POLITECNICO DI TORINO Repository ISTITUZIONALE

Offset-Free Model Predictive Control for Active Magnetic Bearings

Original

Offset-Free Model Predictive Control for Active Magnetic Bearings / CASTELLANOS MOLINA, LUIS MIGUEL. - (2020 Jul 24), pp. 1-120.

Availability: This version is available at: 11583/2843984 since: 2020-09-03T16:22:47Z

Publisher: Politecnico di Torino

Published DOI:

Terms of use: Altro tipo di accesso

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

PhD Dissertation Synthesis Title: Offset-Free Model Predictive Control for Active Magnetic Bearings

Author: Luis Miguel Castellanos Molina

Supervisors: Prof. Andrea Tonoli Prof. Nicola Amati

February 24, 2020

The thesis deals with the study of Offset-Free Model Predictive Control (OF-MPC) for Active Magnetic Bearing (AMB) systems. OF-MPC is a systematic approach to optimally handle the trade-off between control effort and controlled outputs taking into account plant dynamics and constraints. The term "Offset-Free" stands for the possibility to compensate the plant-model mismatch and guarantee zero-offset at steady state based on the external disturbance estimate. A procedure for the overall design is presented and supported by numerical simulations and experimental works conducted in two test rigs: a single-degree-of-freedom AMB system and a more complex cone-shaped AMB system. The results demonstrate that with OF-MPC the coil current limitations are optimally handled and the plant-model mismatch is quantified real-time in terms of disturbance forces. The approach is also effective in guaranteeing stability and rejecting external disturbance forces. The application of OF-MPC is a novel and promising constrained optimal control technique for cone-shaped AMB systems since the main control difficulties: (i) coupling of radial and axial control actions, and (ii) the low force generation capability in axial direction, can be addressed in a clear and systematic way. The results also demonstrate that OF-MPC outperforms Proportional-Integral-Derivative controllers in the compensation of axial external forces. The main contribution of this thesis is the numerical and experimental demonstration of the potentiality of OF-MPC for AMB systems, together with a methodology for its implementation. Furthermore, the control algorithm is described in detail showing how to: reduce the computational burden of the control problem, generate OF-MPC solvers from C code generation tools and design properly the plant state estimator.