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Summary

This Thesis work has been devoted to numerical methods for the design of metama-
terial antennas, and in particular to its relevant meta-surface (MS) version. Metamate-
rials, and especially metasurfaces, have been one of the most relevant recent additions
to the design of electromagnetic devices, and in particular antennas.

Metasurface antennas are based on sub-wavelength textures- usually called unit cells
- and extend to sizeable electrical lengths. This makes their full-wave (i.e. unapprox-
imated) analysis challenging. However, the effect of the sub-wavelength texturing is
well approximated, on the relevant wave scale, by a homogenized impedance boundary
condition (IBC). Numerical analysis with the IBC is a lot less demanding than the anal-
ysis of the actual layout of the antenna, but IBC is especially important in the design
phase of the antenna.

Designing the antenna via the spatial profile of the IBC allows to break the design
task in two: 1) design of the IBC distribution; 2) design of the individual unit cells that
locally yield the desired value of the surface impedance.

Throughout, the background numerical formulation of the problem has been in terms
of surface integral equations (IEs), that is commonly called "Method of Moments"
(MoM); it is discretized with finite elements defined on triangles and known as Rao-
Wilton-Glisson (RWG) functions. The MoM operations are carried out with an FFT-
based fast factorization.

The design is approached as an optimization process for the spatial distribution
of the IBC; use of full-wave simulation in this optimization cycle is made possible by
aggregating the underlying RWG functions into entire-domain basis functions, in the
form of waveguide modes. It is shown that this is advantageous in terms of the total
numerical resources required in the optimization process. The scheme is applied to the
design of two relevant classes of metasurface antennas.

The important issue of the structure needed to launch the wave that then propagates
on the IBC radiating surface is then addressed. Finally, solutions obtained with the IBC
and the full layout are compared with one another, and against measured data of realized
antennas.

iii





Acknowledgements

The author is extremely thankful to Dr Francavilla for his essential support in the
early stage of this work. Special acknowledgements also to Dr Righero and Dr Scarabo-
sio for being excellent collaborators and co-authors of the work presented in this thesis.
Thanks to all the collaborators at the LINKS foundation and the LACE group in Turin.
Thanks to Professor Grbic for having always made me feel an active member of his
outstanding research group at the University of Michigan. Thanks to Professors Maci,
Martini, Albani — my very first mentors at the University of Siena — and the people
of Wave-Up. They shared relevant information about the test cases. Thanks to the
referees for having chosen to dedicate their precious time to review the manuscript.
Last but first, thanks to my maestro Professor Vecchi; life would have been tougher
without your inestimable teachings.

v



Contents

List of Tables viii

List of Figures ix

1 Overview 1

2 On the Use of Entire-Domain Basis Functions and Fast Factorizations
for the Design of Modulated Metasurface 5
2.1 Introduction and Motivations . . . . . . . . . . . . . . . . . . . . . . 5
2.2 MoM Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Div-Conforming Entire-Domain Basis Functions . . . . . . . . . . . . . 10

2.3.1 Div-Conforming Enforcement . . . . . . . . . . . . . . . . . . 10
2.3.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Basis Change Matrix Entries . . . . . . . . . . . . . . . . . . . 12

2.4 Mode Set Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Numerical Regularization . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Convergence Analysis and Numerical Results . . . . . . . . . . . . . . 16

2.7.1 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . 19
2.7.2 Modulated Tensorial Holographic Impedance . . . . . . . . . . 22

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Numerical Synthesis of Metasurface Antennas with Arbitrary Pattern
Mask using Entire Domain Basis Functions 25
3.1 Introduction and Motivations . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Optimization Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Cost Function for Pattern Synthesis . . . . . . . . . . . . . . . 28
3.2.2 Reduced Computational Cost in the Optimization Loop . . . . 30

3.3 Design Study Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Annular Holographic Metasurface Antenna: Pencil Beam . . . . 36
3.3.2 Rectangular Leaky-Wave Metasurface Antenna: Broadside Ra-

diation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vi



3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Analysis of Modeling Options for Metasurface Antennas 49
4.1 Introduction and Motivations . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Feed Modeling in MoM Formulation . . . . . . . . . . . . . . . . . . . 52

4.2.1 The TM Surface Wave . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Full Geometry of Feed . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Structure Domain Decomposition: Feed in Isolation . . . . . . 55
4.2.4 Impact of Feed Modeling on IBC Radiation . . . . . . . . . . . 56
4.2.5 Comparison between IBC Approximation, Full Unit Cell Model

and Measurements . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Fast Hybrid Scheme: GIFFT and Skeletonization . . . . . . . . . . . . 60

4.3.1 Formulation and Implementation . . . . . . . . . . . . . . . . 60
4.3.2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 63

A Notation 65

B Circular and Annular Waveguide Modes 67
B.1 General basis change matrix entries for EBF . . . . . . . . . . . . . . 67

C Annular Entire Domain Basis Functions 71
C.1 Fast Far-field Radiation: Supplementary material . . . . . . . . . . . . 71
C.2 IBC MoM Matrix Entries: Supplementary material . . . . . . . . . . . 75

D Rectangular Entire Domain Basis Functions 77
D.1 Fast Far Field Radiation: Derivations . . . . . . . . . . . . . . . . . . 78

References 79

vii



List of Tables

2.1 Summary of results obtained for a PEC disc on dielectric substrate, with
central vertical probe excitation (see sect. 2.7) at f = 17 GHz and
ϵr = 10.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Summary of simulation parameters . . . . . . . . . . . . . . . . . . . 19
2.3 Summary of computational results obtained with Intel Xeon CPU E5-

2687W v4 @3GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Pseudocode of the design algorithm . . . . . . . . . . . . . . . . . . . 28
3.2 List of p∗

i for broadside and 20 [deg] tilted-beam radiation . . . . . . . 38
3.3 Summary of computational results for numerical synthesis via annular

EBF. Results obtained with Intel Xeon CPU E5-2687W v4 @3GHz. . . 39
3.4 List of p∗

i for broadside LW antenna radiation, see Fig. 3.11 for cross-
reference to parameter definition . . . . . . . . . . . . . . . . . . . . 45

4.1 Summary of the resources required with the Intel Xeon CPU E5-2687W
v4 @3GHz. NΛ is the total number of RWG. “RHS Eval.” is the time
necessary to evaluate the RHS in the full geometry model when about
500 magnetic functions are used to represent the TEM fundamental
mode of the coaxial waveguide. “Far-Field Factorization” and “Near
Field” are the far-field factorization time and near-field time, respec-
tively. The “Planar-Vertical” column is the time needed to compute the
planar-vertical and self-vertical interactions. “Solving Time” refers to
the number of iterations reported in the “Iterations” column using the
Flexible GMRES iterative solver. . . . . . . . . . . . . . . . . . . . . . 60

B.1 Summary of CWG and CXWG modes for m = 0,1, . . . , M and n =
1,2, . . . , N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



List of Figures

2.1 On the bottom, a representation of a sub-wavelength metallic patch
arrangement printed in an annular region on a grounded dielectric slab
(thickness hd and and permittivity εr). Floating on the top, a possible
homogenized impedance profile with spiral shape (and annular support)
defined at the upper interface of the grounded dielectric slab. Moving up,
RWG spatial discretization and CXWG spectral discretization, respectively. 11

2.2 Map of the zeros along radial (blue) and axial (red) components of the
highest order mode used in this work for an annular antenna of radius
7.5λ0, λ0 is the free-space wavelength. The chosen order allows to follow
a λ0/3 spatial variation along ρ̂ and a λ0/5 spatial frequency variation
along ϕ̂ at the inner radius: λ0/2. At these spatial frequencies, the
total number of modes along ρ̂ and ϕ̂ are 22 and 8, respectively, which
results in NΨ = 742. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Estimate of floating point operations as a function of the number of
optimization iteration for different problem sizes. We assume a permit-
tivity of εr = 6.15 and a number of modes to follow a λ0/3 spatial
frequency variation along ρ̂. . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Convergence history of iterative solutions: relative residual of GMRES
iterative solver. Blue line: convergence history with EBF spectral basis,
GMRES with no restart (small number of unknowns). The other lines
refer to RWGs, red and purple: GMRES with no restart, for coarse
and dense discretization, respectively; yellow: restarted GMRES for the
coarse mesh, with restart parameter r comparable to NΨ. Please note
the log scale in the number of iterations. In the central box, the real
part of the induced current obtained with a dense discretization, which is
also taken as accuracy reference; a zoomed version is depicted in Fig.2.5a. 17

ix



2.5 Real part of the induced current. (a) GMRES iterative solver solution
with dense RWG discretization (purple line in Fig.2.4), (b) GMRES it-
erative solver solution of compressed system with 330 EBF (blue line in
Fig.2.4), (c) GMRES iterative solver solution with a coarse discretiza-
tion (the solution is obtained with a GMRES restart parameter r = 250,
yellow line in Fig.2.4), (d) GMRES iterative solution with coarse dis-
cretization after 1000 iterations (red line in Fig.2.4). . . . . . . . . . . 18

2.6 Analytic impedance profile (x-axis cut) used in the design of the scalar
MS antenna presented in [14], see (2.15). On the bottom side a zoom
of the feed region of the antenna when this region is included. When
circular domain is used, the discretization of IBC-EFIE involves also the
part related to the feed: yellow triangles). . . . . . . . . . . . . . . . . 19

2.7 The plot shows the compression error δJ as a function of M , number of
modes along ϕ̂, for different values of N , the minimum number of modes
along ρ̂,. The violet hexagram represents the first modes configuration
that keeps the compression error below 10−2. The reference solution is
obtained with approximately 105 RWG. . . . . . . . . . . . . . . . . . 20

2.8 Magnitude of surface currents for an isotropic MS antenna similar to
[14]: (a) full RWG system (NΛ = 129713); (b) compressed system with
NΨ = 908 CXWG modes (N = 28 and M = 8); (c) relative error
between the current distributions (a) and (b). . . . . . . . . . . . . . . 21

2.9 The directivity of isotropic MS antenna similar to [14]: left-hand cir-
cular polarization (LHCP) and right-hand circular polarization (RHCP)
radiated by the antenna for θ ∈ [−90,90] and ϕ = 0 simulated with
NΛ = 195253 RWG and with NΨ = 908 coaxial entire-domain basis
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Directivity for an anisotropic MS antenna: LHCP and RHCP radiated by
the antenna for θ ∈ [−90,90] and ϕ = 0 simulated with NΛ ≈ 7× 105

RWG and NΨ ≈ 103 CWG. . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Pattern masks for broadside pencil beam radiation used in the broadside

design of Sect. 3.3.1. The colorbar indicates the levels to which each
mask is set. Left: the co-pol (a) upper (greenish) and lower mask (blue
and yellow). Right: the x-pol upper mask. . . . . . . . . . . . . . . . 27

3.2 The red and the blue dotted lines are upper and lower pattern masks u
and ℓ at ϕ = 0, respectively. The yellow line is a random (w.r.t. the
design parameters array p) representation of a generic field component
at a given point of the IBC optimization, F (see Tab. 3.1, line 14). The
violet line is F̃ , the projection of F within the masks u and ℓ. See Eq.
(3.3) for more details. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

x



3.3 Comparison between three different ways of computing the radiating
fields along the cut φ = 0 and ϑ ∈ [0, 90]. The plots on the top are for
the ϑ component. The plots on the bottom are for the φ component.
The blue lines stand for RWG radiation of RWG (Λ) solution. The
dotted red lines represent the EBF radiation of EBF (Ψ) solution. The
yellow markers are the RWG radiation of the projected EBF solution. . 33

3.4 Polar radiation pattern generated by the designed anisotropic MS an-
tenna. The masks for co-pol and x-pol are depicted in Fig. 3.1. Left (a):
co-pol with a pencil beam centered in θ = 0 and maximum directivity
of 29.9 dBi. Right (b): x-pol uniformly below 3 dBi. . . . . . . . . . . 39

3.5 Directivity for the optimized sheet impedance Zs(p∗) vs amplitude masks
(cut at ϕ = 0) used in the design process. Left: co-pol directivity in
solid dark red line, the dotted red and blue lines are the upper and lower
masks. Right: x-pol directivity and relative upper mask set at a level
25dB lower than the max directivity. . . . . . . . . . . . . . . . . . . 40

3.6 Continuous transparent IBC realization of p∗, namely Zs(p∗). Left (a):
ρ̂ρ̂ component Eq.(3.22), with X̄ = −362.6365 Ω. Right (b): off-
diagonal component, Eq.(3.23), of the tensor Zs(p∗). . . . . . . . . . 40

3.7 Left (a): equivalent current density JΨ(p∗) for broadside radiation.
Right (b): equivalent current density JΨ(p∗) for squinted angle radi-
ation of 20 degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Directivity for the optimized sheet impedance Zs(p∗) vs amplitude masks
(cut at ϕ = 0) used in the design process. Left: co-pol directivity in
solid dark red line, the dotted red and blue lines are the upper and lower
masks. Right: x-pol directivity and relative upper mask at a level 25dBi
lower than the max directivity. . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Polar radiation pattern generated by the designed anisotropic MS an-
tenna pointing at θ = 20 degrees. Left (a): co-pol with a pencil beam
centered in θ = 20 deg and maximum directivity of 29.9 dBi. Right (b):
x-pol uniformly below 3 dBi. . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 Continuous transparent tensorial IBC realization of p∗, namely Zs(p∗).
Left (a): ρ̂ρ̂ component. Right (b): off-diagonal component of the
tensor Zs(p∗), with Xρϕ = −0.399η0 Ω. . . . . . . . . . . . . . . . . . 42

3.11 The blue line is the continuous scalar transparent IBC Zs(p∗) obtained
for broadside radiation masks. The yellow and the red lines represents
the trapezoidal window used to taper the IBC. The black dotted line is
the average sheet reactance. . . . . . . . . . . . . . . . . . . . . . . . 43

xi



3.12 Top: Equivalent current density JΨ(p∗) obtained with continuous IBC
model. Bottom: Directivity of IBC model ( yellow line) vs. the clipped
version (dark red) when convergence is already reached. The L2 norm
defined between the yellow and the dark red lines strictly defines the
cost function, F = 0.013, see Eq. (3.5). The dotted red and blue lines
are the upper and lower masks, respectively . . . . . . . . . . . . . . . 44

3.13 Broadside radiation with directivity of 19.3 dBi and a SLL of 10dB are
obtained. The u− v pattern of the textured Leaky-Wave Antenna. . . 45

3.14 (a) Textured Leaky-Wave Antenna made of sub-wavelength strips de-
signed at 30GHz. The structure is excited by a TM Surface Wave (blue
rendering) propagating along the structure. (b) Unit cell (geometry de-
picted in inset) sheet impedance for a rectangular strip with a variable
gap size as in [33]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.15 Comparison between continuous scalar IBC model and its actual textured
realization of Fig. 3.14a.Top: Equivalent current density JΛ(p∗); note
that the electric current is on the conducting strips only. Bottom: Di-
rectivity comparison between continuous scalar IBC model (yellow line)
and its textured realization (green line). The dotted red and blue lines
are the upper and lower masks, respectively. . . . . . . . . . . . . . . 47

4.1 Left: example of MS textured layout and details of the feed [4]. Right:
schematics and mesh of the feed model. . . . . . . . . . . . . . . . . 50

4.2 Equivalent current density of IBC-EFIE solution for the case of study of
this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Simple MS schematics with mesh of both electric (red) and magnetic
(equivalent) currents on the ground plane (blue) for the vertical feed
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Feed region schematic. Left: xz-view of the feed region. Right: xy-view
of the feed placed in a Metasurface Antenna. . . . . . . . . . . . . . . 54

4.5 Comparison between S11 computed at different points in frequency with
the variational method (blue line) and the CST (red line). . . . . . . . 55

4.6 Input admittance analysis and decomposition. Both real (left) and imag-
inary (right) parts are given. The full lines refer to the isolated (decou-
pled) feed, the symbols to the decomposition of admittance contribu-
tions in a full 3D simulation with modulated (cross) and average (circle)
IBC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Directivity of isotropic MS antenna: co-pol (top) and x-pol (bottom)
radiated by the antenna for θ ∈ [−90,90] and ϕ = 0 with different r.h.s.
Blue solid lines refer to complete 3D model, red solid lines to the SW
model (2D), and the dashed orange line to the isolated feed excitation
(2D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 Left: equivalent current density of the full textured unit cell model.
Right: zoom on the feed region. . . . . . . . . . . . . . . . . . . . . . 58

xii



4.9 Directivity of isotropic MS antenna: co-pol (top) and x-pol (bottom)
radiated by the antenna for θ ∈ [−90,90] and ϕ = 0. Blue solid lines
refer to the unit cell model, red solid lines to the IBC model. The black
lines are the measurements of a prototype (i.e. textured unit cells). . . 59

4.10 Left(a): Skeleton cylinder. Right(b): Skeleton rings. Red triangles
reveal the skeleton basis function. The blue dots represent the delta-
function discretisation of the spherical proxy surface. . . . . . . . . . . 61

4.11 SVD singular values of sub-block interaction matrix between cylinder in
rings of the feed. Free-space and layered Green’s function kernels are
used with different level of evaluation accuracy: course interpolation,
fine interpolation, no interpolation . . . . . . . . . . . . . . . . . . . . 62

C.1 Geometrical background for far-field derivation. Left(a): 3d view. Right(b):
ρz view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xiii



Chapter 1

Overview

This chapter has the purpose of charting a roadmap of the research carried out and
reported in this thesis document. The chapter aims to sketch the "big picture", and
will dispense with systematic referencing — all relevant literature is referenced instead
in the other chapters.

