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Tier structure of strongly endotactic reaction networks∗

David F. Anderson† Daniele Cappelletti‡ Jinsu Kim§ Tung Nguyen¶

October 4, 2019

Abstract

Reaction networks are mainly used to model the time-evolution of molecules of interacting chemical
species. Stochastic models are typically used when the counts of the molecules are low, whereas determin-
istic models are often used when the counts are in high abundance. The mathematical study of reaction
networks has increased dramatically over the last two decades as these models are now routinely used to
investigate cellular behavior. In 2011, the notion of “tiers” was introduced to study the long time behavior
of deterministically modeled reaction networks that are weakly reversible and have a single linkage class.
This “tier” based argument was analytical in nature. Later, in 2014, the notion of a strongly endotactic
network was introduced in order to generalize the previous results from weakly reversible networks with
a single linkage class to this wider family of networks. The point of view of this later work was more
geometric and algebraic in nature. The notion of strongly endotactic networks was later used in 2018 to
prove a large deviation principle for a class of stochastically modeled reaction networks.

In the current paper we provide an analytical characterization of strongly endotactic networks in terms
of tier structures. By doing so, we not only shed light on the connection between the two points of view,
but also make available a new proof technique for the study of strongly endotactic networks. We show the
power of this new technique in two distinct ways. First, we demonstrate how the main previous results
related to strongly endotactic networks, both for the deterministic and stochastic modeling choices, can be
quickly obtained from our characterization. Second, we demonstrate how new results can be obtained by
proving that a sub-class of strongly endotactic networks, when modeled stochastically, is positive recurrent.
Finally, and similarly to recent independent work by Agazzi and Mattingly, we provide an example which
closes a conjecture in the negative by showing that stochastically modeled strongly endotactic networks
can be transient (and even explosive).

1 Introduction

Reaction networks are now commonly used to model the dynamical behavior of cellular processes, including
gene regulatory systems, signaling systems, metabolic systems, viral infections, etc. If the counts of the
constituent “species” of the system of interest are low, then the dynamics of the counts are typically modeled
via a continuous-time Markov chain with state space Zd

≥0, where d is the number of species in the system. On
the other hand, if the counts are high, then an autonomous system of (typically non-linear) ordinary differential
equations in R

d
≥0 is used to model the dynamics of the relevant chemical concentrations. See [11, 29, 30] for

the precise connection between these two modeling choices.
The mathematical foundation of deterministically modeled reaction networks can largely be traced back to

the series of papers [20, 25, 26], where Feinberg, Horn, and Jackson introduced the notion of network deficiency
and proved that if the reaction network (i) is weakly reversibility and (ii) has a deficiency of zero, then the
resulting deterministically modeled system endowed with mass-action kinetics is “complex-balanced,” which
means that (i) every linear invariant manifold in R

d
>0 admits precisely one equilibrium point, and (ii) each

of these equilibria satisfies a particular network balance and it is a so-called complex-balanced equilibrium.
Importantly, they showed that this result holds regardless of the choice of rate parameters for the model.
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Feinberg, Horn, and Jackson were interested in chemical systems at an industrial scale. At smaller scales,
discrete stochastic models have been utilized and studied. In particular, the works of Gardiner [21], Van
Kampen [35], Kurtz [28, 29, 30], and Gillespie [22, 23] were all instrumental in increasing our understanding
of these models.

Much of the work cited in the previous paragraph took place in the 1960s and 1970s. While there was
mathematical work related to reaction networks during the 1980s and 1990s, it was the advent of new tech-
nologies in the biological setting, such as fluorescent proteins, that made the study of mathematical models of
reaction networks quite popular over the last two decades.

Reaction networks can naturally be associated with a finite graph, constituted by the set of all chemical
reactions that can take place. For a few examples of such graphs, see Examples 3.1, 3.2, and 3.3. Much of the
theory on reaction networks deals with connections between such finite graphs, which are relatively easy to
study, and the qualitative properties of the associated dynamical system. We note also that it is most useful
to provide results that hold for any choice of model parameters, as these parameters are often unknown with
any certainty in the biological setting. Specifically, the mathematical results about reaction networks are often
of the following form:

Consider a reaction network whose associated graph has properties A, B, and C. Then, for any choice of
parameters for the model, the relevant dynamical system will have property D.

For example, in the works of Horn, Jackson, and Feinberg cited above, weak reversibility and a deficiency
of zero are both structural properties of the graph, and they imply qualitative dynamical properties of the
models such as non-chaotic behavior of the trajectories and the absence of limit cycles, regardless of the choice
of model parameters.

For our purposes, the most relevant previous works in the field are [4, 5] by Anderson, [24] by Gopalkrishnan,
Miller, and Shiu, and [1, 2] by Agazzi, Dembo, and Eckmann. In [4, 5], Anderson developed the concept of
“tiers” of complexes, and used them to study deterministically modeled reaction networks. Loosely speaking,
tiers constitute a partition of the system complexes (see section 2 for relevant definitions) into sets related to
reactions whose propensities have the same relative strength along a particular sequence of points in R

d. The
works [4, 5] used tiers to prove that trajectories for reactions networks that were (i) weakly reversible and
(ii) had a single linkage class, were necessarily persistent (meaning that they cannot get arbitrarily close to
the boundary of the state space, see Definition 5.1) and bounded, regardless of the choice of rate parameters.
These works closed the well-known Global Attractor Conjecture in the single linkage class case [16]. Later, in
[24], Gopalkrishnan, Miller, and Shiu (i) introduced the notion of strongly endotactic networks (which are a
subclass of endotactic networks, introduced in [17]), (ii) showed that weakly reversible networks that have a
single linkage class are strongly endotactic, and (iii) showed that deterministically modeled strongly endotactic
networks are permanent (which is a stronger condition than persistence and boundedness of trajectories, see
Definition 5.2). The main results of [24] are stated here as Theorems 5.4 and 5.5. Finally, the class of strongly
endotactic networks have been fruitfully recently considered in [1, 2], where a large deviation principle for
stochastically modeled reaction networks that are strongly endotactic and that are also “asiphonic” is provided.

The tier argument developed in [4, 5] was analytical in nature, whereas the methods developed in [24] and
later utilized in [1, 2], while quite similar to those developed in [4, 5], were more algebraic and geometric in
nature. In the present work, we will make the connections between the two works more precise. Specifically,
we will characterize strongly endotactic networks in regards to their tier structures.

Elucidating the connection between strongly endotactic networks and tiers is the first major contribution
of this work, and provides a new proof technique for the study of strongly endotactic networks. We will
demonstrate the power of this new technique in two distinct ways.

1. We show how the proofs of the major results related to strongly endotactic networks in both the de-
terministic and stochastic settings can be dramatically streamlined. First, we will show how the main
results of [24] related to deterministic models of reaction networks that are strongly endotactic follow
in a straightforward manner by the tier characterization. Second, we will show how the main analytical
results of [1, 2] can be quickly recovered using our characterization.

2. We show that members of a particular subclass of strongly endotactic networks are positive recurrent
when modeled stochastically, regardless of the choice of rate parameters.

We make one further contribution in this paper. It has been proven in a number of instances that the behaviors
of the associated deterministic and stochastic models for reaction networks are similar in a broad sense. For
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example, there is theory connecting the dynamics of the two models on compact time intervals [7, 29, 30], on
pathwise approximations [14, 15], and on similarities between their long time stationary behavior [6, 9, 12, 13].
Hence, since it is proven in [24] that deterministically modeled strongly endotactic networks have very well
behaved trajectories in the sense made precise by Theorems 5.4 and 5.5, it was natural to conjecture that
all strongly endotactic networks are necessarily positive recurrent when stochastically modeled. We show
this conjecture to be false by providing strongly endotactic networks that are transient and even explosive,
regardless of the choice of parameters for the model (see Examples 3.1 and 3.2). (We note that the conjecture
has independently been shown to be false in the recently submitted paper [3] by Mattingly and Agazzi, where
other examples are provided.)

