinetic energy
is independent by the Euler angle ψ and its the time

derivative ψ̇ for each segment of the cable ( j = 1, . . . ,n).
As a consequence, the Lagrange’s Equations are not used
to compute the ψ angle. In other words the angle ψ is
fixed and set equal to zero, reducing of one the degree of
freedom of each element of the cable. This is equivalent to
substituting the spherical joint with a universal one. The
DOFs of the overall system became 3(n+1)−n = 2n+3.

D. Generalized Coordinates and Forces

The Euler Angles are used as generalized coordinates.
The set is composed by 2n angles (φ ,θ ) for the cable
segments while three additional angles refer to the UAS
virtual segment.

The generalize forces associated with the system general-
ized coordinates can be calculated applying the virtual work
principle. The generalized forces Q′qi

are:

Q′qi
=

n+1

∑
k=i

{
Fxk

∂Xk

∂qi
+Fyk

∂Yk

∂qi
+
(
Fzk −mkg

)∂Zk

∂qi

}
+Mqi

for i = 1, . . . ,2n + 3 where ~F i
e and Mqi are respectively

the external forces and moment acting on the kth node and
~rk = (Xk,Yk,Zk) is its Cartesian position with respect to the
inertial RF.

For each element of the cable, no moments are applied to
the node, so that Mφi = Mϑi = 0 for i = 1, . . . ,n. This is not
true for the UAS virtual segment which is subjected to the
vehicle control moments.

Since the cable’s nodes position are independent from
the angle ψ , all this partial derivatives are null. The only
component of the generalized forces of this generalized
coordinate is the moment Mψi . Moreover no Lagrange’s
equations are derived for the cable’s segments referred to ψ ,
so Q′ψi

exists only for the UAV’s virtual segment i = n+1:

Q′ψn+1
= Mψn+1

E. Aerodynamic Forces

The aerodynamic forces are calculated by cross flow
principle as described by [17], in the same way proposed
by [21]. Each cable element is schematically considered a
cylinder of diameter d and length l j.

The wind velocity in the inertial RF is given by the vector
~V w. The relative velocity ~V ′jr between the jth cable segment
and the wind in the jth element’s local RF is given by
Equation 11,

~Vjr = ~V w−~Vk

~V ′jr = Rφ j ϑj ψjVjr
j = 1, . . . ,n+1 (11)

where ~Vk is the velocity of jth cable’s element in the
inertial RF. Let’s consider a plane passing through the axis of
the cable segment and ~V ′jr. In this plane the three dimensional
problem is reduced to a two dimensional problem. The
forces acting on the element in the parallel and perpendicular
directions to the cylinder axis (Figure 5) are in Eq. 12.



F‖ = Lcα +Dsα

F⊥ = Lsα−Dcα

j = 1, . . . ,n (12)

where L and D are lift and drag on the cable segment (Eq.13)
and ρ is the air density.

L = 1
2 ρdl j

∣∣∣~V ′jr∣∣∣2 Cl

D = 1
2 ρdl j

∣∣∣~V ′jr∣∣∣2 Cd

j = 1, . . . ,n (13)

Vr

L

D

L II

D II

D 
┴

L 
┴

Fig. 5: Cylindrical cable segment invested by the wind

Lift and drag coefficients Cl and Cd are computed accord-
ing to [17]:

Cl = Cd0 sα
2 cα

Cd = Cd0 sα
3+π Cf

j = 1, . . . ,n (14)

where Cd0 is the drag coefficient and Cf is the frictional
coefficient.