The entire work has been devoted to numerical methods for the design of metama-
terial antennas, and in particular to its relevant meta-surface (MS) version. Metamate-
rials, and especially metasurfaces, have been one of the most relevant recent additions
to the design of electromagnetic devices, and in particular antennas. These antennas,
at least in the microwave to the mm-wave range, are made out of standard materials
(e.g. metalized dielectric slabs), and realized with standard fabrication technologies (like
printed circuit board), yet being well suited to fabrication with advanced manufacturing
like 3D printing in some cases. Apart from the build-up inherent in the meta prefix,
metasurfaces have emerged instead as a very valuable paradigm to understand complex
wave phenomena, and to design components, and especially antennas, that simply did
not exist before — like flat, centre-fed, low-loss, high-gain broadside radiating antennas.

Metasurface antennas are based on sub-wavelength textures — usually called unit
cells — and extend to sizeable electrical lengths. This makes their full-wave (i.e. unap-
proximated) analysis challenging (and often difficult to attack with standard commercial
solvers). However, the effect of these sub-wavelength texturing is well-approximated,
on the relevant wave scale, by a "smeared out", homogenized impedance boundary con-
dition (IBC). This IBC is a continuous distribution, and it is usually spatially varying-
or "modulated"- to generate the desired radiation properties. Modulation is on a rel-
atively slow scale, comparable with the free-space wavelength. As a result, numerical
analysis with the IBC is a lot less demanding than the analysis of the actual layout of
the antenna; however, that task is not doable with all commercial software, and at any
rate, will require some care (see below).

However, the real power the IBC description is in the design of MS components.
Designing the antenna via the spatial profile of the IBC allows one to break the design
task in two: 1) design of the IBC distribution; 2) design of the individual unit cells that

1



Overview

locally yield the desired value of the surface impedance. The latter task is usually done
in the approximation of local periodicity; in the typical procedure, one chooses a given
unit-cell geometry, described by a few parameters (e.g. a tilted ellipse) and maps the
value of achieved impedance over these; design of the unit cells is then achieved with
lookup tables or more sophisticated mappings. It is easy to gain an advantage over the
full design in which all parameters of all unit cells need to be determined simultaneously,
with the full-wave solution at each step. Indeed, to this date, such a full process has
not yet been reported in the open literature.

The work reported here has addressed design-oriented numerical methods for the
analysis of metasurface antennas. Throughout, the background numerical formulation
of the problem has been in terms of surface integral equations (SIE), discretized with (fi-
nite) boundary elements (BEM); that is commonly called "Method of Moments" (MoM)
in the antenna community. The structures of interest are made of metal patches or slots
on a (thin) layered dielectric, and the latter is approximated as infinitely extended; it is
well known that this significantly reduces the necessary numerical effort without missing
any of the relevant phenomena. The unknown field quantity is a surface current density
(both for the simulation of the actual metalizations and for the IBC approximation);
it is expressed as a linear combination of finite elements defined on triangles and well
known as Rao-Wilton-Glisson (RWG) functions.

The baseline MoM is known to have intractable numerical costs for large problems;
here, we aim at numbers of unknowns upward of 100K. The so-called Fast Factoriza-
tion approaches, based on the convolutional nature of the kernel of the IE, are then
mandatory. Here we will use an FFT-based scheme.

Most of this work will deal with the Impedance Boundary Condition (IBC) approx-
imation, coherently with the design orientation, and in particular most of chapters 2
and 3. Indeed, the basic integral-equation formulation for the approximation of IBC is
outlined in Chap. 2. The employed formulation involves the "transparent" version of the
IBC; unlike its "opaque" (one-sided) version, it requires full modeling of the (grounded)
slab, but this turns out to be necessary to afford a stable MoM system.

Chapters 2 and 3 employ entire-domain basis functions in the form of waveguide
modes. These are however dealt with as "aggregate" basis functions, i.e. as linear
combinations of the RWG of the underlying discretization. This has a number of ad-
vantages, i.e. use of existing and well-tested code, and availability of fast factorization
for all involved algebra. The advantage of these entire-domain basis functions is pri-
marily in the reduced number required to represent typical solutions with respect to
RWG. However, no aggregate function set can escape the O(N2) asymptotic limit in
matrix fill time and O(N3) solve time (although the latter appears later)1, where N is

1A. Freni, P. De Vita, P. Pirinoli, L. Matekovits and G. Vecchi, "Fast-Factorization Acceleration
of MoM Compressive Domain-Decomposition," IEEE Transactions on Antennas and Propagation, vol.
59, no. 12, pp. 4588-4599, Dec. 2011.
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the number of underlying RWG. Instead, the reason why this approach is convenient is
primarily (and contrary to some current opinions) because of its cumulative advantage
in optimization instances, where multiple solutions are necessary. This is described in
Chap. 2, and put in practice in the optimizations of Chap. 3.

Chapter 4 deals with the full metalization layout (unit cell), and the important issue
of the structure to launch the wave that then propagates on the IBC radiating surface.
Solutions obtained with IBC and the full layout are compared with one another and
against measured data of realized antennas. The feeding structure almost invariably
involves vertical metalizations, that are known to slow the solution in the layered-
medium formulation; an ad-hoc factorization is then described to ease that burden.
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Chapter 2

On the Use of Entire-Domain Basis
Functions and Fast Factorizations for
the Design of Modulated
Metasurface

This chapter reports the pre-print version of the published article [40].
Entire-domain, spectral basis functions have witnessed recent interest in the integral-
equation (IE) analysis of large metasurface (MS) antennas modeled via homogenized
impedance boundary conditions (IBC). We present a formulation employing classical
Galerkin test via Rao-Wilton-Glisson (RWG) functions, yet assembled to represent
entire-domain div-conforming basis functions for the shape of interest (e.g. circu-
lar/coaxial WG modes). On the one hand, the rationale is that entire-domain, spectral
basis functions afford a significant economy in the number of necessary unknowns; on
the other hand, being expressed as combination of RWG functions, reaction integrals
are computed with optimum cost via fast methods. This is applied to reduce the cost
of the optimization process used to design MS antennas based on spatially modulated
reactance profiles. The authors support the method proposed, presenting criteria to
define the entire domain functions, considering the overall numerical complexity in an
optimization framework, and providing convergence analysis and numerical results for
holographic leaky-wave antennas, relevant in the MS context.

2.1 Introduction and Motivations
In this chapter we show the use of entire domain basis functions (EBF) for the

surface integral equation (SIE) analysis and design of metasurfaces. Metasurfaces are
planar single- or multi-layer configurations of electrically thin metamaterial composed of
sub-wavelength building blocks usually printed on dielectric (e.g. [1]) or more recently
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metal-only manufactured (e.g. [7]). Due to their peculiar ability to manipulate electro-
magnetic waves in microwave and optical regimes, metasurfaces find an extensive range
of applications for blocking, absorbing, concentrating, dispersing, or guiding waves [4].

In the initial stages of the design, MS are typically described through IBC, leading
to the definition of a spatially variable surface impedance tensor [2]. It is worth noting
that different boundary conditions such as the generalized sheet transition conditions
(GSTC) [6, 8] can be defined and adopted for a more general description of the MS
[39].

Moreover, MS antenna radiation is well described in terms of a continuous slowly
varying electric sheet tensorial reactance interacting with a surface wave, which is grad-
ually transformed into a leaky wave [14]. The typical design of MS antennas starts
from an approximate analytic determination of the surface impedance, which allows the
antenna to radiate a required field. This is followed by the optimization phase, which
of course requires the numerical solution for each intermediate profile until the radiated
field fits within the given field-mask. This means that all the cost function evaluations
during the optimization involve the solution of the associated integral equation for vari-
able impedance profiles but always for the same geometry (i.e. antenna shape). The
goal of an efficient optimization is therefore to minimize the numerical cost associated
to the entire optimization cycle, as opposed to that for a single solution.

This goal is here pursued by the combination of a “background” standard full-wave
fast-solver for the SIE— based on the transparent IBC-electric field integral equation
(EFIE) [18] and RWG basis function [24]—and a set of orthogonal (or quasi-orthogonal)
entire-domain basis functions. This “spectral” basis allows a significant reduction in the
number of unknowns necessary for a given quality of the results; the open issue with
this basis is how to compute the associated reaction integrals (entries of the system
matrix stemming from Galerkin test). The latter task is here performed using a fast
solver that can handle large planar structure with (proven) optimal computational cost
[5].

Entire domain basis functions have been revamped recently in the context of MS
analysis [29, 19, 20, 21]. These basis functions are typically associated with the spectral
domain version of the MoM solution to the SIE. In order to be effective, this usually
implies that the two-fold Fourier transform of the basis/test functions has to be known
in a form that allows a fast numerical evaluation of the reaction integrals [22, 17].
Closed form EBF are readily available from WG theory (e.g. [30]) as orthogonal modes
satisfying Neumann or Dirichlet boundary conditions and known for several separable
geometries. A generalization of these modes has also been introduced by the authors
of [15, 16] to deal with arbitrary shapes and include the field singularity at the edge.

WG modes, under certain conditions, yield div-conforming basis functions as required
for the EFIE part of the SIE. For canonical shapes, non div-conforming bases have been
devised for which only the coplanar reaction integrals are evaluated in closed form; this
was done for circular [29, 20], or the stretched elliptical version [21]. A closed form
spectral solution might look appealing for our purpose, however there are interesting
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configurations for which the reaction integrals have been not computed, such as when
two MS are cascaded along the z-axis (i.e. [35, 36]) or the MS is composed of portion
of canonical geometries (i.e. [23]). In this work we do not need to know the Fourier
transform of the EBF since the reaction integrals are evaluated between conventional
RWG basis/test functions using space domain Green’s functions for multi-layered media
[31].

The electrical dimension of a MS antenna is often tens of wavelengths; therefore the
number of unknowns when using RWG basis functions is very large, especially because
high permittivity substrates are typically considered. The iterative solution necessarily
implied by a fast-factorization solver with a large number of DoF has a cost that renders
the optimization process very expensive; moreover, the linear systems to be solved are
often poorly conditioned. Conversely, spectral basis functions defined over the whole
antenna result in reducing the number of necessary DoF, and in a regularization of the
systems [11]. On the whole, the use of these functions accelerates repeated solutions.

As mentioned before, in this work we compute the reaction integrals for the entire-
domain basis functions, via projection onto the usual RWG space. This allows a consid-
erable flexibility and more complex geometries, e.g. annular rings, by simply using the
WG modes associated to the relative support. The annular (ring) geometry is especially
relevant in practice, as often the feeding region of the antenna is not part of this design
stage and the actual geometry of circular MS antennas is annular instead of a full circle;
on the other hand, the spectral basis for this case is simply the set of the Coaxial WG
modes.

The remainder is organized as follows: in sect. 2.2, we discuss how to use the
transparent IBC-EFIE discretization scheme in an optimization framework, in which a
different IBC profile is considered at each optimization step. In sect. 2.3, div-conforming
entire-domain basis functions are build from the WG theory and used to factorize the
IBC-EFIE MoM system. In sect. 2.4 we present the criteria guiding the WG mode set
is selection. The sect. 2.5 explains the advantages of the system compression when
the reaction integrals between EBF are computed from reaction integral between RWG
functions expressed in a fast factorization. Moreover, we show an example of the regu-
larization effect of the EBF compression. In sect. 2.7, we present a convergence analysis
of the compressed IBC-EFIE and numerical results with scalar and tensorial holographic
MS antenna, which validate the method for circular and annular-ring domains. Pre-
liminary results about circular domains are presented in the conference paper [9]. The
notation used in this paper is summarized in the Appendix A for the sake of consistence
and conciseness.

2.2 MoM Formulation
Different numerical approaches have been studied and adopted for the simulation

of MS antennas based on guided surface waves. Most of them suffer from instability
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problems in the cases of interest, while the penetrable model of the IBC, which only
models the thin sheet of patches, together with an EFIE yields a stable discretization and
accurate results [18]. Hence, we adopt the transparent IBC-EFIE with mixed element
surface discretization (i.e. via RWG basis/test functions [24]) together with a fast
Fourier transform (FFT) based fast-solver for planar structures (i.e. GIFFT method
[5]). The MS is represented by an electrically thin planar surface Σ with ẑ as its
(outward) normal unit vector. Here, penetrable boundary conditions relates the fields
on both sides of Σ as:

Eav
t |Σ = 1

2 (EΣ+ + EΣ−) = Zs · [ẑ × (H Σ+ −H Σ−)] (2.1)

where the superscript “av” stands for “average”, indicating that we evaluate the average
of the E-field on either sides, Σ+ and Σ−, of the MS. The tensorial sheet impedance,
Zs, is defined and spatially modulated all over Σ. The tensor Zs is denoted by a bold
and calligraphic font. More details about the formulation can be found in [18]. The
SIE formulation for the equivalent current J ,

J = ẑ × (H Σ+ −H Σ−) , (2.2)

reads:
Z0ẑ × ẑ ×L(J)−Zs · J = ẑ × ẑ ×E i (2.3)

with Z0 =
√︂

µ0/ε0 the wave impedance in vacuum, E i the incident field, and

L(f ) =
✂

Σ
GEJ(r , r ′) · f (r ′)dr ′ (2.4)

the Electric Field Integral Operator (EFIO) with GEJ the multi-layer dyadic Green’s
function when only electric sources are considered. The multi-layer formulation em-
ployed in the remainder is the mixed-potential “Formulation-C” introduced by Michalski
et al. in [31]. We approximate the unknown current J as a linear combination of NΛ
RWG basis function Λℓ, namely

J ≈ JΛ =
NΛ∑︂
ℓ=1

JΛ
ℓ Λℓ, (2.5)

and we test the integral equation (2.3) on the same RWG functions Λm, with m =
1, . . . , NΛ, in a classical Galerkin fashion (MoM), obtaining the linear system(︂

Z − Zs
)︂

JΛ = bΛ, (2.6)

where the matrices entries are:

Zmℓ = ⟨Λm; GEJ ; Λℓ⟩
Zs

mℓ = ⟨Λm; Zs ·Λℓ⟩.
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The m-th element of the right-hand side is:

bΛ
m = ⟨Λm; E i⟩. (2.7)

Due to the large electrical size of the structures, this discretization based on RWG
functions cannot be used in practice in optimization problems, even using a fast-solver.
The use of EBF reduces the dimension of the system matrix and often allows for a direct
inversion, which, when possible, bypasses some issues arising from the use of iterative
methods, and keeps the complexity of the single solution negligible compared to the
overall complexity of the whole optimization process.

On one hand, letting Ψℓ be the ℓ-th EBF to be used to approximate the solution
J ,

J ≈ JΨ =
NΨ∑︂
ℓ=1

JΨ
ℓ Ψℓ, (2.8)

Galerkin testing of (2.3) with basis functions Ψℓ leads to a system formally identical to
(2.6). This is the case of [29, 19, 20, 21].

On the other hand, if EBFs Ψℓ, with ℓ = 1, . . . NΨ, are expressed as a linear
combination of RWG basis functions,

Ψℓ =
NΛ∑︂
p=1

ΨpℓΛp, (2.9)

all terms in the entire-domain basis MoM can be expressed using terms appearing in
the RWG MoM. This can be done by weighted residual procedure, enforcing that the
difference between JΛ and JΨ is outside the space spanned by the RWG set, i.e. zero
when tested over the set of RWG Λp, with p = 1, . . . , NΛ:

⟨Λp, JΛ − JΨ⟩ = 0. (2.10)

which results in the linear system

ΨT
(︂
Z − Zs

)︂
Ψ JΨ = ΨT bΛ, (2.11)

where Ψ is the basis change matrix containing the coefficients Ψpℓ in (2.9). The basis
change matrix entries of course depend on the chosen EBF, but also on how these latter
are projected on the RWG space. We will explicitly deal with both points in sect. 2.3.3.

For any further use, once the coefficients JΨ
ℓ have been determined, the current can

be easily expressed using RWG functions as

JΨ =
NΛ∑︂
p=1

⎛⎝NΨ∑︂
ℓ=1

ΨpℓJ
Ψ
ℓ

⎞⎠Λp, (2.12)

From (2.11) it appears clear that once we have computed Ψ and Z and stored
ΨT Z Ψ, if we want to change the values of Zs, the only computation needed is related
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to the latter matrix which has a negligible cost (i.e. scaling as the cost of matrix-vector
product with a Gram matrix).

Hence, the system looks well suited for being solved multiple times, each time with
different values of the tensorial sheet impedance, Zs. In fact, an optimization algorithm
will generally look for the optimal spatial modulation of the sheet impedance Zs, with
a cost function defined by typical antenna design parameters (i.e. Maximum Directivity,
SSL, etc.) depending on the far-field of the obtained solution. Different optimization
algorithms may be used (e.g. Genetic, Particle Swarm, Simulated Annealing), but,
in any case, all of them require the evaluation of far-field for current distributions
obtained from different impedance profiles. A rapid computation of these currents is
then mandatory for an efficient optimization.

2.3 Div-Conforming Entire-Domain Basis Functions
The use of MS implies sub-wavelength geometrical details [4, 6] all over, and MS

antennas are usually electrically very large. It follows that MS are intrinsically a mul-
tiscale problem; however, a consistent body of literature has shown that most of the
design can be done via MS homogenization with IBC: the associated problem is then
at a macroscale, with impendance modulations on the scale of the wavelength. This
makes it possible to tackle the optimization task with full-wave solutions of the “approx-
imate” (IBC) model. At this macroscale, in fact, the number of spatially-resolved basis
functions, namely RWG, is tolerable; however, “macro” basis functions with spectral
resolution can afford a further reduction of the necessary degrees of freedom, which is
crucial in an optimization endeavor. A pictorial rendering summarizing the considered
scenario is shown in Fig. 2.1.