The outline of the remainder of the paper is as follows. In section 2, we provide useful notation, and the
relevant mathematical models. In section 3, we provide the definition of a strongly endotactic network. We
also provide the examples alluded to in the previous paragraph demonstrating that not all strongly endotactic
networks are recurrent, when modeled stochastically. In section 4, we provide the relevant definitions pertaining
to tiers. In particular, in subsection 4.2 we provide our main analytical result, Theorem 4.2, that characterizes
strongly endotactic networks by their tier structures. In section 5, we use our results from section 4 to prove
that deterministically modeled strongly endotactic networks are both persistent and permanent. Therefore,
the results of section 5 recover the main findings in [24]. In section 6, we utilize our results from section 4 to
recover a sufficient condition used in [1, 2] to prove a large deviation principle. Finally, in section 7, we use the
results of section 4 to provide a new subclass of reaction networks for which positive recurrence is guaranteed,
regardless of the choice of rate parameters.

2 Background

2.1 Notation

Throughout the paper, we will denote by R, R≥0, and R>0 the real, the non-negative real, and the positive
real numbers, respectively. Similarly, we will denote by Z, Z≥0, and Z>0 the integer, the non-negative integer,
and the positive integer numbers, respectively. Given a vector v ∈ R

d, we say that the vector is positive or
non-negative if v is in R

d
>0 or Rd

≥0, respectively.

Given two vectors v, w ∈ R
d, we will denote by 〈v, w〉 their scalar product. Furthermore, we will write

v ≥ w if the inequality holds component-wise. Moreover, we will use the following shorthand notation:

vw =
d∏

i=1

vwi

i , v! =
d∏

i=1

vi!,

where we use the usual convention 00 = 1. Finally, we will denote by ln(v) the vector of Rd whose ith entry
is ln(vi) and we will denote by ⌊v⌋ the vector whose ith entry is ⌊vi⌋.

Given a vector v ∈ R
d, we denote

‖v‖∞ = max{|vi| : 1 ≤ i ≤ d} and ‖v‖1 =
d∑

i=1

|vi|.

Moreover, we denote by v ∨ 1 the vector whose ith component is max{vi, 1}. For two sequences of positive
real numbers (an)

∞
n=0 and (bn)

∞
n=0, we write an ≫ bn if limn→∞

an

bn
= ∞.

2.2 Reaction networks

A reaction network is a triple G = (S, C,R) where S, C, and R are defined as follows. S is a finite set of
species, that is a set of d distinct symbols. C is a finite set of complexes. We assume each complex is a linear
combinations of species on Z≥0. Complexes will be regarded as vectors in Z

d
≥0 in the paper, given that an

ordering for the species is chosen. Finally, R is a finite set of reactions, that is a finite subset of C × C with
the property that for any y ∈ C we have (y, y) /∈ R. Usually, a reaction (y, y′) is denoted by y → y′, and we
adopt this notation in the paper.

We say that y is a source complex if there is a reaction of the form y → y′, and we say that y is a product
complex if there is a reaction of the form y′ → y. Moreover, given a reaction y → y′ we say that y is the source
and y′ is the product of y → y′.
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It is often convenient to denote the species as {S1, . . . , Sd}, as this allows us to refer to species via their
index. In particular, we will write both Si ∈ S and i ∈ S. However, in practical examples the set of species is
often given as some subset of {A,B,C, . . . }.

Given a reaction network G, a directed graph with nodes C and edges R can be constructed. This directed
graph is called reaction graph. See Examples 3.1, 3.2, and 3.3 for examples of such graphs. In this paper
we assume that all complexes appear in at least one reaction and all species appear in at least one complex.
Under this assumption, the reaction graph uniquely determines a reaction network. In fact, reaction networks
are usually described by means of their reaction graph, and the same will be done in the present paper.

The stoichiometric subspace is defined as

S = span
R
{y′ − y : y → y′ ∈ R},

and for any x ∈ R
d the set x + S = {x + s, with s ∈ S} is termed the stoichiometric compatibility class

determined by x. Similarly, the sets (x+ S) ∩ R
d
≥0 are the nonnegative stoichiometric compatibility classes.

2.3 Deterministic model

Deterministic models are typically used when the counts of the relevant molecules (the species) are large and
their concentrations change nearly continuously in time accordingly to the propensities of the different chemical
transformations.

Formally, given a reaction network G, a (deterministic) kinetics Λ for G is a map assigning a function
λy→y′ : R

d
≥0 → R≥0 to each reaction y → y′ ∈ R. The functions λy→y′ are called (deterministic) rate

functions. We call a pair (G,Λ), where G is a reaction network and Λ is a deterministic kinetics, a deterministic
reaction system. In this setting, the concentration of the different chemical species is of interest, which should
be understood as the average number of molecules of the different species per unit of volume. If molecules are
approximated with dimensionless points in space, concentrations are non-negative real numbers ranging from
0 to ∞. Given an initial condition z(0) ∈ R

d
≥0, the change in chemical species concentration is then modeled

as the solution to the integral equation

z(t) = z(0) +
∑

y→y′∈R

(y′ − y)

∫ t

0

λy→y′(z(s)) ds, (2.1)

if the solution exists and is unique. Note that at any time point t, z(t) − z(0) ∈ S. That is, z(t) is confined
within the same stoichiometric compatibility class as z(0).

A popular choice of kinetics is given by (deterministic) mass action kinetics, where for any reaction
y → y′ ∈ R, the associated rate function is given by

λD
y→y′(x) = κy→y′xy,

for some positive constant κy→y′ , termed a reaction constant. Note that under the assumption of mass action
kinetics, the solution to (2.1) exists and is unique for any initial condition, since the rates λy→y′ are polynomials
and therefore locally Lipschitz. In contrast, global existence is not guaranteed, and in case of a blow-up at a
finite time t⋆ we consider the solution to (2.1) only in the interval [0, t⋆).

Mass action kinetics corresponds to the hypothesis that the molecules of the chemical species involved in
the transformations are well-stirred. In the present paper, we will focus on this choice of kinetics, which is
typically studied in reaction network theory [19] and in biochemistry [18, 27]. More general kinetics (such as
Michaelis-Menten kinetics) can be derived as limits of mass action kinetics when different chemical reactions
operate over time scales of different orders of magnitude [18, 27].

2.4 Stochastic model

Stochastic models are typically used when we are interested in the counts of the different chemical species.
This situation typically arises when the abundances are low, as is often the case in the biological setting.

The formal definition of stochastic reaction systems follows the definition of deterministic reaction sys-
tems closely: given a reaction network G, a (stochastic) kinetics Λ for G is a map assigning a function
λy→y′ : Zd

≥0 → R≥0 to each reaction y → y′ ∈ R. The functions λy→y′ are called (stochastic) rate func-
tions. A stochastic reaction system is a pair (G,Λ), where G is a reaction network and Λ is a stochastic
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kinetics. The change in chemical species counts is modeled by means of a continuous-time Markov chain with
state space Z

d
≥0, whose transition rates are given by

q(x, x + ξ) =
∑

y→y′∈R
y′−y=ξ

λy→y′(x).