Substituting equations (13) and (14) in (12), it results:

F‖ =
1
2 ρdl j

∣∣∣~V ′jr∣∣∣V‖π Cf

F⊥ = 1
2 ρdl jV⊥

(
|V⊥|Cd0+

∣∣∣~V ′jr∣∣∣π Cf
) j = 1, . . . ,n

where V‖ =−
∣∣∣~V ′jr∣∣∣cα and V⊥ =

∣∣∣~V ′jr∣∣∣sα .
The aerodynamic forces are expressed in the local RF

observing that V ′jrx =V⊥cβ , V ′jry =V⊥sβ and V ′jrz =V‖, where
β is the angle between the considered plane and the x axis
of the element’s local RF. In the jth local RF, ~F ′j is

F ′jx = F⊥cβ = 1
2 ρdl jV ′jrx

(
|V⊥|Cd0+

∣∣∣~V ′jr∣∣∣π Cf
)

F ′jy = F⊥sβ = 1
2 ρdl jV ′jry

(
|V⊥|Cd0+

∣∣∣~V ′jr∣∣∣π Cf
)

F ′jz = F‖ =
1
2 ρdl j

∣∣∣~V ′jr∣∣∣V ′jrzπ Cf

for j = 1, . . . ,n, where |V⊥|=
√

V ′jrx
2
+V ′jry

2 and∣∣∣ ~V ′jr∣∣∣=√V ′jrx
2
+V ′jry

2
+V ′jrz

2.
For the UAV virtual segment j = n+ 1 the aerodynamic

forces in the local RF are the following:


F ′n+1x =

1
2 ρAxV ′n+1rx

∣∣V ′n+1rx

∣∣Cdx

F ′n+1y =
1
2 ρAyV ′n+1ry

∣∣∣V ′n+1ry

∣∣∣Cdy

F ′n+1z =
1
2 ρAzV ′n+1rz

∣∣V ′n+1rz

∣∣Cdz

where (Ax,Ay,Az) and (Cdx,Cdy,Cdz) are respectively the area
in the perpendicular plane or the relative axis and the drag
coefficient [8].

In the inertial RF, the aerodynamic forces can be evaluated
given the the rotational matrix ~Fj = R−1

φ j ϑj ψj
~F ′j .

F. Complete Lagrange’s Equations

The overall system is described by the matrix expression
in Eq. 15. This is the same approach used by the authors in
[10] and [16].

A

φ̈

θ̈

ψ̈

+
[
B ·

φ̇

θ̇

ψ̇

+D
]φ̇

θ̇

ψ̇

+C

φ̇ θ̇

φ̇ ψ̇

θ̇ ψ̇

=

Qtot
φ

Qtot
θ

Qψ


(15)

where

Qtot
φ = Qφ +Q′′φ

Qtot
θ = Qθ +Q′′θ

Qφ , Qθ and Qψ are the generalized forces (6) and Q′′φ ,
Q′′θ contain the terms due to the cable variable length,
proportional to l̈1.

IV. SIMULATIONS

The proposed model is implemented in Matlab/Simulink.
Five simulations with different operational conditions are
investigated and summarized in Table I. The UAS mass is
equal to 25 kg, the simulation time step is 0.0001 s and
the length of each element of the cable is equal to 1.5 m,
as reported in [21]. This value allows a reasonable balance
between simulation cost and details.

Sim # Zre f [m] Zinitial [m]
Wind Speed

[V w
x , V w

y , V w
z ]

1 20 0 [0, 0, 0]
2 20 0 [5, 0, 0]
3 20 20 [5, 0, 0]
4 20 20 [10, 0, 0]
5 20 20 [2.5, 2.5, 0]

TABLE I: Simulations profile

A. UAS take-off with no wind

The simulation starts with the vehicle on ground and no
wind. The cable is unwound at the velocity of l̇1 = 1m/s. As
described above l̇1 is imposed from the outside to the UAS
model therefore the quad-rotor rate of climb is limited by
this value. A constant unwinding cable velocity is assumed.
A reference altitude of 20 m is set so that the vehicle altitude
increases linearly. Figure 6b shows the cable extension at
different simulation time. The circles represent the junction
points between two consecutive cable segments; the last
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Fig. 6: Tethered UAS in no wind conditions during take-off
- Simulation 1.

element is the UAS virtual element. The vehicle reaches
the reference altitude (20m) after 18.5s (Fig. 6a) and l̇1 is
instantaneously set to zero. No wind is acting on the system
so that the vehicle x and y positions remain equal to zero. The
total number of elements involved in the cable is reported to
show the system is able to manage a variable cable length.