We analyze here how to build div-conforming EBF, well suited for dealing with the
IBC-EFIE, and their practical implementation in MoM codes.

2.3.1 Div-Conforming Enforcement
Div-conforming EBF can be obtained directly from WG modes. As J = n̂ ×H ,

with J an electric current, n̂ the unit vector normal to the WG cross section, and H
the magnetic field, it is convenient to define WG-type basis functions via the magnetic
eigenfunctions, namely h in [30]. The WG eigenmodes are continuous with bounded
derivatives everywhere in the interior of the WG cross section (in fact, they are infinitely
continuous), but with a possible jump at the domain boundary, since J must be zero
outside the domain; hence, the div-conforming requirement amounts to requiring that J
has vanishing normal component at the domain boundary. This corresponds to vanishing
tangent H field, or PMC, boundary condition to the transverse Helmholtz eigenproblem.
With n̂ = ẑ, the sought for ẑ×h are the electric eigenfunctions, e = ẑ×h. In turn, it is
easy to see [17] that the electric eigenfunctions e for the present PMC wall corresponds
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to the magnetic eigenfunctions h for the PEC wall, with TE and TM interchanged.
Being div-conforming, these basis functions correctly express the Electric Field Integral
Operator, and are able to approximate the entire solution space [17].

2.3.2 Geometry
As for the geometry, while circular domains cover most current antenna designs, it is

worth noting that many other different geometries (e.g. triangular, rectangular, annular,
elliptical) and portions thereof, can be explored by applying the same considerations

Figure 2.1: On the bottom, a representation of a sub-wavelength metallic patch ar-
rangement printed in an annular region on a grounded dielectric slab (thickness hd and
and permittivity εr). Floating on the top, a possible homogenized impedance profile
with spiral shape (and annular support) defined at the upper interface of the grounded
dielectric slab. Moving up, RWG spatial discretization and CXWG spectral discretiza-
tion, respectively.
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adopted in the following. In this article, both circular and annular EBFs are used. As
the region around the feed structure is typically left non patterned, it is convenient to
avoid having to define the impedance there. Keeping the current on the feeding region
may lead to unphysical solutions, especially when an optimization algorithm looks for
optimal impedance values out of the actual domain of the impedance, which is annular.
This issue is effectively solved with basis functions defined on an annular domain.

The functions composing h can be explicitly found in chapter 2 of [30] for rectan-
gular, circular, coaxial (i.e. annular) and elliptical WG. Both circular and coaxial modes
follow a double indexing mn for the zeros of the axial (m) and radial (n) components
which is shown for the coaxial case also in Fig.2.2. To put the reader at ease, details
about h are reported in Appendix B.

2.3.3 Basis Change Matrix Entries
The analytic expression of the ℓ-th mode, hℓ, is used to find the RWG representation

of the EBF Ψℓ used in (2.11). The coefficients Ψpℓ, with p = 1, . . . , NΛ, are obtained
via weighted-residual, enforcing that the difference between the analytic expression hℓ

and its RWG representation Ψℓ be outside the space spanned by the RWG set,

⟨Λq; hℓ −Ψℓ⟩ = 0, ∀q = 1, .., NΛ. (2.13)

By writing Ψℓ as in (2.9) and rearranging the terms, we have the linear system

NΛ∑︂
p=1

Ψpℓ⟨Λq; Λp⟩ = ⟨Λq; hℓ⟩, ∀q = 1, .., NΛ, (2.14)

to be solved for Ψpℓ. Each column of the matrix Ψ is then obtained solving (2.14).
This step represents a negligible computational cost, as the Gram matrix ⟨Λq; Λp⟩ in
the left-hand side of (2.14) is very sparse, positive-definite, and with condition number
O(1), so that convergence with an iterative solver (e.g. Conjugate Gradient) is attained
within few iterations.

2.4 Mode Set Selection
As already recognized in [20], for radiation assessment, the solution can in principle

be restricted to spatial frequencies up to free-space wavenumber k0. Spectral filtering
is intrinsically more stable with spectral bases (i.e. orthogonal entire-domain basis
functions) than with RWG (this can be ascertained elaborating on the results in [10]
and [11]). We employ here a more conservative spectral truncation, to capture the
spatial variations implied in the surface wave manipulation of the surface wave on the
MS antenna. As the EFIE operator is a high-pass, and its inverse a low-pass, we choose
the spectral content of the basis so as to correctly represent the term associated to
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the modulated surface impedance (this is akin to the physical optics (PO) part of the
magnetic field integral equation (MFIE) ).

Based on the spectral content of the impedance profile, a-priori spectral truncation
can be assumed in order to select a conservative number of modes which also guarantees
an acceptable error on the far-field. In order to estimate the number of modes to retain
in the compression, empirical tests to represent possible impedance profiles along radial
and axial cuts with a certain number of modes can be performed at a negligible cost.
Conservative selections are taken to guarantee that the modes will be able to describe
(up to a certain approximation error) the full-wave solution. The plot in Fig. 2.2
represents the spectral division adopted throughout the paper when an impedance profile

x/

y/

Figure 2.2: Map of the zeros along radial (blue) and axial (red) components of the
highest order mode used in this work for an annular antenna of radius 7.5λ0, λ0 is the
free-space wavelength. The chosen order allows to follow a λ0/3 spatial variation along
ρ̂ and a λ0/5 spatial frequency variation along ϕ̂ at the inner radius: λ0/2. At these
spatial frequencies, the total number of modes along ρ̂ and ϕ̂ are 22 and 8, respectively,
which results in NΨ = 742.
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defined on a annular region and having a strong symmetry along the ϕ axis is considered.
In this case, only a few axial modes are needed to accurately describe the axial variation
of the impedance and consequently the MoM solution. Further considerations about
the number of modes are presented in sect. 2.5 and Sec. 2.7.

Finally, a related consideration has to be made about the minimal underlying RWG
discretization to be used in association with the use of the entire-domain spectral basis.
It is apparent that the spatial discretization, i.e. the RWG mesh edge size, has to be
sufficient to correctly describe the highest spatial frequency involved in the spectral
basis.

2.5 Compression
In this section we discuss two important issues of the proposed method: a) the

overall numerical complexity of the implied system matrix compression, and b) the
regularization effect of the basis.

The spectral basis representation drastically compresses the system allowing com-
putation of compressed solution for various impedance profiles at the cost of O(N3

Ψ);
this cost could be lowered using an iterative solver, as we will see that the spec-
tral basis significantly improves convergence, but we will retain the assumption of
direct factorization. On the other hand, the computational cost of the compression
is O(NΨNΛ log(NΛ) + NΛN2

Ψ). This cost is due to the NΨ -based matrix-vector mul-
tiplications needed to perform the Z Ψ part, followed by matrix-matrix multiplication
of the NΛ × NΨ matrix ΨT by the NΨ × NΛ matrix Z Ψ. This constitutes an initial
overhead that has to be recovered during optimization, and thus sets the break-even.
This point is examined in Fig. 2.3, which reports an estimate of the computational
cost of repeated solutions, as needed by an optimization algorithm, as a function of
the number of optimization steps. Data refer to a circular support with different radii,
with dielectric constant εr = 6.15; Λ indicates RWG solutions, Ψ EBF solutions. The
number of radial modes allows to follow a λ0/3 spatial frequency variation along ρ̂, as
shown before in Fig. 2.2. For all examined sizes (radii), the computational advantage
is in excess of a factor of 10.

2.6 Numerical Regularization
The proposed use of a spectral basis aides the convergence, yielding a stable well-

conditioned system. These enhanced performances apply to both the convergence rate
when using iterative solvers for the system solution, and the stability of the solution
with respect to mesh size.

In the metasurface context, standard RWG discretizations typically result in poorly
conditioned systems with a poor convergence; an example of this is shown in Figs. 2.4
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Figure 2.3: Estimate of floating point operations as a function of the number of opti-
mization iteration for different problem sizes. We assume a permittivity of εr = 6.15
and a number of modes to follow a λ0/3 spatial frequency variation along ρ̂.

and 2.5, both referring to a grounded dielectric substrate with central vertical probe
excitation (see sect. 2.7) and εr = 10.8 with a PEC disc (i.e. Zs = 0) with a radius of
3λ0. Here and in the following we indicate by λr the wavelength in the dielectric sub-
strate at the operation frequency, i.e. λr = λ0/

√
εr, where εr is the relative permittivity

of the substrate. The iterative solver used belongs to the Krylov subspace methods and
is indeed the generalized minimal residual method (GMRES). Three different exten-
sions are considered as follows: (a) combined with a preconditioning method, (b) with
a restart parameter r, and (c) in its flexible version. For more details about Krylov
subspace methods the reader is referred to [37].

The RWG basis functions, as all sub-sectional bases, are well known to yield a matrix
conditioning that worsens with mesh increasing density. Thus, with the aim of showing
regularization, we consider both a very dense (Fig.2.5a) and a very coarse (Fig.2.5c)
RWG discretization, with a mesh size h ≈ λr/3, i.e. close to the Nyquist limit. For the
case of a dense discretization, a mesh size h ≈ λr/15 is taken. The induced current
density for dense discretization is shown in Fig.2.5a and is taken as reference; the relative
residue has a convergence path which follows the yellow line in Fig.2.4. Both for coarse
and denses meshes, following the procedure in sect. 2.4 we retained 330 entire-domain
CWG basis functions, obtaining a fast convergence rate (see blue line in Fig.2.4) and
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Table 2.1: Summary of results obtained for a PEC disc on dielectric substrate, with
central vertical probe excitation (see sect. 2.7) at f = 17 GHz and ϵr = 10.8.

Fig. 2.5 Fig.2.4 Mesh DoF r-GMRES κ
Num. of

line Size Iter.
(a) purple λr/15 7× 104 7× 104 - 1800
(b) blue λ0/10 330 330 50 8
(c) yellow λr/3 7× 103 250 2000 1800
(d) red λr/3 7× 103 7× 103 2000 1000

an accurate solution for both cases.
For the small problem, the system can be either solved directly or iteratively allowing

for a convergence test, especially useful because the value of the residual is only a partial
indication of the achieved accuracy. The RWG system has a condition number (in 2-
norm) κΛ ≈ 2000 which decreases to κΨ = 50 after compression with the spectral
CWG basis, exhibiting an evident conditioning effect. While, with this coarse mesh
discretization, the condition number of the RWG system is relatively small (κΛ =
O(NΛ)), convergence is slow, as seen in Fig.2.4; as expected and mentioned above, the
compressed system instead converges very rapidly. We observe that this convergence
rate, while not dramatic per se, is not acceptable in the perspective of a real-life structure
with a radius above 10 wavelengths. In fact, analysis of the solution in Fig. 2.5d shows
that with RWG after 1000 iterations the current is still significantly different from the
reference one, as shown in Fig.2.5d; convergence to a more accurate solution is obtained
with more than 1800 iterations. Obviously, this coarse discretization is not always
sufficient for a stable solution; for example in Fig. 2.5c a restarted GMRES, with restart
parameter r = 250, shows a solution affected by spurious oscillations, which is also
the case when other techniques, such as incomplete LU (ILU) precoditioner and flexible
GMRES [37], are used to improve the convergence path. Table 2.1 summarizes together
the results showed in Fig. 2.4 and Fig. 2.5 and explained throughout sect. 2.5. The
numerical results for real-life structures, including convergence analysis, are presented
in sect. 2.7.

2.7 Convergence Analysis and Numerical Results
In this section we use holographic antennas, with isotropic and anisotropic surface

impedance, to numerically illustrate and validate the use of div-conforming EBF based
on WG modes to compress surface integral equations in MS simulations. Moreover,
it is worth noting that in most of the analytic design procedures involving EBF, the
modulated impedance and the basis functions are defined over a full circular domain, see
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Fig. 2.6 for an example taken directly from [14]. This means that the induced current,
expanded with EBF, is defined even on the region where the feed will eventually be
positioned (yellow triangles in Fig. 2.6). Such a discretization of the IBC-EFIE leads
to sub-optimal designs, especially when the cost function in the optimization procedure
involves antenna matching as well.

There are various approaches to deal with this issue. Two of them are (a) to neglect
the error introduced by the feeder at this stage of the design, and (b) to force the
solution, obtained over the full domain, to be zero inside the feed region: this second
alternative is chosen, for instance, by the authors of [19]. When circular EBF are used
(i.e here the CWG or the Fourier-Bessel used in [19]), the problem of dealing with the
feeder region always arises. The generality of the method and the results presented
here, on the contrary, allows us to easily avoid the circular domain, defining annular
domains and compress the system using the CXWG modes.

Figure 2.4: Convergence history of iterative solutions: relative residual of GMRES it-
erative solver. Blue line: convergence history with EBF spectral basis, GMRES with
no restart (small number of unknowns). The other lines refer to RWGs, red and pur-
ple: GMRES with no restart, for coarse and dense discretization, respectively; yellow:
restarted GMRES for the coarse mesh, with restart parameter r comparable to NΨ.
Please note the log scale in the number of iterations. In the central box, the real
part of the induced current obtained with a dense discretization, which is also taken as
accuracy reference; a zoomed version is depicted in Fig.2.5a.
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Figure 2.5: Real part of the induced current. (a) GMRES iterative solver solution with
dense RWG discretization (purple line in Fig.2.4), (b) GMRES iterative solver solution
of compressed system with 330 EBF (blue line in Fig.2.4), (c) GMRES iterative solver
solution with a coarse discretization (the solution is obtained with a GMRES restart
parameter r = 250, yellow line in Fig.2.4), (d) GMRES iterative solution with coarse
discretization after 1000 iterations (red line in Fig.2.4).

In the following, the RWG (Λ, uncompressed) solution over an annular domain is
taken as reference as the closest representation to the physical structure of the antenna.
In this case, the solution is computed via GMRES with a Krylov space large enough to
achieve the desired convergence performance. sect. 2.7.1 shows the controllability of
the error on surface current and on the directivity for a design of interest, a MS antenna
with scalar impedance. Finally, the analysis of a larger MS antenna with tensorial surface
impedance is reported in sect. 2.7.2. Table 2.2 summarizes the geometrical data for
both examples.
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Figure 2.6: Analytic impedance profile (x-axis cut) used in the design of the scalar
MS antenna presented in [14], see (2.15). On the bottom side a zoom of the feed
region of the antenna when this region is included. When circular domain is used, the
discretization of IBC-EFIE involves also the part related to the feed: yellow triangles).

Table 2.2: Summary of simulation parameters

frequency εr radius h Zs

sect. 2.7.1 17 GHz 3.66 5.7λ0 1.524 mm scalar
sect. 2.7.2 15 GHz 6.15 10λ0 1.016 mm tensorial

2.7.1 Convergence Analysis
We use an antenna described in [14]. In that paper, a planar circularly polarized

holographic MS antenna, with radius 5.7λ0, excited with a single-point feed at frequency
f = 17 GHz, is presented. The grounded dielectric slab has thickness hd = 1.524 mm
and permittivity εr = 3.66. The impenetrable surface impedance in the scalar case is
reduced to:

Z+
s = j

[︄
X 0
0 X

]︄
, X = Xs [1 + M0 sin(βswρ− ϕ)] , (2.15)

which defines a spiral-shape reactance profile and the superscript ’+’ stands for impen-
etrable impedance. After removing the grounded slab’s contribution according to [18],
we obtain the penetrable (i.e. transparent) impedance profile needed for the IBC-EFIE.
A vertical probe excites a cylindrical surface wave on the isotropic surface impedance,
and the latter converts the excitation into a circularly polarized. The excitation in (2.3)
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has then a transverse component which is asymptotically

Esw
t ≈ jX0H

(2)
1 (βGS

sw ρ)ρ̂ (2.16)

where H
(2)
1 is the Hankel function of the second kind and first order, and the reactance

X0 and the wavenumber βGS
sw are derived solving the characteristic equation of the

grounded dielectric slab of thickness hd and permittivity εr.
To validate the method it is important to make sure that the compression maintains

an adequate accuracy, both in the far-field and at surface current levels. We compare
the solution obtained with RWG, i.e. solving (2.6), and the solution obtained with
EBF, i.e. solving (2.11). As a figure of merit, we consider the L2 distance between the
computed currents, δJ ,

δJ =
⃦⃦⃦
JΛ − JΨ

⃦⃦⃦
L2

(2.17)

In Fig. 2.7 we show the compression error (2.17) for the modulated scalar MS
antenna presented in [14] as a function of the number of modes along ϕ̂, M , for
different values of the number of modes along ρ̂, N . The violet hexagram represents the
minimal modal collection configuration (M = 6, N = 30) that keeps the compression
error below 10−2. The reference solution is calculated with a FFT-based fast-solver

Figure 2.7: The plot shows the compression error δJ as a function of M , number of
modes along ϕ̂, for different values of N , the minimum number of modes along ρ̂,.
The violet hexagram represents the first modes configuration that keeps the compression
error below 10−2. The reference solution is obtained with approximately 105 RWG.
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Figure 2.8: Magnitude of surface currents for an isotropic MS antenna similar to [14]:
(a) full RWG system (NΛ = 129713); (b) compressed system with NΨ = 908 CXWG
modes (N = 28 and M = 8); (c) relative error between the current distributions (a)
and (b).

using NΛ = 195253. This plot can be used as a guide to determine the number of
modes needed to achieve a desired accuracy.