In case of an explosion occurring at a finite-time T∞, we consider the X(t) = ∆ for any t ≥ T∞, where ∆ is
a cemetery state not contained in Z

d
≥0. Another representation of the Markov chain X , due to Kurtz [31], is

given as follows:

X(t) = X(0) +
∑

y→y′∈R

(y′ − y)Yy→y′

(∫ t

0

λy→y′(X(s)) ds

)
(2.2)

where Yy→y′ are independent, unit-rate Poisson processes. Letting Tn denote the time of the nth transition of
the model, the above representation is valid up until T∞ = limn→∞ Tn. Here, the counting process

Ry→y′(t) = Yy→y′

(∫ t

0

λy→y′(X(s)) ds

)

keeps track of how many times the reaction y → y′ has occurred by time t.
From (2.2) we have that X(t) − X(0) ∈ S for any time point t. Hence, and just as for the deterministic

model, the stochastic process X is confined within the stoichiometric compatibility class determined by X(0).
A popular choice of stochastic kinetics is given by (stochastic) mass action kinetics, where for any reaction

y → y′ ∈ R

λS
y→y′(x) = κy→y′

1{x≥y}
x!

(x− y)!
, (2.3)

for some positive constant κy→y′ , called a reaction constant. Similarly with deterministic reaction networks,
mass action kinetics corresponds to the hypothesis that the molecules are well-stirred in space. The analysis
of the present paper focus on this choice of kinetics.

3 Strongly endotactic networks

We give here the definition of strongly endotactic networks, that was first introduced in [24].

Definition 3.1. Consider a reaction network G, and a vector w ∈ R
d that is not orthogonal to the stoichio-

metric subspace S. We say that a complex y ∈ C is w−maximal if y is a source complex and for any other
source complex y′ we have 〈w, y′ − y〉 ≤ 0.

Definition 3.2. A reaction network G is strongly endotactic if for all vectors w ∈ R
d that are not orthogonal

to the stoichiometric subspace S the following holds:

1. if y is a w−maximal complex, then for all reactions of the form y → y′ we have 〈w, y′ − y〉 ≤ 0;

2. there exists a w−maximal complex y and a reaction y → y′ ∈ R with 〈w, y′ − y〉 < 0.

Strongly endotactic networks are a generalization of weakly reversible single linkage class networks studied
in [5]: the following proposition, which is corollary 3.20 in [24], makes the statement precise.

Proposition 3.1. Assume G is a reaction network such that for any two complexes y, y′ there exists a sequence
of ℓ complexes, y = y1, y2, . . . , yℓ = y′, such that yj → yj+1 ∈ R for all 1 ≤ j ≤ ℓ−1 (this condition is equivalent
to saying that G is weakly reversible and consists of a single linkage class). Then, G is strongly endotactic.

Strongly endotactic network are not necessarily weakly reversible single linkage class networks, examples
are provided in Examples 3.1 and 3.2. As discussed in the Introduction, due to the stable behavior of the
deterministic mass action systems associated with strongly endotactic networks (see Theorems 5.4 and 5.5),
it was conjectured that stochastic mass action systems associated to strongly endotactic networks would be
positive recurrent for any choice of rate constants. This is not the case: in Example 3.1 a strongly endotactic
network is considered that results in a transient system if endowed with stochastic mass action kinetics, for
any choice of rate constants. Furthermore, in Example 3.2 we show that a similar model is explosive for any
choice of rate constants.
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Example 3.1. Consider the reaction network

0 → 2A+B → 4A+ 4B → A.

The reaction network is strongly endotactic: to check that this statement is true, it is convenient to draw the
complexes considered as vectors on a Cartesian plane, and depict the reactions as arrows among them. This
is done in Figure 1a. Now consider the shaded regions of Figure 1b: it can be checked that

• If w ∈ R1, then the w−maximal complex is 4A+ 4B. The only reaction with source complex 4A+ 4B
is 4A+ 4B → A, and we have 〈w, (−3,−4)〉 < 0.

• If w ∈ R2, then the w−maximal complex is 0. The only reaction with source complex 0 is 0 → 2A+B,
and we have 〈w, (2, 1)〉 < 0.

• If w ∈ R3, then the w−maximal complex is 2A+ B. The only reaction with source complex 2A+ B is
2A+B → 4A+ 4B, and we have 〈w, (2, 3)〉 < 0.

• If w is a positive multiple of (−1, 1), then the w−maximal complexes are 0 and 4A+4B, which are source
complexes of 0 → 2A+B and 4A+4B → A. In this case, we have 〈w, (2, 1)〉 < 0 and 〈w, (−3,−4)〉 < 0.

• If w is a positive multiple of (1,−2), then the w−maximal complexes are 0 and 2A+B, which are source
complexes of 0 → 2A+B and 2A+B → 4A+4B. In this case, we have 〈w, (2, 1)〉 = 0 and 〈w, (2, 3)〉 < 0.

• If w is a positive multiple of (1,−2/3), then the w−maximal complexes are 2A+B and 4A+4B, which
are source complexes of 2A+B → 4A+ 4B and 4A+ 4B → A. In this case, we have 〈w, (2, 3)〉 = 0 and
〈w, (−3,−4)〉 < 0.

Hence, the network is strongly endotactic. A general strategy to recognize strongly endotactic network, called
the sweep test, and which we essentially carried out here in detail, is discussed in [24].

0

2A+B

4A+ 4B

A

A

B

(a) The complexes of the network of Example 3.1,
considered as vectors, are drawn. The reactions are
represented by arrows. The shaded region repre-
sents the convex hull generated by the source com-
plexes. Note that all reactions originated on the
faces of the convex hull point inside the hull.

(-1,1)

(1,-2)

(1,-2/3)

R1

R2

R3

A

B

(b) The space is divided into the open regions R1,
R2, and R3, which correspond to the loci of vectors
w with different w−maximal complexes, and into
the rays separating them (which are orthogonal to
the faces of the convex hull generated by the source
complexes). The vectors w laying on the separating
lines have two w−maximal complexes.

Nevertheless, any stochastic mass action system associated with the network is transient. Indeed, from
any state x = (xA, xB) ∈ Z

d there is a positive probability that the reaction 0 → 2A+B occurs j consecutive
times, with xA + 2j ≥ xB + j and xB + j being divisible by 4. There is then a positive probability that the
reaction 4A+4B → 0 takes place until no molecule of B is left, and a state of the form x′ = (x′

A, 0) is reached.
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Then, due to continuity of probability measures, the probability, p(x′
A), that from the state x′ the infinite

repetition of the sequence of reactions 0 → 2A+B, 2A+B → 4A+ 4B and 4A+ 4B → A take place is

p(x′
A) =

∞∏

n=x′

A
+1

1 · κ2A+B→4A+4B(n+ 1)n

κ2A+B→4A+4B(n+ 1)n+ κ0→2A+B

· κ4A+4B→A(n+ 3)(n+ 2)(n+ 1)n · 4!
κ4A+4B→A(n+ 3)(n+ 2)(n+ 1)n · 4! + κ2A+B→4A+4B(n+ 3)(n+ 2) · 4 + κ0→2A+B

.

An infinite product of the form
∏

n anbn, where an, bn ∈ (0, 1), will converge to a nonzero value if and only if
the infinite sum

∑
n [(1− an) + (1− bn)] converges; see [34, Theorem 15.4]. The sum

∞∑

n=x′

A
+1

(
κ0→2A+B

κ2A+B→4A+4B(n+ 1)n+ κ0→2A+B
+

+
κ2A+B→4A+4B(n+ 3)(n+ 2) · 4 + κ0→2A+B

κ4A+4B→A(n+ 3)(n+ 2)(n+ 1)n · 4! + κ2A+B→4A+4B(n+ 3)(n+ 2) · 4 + κ0→2A+B

)
< ∞,

has terms of order n−2, and so converges. Thus, we may conclude that p(x′
A) > 0. Hence, it follows that

there is a positive probability of leaving the state x forever through the repetition of the sequence of reactions
0 → 2A + B, 2A + B → 4A + 4B and 4A + 4B → A, which increases the number of molecules of A at each
cycle. It follows that every state is transient, independently on the choice of positive rate constants. �

We now show how a slight modification of the previous example leads to a strongly endotactic network
that explodes for any initial condition.