B. UAS take-off with 5 m/s wind speed

Initial conditions of this simulation are the same as for the
previous one with the only exception of a wind speed along
the inertial RF X axis equal to 5m/s. As a consequence,
the UAS moves to positive X under the effect of the wind
as no position control loop is implemented. Moreover, the
vehicle can not reach the command altitude ZRe f = 20m. The
error between the reference altitude and the actual remain
positive. The PID altitude’s control is not able to reduce
UAV thrust. The controller integrative component requires a
negative error value in order to decrease. The UAV thrust is
reflected into the cable tension.

C. Hovering with 5 and 10 m/s wind speeds

The simulation starts with the UAS hovering at 20 m above
ground. Moreover, a constant wind speed (5 m/s along the
IRF X axis) is introduced. The aerodynamics forces acting
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Fig. 7: Tethered UAS simulation with wind during take-off
- Simulation 2.

on the cable and the vehicle are responsible for a variation
of the pitch angle ϑ , as in Figure 8a. Moreover, due to the
wind the UAS is not able to keep a constant position and it
moves toward the wind’s direction (fig. 8b). Finally, the cable
dynamic behaviour is in Figure 8c. It is important to recall
that the cable is assumed in-extensible. As a consequence
of the wind speed, the cable bends and the vehicle altitude
decreases during the transient. Then, a new equilibrium point



is reached by the system with steady state altitude and pitch
errors. Higher wind speeds (10m/s - as for Simulation 4)
result in unstable cable behaviour and the simulation breaks.
The reason is related to the singularity condition ϑ = π

2 of
the Euler Angle occurring for the cable element near ground.
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Fig. 8: Simulation results for UAS hovering in wind condi-
tions - Simulation 3.

The stronger the wind the more the first element is prone
to align with the ground due to the constraint given in the
connection point.

D. Hovering with constant wind speed in X and Y directions
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(c) Cable position in XY plane

Fig. 9: Simulation results for UAS hovering with constant
wind in both X and Y directions - Simulation 5.

In the following simulation, the UAS is hovering while a
constant wind speed is acting along IRF X and Y axes. As
shown in Figure 9a, the attitude of the vehicle is affected
by the wind. When the transient ends, a new equilibrium is
found with limited φ and θ angle errors. At the same time, a
constant position error is shown in Figure 9b as the autopilot
is not able to compensate the effect of the wind.



V. CONCLUSIONS

A tethered UAS simulation model is presented and dis-
cussed. The Finite Elements Method (FEM) is used to
evaluate the dynamic behavior of the system. The cable
consists of n segments linked to each other by a spherical
joint. The length of the first segment is not constant in order
to model a variable cable length to simulate UAS take-off
or landing operations. An additional virtual element is used
to simulate the unmanned vehicle. The Lagrange’s Equations
are derived to describe the dynamics of the complete system.
Thrust and torque generated by the propellers are computed
using the Blade Element Theory. Moreover, aerodynamic
forces due to wind are introduced as external disturbances
acting on the cable and UAV. Simulation results corroborate
the proposed model is able to simulate the system in both
wind and still air conditions. The main limitation of the
model is given by the representation of the cable segment
orientations based on the Euler Angles. Gimbal lock occurs
when high wind speed are set as a consequence of the first
element alignment with the ground plane (θ =±π/2). Future
works include decoupling the dynamics of the UAS from
the cable leveraging a visco-elastic connection. Moreover, a
detailed mathematical model for the UAS will be introduced,
in addition to the implementation of a position controller for
the aerial vehicle. Moreover, a simplified winch model will
be proposed to control the tension and extraction velocity
of the cable as a function of the UAS operations. Finally,
simulation computational effort will be evaluated in order to
define an optimal balance between the number of elements
in the cable and simulation cost.
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