A visual representation of the error for a fixed number of CXWG modes (NΨ = 908),

Figure 2.9: The directivity of isotropic MS antenna similar to [14]: left-hand circu-
lar polarization (LHCP) and right-hand circular polarization (RHCP) radiated by the
antenna for θ ∈ [−90,90] and ϕ = 0 simulated with NΛ = 195253 RWG and with
NΨ = 908 coaxial entire-domain basis functions.
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is depicted in Fig. 2.8. The first two panels, (a) and (b), represent the magnitude of
the surface currents calculated with RWG and CXWG basis functions, respectively, in
log-scale, while the third panel (c) depicts the relative error. The relative error observed
at the current level is δJ < 10−2, which also corresponds to the maximum deviation
shown in Fig.2.8c. The far-field filtering effect reduces this difference even more, as
seen in the directivity plot of Fig. 2.9, where the two curves, both compressed and
uncompressed cases, are almost identical. This validates the use of WG modes as EBFs
able to provide figures of merit generally used in optimization routines (i.e directivity
peak, side lobe level, axial ratio, etc.).

2.7.2 Modulated Tensorial Holographic Impedance
The polarization control is achieved through tensorial impedance [35]. Here, we

consider a high-performance antenna with broadside beam and low cross-polarization.
In this case, the IBC leads to the definition of a full surface impedance tensor which,
in cylindrical coordinates, takes the following form:

Zs = j

[︄
Xρρ Xρϕ

Xϕρ Xϕϕ

]︄
(2.18)

where each component of the tensor Zs is spatially modulated along ρ̂ and ϕ̂ following
a spiral-shape with radial modulation tapering M(ρ) and X̄0 as in [12]:

Xρρ = X̄0 [1 + M(ρ) sin(βswρ− ϕ)] (2.19)
Xρϕ = Xϕρ = X̄0 [M(ρ) sin(βswρ− ϕ)] (2.20)

Xϕϕ = X̄0 [1−M(ρ) sin(βswρ− ϕ)] . (2.21)

The antenna is excited by a single-point feed at f = 15 GHz and has a radius
of 10λ0. The grounded dielectric slab has thickness hd = 1.016 mm and permittivity
εr = 6.15. The domain is discretized with 450716 triangular facets, corresponding
to NΛ ≈ 674716. In this case, the compressed solution is computed using CWG
modes instead of CXWG modes, as done in Fig.2.9. The solution is obtained with
NΨ = 1098 modes and is compared to the solution obtained with RWG functions in
terms of directivity, see Fig.2.10. Table 2.3 summarizes the main quantities of interest
to compare the proposed approach to the RWG case.

2.8 Conclusions
This chapter offers an efficient numerical approach for the optimization of large

planar metasurfaces based on spatially modulated tensorial impedance. The full-wave
method presented dramatically speeds up the optimization loop in the design process
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Table 2.3: Summary of computational results obtained with Intel Xeon CPU E5-2687W
v4 @3GHz.

Case of basis function DoF Factorization Compression Solving GMRES
Sect. Z ΨT Z Ψ time steps

2.7.1 RWG 195253 48m – 16m 186
CXWG 908 48m 5h2m < 1s 12

2.7.2 RWG 674716 3h15m – 50m 1658
CWG 1098 3h15m 6h17m < 1s 51

when the surface impedance is considered as a homogenization type of approximation
for electrically thin structures, i.e. transparent impedance boundary conditions.

We achieve this numerical efficiency starting by aggregating RWG functions into
div-conforming entire-domain basis functions, and computing all matrix entries via fast
factorization.

Especially in metasurface antennas based on leaky-wave radiation, due to the pres-
ence of the grounded slab, the geometrical discretization of the IBC-EFIE is extremely
sensitive to the dielectric properties. Thus, to guarantee a stable solution in a conven-
tional way, a very large number of RWG basis functions are needed and a very large
Krylov subspace is required to reach convergence. In this paper, we discuss how to

Figure 2.10: Directivity for an anisotropic MS antenna: LHCP and RHCP radiated by
the antenna for θ ∈ [−90,90] and ϕ = 0 simulated with NΛ ≈ 7 × 105 RWG and
NΨ ≈ 103 CWG.
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use div-conforming entire-domain basis functions to compress and regularize the system
matrix, keeping the solution accuracy controllable with a limited number of degrees of
freedom. We show the flexibility of the method by modeling the antenna in an annular
domain, avoiding ambiguous interpretation of an impedance defined over the feeding
region. Eventually, the problem is well-suited for antenna synthesis, pattern optimiza-
tion problems. For structures with radius of 10λ0, the method allows a reduction in the
number of operations that must be performed by a factor 10. Results which show ben-
efit in terms of computational cost have been presented. The use of the div-conforming
entire-domain basis functions in actual optimization endeavours is the subject of the
next chapter. The feed region modeling options are the subject of the last chapter.
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Chapter 3

Numerical Synthesis of Metasurface
Antennas with Arbitrary Pattern
Mask using Entire Domain Basis
Functions

The real power of the impedance boundary condition (IBC) description is in the
design of MS components. Designing the antenna via the spatial profile of the IBC
allows one to break the design task in two: 1) design of the individual unit cells that
locally yield the desired value of the surface impedance; 2) design of the IBC distribution.
The first task is usually done in the approximation of local periodicity; in the typical
procedure, one chooses a given unit-cell geometry, described by a few parameters (e.g.
a tilted ellipse) and maps the value of achieved impedance over these; design of the unit
cells is then achieved with lookup tables or more sophisticated mappings. This task is
not of central interest in this chapter; the only information needed is the synthesizable
range of reactance of an arbitrary unit cell, which for canonical geometries can be
analytically estimated a priori. The latter and second task is of primary interest here.
We approach the design of the spatial IBC distribution as an optimization process. The
use of full-wave simulation in this optimization cycle is made possible by aggregating
the underlying RWG functions into entire-domain basis functions (EBF), in the form of
waveguide modes. It is shown in the previous chapter that this is advantageous in terms
of the total numerical resources required in the optimization process. The numerical
synthesis of annular and rectangular metasurface antennas — with broadside and tilted
beam radiation pattern masks — confirms the applicability of the method proposed.

25



Numerical Synthesis of Metasurface Antennas with Arbitrary Pattern Mask using Entire Domain Basis Functions

3.1 Introduction and Motivations
In this chapter we show the automatic design of metasurface (MS) antennas based

on leaky-wave (LW) radiation via numerical synthesis of a modulated tensorial sheet
impedance, namely Zs. As known in literature and also seen in chapter 2, MS antennas
radiation is well described in terms of a continuous slowly varying electric sheet tensorial
reactance interacting with a surface-wave (SW) which is gradually transformed into a
leaky-wave (LW) structure [14]. Thus, in a simplified “approximated” model of the
antenna, designing a purely imaginary Zs profile means designing an antenna which
radiates the prescribed pattern.

Numerical simulation of large MS antennas have shown stable discretization and
accurate results if the MS is modeled with “transparent” impedance boundary conditions
(IBC) and the electric field integral equation (EFIE) in a layered media environment
[18]. The use of the transparent rather the opaque boundary conditions intrinsically
accounts for space dispersion of the surrounding background (i.e., a grounded slab in
practical implementations) [18]. The resulting method of moment (MoM) system is
the same as derived in Chap.2 and is reported here as follows:(︂

Z − Z
s

)︂
JΛ = bΛ, (3.1)

where Z is the MoM matrix resulting from the discretization of the layered media
electric field integral operator with canonical Rao-Wilton-Glisson (RWG) basis functions.
The matrix Z

s
is the Galerkin test of the RWG representation of the tensorial sheet

impedance Zs. The vector J collects the unknown coefficients of the equivalent currents
J of the IBC-EFIE and bΛ is the right-hand-side. The state-of-art analysis and design
mainly is associated with the asymptotic expression of the planar surface wave, as shown
in [3], and reported in Eq. (2.16). It is worth noting that this option does not give direct
information on feeder design parameters, such as return loss (RL). Indeed, right-hand-
side modeling options are discussed for the first time in detail (for this particular class
of antennas) in Chap. 4 and improved discussed solutions can be effortless integrated
in the scheme proposed here. In fact, feeder related figures of merits will be available
using the fast-factorization of the IBC-EFIE using div-conforming annular entire-domain
basis functions (EBFs), together with a more accurate model of the of the feed region
(based on a realistic 3D geometry).

It has been shown in Chap. 2 that the use of EBF compresses and regularizes the
system of Eq. (3.1). This allows reduction of the numerical burden associated with
the whole optimization cycle, where every step requires the numerical solution for each
intermediate profile until the radiated field satisfies the prescribed constraints. The EBF
MoM system reads: (︂

ΨT Z Ψ− ZΨ
s

)︂
JΨ = ΨT bΛ (3.2)

where Ψ represents the basis change matrix from RWG to EBF defined in subsection
2.3.3. However, finding an optimal Zs for a specific radiation pattern mask requires
the solution of a strongly non-linear, non-convex problem [25].
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In Sect. 3.2 we declare the global optimization instances, including the definition of
the cost function used. Moreover, it is explained how to reduce the overall computa-
tional time of the optimization loop, for large structures, from days to hours. In order
of appearance, we show the additional cost due to the far-field pattern radiation of
the compressed solution, and the impedance (IBC) update into the optimization loop.
Section 3.3 shows numerical results for the optimization of a pencil-beam MS anten-
nas based on leaky-wave radiation with both annular and rectangular domains. Results
confirm the flexibility of the method proposed and a great improvement in speed of
computation of the antenna parameters related to the cost function.

3.2 Optimization Instances
In the table 3.1, we show the pseudocode of a design algorithm; optimization algo-

rithms vary significantly, especially in the update method (step 12 of Tab. 3.1). The
common trait is the necessity to evaluate a cost function F at each step; hence, ability
to evaluate this cost function quickly is an enabling factor. In our case, this cost func-
tion will have to involve solution of the IBC equation (3.1) and the computation of the
radiated field. We observe (as already mentioned in Chap.2) that an initial overhead
may well be tolerable if the cost per iteration and the number of iterations justify it
in terms of total time of the optimization process. Entire-domain basis functions are
a good candidate in this sense, while requiring special handling of various parts of the
above-sketched computations; this will be the subject of Sect. 3.2.2. The second obser-
vation is that the typical design problem we want to address is not amenable to convex

(a) (b)

Figure 3.1: Pattern masks for broadside pencil beam radiation used in the broadside
design of Sect. 3.3.1. The colorbar indicates the levels to which each mask is set. Left:
the co-pol (a) upper (greenish) and lower mask (blue and yellow). Right: the x-pol
upper mask.
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optimization, thus requiring global optimization approaches. A general property of all
these methods is that eventually the number of iterations is exponential with respect
to the no. of optimization parameters. Hence, it is crucial to keep the no. of design
parameters small. This will be dealt with ad-hoc parametrization of the impedances for
the two design examples of Sect. 3.3. To emphasize the dependency of Zs on Ndesign

design parameters, we collect the Ndesign parameters in the array p and write Zs(p).

3.2.1 Cost Function for Pattern Synthesis
The general, and most practical way of describing the specifications on the desired

radiation pattern is through amplitude masks, namely a lower and an upper bound on
the amplitude for each direction. Figure 3.1 shows an example of a lower and upper
masks.

Accordingly, we define our cost function to be optimized in terms of satisfaction of
the requisite masks. The upper and lower masks (inequalites) define the set of radiated
fields that comply with the specifications. Our cost function will then measure the
distance from this set, which we call the compliance set. A practical way of doing so
is "projecting" a given candidate pattern onto the compliance set (as indicated below),
and then measuring the norm (L2) of the difference from the pattern and its projection.

Table 3.1: Pseudocode of the design algorithm

1: procedure Surface Impedance Design Instance: (Zs(p))
2: Zs ← Zs(p)
3: Compute Ψ
4: Solve (3.1) :

(︂
Z − Zs

)︂
J = bΛ

5: Compute and store ΨT Z Ψ
6: JΨ ← Solve (3.2)
7: Compute F(JΨ)
8: Evaluate cost function F
9: Initialize iteration counter N

10: while Stopping criteria are not satisfied do
11: N ← N + 1
12: Update Zs(p)← Zs(p)
13: JΨ ← Solve (3.2)
14: Compute Radiation Pattern F(JΨ)
15: Evaluate cost function F
16: end while
17: Compute J∗ = ΨT JΨ and F(J∗)
18: return
19: end procedure
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In a narrative form, the projection is achieved by a) clipping the pattern that goes above
or below the masks, and substituting it for the appropriate mask value; and b) leaving
the pattern unchanged wherever it falls within the masks (i.e. compliance region).

We can formalize the above as follows. Denote with ℓ(θ, ϕ) and u(θ, ϕ) the lower
and upper bounds on the amplitude, as a function of the spherical coordinates θ and
ϕ. Given a pattern F(θ, ϕ), the projection of F on the compliance set is F̃ such that

|F̃(θ, ϕ)| = C min (max (|F(θ, ϕ) |/C, ℓ(θ, ϕ), u(θ, ϕ)) , (3.3)

with
C = max

θ,ϕ
|F(θ, ϕ)| (3.4)

The effect of the projection described in the Eq. (3.3) is depicted in Fig. 3.2. Thus,
the norm of the difference between the pattern F and its clipped projection F̃ , is our
cost function F ,

F =
⃦⃦⃦
F(θ, ϕ)− F̃(θ, ϕ)

⃦⃦⃦
(3.5)

Figure 3.2: The red and the blue dotted lines are upper and lower pattern masks u and
ℓ at ϕ = 0, respectively. The yellow line is a random (w.r.t. the design parameters array
p) representation of a generic field component at a given point of the IBC optimization,
F (see Tab. 3.1, line 14). The violet line is F̃ , the projection of F within the masks u
and ℓ. See Eq. (3.3) for more details.
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3.2.2 Reduced Computational Cost in the Optimization Loop
In this subsection, the emphasis is given to two aspects of the pseudocode shown

in table 3.1. The first one concerns the far-field pattern radiation of the compressed
solution (i.e. line 14 of the optimization loop in table 3.1). The second is the update
of the IBC matrix, namely Zs(p), for different instances of the design array p (i.e. line
12 of the optimization loop in table 3.1). Both efficient pattern computation and IBC
matrix updates are of crucial importance in optimization endeavors of large structures.
Compared to rectangular and circular domains, where closed-form integration is possible,
annular EBF are more engaging and need special care. It is worth noting that the
importance of this section is mainly due to the use of annular domains in most of the
applications of interest. The 3D radiation pattern-matrix is computed in a semi-closed
form and stored before starting the optimization routine. In both cases, the integrals
to be evaluated have a negligible time cost due to a numerical integration along the
radial component only. The rule-of-thumb used to determine the number of points is
approximately 15 per wavelength. Thus, the compression effect of the EBF, explained
in Sect. 2.5 comes again to help, allowing, among other benefits, the storage of the
3D pattern-matrix. Therefore, radiation pattern updates will be instantly available at
each step of the optimization loop. The compressed IBC part of the resulting MoM
matrix, i.e. ZΨ

s
of Eq. (3.2), is computed on-the-fly; however it results in a negligible

update cost. Numerical results of the next Sect. 3.3.1 for annular EBF confirm the
applicability of the proposed method.
The more parameters to be optimized (i.e. tensorial impedance with no parametrization
available), the more optimization steps are needed. The larger the antenna and the more
complex the impedance profile; the more EBFs we need to properly factorize the MoM
system. The asymptotic complexity of this method tells us that optimization is possible
for even large and complex MS antennas. The efficient computation of the pattern
generated by the annular-ring div-conforming EBF reduces the overall cost of pattern
computation by a factor of 100 after 1000 optimization steps. Consistent advantages
are also obtained after only a few optimization steps (e.g. 20 as in the application
example).

Efficient Computation of Annular EBF Radiation in LM: Derivations

For stationary phase points, i.e.

ks
ρ = kN sin ϑ (cos φx̂ + sin φŷ) (3.6)

ks
zN = kN cos ϑ (3.7)

we can write from equation (162) of [31] the far-field radiation integrals as follows

Eϑ,φ ≈
e−jkN r

2πjr
e−jks

zN z0kN ⟨f ϑ,φejks
ρ·ρ′ ; J⟩⏞ ⏟⏟ ⏞

FJ
ϑ,φ

(3.8)
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where, for planar components only,

f EJ
ϑ = V e

i (z0|z′)ρ̂ (3.9)
f EJ

φ = cos ϑV h
i (z0|z′)ϕ̂. (3.10)

It is worth noting that at the stationary phase point û = ρ̂ and ϕ̂ = v̂, where the
directions of the unit vectors û and v̂ = ẑ × ρ̂ are fixed by the observation angle φ.
The EBF compressed solution, namely JΨ, can be written as linear combination of
RWGs as in Eq. (2.12) or directly in term of coaxial waveguide modes, h. As discussed
before, to compute at each optimization step the far-field in terms of NΛ can be
extremely expensive. That is why we need to compute the radiation of the corresponding
waveguide modes. For rectangular and circular domains, this can be done in a closed
form, as reported in Appendix D.1 for the rectangular domain. To the best of the author
knowledge, the annular EBF have closed-form expressions for ϕ̂ components only. The
results of this derivation are reported in this section with supplementary materials in
Appendix C. Thus, the ρ̂ component of each mode has to be integrated numerically.