Example 3.2. By modifying the reaction network in Example 3.1 we obtain

0 → 2A → 4A+B → 6A+ 4B → 3A.

The network is still strongly endotactic, as can be checked by utilizing a similar techinque as in Example 3.1.
Moreover, and similarly as in Example 3.1, it can be verified that from any state x ∈ Z

d it is possible to reach
a state of the form x′ = (x′

A, 0), and by letting the reaction 0 → 2A take place we may assume that x′
A ≥ 2.

There is then a positive probability that starting from x′ the infinite repetition of the sequence of reactions
2A → 4A+B, 4A+B → 6A+ 4B, and 6A+ 4B → 3A occurs, each cycle increasing the number of molecules
of A by 1. The main difference with the previous example is that by the monotone convergence theorem the
expected time it takes for the infinite repetition of the reaction sequence 2A → 4A+B, 4A+B → 6A+ 4B,
and 6A+ 4B → 3A to take place, m(x′

A), is bounded by

m(x′
A) <

∞∑

n=x′

A

(
1

κ2A→4A+Bn(n− 1)
+

1

κ4A+B→6A+4B(n+ 2)(n+ 1)n(n− 1)

+
1

κ6A+4B→3A(n+ 4)(n+ 3)(n+ 2)(n+ 1)n(n− 1) · 4!

)
< ∞,

so the model is explosive [33]. For more on explosive stochastic reaction networks, see [6]. �

We provide an example that is not strongly endotactic. This model will be considered in Remark 4.4.

Example 3.3. The reaction network
A ⇋ 2B, A+ C ⇋ B + C

is not strongly endotactic. Indeed, consider the vector w = (1, 1, 10): it is not orthogonal to the stoichiometric
subspace since 〈w, (−1, 2, 0)〉 6= 0, (−1, 2, 0) being the reaction vector of A → 2B. It can be checked that the
w−maximal complexes are A + C and B + C, but there is no reaction y → y′ ∈ R with y ∈ {A+ C,B + C}
and 〈w, y′ − y〉 < 0.

It is interesting to note that within every stoichiometric compatibility class the amount of molecules of C
is kept constant, hence the above network equipped with mass-action kinetics is equivalent to

B ⇋ A ⇋ 2B,

for a suitable choice of rate constants. Somewhat surprisingly, the latter is strongly endotactic by Proposition
3.1. �
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4 Tiers

This section is broken into 3 subsections. In subsection 4.1, we introduce the relevant definitions related
to tiers. We also provide a few results related to these definitions. In subsection 4.2, we provide Theorem
4.2, which is our main technical result and characterizes strongly endotactic networks in terms of their tier
structures. Finally, in subsection 4.3, we collect results relating tier sequences with a commonly used Lyapunov
function that plays a role in each of the subsequent results of the present paper.

4.1 Definitions

Definition 4.1. A sequence (xn)
∞
n=0 of positive vectors of Rd

>0 is called a tier sequence if

lim
n→∞

‖ ln(xn)‖∞ = ∞

and for all pairs of complexes y, y′ ∈ C the limit

lim
n→∞

xy′−y
n

exists (it could be infinity). Moreover, a tier sequence is proper if for all n,m ∈ Z≥0 we have xn − xm ∈ S.

Remark 4.1. Note that, given a sequence (xn)
∞
n=0 of positive vectors in R

d
>0 with limn→∞ ‖ ln(xn)‖∞ = ∞, it

is always possible to extract a subsequence that is a tier sequence. This follows from the fact that there are
finitely many complexes.

Remark 4.2. The definition of tier sequence is tied to the choice of mass action kinetics for the reaction
network. Indeed, xy

n is proportional to the deterministic mass action rate function associated with a reaction
whose source is y, and xy−y′

n is nothing but the ratio xy
n/x

y′

n . Hence, a sequence is a tier sequence if a ranking
of the reaction rates λD along xn can be made, in the sense specified by the next definition. We also note here
that the focus of this paper will be on the relative behavior of reaction rate functions along sequences diverging
to infinity, with the aim to understand the behavior of the dynamics of the associated reaction network. Since
the stoichiometric compatibility classes are invariant sets for both the deterministic and the stochastic models,
it makes sense to restrict our analysis to proper tier sequences.

Definition 4.2. Given a tier sequence (xn)
∞
n=0, we define tiers as subsets of C in the following recursive

manner:

1. we say that a complex y is in tier 1 (and write y ∈ T 1
(xn)

) if for all complexes y′ ∈ C

lim
n→∞

xy−y′

n > 0;

2. we say that a complex y is in tier i (and write y ∈ T i
(xn)

) if there exists y′ ∈ T i−1
(xn)

with

lim
n→∞

xy−y′

n = 0

and for all complexes y′ /∈ ⋃i−1
j=1 T

j
(xn)

we have

lim
n→∞

xy−y′

n > 0.

Given a tier sequence, tiers describe a partition of C. We further define an order relation on C in the
following way: we write y -(xn) y

′ if y ∈ T i
(xn)

, y′ ∈ T j
(xn)

and i ≥ j. Similarly, we write y ≺(xn) y
′ if y ∈ T i

(xn)
,

y′ ∈ T j
(xn)

and i > j. Note that the inequality on the indexes of the tiers is reversed, and y ≺(xn) y′ if and

only if the ratio xy
n/x

y′

n converges to 0 as n tends to infinity, meaning that xy
n is much smaller than xy′

n for
large n. Finally, we write y ∼(xn) y

′ if y and y′ are in the same tier. Note that by definition for all complexes
y ∈ C we have y ∼(xn) y.

Definition 4.3. We say that a tier sequence (xn)
∞
n=0 is transversal if there exists at least one reaction

y → y′ ∈ R such that
lim
n→∞

| ln(xy′−y
n )| = ∞.
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Remark 4.3. Equivalently, transversal tier sequences can be defined as those tier sequences for which there
exists y → y′ ∈ R such that the complexes y and y′ are in different tiers. These reactions will play an important
role in the proofs of our results. We will prove in Lemma 4.1 that all proper tier sequences (which are those
we will focus on, see Remark 4.2) are transversal.

Example 4.1. Consider the reaction network

A ⇋ B ⇋ 2C

and the sequences (xn)
∞
n=0 and (x̂n)

∞
n=0 defined by

xn =

(
1

n
, 5− 1

n
− 1

2
√
n
,

1√
n

)
and x̂n =

(
en, 2en,

1

n

)
.

Then, (xn)
∞
n=0 is a proper tier sequence, which we demonstrate now. The entries xn,1 and xn,3 go to zero as

n goes to infinity, which implies limn→∞ ‖ ln(xn)‖∞ = ∞. Moreover,

lim
n→∞

x(−1,0,2)
n = 1 and lim

n→∞
x(−1,1,0)
n = ∞,

which implies that (xn)
∞
n=0 is a tier sequence and A ∼(xn) 2C and A ≺(xn) B. Finally, (xn)

∞
n=0 is proper

because for any n ≥ 1

xn+1 − xn =

(
1

n+ 1
− 1

n

)
(1,−1, 0) +

(
1

2
√
n+ 1

− 1

2
√
n

)
(0,−1, 2) ∈ S.