Here we derive the semi-closed form expression for the generic mode hℓ. Without
loss of generality, for the derivation we refer to hℓ as a specific compressed solution JΨ

of Eq. (3.2) with all unitary coefficients. Moreover, the subscript ℓ is dropped for the
ease of the reader. It follows that

JΨ = Jρ(ρ′, ϕ′)û + Jϕ(ρ′, ϕ′)v̂
= [g(ρ′)h(ϕ′) cos (ϕ′ − φ)− l(ρ′)m(ϕ′) sin (ϕ′ − φ)] ρ̂ +

[g(ρ′)h(ϕ′) sin (ϕ′ − φ) + l(ρ′)m(ϕ′) cos (ϕ′ − φ)] ϕ̂,

where g(ρ′) and l(ρ′) are the Bessel’s functions defined in table B.1, and

h(ϕ′) =

⎧⎨⎩cos mϕ′, even symmetry
sin mϕ′, odd symmetry

, m(ϕ′) =

⎧⎨⎩sin mϕ′, even symmetry
cos mϕ′, odd symmetry

.

Thus, FJΨ
ϑ,φ of (3.8) are derived using (3.9) and (3.10), respectively. It follows that

FJΨ

ϑ = ⟨f ϑejks
ρ·ρ′ ; JΨ⟩

= V e
i (z0|z′)

✂ a

b

✂ π

−π

ejks
ρ·ρ′

ρ̂ · Jρ(ρ′, ϕ′)ûρ′dρ′dϕ′

= V e
i (z0|z′)

✂ a

b

dρ′ρ′g(ρ′)
✂ π

−π

dϕ′h(ϕ′) cos (ϕ′ − φ) ejks
ρ·ρ′

⏞ ⏟⏟ ⏞
I1

−V e
i (z0|z′)

✂ a

b

dρ′ρ′l(ρ′)
✂ π

−π

dϕ′m(ϕ′) sin (ϕ′ − φ) ejks
ρ·ρ′

⏞ ⏟⏟ ⏞
I2

(3.11)
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and

FJΨ

φ = ⟨f φejks
ρ·ρ′ ; JΨ⟩

= V h
i (z0|z′) cos ϑ

✂ a

b

✂ π

−π

ejks
ρ·ρ′

ϕ̂ · JΨρ′dρ′dϕ′

= V h
i (z0|z′) cos ϑ

✂ a

b

dρ′ρ′g(ρ′)
✂ π

−π

dϕ′h(ϕ′) sin (ϕ′ − φ) ejks
ρ·ρ′

⏞ ⏟⏟ ⏞
I2

+V h
i (z0|z′) cos ϑ

✂ a

b

dρ′ρ′l(ρ′)
✂ π

−π

dϕ′m(ϕ′) cos (ϕ′ − φ) ejks
ρ·ρ′

⏞ ⏟⏟ ⏞
I1

(3.12)

where
ks

ρ · ρ′ = kρ′ sin ϑ cos (ϕ′ − φ) .

Summarizing

FJ
ϑ = V e

i (z0|z′)
✂ a

b

dρ′ρ′

⎧⎨⎩g(ρ′)Icos
1 , even symmetry

−l(ρ′)Isin
1 , odd symmetry

(3.13)

FJ
φ = cos ϑV h

i (z0|z′)
✂ a

b

dρ′ρ′

⎧⎨⎩g(ρ′)Icos
2 , even symmetry

l(ρ′)Isin
2 , odd symmetry

(3.14)

where Icos
1 , Isin

1 , Icos
2 , Isin

2 are the closed-form ϕ integration calculated in detail in Ap-
pendix C.

To check the accuracy of the described method we compare three different ways of
computing the radiating fields. The RWG and EBF solution considered is the one found
for the MS antenna described in Sect. 2.7.1. The ground truth is considered to be
the RWG radiation of the RWG solution, namely JΛ in Chap.2. Then we compare the
ground truth to the radiation of JΨ written both as linear combinations of RWG and
of EBF (i.e. the method associated to the above derivation). In Fig. 3.3 we show the
three different computations of the E-field at the cut φ = 0 and ϑ ∈ [0, 90]. Overall,
there is a certain degree of approximation in each adopted method. On the one hand,
the comparison of the RWG radiation of JΛ with the RWG radiation of JΨ gives us a
better understanding of the level of approximation in far-field of the EBF factorization.
On the other hand, the comparison between RWG and EBF radiation of JΨ only, gives
us the quality of the projection of the WG modes into the RWGs. A poor agreement
between the last two means a poor quality RWG mesh. This topic is briefly addressed
in the subsection 2.3.3. Nevertheless, for the case of interest, we observe a good level
of agreement among all the curves of Fig. 3.3. Eventually, we conclude that the use of
the EBF radiation is the best choice in optimization endeavors.
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(a) E-field magnitude. (b) E-field phase.

Figure 3.3: Comparison between three different ways of computing the radiating fields
along the cut φ = 0 and ϑ ∈ [0, 90]. The plots on the top are for the ϑ component.
The plots on the bottom are for the φ component. The blue lines stand for RWG
radiation of RWG (Λ) solution. The dotted red lines represent the EBF radiation of
EBF (Ψ) solution. The yellow markers are the RWG radiation of the projected EBF
solution.

Compressed IBC-MoM Matrix Entries

The issue discussed above — the lack of closed-form expression for annular EBF
far-field radiation — also holds for the computation in a closed-form of the IBC matrix
entries. Let us consider the ℓ-th annular EBF:

hℓ = fρ
ℓ (ρ)gρ

ℓ (ϕ)ρ̂ + fϕ
ℓ (ρ)gϕ

ℓ (ϕ)ϕ̂

= fρ
ℓ (ρ)

⎧⎨⎩cos(ℓϕ)
sin(ℓϕ)

ρ̂ + fϕ
ℓ (ρ)

⎧⎨⎩sin(ℓϕ)
cos(ℓϕ)

ϕ̂. (3.15)

We will limit our investigation here to particular impedance profile of interest. The
first assumption is that the transparent reactance is lossless, which produces an anti-
hermitian tensor as follows:

Zs = jX = jη0
[︂
Xρρ(ρ, ϕ)ρ̂ρ̂ + Xρϕ(ρ, ϕ)(ρ̂ϕ̂ + ϕ̂ρ̂) + Xϕϕ(ρ, ϕ)ϕ̂ϕ̂

]︂
Thus, the ℓm matrix entry of (2.11) relative to the IBC part and expressed only in
terms of annular EBF is

⟨hℓ;X · hm⟩ =
✂

Σ
hℓ(ρ, ϕ) · [Zs(ρ, ϕ) · hm(ρ, ϕ)] ρ dρ dϕ (3.16)
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where hℓ,m are real vector-valued functions and Σ is their geometrical support, which
corresponds to the entire antenna domain. The second assumption is that each com-
ponent of the tensor can be written as follows:

Xρρ = xρρ +
K∑︂

k=1
xρρ

k fk(ρ) cos(kϕ) +
K∑︂

k=1
xρρ

k+Kfk(ρ) sin(kϕ) (3.17)

Xρϕ =
K∑︂

k=1
xρϕ

k fk(ρ) cos(kϕ) +
K∑︂

k=1
xρϕ

k fk+K(ρ) sin(kϕ) (3.18)

Xϕϕ = xϕϕ +
K∑︂

k=1
xϕϕ

k fk(ρ) cos(kϕ) +
K∑︂

k=1
xϕϕ

k fk+K(ρ) sin(kϕ) (3.19)

where xρρ, xϕϕ are the average reactances, K is the number of modes needed to rep-
resent each component of the impedance. Without loss of generality, we arbitrarily
assumed K equal for all components of the impedance to avoid heavy notation. Thus,

X · hm = (Xρρ + Xρϕ) fρ
m(ρ)gρ

m(ϕ)ρ̂ + (Xϕϕ + Xρϕ) fϕ
m(ρ)gϕ

m(ϕ)ϕ̂ (3.20)

Substituting (3.20) and (3.15) into (3.16) we obtain:

⟨hℓ;X · hm⟩ =
✂ a

b

✂ π

−π

fρ
ℓ (ρ)gρ

ℓ (ϕ)(xρρ + xϕϕ)fρ
m(ρ)gρ

m(ϕ)ρ dρ dϕ

+
K∑︂

k=1

(︂
xρρ

k + xρϕ
k

)︂ ✂ a

b

fρ
ℓ (ρ)fk(ρ)fρ

m(ρ)ρ dρ

✂ π

−π

gρ
ℓ (ϕ)gρ

m(ϕ) cos(kϕ) dϕ⏞ ⏟⏟ ⏞
Iρ

cos=I1,I4

+
K∑︂

k=1

(︂
xρρ

k+K + xρϕ
k+K

)︂✂ a

b

fρ
ℓ (ρ)fk(ρ)fρ

m(ρ)ρ dρ

✂ π

−π

gρ
ℓ (ϕ)gρ

m(ϕ) sin(kϕ) dϕ⏞ ⏟⏟ ⏞
Iρ

sin=I6,I7

+
K∑︂

k=1

(︂
xρϕ

k + xϕϕ
k

)︂ ✂ a

b

fϕ
ℓ (ρ)fk(ρ)fϕ

m(ρ)ρ dρ

✂ π

−π

gϕ
ℓ (ϕ)gϕ

m(ϕ) cos(kϕ) dϕ⏞ ⏟⏟ ⏞
Iϕ

cos=I1,I4

+
K∑︂

k=1

(︂
xρϕ

k+K + xϕϕ
k+K

)︂✂ a

b

fϕ
ℓ (ρ)fk(ρ)fϕ

m(ρ)ρ dρ

✂ π

−π

gϕ
ℓ (ϕ)gϕ

m(ϕ) sin(kϕ) dϕ⏞ ⏟⏟ ⏞
Iϕ

sin=I6,I7

Closed-form expressions, namely I1, I4, I6, I7, are derived for ϕ′ integration and re-
ported in the Appendix C.2. Hence, the (ℓ, m)-th element of the X

s
matrix computed
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with annular EBF is:

Xℓm
s =

(︂
xρρ + xϕϕ

)︂ ✂ a

b

fρ
ℓ (ρ)fρ

m(ρ)ρ dρ

⎧⎨⎩π/2, if ℓ = m

0, if ℓ /= m

+
K∑︂

k=1

(︂
xρρ

k + xρϕ
k

)︂✂ a

b

fρ
ℓ (ρ)fk(ρ)fρ

m(ρ)ρ dρ

⎧⎨⎩I1

I4

+
K∑︂

k=1

(︂
xρρ

k+K + xρϕ
k+K

)︂✂ a

b

fρ
ℓ (ρ)fk(ρ)fρ

m(ρ)ρ

⎧⎨⎩I6

I7

+
K∑︂

k=1

(︂
xρϕ

k + xϕϕ
k

)︂✂ a

b

fϕ
ℓ (ρ)fk(ρ)fϕ

m(ρ)ρ dρ

⎧⎨⎩I1

I4

+
K∑︂

k=1

(︂
xρϕ

k+K + xϕϕ
k+K

)︂✂ a

b

fϕ
ℓ (ρ)fk(ρ)fϕ

m(ρ)ρ dρ

⎧⎨⎩I6

I7
(3.21)

As a result, to update Z
s

= jη0Xs
, only one numerical integration has to be performed

along ρ̂ for each matrix entry. Moreover, as shown in the supplementary material in
Appendix C.2, I1, I4, I6, I7 are non-zero only for a small number of combinations of
k, ℓ, m, resulting in but only few modes to be computed. At the same time, the number
of sample in ρ′ scales with the antenna radius and not with its area. Thus, especially
when the antenna dimensions are large with respect to wavelength, the computational
cost is dramatically reduced compared to the matrix multiplication ΨT Z

s
Ψ that should

have been computed instead.

3.3 Design Study Cases
In this section, we show numerical results of the automatic design of practically im-

portant and challenging MS antennas. In particular, we will address design of two large,
high-gain so-called “holographic” MS antennas, and one linear leaky-wave antenna. The
designs presented here rely on a-priori knowledge of existing literature results; most no-
tably we take advantage of the knowledge of the relevant radiation mechanism behind
these antennas, and we embed that into our parametrization of the antenna. Also, for
each class of antennas we proceed as usual in any MS device design exercise: we start
from a unit cell type, and map out reactance values with respect to geometrical pa-
rameters, as necessary in the final design phase from the IBC to actual antenna layout.
In this case, what we need to know is only what are the ranges that the components
of the reactance tensor take for realizable choice of unit cell parameters; this will con-
stitute the bounds of the relevant parameters in our optimization. In this, we adopted
results available in the literature. Knowledge of the relevant wave radiation mechanism
allows to significantly restrict the number of parameters that describe the (continuous)
impedance surface, learning from existing literature. For both the “holographic” and the

35



Numerical Synthesis of Metasurface Antennas with Arbitrary Pattern Mask using Entire Domain Basis Functions

leaky-wave antennas to be examined, the basic wave radiation mechanism can be traced
to leaky-wave phenomena, and in particular to the fundamental work of Oliner-Hessel
[32] and the leaky-wave interpretation of Maci et al. [3] of holographic antennas.

Holographic MS Antennas. We address center-fed circular layout MS antennas,
with intrinsically tensor impedance and circular polarization radiation. We adopt the
analytic form of the impedance spatial profile proposed in [12] and reported below in
Sect. 3.3.1; of course, here the various parameters will be found through our numerical
synthesis approach. The synthesizable range of unit cell layouts can also be derived
from the literature, in particular in [12]. We will address both broadside radiation and
tilted-beam cases. These antennas have a center region where the IBC surface is not
present; hence, the most appropriate canonical shape is a circle with a circular hole,
i.e. an annular shape; this explains this terminology in the following. We further note
that in Chap.4, we show different kinds of modelling options for the feed region based
on its complete 3D geometry. It is worth noting that, the approach based on the study
of the feed in isolation of Sect. 4.2.3 can be integrated into the numerical synthesis by
changing the right-hand-side of Eq. (3.1). This, however, falls out of the scope of the
present work.

Rectangular Leaky-Wave Antenna. The basic architecture in this case is inspired
by the work in [33]. That work is based on the classical Oliner-Hessel sinusoidal mod-
ulation, that led to the well-known semi-analytical design rules; here we extend the
classical impedance profile to achieve flexibility, and in particular to obtain broadside
radiation. This is motivated by the fact that broadside radiation is critical for designs
based on the Oliner-Hessel theory [32], such as the method described in [33]; thus it
well demonstrates the versatility of our hybrid analytical-numerical approach. In this
case, we also design the actual antenna layout by realizing the synthesized IBC profile
via rectangular strips, as in [33]. This appears to be a novel approach, also for its
use of div-conforming rectangular EBF (described in Appendix D.1), and for the fast-
factorization of transparent IBC-EFIE, and the comparison between the IBC radiation
and that of the actual physical antenna.

3.3.1 Annular Holographic Metasurface Antenna: Pencil Beam
In the first two study cases we set the working frequency as f = 30 GHz, outer

and inner radius a = λ/4 and b = 5.7λ respectively, ϵr = 3 and the layer thickness,
h = 0.764mm. Starting from an impedance profile parametrized as in [12], and applying
the algorithm of Tab. 3.1 with the amplitude masks depicted in Fig. 3.1, we obtain the
results reported from Fig. 3.4 to Fig. 3.10. In this case, a reduced dimension, Ndesign,
of the array p is possible due to the holographic theory on which the analytical design
of such antennas [12] is based. The tensorial impedance profile jX is parametrized as
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follows:

Xρρ(ρ, ϕ) = X̄ρ [1 + M(ρ)(cos(βswρ− Γ(ρ, ϕ))] (3.22)
Xρϕ(ρ, ϕ) = X̄ρϕ sin(βswρ− Γ(ρ, ϕ)) (3.23)
Xϕϕ(ρ, ϕ) = X̄ϕ [1−M(ρ)(cos(βswρ− Γ(ρ, ϕ))] (3.24)

where
Γ(ρ, ϕ) = kρ sin θ0 cos ϕ + ϕ = Γ

To obtain in an efficient update of the compressed IBC-MoM Matrix, as shown in Sect.
3.2, a slightly different ϕ′ integration is performed due to the presence of the additional
term

kρ sin θ0 cos ϕ′ = x cos ϕ′.

The derivation is not reported here but it is derived with the same procedure as in
Sect. 3.2. The only additional tool needed to have a closed-form integration in ϕ′ is
the integral representation of the m-th order Bessel function:

Jm(x) = (±j)m

2π

✂ π

−π

e∓j[x+cos(ϕ′)ϕ′] dϕ′. (3.25)

Then, from the characteristic equation of the grounded dielectric slab (GS) we find X0
and βGS

sw . These parameters are needed in the transverse magnetic (TM) surface wave
right-hand side model of (4.5). Taking into account the dependence of X̄ρ from βsw

as in [13], we set the upper and lower bound for parameters of p as follows:

• p1: 1.1 < βsw/k < 1.8 means X̄ρ s.t. unit cells are synthesizable [13];

• p2: |Mρ| < 1 radial modulation index;

• p3: |X̄ρϕ| < 0.4η0 s.t. unit cells are synthesizable;

• (p4, p5): geometrical tapering parameters of M(ρ). M(ρ) is a trapezoidal win-
dow, similar to Fig. 3.11.

• p6: θ0 ∈ (−π, π) pencil-beam direction angle.

With p within the above listed constraints, we perform two different designs, one point-
ing at ϑ = 0, the other at ϑ = 20 [deg]. The results relative to the optimized design
parameters p∗

i are summarized in Tab. 3.2. The computational effort is listed in Tab.
3.3.

37



Numerical Synthesis of Metasurface Antennas with Arbitrary Pattern Mask using Entire Domain Basis Functions

Broadside Radiation: θ0 = 0

In this first case, based on the consideration of Sect. 2.4, we have factorized the
IBC-EFIE MoM matrix with M = 10 axial and N = ⌈6a⌉ = 36 radial annular waveguide
modes, respectively. This mode selection results in NΨ = 1511 annular entire-domain
basis functions. The selection is based on a fast spectral content estimation of the
parametrized impedance profile via a similar calculation to those of Sect. 3.2. More
details about the mode set selection can be found in Sect. 2.4. Figure 3.4 collects
the radiation patterns for co-pol and x-pol, respectively. The masks used for the deter-
mination of the cost function F are depicted in Fig. 3.1 and Fig.3.5. The maximum
directivity of 29.9 dBi is reached for co-pol (right-hand circular polarization) at θ0 = 0;
the x-pol (left-hand circular polarization) is everywhere below 3 dBi. Continuous trans-
parent IBC realizations (Eq. (3.22) and Eq. (3.23)) of p∗, namely Zs(p∗), are shown
in Fig.3.6. The equivalent current density JΨ(p∗) is plotted in Fig.3.7a.

Tilted Beam Radiation: θ0 = 20

In the tilted beam case, the spectral content of the parametrized impedance profile
is higher than the broadside case. Thus, we factorize the IBC-EFIE MoM system with
M = 20 axial and N = ⌈6a⌉ = 36 radial coaxial WG modes. This mode selection
results in NΨ = 2951 annular EBFs. Figure 3.9 collects the u-v radiation pattern for
co-pol (i.e. right-hand circular polarization) and x-pol (left-hand circular polarization).
The radiation fits everywhere within the defined masks: Fig. 3.8. For the sake of
completeness, (continuous) transparent IBC realizations (Eq. (3.22) and Eq. (3.23))
of p∗, namely Zs(p∗), are shown in Fig. 3.6. The equivalent current density JΨ(p∗) is
plotted in Fig. 3.7b.

Table 3.2: List of p∗
i for broadside and 20 [deg] tilted-beam radiation

i parameter broadside tilted-beam
1 βsw/k 1.1146 1.1151
2 Mρ 0.4453 0.447
3 X̄ρϕ -0.4η0 -0.39η0
4 rb 0.25λ 0.25λ
5 ra 0.14λ 0.06λ
6 θ0 0 20
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Table 3.3: Summary of computational results for numerical synthesis via annular EBF.
Results obtained with Intel Xeon CPU E5-2687W v4 @3GHz.

Case BF DoF Fact. Compr. Solving n of N it.
Z ΨT Z Ψ time MoM eval

θ0 = 0 RWG 107710 40m – 11m 684 106AEBF 1511 40m 22m < 1s

θ0 = 20 RWG 107710 40m – 11m 1096 176AEBF 2951 40m 1h20m < 1s

(a) (b)

Figure 3.4: Polar radiation pattern generated by the designed anisotropic MS antenna.
The masks for co-pol and x-pol are depicted in Fig. 3.1. Left (a): co-pol with a
pencil beam centered in θ = 0 and maximum directivity of 29.9 dBi. Right (b): x-pol
uniformly below 3 dBi.
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Figure 3.5: Directivity for the optimized sheet impedance Zs(p∗) vs amplitude masks
(cut at ϕ = 0) used in the design process. Left: co-pol directivity in solid dark red line,
the dotted red and blue lines are the upper and lower masks. Right: x-pol directivity
and relative upper mask set at a level 25dB lower than the max directivity.

(a) (b)

Figure 3.6: Continuous transparent IBC realization of p∗, namely Zs(p∗). Left (a): ρ̂ρ̂

component Eq.(3.22), with X̄ = −362.6365 Ω. Right (b): off-diagonal component,
Eq.(3.23), of the tensor Zs(p∗).
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(a) (b)

Figure 3.7: Left (a): equivalent current density JΨ(p∗) for broadside radiation. Right
(b): equivalent current density JΨ(p∗) for squinted angle radiation of 20 degrees.

X -20

Y 29.28

Figure 3.8: Directivity for the optimized sheet impedance Zs(p∗) vs amplitude masks
(cut at ϕ = 0) used in the design process. Left: co-pol directivity in solid dark red line,
the dotted red and blue lines are the upper and lower masks. Right: x-pol directivity
and relative upper mask at a level 25dBi lower than the max directivity.
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(a) (b)

Figure 3.9: Polar radiation pattern generated by the designed anisotropic MS antenna
pointing at θ = 20 degrees. Left (a): co-pol with a pencil beam centered in θ = 20
deg and maximum directivity of 29.9 dBi. Right (b): x-pol uniformly below 3 dBi.

Figure 3.10: Continuous transparent tensorial IBC realization of p∗, namely Zs(p∗).
Left (a): ρ̂ρ̂ component. Right (b): off-diagonal component of the tensor Zs(p∗), with
Xρϕ = −0.399η0 Ω.

3.3.2 Rectangular Leaky-Wave Metasurface Antenna: Broad-
side Radiation

This work is based on the classical Oliner-Hessel sinusoidal opaque modulation

Z(x) = jX0

(︃
1 + M cos

(︃2π

P
x
)︃)︃

(3.26)

that led to the well-known semi-analytical design rules [33]. The scalar value X0 is the
average opaque impedance, M is the constant modulation factor, and P is the period
of the modulation. Among others, one of the objectives in this test is to show the novel
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application of rectangular div-conforming EBF (see Appendix D.1 for supplementary
materials). Of practical interest, the design of a LW antenna with broadside radiation.
Here, we first set the working frequency to f = 30 [GHz], the dimension of the rect-
angular support along x and y as a = 8λ and b = λ respectively, ϵr = 3 and the layer
thickness h = 0.764 [mm]. Using the above mentioned background information, and
the method described in [1], we extract the unit cell sheet impedance for a rectangular
strip with a variable gap size as done in [33]. This is crucial for defining an admissible
reactance range, and for the final geometrical implementation as textured unit cells,
shown in Fig. 3.14a. Eventually, without reference to Floquet Theory, we derive a
numerical optimal (w.r.t. cost function F) design of such a LW antenna.

Continuous Scalar IBC Optimal Design

The continuous scalar IBC resulting the from numerical synthesis is

Xxx(x) = X̄
(︃

1 + M(x1, x2) cos
(︃2π

P
(x− x0)

)︃)︃
(3.27)

Broadside radiation with directivity of 19.3 dBi and a side lobe levels lower than 10dBi
are obtained for Zs(p∗). Figures 3.12 and 3.13 show the results for the equivalent
current density and for the directivity at ϕ = 0. It is worth noting the two side lobes fall
out of the imposed mask. Further effort will be put in the automatic determination of
ad-hoc masks starting from imposed antenna dimensions or conversely, ad-hoc antenna
dimensions starting from imposed masks.
In the analyzed case, the number of RWGs defined over the rectangular domain is
NΛ = 21864. We set the rectangular EBFs to be N = ⌈6a⌉ = 48 along x̂ and
N = ⌈4b⌉ = 4 along ŷ; this choice results in NΨ = 436 rectangular EBFs.

Figure 3.11: The blue line is the continuous scalar transparent IBC Zs(p∗) obtained
for broadside radiation masks. The yellow and the red lines represents the trapezoidal
window used to taper the IBC. The black dotted line is the average sheet reactance.
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Figure 3.12: Top: Equivalent current density JΨ(p∗) obtained with continuous IBC
model. Bottom: Directivity of IBC model ( yellow line) vs. the clipped version (dark
red) when convergence is already reached. The L2 norm defined between the yellow
and the dark red lines strictly defines the cost function, F = 0.013, see Eq. (3.5). The
dotted red and blue lines are the upper and lower masks, respectively
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Figure 3.13: Broadside radiation with directivity of 19.3 dBi and a SLL of 10dB are
obtained. The u− v pattern of the textured Leaky-Wave Antenna.

Table 3.4: List of p∗
i for broadside LW antenna radiation, see Fig. 3.11 for cross-

reference to parameter definition

i Parameter p∗
i

1 X̄ -1.353η0
2 M 0.6
3 P 0.915λ
4 x0 1.20λ
5 x1 3.05λ
6 x2 -3.23λ
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Comparison between Continuous IBC Model and Textured Unit Cells Realiza-
tion

A sinusoidal modulation is physically realized by varying the gap width between
parallel strips. To this purpose the graph in Fig. 3.14b is used. The first step requires the
computation of the sheet admittance of this surface. Using the technique described in
[1], a unit cell made by a rectangular patch printed on a grounded dielectric substrate is
implemented in an in-house periodic solver. In order to extract the scalar impedance, two
orthogonal illuminations are performed. From the obtained data, the sheet admittance
is derived and plotted in Fig. 3.14b and Fig. 3.14a as a function of the gap between two
neighboring unit cells. Comparison between the continuous scalar IBC model and its
actual textured realization of Fig. 3.14a are shown in Fig. 3.15. Directivity comparison
between the continuous scalar IBC model and the its textured realization show a good
agreement.

(a) (b)

Figure 3.14: (a) Textured Leaky-Wave Antenna made of sub-wavelength strips designed
at 30GHz. The structure is excited by a TM Surface Wave (blue rendering) propagating
along the structure. (b) Unit cell (geometry depicted in inset) sheet impedance for a
rectangular strip with a variable gap size as in [33].
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Figure 3.15: Comparison between continuous scalar IBC model and its actual textured
realization of Fig. 3.14a.Top: Equivalent current density JΛ(p∗); note that the electric
current is on the conducting strips only. Bottom: Directivity comparison between
continuous scalar IBC model (yellow line) and its textured realization (green line). The
dotted red and blue lines are the upper and lower masks, respectively.
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3.4 Conclusions
The design of metasurface antennas is approached as an optimization process for the

spatial distribution of the impedance boundary condition (IBC). The use of full-wave
simulation in this optimization cycle is made possible by aggregating the underlying
RWG functions into entire-domain basis functions (EBF), in the form of waveguide
modes. It is shown that this is advantageous in terms of the total numerical resources
required in the optimization process. The scheme is applied to the design of two relevant
classes of metasurface antennas. We present numerical results on the optimization of
the tensorial sheet impedance for metasurface antennas to satisfy amplitude constraints
imposed with masks. Leveraging on a compressed formulation which greatly reduces
the computational burden associated with repeated solutions of the integral equations
describing the currents solution, we develop an algorithm which modifies the surface
impedance to obtain a surface current radiating a pattern within the imposed mask.
Further research will be addressed to the automatic determination of ad-hoc masks
starting from imposed antenna dimensions or conversely, the determination of ad-hoc
antenna dimensions starting from imposed masks.
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Chapter 4

Analysis of Modeling Options for
Metasurface Antennas

State-of-the-art metasurface antenna modeling still relies on an approximated feed
scheme which aims to either reproduce experimental or ideal theoretical results. We
develop a 3-D full-wave numerical approach based on electric field integral equation
(EFIE) to describe the feed accurately, and to gain access to the related figure of merit.
Moreover, the 3-D full-wave analysis is also integrated into the approximated IBC-
EFIE model, extensively used in the preceding two chapters in its 2-D planar version.
Here we demonstrate the agreement between our 3-D solution and already established
methodology. We also compare to commercial solver the return loss (RL) for the feed in
isolation. Comparison with actual measurements is ongoing. Due to the peculiar nature
of these antennas, we show that the feed region can be decoupled from the radiative
parts (i.e. IBC or unit cells). Its standalone analysis gives relevant design information.
This characteristic allows us also to propose novel 2-D models derived from the analysis
of the feed region in isolation. This results, for instance, can give access to the feed-
related figure of merit during the optimization loop described in Chap. 3. To the best
of the author knowledge, these results have not been published before. Eventually, we
compared the numerical results (IBC and Unit Cells) to real-life measurements. To
this aim, we acknowledge the University of Siena and Wave-Up for providing results for
the test cases. This chapter concludes with the introduction of a novel hybrid scheme
for the analysis of a large MS with full 3-D mesh. Preliminary results concerning the
compression of the feed region are shown.

4.1 Introduction and Motivations
Metasurface antennas are planar multi-layer configurations of sub-wavelength build-

ing blocks (i.e. unit cells) typically printed on a grounded dielectric slab (e.g. [4]).
Due to the sub-wavelength nature of the unit cells, homogenization techniques can
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be applied, leading to a macro-scale description via an “approximate” IBC model [39].
Thus, even in the numerical modeling, MS antennas are intrinsically a multiscale prob-
lem; however, recent literature has shown that most of the design can be done via MS
homogenization and the IBC-EFIE [18]. Moreover, MS antennas radiation is well de-
scribed in terms of a continuous slowly varying electric sheet tensorial reactance, namely
Zs, interacting with a surface wave, which is gradually transformed into a leaky wave
[14]. A vertical probe (i.e., the copper core of a coaxial cable: layout and detail of the
feed region on the left side of Fig. 4.1) excites a cylindrical surface wave on the surface
impedance, and the latter converts the excitation into a leaky wave. The excitation
of the surface integral equation (SIE) can be modeled at two different scales. The
microscale involves the 3D feed modeling, while the macroscale implies the closed-form
calculation of the asymptotic field produced by a vertical dipole in a grounded slab.
The right side of Fig. 4.1 shows the mesh of a typical feed structure, composed by
planar equivalent magnetic currents, modeling a cross-section of the coaxial cable at
the ground level (blue triangles), and electric equivalent currents, modeling a vertical
cylindrical probe and two planar annular rings at the unit-cell level, i.e. hd (red tri-
angles). The use of a decoupled 2-D expression dramatically simplifies the numerical
complexity in a layered media environment, reducing the computational problem from
a 3-D problem to a planar problem. To this aim, we propose in subsection 4.2.3 a novel
2-D approach derived from the analysis of the 3-D feed region in isolation. The same
approach can be extended, for instance, to the feed region surrounded by an IBC plate
loaded with an average reactance. It is worth noting that the average reactance of the
IBC plays a crucial role in the feed design because it is responsible for launching the
surface wave. In Sect. 4.2 we show in detail three different source modeling options.
For the sake of completeness, we briefly describe the TM Surface Wave model. Then
we describe the 3-D feed region and also how to use it in a fast MoM framework such

Figure 4.1: Left: example of MS textured layout and details of the feed [4]. Right:
schematics and mesh of the feed model.
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as the discretization of the IBC electric field integral equation (EFIE). It is worth noting
that, this approach is not only valid for the “homogenized” IBC-EFIE, as shown in Sect.
4.2.5, but also for the standard EFIE in layered media, used to simulate the actual MS
made of sub-wavelength patches. Then, in Sect. 4.2.3 we proceed with the analysis
of the feed in isolation, including the S11 comparison with the commercial software
CST. Section 4.2.4 explores the impact and the contribution of the presented modeling
options to the IBC radiation. Eventually, we extend the analysis comparing the IBC
approximation with the actual MS antenna realized with textured unit cells. The nu-
merical results are also compared to measurements using a test antenna realized and
provided by the company Wave Up. In Fig. 4.2 is shown the equivalent current density
of the provided IBC model, and Fig. 4.3 schematically shows the relative positions and
details of feed region. As mentioned in the manuscript roadmap, Chap. 1, the class
of antennas under investigation in this chapter is center-fed. The feed structure al-
most invariably involves vertical metalizations, that are know to slow the solution in the
layered-medium formulation. To ease that burden, Sect. 4.3 introduces of an ad-hoc
hybrid factorization scheme for the analysis of large metasurface using a full 3D mesh.
Preliminary results concerning the compression of the feed region are shown.

Figure 4.2: Equivalent current density of IBC-EFIE solution for the case of study of this
chapter.
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4.2 Feed Modeling in MoM Formulation
The surfece integral equation (SIE) formulation for the equivalent current J of the

IBC-EFIE [18] follows the standard MoM approach which leads to the linear system(︂
Z − Zs

)︂
J = b, (4.1)

where J is the vector which collects the unknown coefficients of J in the RWG basis;
the matrix entries are

Zmℓ = ⟨Λm; GEJ ; Λℓ⟩ (4.2)
Zs

mℓ = ⟨Λm; Zs ·Λℓ⟩. (4.3)

where GEJ is the layered media dyadic Green’s function when only electric sources
are considered and Λ are the RWG basis/test functions used for the electric cur-
rent discretization. The layered media formulation employed is the mixed-potential
“Formulation-C” introduced by Michalski et al. in [31]. The m-th element of the
right-hand side is:

bm = ⟨Λm; E i⟩. (4.4)

Figure 4.3: Simple MS schematics with mesh of both electric (red) and magnetic
(equivalent) currents on the ground plane (blue) for the vertical feed model.

4.2.1 The TM Surface Wave
A vertical probe (i.e. copper core of a coaxial cable: layout and detail of the feed

region on the left-side of Fig. 4.1) excites a cylindrical surface wave on the surface
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impedance, and the latter converts the excitation into a leaky wave. The excitation of
the SIE has then a transverse component which is asymptotically

Esw
t ≈ jX0H

(2)
1 (βGS

sw ρ)ρ̂ (4.5)

where H
(2)
1 is the Hankel function of the second kind and first order. The reactance

X0 and the wavenumber βGS
sw are derived solving the characteristic equation of the

grounded dielectric slab (GS) of thickness hd and permittivity εr. A simple schematic
of the MS is provided in Fig. 4.3. The use of such an expression greatly simplifies the
numerical complexity in a layered media environment, reducing by one-dimension the
computational problem, i.e, from 3-D to planar. On the one hand, the use of such a
closed-form asymptotic expression provides reliable results during the first stage of the
design, when only the directivity is of interest; on the other hand, it is an “approximate”
model and, among other things, does not give access to the figure of merit such as S11,
which is of crucial importance in the final stage of the MS antenna design.