For what concerns (x̂n)
∞
n=0, we still have limn→∞ ‖ ln(x̂n)‖∞ = ∞. Moreover,

lim
n→∞

x̂(0,−1,2)
n = 0 and lim

n→∞
x(−1,1,0)
n = 2,

so (x̂n)
∞
n=0 is a tier sequence and A ∼(x̂n) B and 2C ≺(x̂n) A. Finally, (x̂n)

∞
n=0 is transversal but not proper,

indeed
lim
n→∞

| ln(x̂(0,−1,2)
n )| = ∞

but for any n ≥ 1

〈x̂n+1 − x̂n, (2,−2, 1)〉 = −2(en+1 − en) +
1

n+ 1
− 1

n
6= 0,

and (2,−2, 1) is orthogonal to S (hence x̂n+1 − x̂n /∈ S). �

The following result connects proper and transversal tier sequences. As illustrated in Example 4.1, the
converse does not hold.

Lemma 4.1. A proper tier sequence is transversal.

Proof. Consider a proper tier sequence (xn)
∞
n=0. By definition,

lim
n→∞

‖ ln(xn)‖∞ = ∞

and
lim
n→∞

| ln(xy′−y
n )|

exists for any y → y′ ∈ R. After potentially considering a subsequence, we may assume that for any n ≥ 0

xn+1,i ≥ xn,i if lim sup
n→∞

ln(xn,i) = ∞;

xn+1,i ≤ xn,i if lim inf
n→∞

ln(xn,i) = −∞,

which implies that the above lim sup and lim inf are limits. It also follows that

lim
n→∞

| ln(xn,i)| = ∞

9



for at least one index 1 ≤ i ≤ d. Hence, by [4, Theorem 3.9] there exists a vector w ∈ R
d such that

wi > 0 if and only if lim
n→∞

ln(xn,i) = ∞;

wi < 0 if and only if lim
n→∞

ln(xn,i) = −∞;

〈w, y′ − y〉 = 0 if y ∼(xn) y
′.

Note that wi = 0 if lim supn→∞ | ln(xn,i)| < ∞. In particular, it follows that

lim
n→∞

〈w, xn〉 =
{
∞ if limn→∞ ‖xn‖∞ = ∞;

0 otherwise
.

We will show that there must be an n̂ ≥ 1 for which 〈w, xn̂〉 6= 0. First, if limn→∞〈w, xn〉 = ∞, the assertion
is clear. If, on the other hand, limn→∞〈w, xn〉 = 0, then none of the xn,i converge to infinity. Since all the
vectors {xn}∞n=0 are positive, and at least one of xn,i converges to zero, we may conclude that 〈w, xn〉 < 0 for
all n.

If (xn)
∞
n=0 were not transversal, then we would have

lim
n→∞

| ln(xy′−y
n )| < ∞

for any reaction y → y′ ∈ R, which would imply that y ∼(xn) y′ for any y → y′ ∈ R. It would follow that

〈w, y′ − y〉 = 0 for any y → y′ ∈ R, which means w ∈ S⊥. Let n̂ ≥ 1 be such that 〈w, xn̂〉 6= 0. Since (xn)
∞
n=0

is proper, we have
lim
n→∞

〈w, xn〉 = 〈w, xn̂〉+ lim
n→∞

〈w, xn − xn̂〉 = 〈w, xn̂〉 /∈ {0,∞}.

This is a contradiction, and the proof is concluded.

For notational convenience, we give the following definition.

Definition 4.4. Define CS ⊆ C to be the set of source complexes. Given a tier sequence (xn)
∞
n=0, we define

source tier 1 to be the set
T 1,S
(xn)

= {y ∈ CS : y′ -(xn) y for all y′ ∈ CS}.

The following is a key concept of this paper, and will provide a characterization of strongly endotactic
networks.

Definition 4.5. We say that a tier sequence (xn)
∞
n=0 is tier descending if both the following statements hold:

1. for all y ∈ T 1,S
(xn)

and all y → y′ ∈ R we have y′ -(xn) y;

2. there exist y ∈ T 1,S
(xn)

and y → y′ ∈ R with y′ ≺(xn) y.

Moreover, we say that a reaction network G is tier descending if all transversal tier sequences are tier descending.

4.2 Relation between strongly endotactic networks and its tiers

We now state our first main result, which provides a characterization of strongly endotactic networks in terms
of tiers.

Theorem 4.2. A reaction network is strongly endotactic if and only if it is tier descending.

Before proceeding with the proof of Theorem 4.2, we present an immediate corollary.

Corollary 4.3. If a reaction network is strongly endotactic, then every proper tier sequence is tier descending.
Moreover, if S = R

d then a reaction network is strongly endotactic if and only if every proper tier sequence is
tier descending.

Proof. The first part of the result follows from Lemma 4.1 and Theorem 4.2. Moreover, if S = R
d then any

transversal tier sequence is proper (since all sequences are proper in this case), and the proof follows from
Theorem 4.2.
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Remark 4.4. It is tempting to believe that if every proper tier sequence of a reaction network is tier descending,
then the network is strongly endotactic. By Corollary 4.3 we see that this is true in the case when S = R

d.
However, this statement is false, in general. As an example, consider the reaction network

A ⇋ 2B, A+ C ⇋ B + C.

The network is not strongly endotactic, as shown in Example 3.3. Nevertheless, every proper tier sequence is
tier descending: since no reaction changes the amount of molecules of the species C, every proper tier sequence
(xn)

∞
n=0 is of the form

xn = (xn,1, xn,2, c)

for a constant c ∈ R>0. It is then easy to check that (xn)
∞
n=0 is tier descending if and only if (x̂n)

∞
n=0 defined

by
x̂n = (xn,1, xn,2)

is tier descending for
B ⇋ A ⇋ 2B.

The latter is strongly endotactic by Proposition 3.1. Hence, each proper tier sequence (such as (x̂n)
∞
n=0) is

tier descending by Corollary 4.3, thus proving our claim.

We now proceed by providing a key lemma that will be used in the proof of Theorem 4.2.

Lemma 4.4. If (xn)
∞
n=0 is a tier sequence, then there exist ℓ ∈ Z with 0 < ℓ ≤ d, sequences of positive real

numbers (m1
n)

∞
n=0, (m2

n)
∞
n=0, . . . , (mℓ

n)
∞
n=0, a sequence of real vectors (Cn)

∞
n=0, vectors α1, α2, . . . , αℓ ∈ R

d

and a subsequence (xnk
)∞k=0 such that:

1. ln(xnk
) =

∑ℓ
i=1 m

i
nk
αi + Cnk

;

2. lim supk→∞ ‖Cnk
‖∞ < ∞;

3. For all 1 ≤ i ≤ ℓ we have limk→∞ mi
nk

= ∞, and if 1 ≤ j < i ≤ ℓ then limk→∞ mi
nk
/mj

nk
= 0;

4. if y′ ∼(xn) y then 〈y′ − y, αi〉 = 0 for all 1 ≤ i ≤ ℓ;

5. if y′ ≺(xn) y then
iy,y′ = min{1 ≤ i ≤ ℓ : 〈αi, y

′ − y〉 6= 0} (4.1)

exists and 〈αiy,y′ , y
′ − y〉 < 0.

Remark 4.5. Parts 1 and 2 of the lemma show that the logarithm of a tier sequence can be substantially
decomposed into fixed vectors, αi, apart from a bounded error term, Cnk

. Part 3 then shows that if i < j,
then the influence of the vector αi is greater than the influence of the vector αj . Finally, by parts 4 and 5 we
see that the αi’s separate complexes in a natural manner among the tiers.