4.2.2 Full Geometry of Feed
The incident field E i is modeled assuming that the aperture of the transmission

line contains only a TEM mode field distribution. Using the well-known magnetic
frill excitation model [38] the aperture electric field is replace by equivalent magnetic
currents on the ground plane, M a (see Fig. 4.3), and the incident field can be written
as

E i(r) =
✂

Σ
GEM (r , r ′) ·M a(r ′)dr ′ (4.6)

where GEM is the multi-layer dyadic Green’s function with only magnetic sources.
The reflection coefficient at the point of feed Γ, often called S11, is an extremely
important design parameter. It is linked to the input impedance Zin through

Γ = Zin − Z0

Zin + Z0
(4.7)

[26]. In order to calculate the antenna input impedance or, equivalently, the antenna
admittance Yin = 1/Zin, we follow the variational approach in [28] useful for coaxial
fed antennas. The input admittance is expressed by

Yin = −⟨M a, H T ⟩
V 2 + ⟨J , ET ⟩

V 2 (4.8)

where H T and ET are the total magnetic and electric fields due to both M a and J
and V is the voltage across the gap at the aperture of the coaxial line. If Galerkin’s
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method is used as in our case, then it is easily shown that ⟨J , ET ⟩ = 0. In this case,
only the first term in Eq. (4.8) remains or

Yin = −⟨M a, H a⟩
V 2 = −⟨M a, H s⟩

V 2 − ⟨M a, H T ⟩
V 2 ≡ Ycoax + Yantenna (4.9)

The first term on the right-hand side is identifiable as the contribution to the input
admittance from the coaxial gap capacitance (proportional to ω). The second term
is due to the antenna structure and can be, for convenience, further divided into sub-
contributions due to well identified antenna sub-structures (ex. feed, coupler, etc.).
Interestingly, if the medium dyadic Green’s function posseses certain properties (see
[38]) the admittance can be easily calculated from the electric current solution J and
system forcing term (r.h.s) b:

Yantenna = −JT b

V 2 (4.10)

Calculation of input admittance/impedance and S11 and comparison with other numer-
ical approaches will be shown in the following sections.

Figure 4.4: Feed region schematic. Left: xz-view of the feed region. Right: xy-view of
the feed placed in a Metasurface Antenna.
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4.2.3 Structure Domain Decomposition: Feed in Isolation
It is not only instructive but also a useful design approach to consider the feed part

of the antenna structure in isolation (i.e., disconnected from the rest of the antenna). In
the case of the MS type of antennas under consideration, this is particularly meaningful
because it often constitutes the only fully 3D structure of the antenna, and it leads
thus to a natural and intuitive system domain decomposition. Figure 4.4 shows the
feed geometry schematics. To validate our MoM model for the feed, we compare the
directivity and S11 with CST calculations. In order to reproduce the infinite slab medium
underlying our model, we use an absorbing boundary condition in CST, which eliminates
the reflection of the wave travelling in the dielectric layer. The comparison in Fig. 4.5
shows reasonable agreement between the two approaches. The near field of the isolated
feed can be used to excite the 2D radiating antenna (IBC or unit cells) similarly to the
incident field generated by the magnetic current in Eq. (4.6) as described in the next
section.

We then compare the far-field pattern of the MS antenna calculated with the surface
wave equation (2D), the full 3D structure with magnetic frill excitation (3D), and the
isolated feed E i (2D). As can be seen in Fig. 4.7, the patterns are very similar among
the three forcing models, which suggests that, for these kinds of structures, the feed
can be substantially decoupled from the rest of the structure. This conclusion is further
corroborated by the analysis of the different contributions to the total input admittance
as shown in Fig. 4.6b.

Frequency [GHz]

S
1

1
 [

d
B

]

Feeder in Isolation

Figure 4.5: Comparison between S11 computed at different points in frequency with the
variational method (blue line) and the CST (red line).
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4.2.4 Impact of Feed Modeling on IBC Radiation
We simulated a MS antenna at 32.3 [GHz] of radius almost 14λ with a IBC model

provided by Wave-Up. The permittivity is ϵr = 3 and the layer thickness is h = 0.764
[mm]. Such problem, produces a IBC-EFIE MoM system with almost 800K RWGs. We
have shown the equivalent electric current density in Fig.4.2. In Fig.4.7 we compare
the directivity using three excitation models: the realistic 3D model with magnetic frill
excitation in Fig. 4.3, with SW from Eq. (4.5) and the isolated feed radiation E i. It is
worth noting that the computational effort for the three simulations is rather different
since the last two needs only 2D geometry, whereas the first is a full 3D model. The far-
field patterns of the MS antenna calculated, are very similar among the three models,
which strongly suggests that, for these kinds of structures, the feed unknowns can be
substantially decoupled from the rest. This result is not very surprising on the Far-Field
radiation, considering that also the well-established 2D TM surface wave model is based
on the same concept and has always provided reliable results in recent years.

This conclusion is further corroborated by the analysis of separate contributions to
the total input admittance as in 4.6b. The input admittance of the isolated feed, divided
into coaxial and self contributions (full lines in Fig. 4.6b), is only slightly modified by
the presence of the primary antenna. The feed dominates the total Yin of the antenna,
with Ycoaxial being dominant in the imaginary part and the self-feed Yfeed in the real
part. The IBC contribution is found to be rather negligible in these cases. These results
open up the possibility of a simplified feed and main antenna design and optimization
by decoupling the two sub-systems.

(a) (b)

Figure 4.6: Input admittance analysis and decomposition. Both real (left) and imaginary
(right) parts are given. The full lines refer to the isolated (decoupled) feed, the symbols
to the decomposition of admittance contributions in a full 3D simulation with modulated
(cross) and average (circle) IBC.
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Figure 4.7: Directivity of isotropic MS antenna: co-pol (top) and x-pol (bottom) radi-
ated by the antenna for θ ∈ [−90,90] and ϕ = 0 with different r.h.s. Blue solid lines
refer to complete 3D model, red solid lines to the SW model (2D), and the dashed
orange line to the isolated feed excitation (2D).
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4.2.5 Comparison between IBC Approximation, Full Unit Cell
Model and Measurements

In this subsection, solutions obtained with IBC and the full layout are compared with
one each other, and against measured data on the realized antenna. The full layout
is depicted together with the equivalent current densities in Fig. 4.8. This section
ties together many aspects to which this thesis was devoted. Encouraging results of
Fig. 4.9 show good agreement between the unit cell model and the approximated IBC.
Measured data confirm the validity of both models used so far. There is still space for
improvements though, e.g. on side lobes. We suspect that the lack of accuracy may be
due to the infinite model of the background (ground and dielectric). Possible solutions
to overcome these limits are under investigation as well as possible multi-mode modeling
of the coaxial feed via mode-matching. The Table 4.1 summarizes the computational
effort needed to simulate the full layout of the MTS antenna under investigation in
this chapter. Summing together the total computational times, we conclude that the
full-simulation of MTS of similar dimension takes approximately a day. This significant
overall timing for the computation only one solution on a high performance machine,
explains why different approaches were adopted at different scales to tackle the analysis
and the design of such devices. Similar computational results can be found for the IBC
counterpart. With the aim of also further reducing the computational cost for the final
analysis of the full layout, we present a hybrid GIFFT-Skeletonization formulation in the
next section.

Figure 4.8: Left: equivalent current density of the full textured unit cell model. Right:
zoom on the feed region.
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Figure 4.9: Directivity of isotropic MS antenna: co-pol (top) and x-pol (bottom) ra-
diated by the antenna for θ ∈ [−90,90] and ϕ = 0. Blue solid lines refer to the unit
cell model, red solid lines to the IBC model. The black lines are the measurements of
a prototype (i.e. textured unit cells).
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4.3 Fast Hybrid Scheme: GIFFT and Skeletonization
As already mentioned, to be able to treat a large planar structure with vertical

terms appearing in a few parts, e.g. in the feed, we apply the GIFFT acceleration-
compression method [5] to the 2D self-planar part of the MoM matrix. This method
alone allows us to run a full-wave MoM solver on antennas with planar parts of typical
linear size of 10-15λ discretized with about Np ≈ 106 RWG and a vertical feed region
with Nf ≈ 103 RWG within reasonable CPU times (10-24h on multi-core machines)
and memory (<100GB).
Dealing with multiple-feed points, multi-layers or simply larger structures requires further
acceleration and system matrix compression. The cross planar-vertical, inter-planar
and electrically large self-vertical subblocks of the system matrix represent interactions
between clustered groups of “far” basis functions and are (numerically) rank deficient.
Thus, due to their low-rank nature, algebraic methods, such as the skeletonization
schemes of [27, 34], efficiently compress the sub-blocks mentioned above.

4.3.1 Formulation and Implementation
Following the scheme introduced in [27], we describe the interaction between two

groups of (far) basis functions in terms of the following factorization:

Z ≈ UT Z̃V ≡ Zapprox (4.11)

where UT and V are the anterpolation and interpolation matrices and Z̃ is the low-rank
interaction matrix between the two sub-groups and contains the interactions between
the principal functions often called skeletons. Hierarchical schemes, such as Octree,
subdivide larger domains. To find the skeleton list and the anterpolation/interpolation
matrices of a sub-groups, we use the idea of proxy surfaces. Indeed, instead of building

Table 4.1: Summary of the resources required with the Intel Xeon CPU E5-2687W
v4 @3GHz. NΛ is the total number of RWG. “RHS Eval.” is the time necessary to
evaluate the RHS in the full geometry model when about 500 magnetic functions are
used to represent the TEM fundamental mode of the coaxial waveguide. “Far-Field
Factorization” and “Near Field” are the far-field factorization time and near-field time,
respectively. The “Planar-Vertical” column is the time needed to compute the planar-
vertical and self-vertical interactions. “Solving Time” refers to the number of iterations
reported in the “Iterations” column using the Flexible GMRES iterative solver.

NΛ
RHS Far-Field Near Planar Solving Iterations Memory
Eval. Factorization Field Vertical Time Peak

1M 1h30m 15m 45m 4h15m 11h 550 40 GB
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(a) (b)

Figure 4.10: Left(a): Skeleton cylinder. Right(b): Skeleton rings. Red triangles reveal
the skeleton basis function. The blue dots represent the delta-function discretisation of
the spherical proxy surface.

the entire block row and block column of a group (in order to compress it), we only
evaluate the interactions between the sources (test) of the group and a set of test
(sources) auxiliary functions. The proxy surface, typically a canonical surface, such
as the sphere sector of Fig. 4.10, can be discretized with test vector Dirac deltas
(sometimes referred to as samples) or linear functions such as RWGs. The electric field
of the sources is then projected onto the test functions. This procedure generates a
matrix ZS , that is compressed using the interpolative decomposition (ID) representing
the interaction between the sub-domain and the proxy surface. The ID takes as input
the low-rank matrix ZS and a user-defined tolerance; then it outputs the rank of the
matrix, a set of the dominant indices, Is (that corresponds to the skeletons), and a
basis matrix V which is used for the interpolation. Eventually, the scheme proceeds
to the second sub-groups in order to obtain factorization of the original sub-block as
in Fig. 4.11. Figure 4.10 shows a simple test in free-space (with the ground plane)
for a feed using spherical proxy and delta-Dirac function discretization. The red RWGs
correspond to the selected skeletons. Compression ratios, defined as the number of
skeletons over the total RWGs, larger than 10 can be easily achieved with a residual
Frobenius norm ∥Z − Zapprox∥ < 1%.

4.3.2 Preliminary Results
The skeleton method has been applied in different and successful ways to the free-

space Green’s function kernel. It also belongs to the so-called kernel-free methods,
which do not rely on any specific property of kernel one wishes to approximate and
compress. Thus, a priori, it should be directly applicable to the layered media Green’s
function kernel under consideration. In order to check this expectation we performed a
compressibility test by applying a SVD to the previous interaction matrix Z in free-space
and in a layered media with εr = 3. The singular values are plotted in Fig. 4.11. As
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expected the spectrum in free-space is rapidly decaying indicating good compressibility.
Free-space Green’s function are easily written in closed form and thus numerically very
accurate. However, the layered media Green’s function is numerically approximated in
several ways. First, no closed form is available and the evaluation requires numerical
integration which introduces certain — to some extent controllable — inaccuracy. Sec-
ond, to further accelerate its evaluation, interpolation methods are often used [27, 34]
which inevitably reduces the global accuracy. Less accuracy means more (white) noise
which is incompressible having a flat random distribution. We may then anticipate ID
to be less effective for numerically evaluated kernels. Unfortunately this seems to fit
well with the very different SVD spectrum observed for the layered case in Fig. 4.11.
The present interpolator implemented in the MoM code uses, as standard, a mesh with
40 points per λ. With this set up the SVD spectrum is very flat (green line). Not
surprisingly, it turns out that the corresponding cross-term interaction matrix cannot
be well approximated with the skeleton method explained in the previous section (ex.
no. of skeleton ∼ no. of basis function). A faster decaying spectrum is obtained by
removing the Green’s function interpolation (black line). We note that we are very far
from the exponential decay of the free-space case. Moreover, without interpolation, the
computational cost of the Green’s function is too high for our applications. Nevertheless
this level of accuracy is sufficient to provide a compression ratio of 3-5. As a compro-
mise between computational cost and accuracy we find that a finer interpolation mesh
with 200 points per λ allows one to recover similar compressibility as for the case of no

Figure 4.11: SVD singular values of sub-block interaction matrix between cylinder in
rings of the feed. Free-space and layered Green’s function kernels are used with different
level of evaluation accuracy: course interpolation, fine interpolation, no interpolation
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interpolation. The computational cost reduction in the calculation of the interaction
integrals (without the overhead of the method itself) is thus (3 − 10)2 ≈ 10 − 100
which is a substantial improvement even without resorting to more complex nested
compression schemes.

4.4 Conclusions and Future Work
This chapter presents an unprecedented analysis of different modeling options for the

metasurface center-fed antennas. We deal with the full metalization layout (unit cell),
and the important issue of the launching structure for the wave that then propagates
on the IBC radiating surface. Solutions obtained with IBC and the full layout are
compared with one another and with measured data for realized antennas. Impacts and
integration of the modeling options onto the IBC approximation for possible integration
in the numerical synthesis of Chap. 3 are exposed and discussed. A full-wave method
of moment hybrid fast-formulation for the analysis of metasurface antennas [12] is
introduced. Thus, for the first time, we introduce in the feed region a realistic 3-D
model of the feed. Our formulation comprises a FFT-like method for the co-planar
parts (e.g. [5]) of the structure and a skeletonization technique (e.g. [27, 34]) for
the remainder of the structure. Numerical results comparing this work to well-known
2-D approximate models of the feed are presented. The technique can also be used to
provide a more accurate calculation of the overall feed efficiency. Future investigations
will also explore automatic procedures for the numerical optimization of the feed.

63



64



Appendix A

Notation

Throughout this paper, an exp(jωt) time dependence is assumed and suppressed,
where ω is the angular frequency. A bold-symbol font is used to denote physical vec-
tors (i.e. elements of C3 or R3), single and double underline is used to denote one-
dimensional and two-dimensional computational arrays (i.e. arrays and matrices in a
numerical code). If f is a vector-valued function which is a linear combination of
vector-valued functions qℓ with coefficients aℓ, with ℓ = 1, . . . L, namely

f =
L∑︂

ℓ=1
aℓqℓ, (A.1)

we have that the one-dimensional array which collects the coefficients aℓ is a.
The pseudo-inner product between the vector quantities f and g is defined as:

⟨f ; g⟩ =
✂

S
f(r) · g(r) dS (A.2)

where r is a three-dimensional vector spanning the surface S.
In integral equation formulations, convolution integral between f and a dyadic

Green’s function G(r , r ′) appears in pseudo-inner product with g. This case is ex-
pressed via the compact notation:

⟨f ; G; g ⟩ =
✂

S

✂
S′

f(r) · G(r , r ′) · g(r ′) dS ′dS (A.3)

where r ′ is a three-dimensional vector spanning the surface S ′.
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Appendix B

Circular and Annular Waveguide
Modes

A magnetic eigenfunction, namely h, has the form:

h = hρ(ρ)hρ(ϕ)ρ̂ + hϕ(ϕ)hϕ(ϕ)ϕ̂. (B.1)

where, hρ(ρ), hρ(ϕ), hϕ(ϕ), hϕ(ϕ) are summarized in Table B.1.
Circular waveguide (CWG) spatial frequencies depend on χmn, which is the nth

non-vanishing root of the mth-order Bessel functions Jm(χmn), and χ′
mn, the nth non-

vanishing root of the derivative of the mth-order Bessel functions. Similarly, coaxial
(i.e., annular) waveguide (CXWG) modes depend on a different χmn, which is the nth
non-vanishing root of the mth-order Bessel-Neumann combination Zm (cχmn), and
χ′

mn, the nth non-vanishing root of another combination of Bessel-Neumann functions
of mth-order Z ′

m (cχ′
mn). The parameter c = a/b is the ratio between outer and inner

radius. The total number of modes in both cases is NΨ = 2N(2M + 1), where M is
the total number of axial modes and N is the total number of radial modes.

B.1 General basis change matrix entries for EBF
The analytic expression of the ℓ-th waveguide-mode, hℓ, is used to find the RWG

representation of the entire-domain basis function (EBF) Ψℓ:

Ψℓ =
NΛ∑︂
p=1

ΨpℓΛp, (B.2)

The coefficients Ψpℓ, with p = 1, . . . , NΛ, are obtained via weighted-residual, enforcing
the difference between the analytic expression hℓ and its RWG representation Ψℓ to be
outside the space spanned by the RWG set,

⟨Λκ; hℓ −Ψℓ⟩ = 0, ∀κ = 1, .., NΛ. (B.3)
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where by writing Ψℓ as in (2.12) and rearranging the terms, we have the linear system:

NΛ∑︂
p=1

Ψpℓ⟨Λκ; Λp⟩ = ⟨Λκ; hℓ⟩, ∀κ = 1, .., NΛ, (B.4)

to be solved for Ψpℓ, where on the left-hand side we have the Gram matrix, namely GΛ:

GΛ
κp = ⟨Λκ; Λp⟩ =

☎
◁▷κ×◁▷p

Λκ(x, y) ·Λp(x, y) dx dy (B.5)

where ◁▷κ and ◁▷p represent the support of the κ-th and p-th RWG, respectively.
Each column of the matrix Ψ is then obtained solving (B.4). This step represents a

negligible computational cost, as the Gram matrix (B.5) on the left-hand side of (B.4)
is very sparse, positive-definite, and with condition number O(1), so that convergence
with an iterative solver (e.g. Conjugate Gradient) is attained within few iterations.

Ψ =

⎡⎢⎢⎣
Ψ1,1 . . . Ψ1,NΨ... Ψκ,ℓ

...
ΨNΛ,1 . . . ΨNΛ,NΨ

⎤⎥⎥⎦ =
[︂
Ψ1 . . . Ψℓ . . . ΨNΨ

]︂
(B.6)

On one hand, the Gram Matrix in the EBF can be calculated by applying the basis
change matrix (B.6) to (B.5) as follows:

G̃
Ψ = ΨT GΛ Ψ (B.7)

On the other hand, the Gram Matrix for the EBF can be derived directly from the
analytic expressions of the corresponding EBF as

GΨ
κℓ

= ⟨hκ; hℓ⟩ =
☎

S
hκ(x, y) · hℓ(x, y) dx dy =

⎧⎨⎩1 if κ = ℓ

0 otherwise
(B.8)

where S is the support of the corresponding EBF. The ∞-norm calculated between
these two representations allow us to define the projection error due to the mesh size,
when the EBF are use to factorize RWG systems:

δh =
⃦⃦⃦
GΨ − G̃

Ψ⃦⃦⃦
∞

(B.9)
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Table B.1: Summary of CWG and CXWG modes for m = 0,1, . . . , M and n =
1,2, . . . , N .

Support Mode Type hρ(ρ) hρ(ϕ) hϕ(ρ) hϕ(ϕ)

Circular
TM even Jm

(︂
χmn

a
ρ
)︂ sin

mϕ J ′
m

(︂
χmn

a
ρ
)︂ cos

mϕodd cos sin

TE even J ′
m

(︂
χ′

mn

a
ρ
)︂ cos

mϕ Jm

(︂
χ′

mn

a
ρ
)︂ sin

mϕodd sin cos

Annular
TM even Zm

(︂
χmn

b
ρ
)︂ sin

mϕ Z ′
m

(︂
χmn

b
ρ
)︂ cos

mϕodd cos sin

TE even Z ′
m

(︂
χ′

mn

b
ρ
)︂ cos

mϕ Zm

(︂
χ′

mn

b
ρ
)︂ sin

mϕodd sin cos
TEM 1

ρ
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Appendix C

Annular Entire Domain Basis
Functions

C.1 Fast Far-field Radiation: Supplementary mate-
rial

For non-stationary phase points, which have to be integrated in dr ′, û /= ρ̂ and
ϕ̂ /= v̂, then we have:⎧⎨⎩ρ̂ = cos φx̂ + sin φŷ

ϕ̂ = − sin φx̂ + cos φŷ
,

⎧⎨⎩û = cos ϕ′x̂ + sin ϕ′ŷ
v̂ = − sin ϕ′x̂ + cos ϕ′ŷ

(C.1)

z

θ

φ

φ′

x

y

r

R

r′

û

v̂

θ′ = π/2
ψ

(a) (b)

Figure C.1: Geometrical background for far-field derivation. Left(a): 3d view. Right(b):
ρz view.
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Thus

û = (cos ϕ′ cos φ + sin ϕ′ sin φ) ρ̂ + (− cos ϕ′ sin φ + sin ϕ′ cos φ) ϕ̂ (C.2)
v̂ = (− sin ϕ′ cos φ + cos ϕ′ sin φ) ρ̂ + (sin ϕ′ sin φ + cos ϕ′ cos φ) ϕ̂ (C.3)

which can be rewritten as

û = cos (ϕ′ − φ) ρ̂ + sin (ϕ′ − φ) ϕ̂ (C.4)
v̂ = − sin (ϕ′ − φ) ρ̂ + cos (ϕ′ − φ) ϕ̂. (C.5)

In the background scenario described in sec.3.2, we can calculate the following integrals:

FJ
ϑ = V e

i (z0|z′)
✂ a

b

dρ′ρ′

⎧⎨⎩g(ρ′)Icos
1 , even symmetry

−l(ρ′)Isin
1 , odd symmetry

(C.6)

FJ
φ = cos ϑV h

i (z0|z′)
✂ a

b

dρ′ρ′

⎧⎨⎩g(ρ′)Icos
2 , even symmetry

l(ρ′)Isin
2 , odd symmetry

(C.7)

Integration along ϕ′

Icos
1 = 1

2
(︂
Im+1

cos + Im−1
cos

)︂
(C.8)

Isin
1 = 1

2
(︂
Im+1

sin + Im−1
sin

)︂
(C.9)

Icos
2 = 1

2
(︂
Im+1

sin − Im−1
sin

)︂
(C.10)

Isin
2 = −1

2
(︂
Im+1

cos − Im−1
cos

)︂
(C.11)

where
Im+1

cos = πejmφ

(︄
Jm+1(x)
(−j)m+1 + Jm+1(−x)

(+j)m+1

)︄
(C.12)

Im−1
cos = πejmφ

(︄
Jm−1(x)
(−j)m−1 + Jm−1(−x)

(+j)m−1

)︄
(C.13)

Im+1
sin = πej(mφ− π

2 )
(︄
Jm+1(x)
(−j)m+1 + Jm+1(−x)

(+j)m+1

)︄
(C.14)

Im−1
sin = πej(mφ− π

2 )
(︄
Jm−1(x)
(−j)m−1 + Jm−1(−x)

(+j)m−1

)︄
(C.15)
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Integration of (C.8)

If h(ϕ′) = cos mϕ′ we integrate along ϕ′ as follows:

Icos
1 =

✂ π

−π

dϕ′h(ϕ′) cos (ϕ′ − φ) ejks
ρ·ρ′

=
✂ π

−π

dϕ′ cos (ϕ′ − φ) cos mϕ′ejks
ρ·ρ′

= 1
2

⎡⎢⎢⎢⎢⎢⎣
✂ π

−π

dϕ′ cos ((m + 1)ϕ′ − φ) ejks
ρ·ρ′

⏞ ⏟⏟ ⏞
Im+1

cos

+
✂ π

−π

dϕ′ cos ((m− 1)ϕ′ + φ) ejks
ρ·ρ′

⏞ ⏟⏟ ⏞
Im−1

cos

⎤⎥⎥⎥⎥⎥⎦
= 1

2
(︂
Im+1

cos + Im−1
cos

)︂
(C.16)

Let us evaluate the following integrals:

Im
cos =

✂ π

−π

dϕ′ cos (mϕ′ ± φ) ejks
ρ·ρ′

=
✂ π

−π

dϕ′ cos (mϕ′ + mφ−mφ± φ) ejxcos(ϕ′−φ)

=
✂ π

−π

dϕ′ cos (m(ϕ′ − φ) + (m± 1)φ) ejxcos(ϕ′−φ)

=
✂ π

−π

dϕ′ cos (α + β) ejxcos(ϕ′−φ)

=
✂ π

−π

dϕ′ [cos α cos β − sin β sin α] ejxcos(ϕ′−φ)

= cos β

✂ π

−π

dϕ′ cos αejxcos(ϕ′−φ) − sin β

✂ π

−π

dϕ′ sin αejxcos(ϕ′−φ)

= cos β

✂ π

−π

dϕ′ cos (m(ϕ′ − φ)) ejxcos(ϕ′−φ)

⏞ ⏟⏟ ⏞
IJ

cos

− sin β

✂ π

−π

dϕ′ sin (m(ϕ′ − φ)) ejxcos(ϕ′−φ)

⏞ ⏟⏟ ⏞
IJ

sin

(C.17)
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where

IJ
cos =

✂ π

−π

dϕ′ cos (m(ϕ′ − φ)) ejxcos(ϕ′−φ)

= 1
2

✂ π

−π

dϕ′ej[xcos(ϕ′−φ)+m(ϕ′−φ)] + 1
2

✂ π

−π

dϕ′e−j[(−x)cos(ϕ′−φ)+m(ϕ′−φ)]

= 1
2

(︄
2π

(−j)m
Jm(x) + 2π

(+j)m
Jm(−x)

)︄
(C.18)

and

IJ
sin =

✂ π

−π

dϕ′ sin (m(ϕ′ − φ)) ejxcos(ϕ′−φ)

= 1
2j

✂ π

−π

dϕ′ej[xcos(ϕ′−φ)+m(ϕ′−φ)] − 1
2j

✂ π

−π

dϕ′e−j[(−x)cos(ϕ′−φ)+m(ϕ′−φ)]

= 1
2j

(︄
2π

(−j)m
Jm(x)− 2π

(+j)m
Jm(−x)

)︄
(C.19)

Thus

Im
cos =

✂ π

−π

dϕ′ cos (mϕ′ ± φ) ejks
ρ·ρ′

= cos ((m± 1)φ)
2

(︄
2π

(−j)m
Jm(x) + 2π

(+j)m
Jm(−x)

)︄

−sin ((m± 1)φ)
2j

(︄
2π

(−j)m
Jm(x)− 2π

(+j)m
Jm(−x)

)︄
(C.20)

It follows that

Im+1
cos =

✂ π

−π

dϕ′ cos ((m + 1)ϕ′ − φ) ejks
ρ·ρ′

= π cos(mφ)
(︄
Jm+1(x)
(−j)m+1 + Jm+1(−x)

(+j)m+1

)︄

+jπ sin(mφ)
(︄
Jm+1(x)
(−j)m+1 −

Jm+1(−x)
(+j)m+1

)︄

= πejmφ

(︄
Jm+1(x)
(−j)m+1 + Jm+1(−x)

(+j)m+1

)︄
(C.21)

In a straightforward similar manner the integration for the eqs. (C.13), (C.14), (C.15)
can be performed. The knowledge of closed-form integrals leads via eqs. (C.8), (C.9),
(C.10) and (C.11) to the knowledge of the closed-form integration along ϕ of the
far-field radiation integral described in section 3.2.
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C.2 IBC MoM Matrix Entries: Supplementary ma-
terial

⟨hℓ;X · hm⟩ =
✂ a

b

✂ π

−π

fρ
ℓ (ρ)gρ

ℓ (ϕ) (Xρρ + Xρϕ) fρ
m(ρ)gρ

m(ϕ)ρ dρ dϕ⏞ ⏟⏟ ⏞
Iρ

+
✂ a

b

✂ π

−π

fϕ
ℓ (ρ)gϕ

ℓ (ϕ) (Xϕϕ + Xρϕ) fϕ
m(ρ)gϕ

m(ϕ)ρ dρ dϕ⏞ ⏟⏟ ⏞
Iϕ

=
(︂
Iρ + Iϕ

)︂
(C.22)

where

Iρ = xρρ

✂ a

b

fρ
ℓ (ρ)fρ

m(ρ)ρ dρ

✂ π

−π

gρ
ℓ (ϕ)gρ

m(ϕ) dϕ

+
K∑︂

k=1

(︂
xρρ

k + xρϕ
k

)︂✂ a

b

fρ
ℓ (ρ)fk(ρ)fρ

m(ρ)ρ dρ

✂ π

−π

gρ
ℓ (ϕ)gρ

m(ϕ) cos(kϕ) dϕ⏞ ⏟⏟ ⏞
Iρ

cos

+

+
K∑︂

k=1

(︂
xρρ

k + xρϕ
k

)︂✂ a

b

fρ
ℓ (ρ)fk(ρ)fρ

m(ρ)ρ dρ

✂ π

−π

gρ
ℓ (ϕ)gρ

m(ϕ) sin(kϕ) dϕ⏞ ⏟⏟ ⏞
Iρ

sin

(C.23)

The same derivation can be made for Iϕ. Summarizing, we have to solve 10 different
integrals along ρ̂ (the 8 shown below plus 2 for EBF Gram Matrix for constant average
reactance terms):

• ℓ, m, k ∈ N∗

i gℓ gm gk Ii

1 cos ℓϕ cos mϕ
cos kϕ

π/2
2 sin ℓϕ 0
3 cos ℓϕ sin mϕ

0
4 sin ℓϕ ±π/2
5 cos ℓϕ cos mϕ

sin kϕ

0
6 sin ℓϕ ±π/2
7 cos ℓϕ sin mϕ

±π/2
8 sin ℓϕ 0
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• ∄ℓ, m, k ∈ N∗ s.t. (ℓ + m + k) /= 0

• the integration has to be performed only when (ℓ−m− k) = 0, (ℓ + m− k) = 0
or (ℓ−m + k) = 0. Otherwise all the other integrals vanish;

• the sign of each integral depends on which of the 3 possible index combinations
is satisfied;

• integrals I1, I4 have to be computed for k = 1, . . . , K;

• integrals I6, I7 have to be computed for k = 1, . . . , K.
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Appendix D

Rectangular Entire Domain Basis
Functions

The magnetic eigenfunction are defined in a cartesian coordinate system xy as:

h = hx(x, y)x̂ + hy(x, y)ŷ (D.1)

Both hx and hy are defined over a rectangular domain R centred in O = (0,0) with
sides a and b along x̂ and ŷ directions, respectively.

The TM modes associated to (D.1) for m, n = 1,2,3, . . . are:

hx(x, y) = 2
b

n√︄
m2 b

a
+ n2 a

b

sin mπ

a
x cos nπ

b
y (D.2)

hy(x, y) = −2
a

m√︄
m2 b

a
+ n2 a

b

cos mπ

a
x sin nπ

b
y, (D.3)

The TE modes for m, n = 0,1,2,3, . . . are

hx(x, y) = 2
a

m√︄
m2 b

a
+ n2 a

b

sin mπ

a
x cos nπ

b
y (D.4)

hy(x, y) = 2
b

n√︄
m2 b

a
+ n2 a

b

cos mπ

a
x sin nπ

b
y. (D.5)

where the mode m, n = 0 is excluded.
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D.1 Fast Far Field Radiation: Derivations
Rectangular EBF can be generally written as a planar electric current over the

rectangular domain R = [−a/2, a/2]× [−b/2, b/2]:
J(x′, y′) = Jx(x′, y′)x̂ ′ + Jy(x′, y′)ŷ ′

= Jxx(x′)Jxy(y′)x̂ ′ + Jyx(x′)Jyy(y′)ŷ ′ (D.6)
and then from eq. (162) of [31]

Eϑ,φ ≈
e−jkN r

2πjr
e−jks

zN z0kN ⟨f ϑ,φejks
ρ·ρ′ ; J⟩⏞ ⏟⏟ ⏞

FJ
ϑ,φ

(D.7)

where
f EJ

ϑ = V e
i (z0|z′) (cos φx̂ + sin φŷ) (D.8)

and
f EJ

φ = cos ϑV h
i (z0|z′) (− sin φx̂ + cos φŷ) (D.9)

and
ejks

ρ·ρ′ = ejk0x′ sin ϑ cos φejk0y′ sin ϑ sin φ

= ejkxx′
ejkyy′ (D.10)

where
kx = k0 sin ϑ cos φ (D.11)
ky = k0 sin ϑ sin φ (D.12)

Then FJ
ϑ from (D.7) can be divided in x̂ and ŷ component as follows:

FJx
ϑ = cos φV e

i (z0|z′)
☎

R
Jx(x′, y′)ejk0x′ sin ϑ cos φejk0y′ sin ϑ sin φ dx′dy′

= cos φV e
i (z0|z′)

✂ a/2

−a/2
Jxx(x′)ejkxx′

dx′

⏞ ⏟⏟ ⏞
Fx{Jxx(x′)Π(x′/a)}

✂ b/2

−b/2
Jxy(y′)ejkyy′

dy′

⏞ ⏟⏟ ⏞
Fy{Jxy(y′)Π(y′/a)}

(D.13)

where for instance Fx{} indicates the Fourier Transform along the direction x. Then
we have:

FJy

ϑ = sin φV e
i (z0|z′)Fx{Jyx(x′)Π(x′/a)}Fy{Jyy(y′)Π(y′/a)} (D.14)

Similarly, for FJ
φ we obtain:

FJx
φ = − sin φ cos ϑV h

i (z0|z′)Fx{Jxx(x′)Π(x′/a)}Fy{Jxy(y′)Π(y′/a)} (D.15)
and

FJy
φ = cos φ cos ϑV h

i (z0|z′)Fx{Jyx(x′)Π(x′/a)}Fy{Jyy(y′)Π(y′/a)} (D.16)
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