As an example, consider the reaction network

A ⇋ B ⇋ 2C

and the tier sequence

xn =

(
1

n
, 5− 1

n
− 1

2
√
n
,

1√
n

)
,

introduced in Example 4.1. We have

ln(xnk
) = ln(n)

(
−1, 0,−1

2

)
+ Cn,

where

Cn =

(
0, ln

(
5− 1

n
− 1

2
√
n

)
, 0

)
.

Note that ‖Cn‖∞ < ln(5) for all n > 1. Moreover, recall that A ∼(xn) 2C and A ≺(xn) B, which is implied
also by parts 4 and 5 of the lemma, since

〈
(1, 0,−2),

(
−1, 0,−1

2

)〉
= 0 and

〈
(1,−1, 0),

(
−1, 0,−1

2

)〉
< 0.
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Proof of Lemma 4.4. Define m1
n = ‖ ln(xn)‖∞. Note that for any n ≥ 0 we have ‖ ln(xn)/m

1
n‖∞ = 1. Hence,

we can consider a subsequence of (xn)
∞
n=0 such that

α1 = lim
k→∞

ln(xnk
)

m1
nk

(4.2)

exists. We further note that α1 cannot be zero since it is the limit of a sequence of points in the ball of radius
1 with respect to ‖ · ‖∞ in R

d.
Since the dimension of the vectors xn is d < ∞, we can further choose a subsequence such that the maximal

absolute values of the entries of ln(xnk
) are always obtained in the same position. This implies that at least

one entry of ln(xnk
) has absolute value constantly equal to m1

nk
. Moreover, by (4.2) the sign of such entries

will stabilize for k large enough. Hence, the vectors

ln(xnk
)−m1

nk
α1

have at least one component constantly equal to zero for k large enough.
We define mi

nk
and αi iteratively in the following way: for each j ≥ 2, if

lim sup
k→∞

‖ ln(xnk
)−

j−1∑

i=1

mi
nk
αi‖∞ = ∞,

then define mj
nk

= ‖ ln(xnk
)−∑j−1

i=1 mi
nk
αi‖∞. By potentially considering a subsequence of (xnk

)∞k=0, we can
assume that

αj = lim
k→∞

ln(xnk
)−∑j−1

i=1 m
i
nk
αi

mj
nk

exists. As before, note that αj cannot be zero. Moreover, we can choose a subsequence such that the maximal

absolute values of the entries of ln(xnk
)−∑j−1

i=1 mi
nk
αi are always obtained in the same position, so by induction

it follows that at least j − 1 components of ln(xnk
) −∑j−1

i=1 mi
nk
αi are equal to zero for k large enough (the

argument is the same as for j = 1, which serves as base case). In particular, it follows that there exists a
number ℓ ≤ d such that

lim sup
k→∞

∥∥∥∥∥ln(xnk
)−

ℓ∑

i=1

mi
nk
αi

∥∥∥∥∥
∞

< ∞.

We define

Cn = ln(xn)−
ℓ∑

i=1

mi
nαi.

Parts (1) and (2) trivially hold by the definition of Cn. For part (3), note that for all 2 ≤ j ≤ ℓ

lim
k→∞

mj
nk

mj−1
nk

= lim
k→∞

∥∥∥∥∥
ln(xnk

)−∑j−1
i=1 mi

nk
αi

mj−1
nk

∥∥∥∥∥
∞

= ‖αj−1 − αj−1‖∞ = 0.

For part (4), consider y ∼(xn) y
′. Then,

0 < lim
k→∞

xy′−y
nk

< ∞.

By taking the logarithm, it follows that

−∞ < lim
k→∞

ln(xy′−y
nk

) < ∞.

Hence, since m1
nk

tends to infinity as k tends to infinity, we have

0 = lim
k→∞

ln(xy′−y
nk

)

m1
nk

= 〈α1, y
′ − y〉.
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We complete the proof of part (4) by induction: consider 1 < j ≤ ℓ and assume that the statement holds for
any 1 ≤ i ≤ j − 1. Then, by part (1) and since mj

nk
tends to infinity as k tends to infinity, we have

0 = lim
k→∞

ln(xy′−y
nk

)

mj
nk

= lim
k→∞

〈∑ℓ
i=1 m

i
nk
αi + Cnk

, y′ − y〉
mj

nk

= lim
k→∞

〈∑ℓ
i=j m

i
nk
αi + Cnk

, y′ − y〉
mj

nk

= 〈αj , y
′ − y〉.

Finally, for part (5) consider y′ ≺(xn) y. Then, we have

lim
k→∞

xy′−y
nk

= 0,

which implies

−∞ = lim
k→∞

ln(xy′−y
nk

) = lim
k→∞

(
ℓ∑

i=1

mi
nk
〈αi, y

′ − y〉+ 〈Cnk
, y′ − y〉

)
. (4.3)

Since the values ‖Cnk
‖∞ are bounded uniformly in k, we have

lim
k→∞

ℓ∑

i=1

mi
nk
〈αi, y

′ − y〉 = −∞,

which implies that
iy,y′ = min{1 ≤ i ≤ ℓ : 〈αi, y

′ − y〉 6= 0}
exists. Moreover, by part 3 we have

〈αiy,y′ , y
′ − y〉 = lim

k→∞

ln(xy′−y
nk

)

m
iy,y′
nk

.

By construction, the term on the left is non-zero. Further, by (4.3) the right-hand size is non-positive. Hence,
〈αiy,y′ , y

′ − y〉 < 0, which concludes the proof.

Now we are able to prove Theorem 4.2.

Proof of Theorem 4.2. Assume that the network is tier descending. Consider a vector w that is not orthogonal
to the stoichiometric subspace S. Consider the sequence (xn)

∞
n=0 defined by

xn = enw.

We have
lim
n→∞

‖ ln(xn)‖∞ = lim
n→∞

n‖w‖∞ = ∞

and for any two complexes y, y′ ∈ C

lim
n→∞

ln(xy′−y
n ) = lim

n→∞
n〈w, y′ − y〉 =





−∞ if 〈w, y′ − y〉 < 0

0 if 〈w, y′ − y〉 = 0

∞ if 〈w, y′ − y〉 > 0

. (4.4)

Hence, (xn)
∞
n=0 is a tier sequence. Moreover, it is transversal: since w is not orthogonal to S, there exists a

reaction y → y′ with 〈w, y′ − y〉 6= 0, which implies limn→∞ | ln(xy′−y
n )| = ∞. It follows that (xn)

∞
n=0 is tier

descending, which together with equation 4.4 concludes the proof of one direction of the result.
For the other direction, we suppose that the network is strongly endotactic. Let (xn)

∞
n=0 be a transversal

tier sequence. In order to prove the result, it is sufficient to construct a vector w such that

1. w /∈ S⊥;

2. 〈w, y′ − y〉 = 0 if and only if y′ ∼(xn) y, and 〈w, y′ − y〉 < 0 if and only if y′ ≺(xn) y.
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Indeed, if such a vector is constructed, then it follows that the set of w−maximal complexes coincides with
y ∈ T 1,S

(xn)
, and by Definition 3.2 the sequence (xn)

∞
n=0 is tier descending.

Consider a subsequence (xnk
)∞k=0 as in Lemma 4.4, such that there exist ℓ ∈ Z with 0 < ℓ ≤ d, sequences

of positive real numbers (m1
nk
)∞k=0, (m

2
nk
)∞k=0, . . . , (m

ℓ
nk
)∞k=0, (Cnk

)∞k=0, and vectors α1, α2, . . . , αℓ ∈ R
d such

that

ln(xnk
) =

ℓ∑

i=1

mi
nk
αi + Cnk

.

Note that (xnk
)∞k=0 is still a transversal tier sequence, and the tier structures of (xn)

∞
n=0 and of its subsequence

(xnk
)∞k=0 are identical, meaning that for any i ≥ 1 we have T i

(xn)
= T i

(xnk
). Let

w =
ℓ∑

i=1

viαi,

with the positive constants vi defined recursively as follows: vℓ = 1 and

vi = 1 + max
y→y′∈R

〈αi,y
′−y〉6=0

∣∣∣∣∣

∑ℓ
j=i+1 vj〈αj , y

′ − y〉
〈αi, y′ − y〉

∣∣∣∣∣ for 1 ≤ i ≤ ℓ− 1.

We have the following:

1. Since (xnk
)∞k=0 is transversal and since ‖Cnk

‖∞ are bounded, there must exist a reaction y → y′ and a
vector αi such that 〈αi, y

′ − y〉 6= 0. Let

ı̂ = min
1≤i≤ℓ : 〈αi,y′−y〉6=0

.

By definition of the constants vi, we have

|vı̂〈αı̂, y
′ − y〉| >

∣∣∣∣∣∣

ℓ∑

j=ı̂+1

vj〈αj , y
′ − y〉

∣∣∣∣∣∣
,

hence

〈w, y′ − y〉 =
ℓ∑

j=ı̂

vj〈αj , y
′ − y〉 6= 0,

which is equivalent to say that w /∈ S⊥.

2. By Lemma 4.4(4)(5), y′ ∼(xn) y if and only if 〈αi, y
′ − y〉 = 0 for all 1 ≤ i ≤ ℓ. By the definition of w

the latter is in turn equivalent to 〈w, y′ − y〉 = 0. Moreover, y′ ≺(xn) y if and only if 〈αiy,y′ , y
′ − y〉 < 0,

where iy,y′ is defined in (4.1), which by definition of the constants vi is equivalent to

〈w, y′ − y〉 =
ℓ∑

j=iy,y′

vj〈αj , y
′ − y〉 < 0.

The proof is then concluded.

4.3 Tier sequences and Lyapunov functions

Let u(x) : R → R≥0 be the function

u(x) =

{
x(ln x− 1) + 1 if x > 0,

1 otherwise.
(4.5)

Then we define

U(x) = 1 +

d∑

i=1

u(xi). (4.6)
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This function has been utilized often as a Lyapunov function in the context of reaction network theory. In
particular, it was utilized in the foundational papers of the field in order prove local asympotic stability of
complex balanced deterministic mass action systems [20, 25]. Moreover, it (or slight modifications thereof)
has notably been used to derive the results of [2, 4, 5, 24], which are of direct interest for the present paper.
More discussion on the role of Lyapunov functions for stochastic reaction networks can be found in [8] and
[10].

In the present section, we will unveil some important connections between tier sequences and the Lyapunov
function (4.6) by extending the techniques of [5] to the setting of tier descending networks. We will then use
these connections to develop the results presented in sections 5, 6, and 7.

Lemma 4.5. Consider a tier descending reaction network G and let (xn)
∞
n=0 be a transversal tier sequence.

Then, for any y → y′ ∈ R with y -(xn) y′ there exists y⋆ ∈ C and y⋆ → y⋆⋆ ∈ R such that y -(xn) y⋆,
y⋆⋆ ≺(xn) y

⋆ and for any choice of c1, c2 ∈ R>0 and c3, c4 ∈ R there exists N < ∞ with

c1x
y⋆

n

(
ln(xy⋆⋆−y⋆

n ) + c3

)
+ c2x

y
n

(
ln(xy′−y

n ) + c4

)
< 0 for all n ≥ N. (4.7)

Moreover, if there exists a c ∈ R>0 for which xy⋆

n ≥ c > 0 for all n, then for any choice of c1, c2 ∈ R>0 and
c3, c4 ∈ R we have

lim
n→∞

(
c1x

y⋆

n

(
ln(xy⋆⋆−y⋆

n ) + c3

)
+ c2x

y
n

(
ln(xy′−y

n ) + c4

))
= −∞. (4.8)

Proof. Fix y → y′ ∈ R. We consider two cases separately: y ∼(xn) y
′ and y ≺(xn) y

′.

Case 1. Assume that y ∼(xn) y
′. Then

lim
n→∞

| ln(xy′−y
n )| < ∞.

By the definition of a descending reaction network there must be at least one reaction y⋆ → y⋆⋆ with y⋆ ∈ T 1,S
(xn)

(implying y -(xn) y
⋆) and y⋆⋆ ≺(xn) y

⋆. Hence, we have

lim
n→∞

xy−y⋆

n < ∞

and
lim
n→∞

ln(xy⋆⋆−y⋆

n ) = −∞.

It follows that

c1x
y⋆

n

(
ln(xy⋆⋆−y⋆

n ) + c3
)
+ c2x

y
n

(
ln(xy′−y

n ) + c4
)

= xy⋆

n

(
c1

(
ln(xy⋆⋆−y⋆

n ) + c3

)
+ c2x

y−y⋆

n

(
ln(xy′−y

n ) + c4

))

is negative for n large enough, which proves (4.7). Moreover, if xy⋆

n ≥ c > 0, then (4.8) follows.

Case 2. We prove the result by contradiction. Assume that y ≺(xn) y′. If (4.7) did not hold, then there
would exist a subsequence (xnk

)∞k=0 such that for any y⋆ → y⋆⋆ ∈ R with y -(xn) y
⋆ and y⋆⋆ ≺(xn) y

⋆, there
exist c1, c2 ∈ R>0 and c3, c4 ∈ R with

c1x
y⋆

n

(
ln(xy⋆⋆−y⋆

n ) + c3

)
+ c2x

y
n

(
ln(xy′−y

n ) + c4

)
≥ 0 for all k ∈ Z≥0. (4.9)

Our aim is to prove that such a subsequence does not exist.
Every subsequence of a descending tier sequence is still a descending tier sequence. Hence, by potentially

considering a further subsequence, we can assume that (xnk
)∞k=0 is as in Lemma 4.4.

Consider the sequence (x̃nk
)∞k=0 defined by

ln(x̃nk
) =

iy′ ,y∑

i=1

mi
nk
αi (4.10)
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where iy′,y is as defined in (4.1), and exists by Lemma 4.4(5). We will first show that (x̃nk
)∞k=0 is also

a transversal tier sequence, and is therefore tier descending. We then prove that there exist y⋆ ∈ C and
y⋆ → y⋆⋆ ∈ R such that y ≺(x̃nk

) y
⋆, y⋆⋆ ≺(x̃nk

) y
⋆. Finally, we will prove that these complex orderings are

valid also when considerering the original tier sequence (xn)
∞
n=0, as required by the lemma.

By Lemma 4.4(3), we have

lim
k→∞

‖ln(x̃nk
)‖∞

m1
nk

‖α1‖∞
= 1,

and so limk→∞ ‖ ln(x̃nk
)‖∞ = ∞. Furthermore, for any two complexes ỹ, ỹ′ ∈ C the limit

lim
k→∞

x̃ỹ′−ỹ
nk

= lim
k→∞

e
∑i

y′,y
i=1 mi

nk
〈αi,ỹ

′−ỹ〉

exists (it can potentially be infinity). Hence, (x̃nk
)∞k=0 is a tier sequence. Moreover,

lim
k→∞

| ln(x̃y′−y
nk

)| = lim
k→∞

∣∣∣∣∣∣

iy′,y∑

i=1

mi
nk
〈αi, y

′ − y〉

∣∣∣∣∣∣
= lim

k→∞
m

iy′ ,y
nk |〈αiy′ ,y , y

′ − y〉| = ∞.

Hence, (x̃nk
)∞k=0 is a transversal tier sequence. Combining this with the fact that G is a tier descending

reaction network, we may conclude that (x̃nk
)∞k=0 is tier descending. Since (x̃nk

)∞k=0 is a tier sequence, Lemma
4.4 guarantees that it can be decomposed as detailed therein. It is straightforward to prove that the vectors and
coefficients as constructed in the proof of the lemma coincide with the mi

nk
and αi in (4.10), for 1 ≤ i ≤ iy′,y.

By Lemma 4.4(3)(5) we have

lim
k→∞

ln(x̃y′−y
nk

) = lim
k→∞

m
iy′,y
nk 〈αiy′ ,y , y

′ − y〉 = −∞,

allowing us to conclude that limk→∞ x̃y′−y
nk

= 0. Thus, y ≺(x̃nk
) y

′. Since (x̃nk
)∞k=0 is tier descending, y cannot

be in T 1,S
(x̃nk

). Hence, there must exist a complex y⋆ with y ≺(x̃nk
) y⋆ and a reaction y⋆ → y⋆⋆ ∈ R with

y⋆⋆ ≺(x̃nk
) y⋆. Combining y ≺(x̃nk

) y⋆ with Lemma 4.4(5), it follows that iy⋆,y ≤ iy′,y. Hence, by Lemma

4.4(3) we may conclude
lim
k→∞

ln(x̃y−y⋆

nk
) = lim

k→∞
ln(xy−y⋆

nk
),

as they are both asymptotically equivalent to the same term. Therefore, the latter is negative infinity and
y ≺(xnk

) y
⋆.

Similarly as above, since y⋆⋆ ≺(x̃nk
) y

⋆ we may conclude that iy⋆⋆,y⋆ ≤ iy′,y and y⋆⋆ ≺(xnk
) y

⋆.

Now we prove (4.7). Combining xy⋆

nk
> 0 and y⋆⋆ ≺(xnk

) y
⋆ we know that for k large enough

xy⋆

nk

(
ln(xy⋆⋆−y⋆

nk
) + c3

)
< 0. (4.11)

Moreover, combining y ≺(xnk
) y

⋆, iy⋆,y⋆⋆ ≤ iy′,y, and Lemma 4.4(3)(5) we have

lim
k→∞

xy⋆

nk

(
ln(xy⋆⋆−y⋆

nk
) + c3

)

xy
nk

(
ln(xy′−y

nk ) + c4

) = lim
k→∞

xy⋆−y
nk

m
iy⋆⋆,y⋆

nk 〈αiy⋆⋆,y⋆
, y⋆⋆ − y⋆〉

m
iy′ ,y
nk 〈αiy′ ,y , y

′ − y〉
= −∞, (4.12)

where we use that 〈αiy⋆⋆,y⋆
, y⋆⋆ − y⋆〉 < 0 and 〈αiy′ ,y , y

′ − y〉 > 0. By (4.11) and (4.12), for any positive
constants c1, c2 we have

lim sup
k→∞

(
c1x

y⋆

n

(
ln(xy⋆⋆−y⋆

n ) + c3

)
+ c2x

y
n

(
ln(xy′−y

n ) + c4

))
< 0,

which is a contradiction of (4.9), hence (4.7) holds.
In order to prove the last part of the result, assume that xy⋆

n ≥ c > 0, where c is as in the statement of the
lemma. Let d1, d2 ∈ R>0 and d3, d4 ∈ R. We must show that for the particular choice of sequence (xn)

∞
n=0,

and the particular choice of y⋆ and y⋆⋆ we have that

lim
n→∞

(
d1x

y⋆

n

(
ln(xy⋆⋆−y⋆

n ) + d3

)
+ d2x

y
n

(
ln(xy′−y

n ) + d4

))
= −∞. (4.13)
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We may apply (4.7) with c1 = d1/2, c2 = d2, c3 = d3 and c4 = d4 to conclude that for n large enough we have

d1x
y⋆

n

(
ln(xy⋆⋆−y⋆

n ) + d3

)
+ d2x

y
n

(
ln(xy′−y

n ) + d4

)

< d1x
y⋆

n

(
ln(xy⋆⋆−y⋆

n ) + d3

)
+ d2

(
d1/2

d2

∣∣∣xy⋆

n

(
ln(xy⋆⋆−y⋆

n ) + d3

)∣∣∣
)

=
d1
2
xy⋆

n

(
ln(xy⋆⋆−y⋆

n ) + d3

)
,

(4.14)

where we are using that xy
n ln(x

y′−y
n ) > 0 and xy⋆

n ln(xy⋆⋆−y⋆

n ) < 0. Then, since y⋆⋆ ≺(xn) y⋆, by Lemma
4.4(3)(5) we have

lim
n→∞

ln(xy⋆⋆−y⋆

n ) = lim
n→∞

ℓ∑

i=iy⋆,y⋆⋆

mi
n〈αi, y

⋆⋆ − y⋆〉 = −∞.

It follows that

lim
n→∞

d1
2
xy⋆

n

(
ln(xy⋆⋆−y⋆

n ) + d3

)
≤ lim

n→∞

d1
2
c
(
ln(xy⋆⋆−y⋆

n ) + d3

)
= −∞. (4.15)

Combining (4.15) and (4.14) yields (4.13), and completes the proof.

Proposition 4.6. Consider a tier descending reaction network G. Then, for any transversal tier sequence
(xn)

∞
n=0 and any choice of positive constants κy→y′ , there exists N < ∞ such that

∑

y→y′∈R

κy→y′xy
n ln(x

y′−y
n ) < 0 for all n ≥ N. (4.16)

Moreover, if the complex 0 is a source complex, then

lim
n→∞

∑

y→y′∈R

κy→y′xy
n ln(xy′−y

n ) = −∞. (4.17)

Proof. The result follows from noting that for any reaction y → y′ ∈ R either y′ ≺(xn) y and

xy
n ln(x

y′−y
nk

) < 0,

or y -(xn) y
′ and Lemma 4.5 holds. Hence, since there are finitely many reactions, for any choice of positive

constants κy→y′ there exists N < ∞ such that (4.16) holds.

For the second part of the statement, assume that 0 is a source complex. Then, by definition of T 1,S
(xn)

we

have 0 -(xn) y for all y ∈ T 1,S
(xn)

, which implies that for all y ∈ T 1,S
(xn)

lim
n→∞

xy
n = lim

n→∞
xy−0
n > 0.

Since (xn)
∞
n=0 is transversal and G is tier descending, (xn)

∞
n=0 is tier descending. Hence, there is a reaction

y → y′ ∈ R with y ∈ T 1,S
(xn)

and y′ ≺(xn) y. Hence

lim
n→∞

xy
n ln(xy′−y

n ) = −∞,

and similarly as before (4.17) follows from Lemma 4.5.

5 Persistence and Permanence

The paper [24] deals with persistence and permanence of deterministic mass action systems associated with a
strongly endotactic reaction network. The relevant definitions are as follows.

Definition 5.1. A deterministic reaction system is persistent if for any initial condition z(0) ∈ R
d
>0

inf
t≥0

zi(t) > 0 for all 1 ≤ i ≤ d.
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Definition 5.2. A deterministic reaction system is permanent if for every set

Sy = (y + S) ∩R
d
>0

with y ∈ R
d
>0, there exists a compact set K ⊂ Sy such that for any initial condition z(0) ∈ Sy

inf{t ≥ 0 : z(s) ∈ K for all s ≥ t} < ∞.

Thus, a deterministic reaction system is permament if there exists a compact set in the interior of each
positive stoichiometric compatibility class that eventually attracts all the solutions with a positive initial
condition in that stoichiometric compatibility class. Note that if a reaction network is permanent, then it is
non-explosive and persistent.

The following is an important result in [24]. It is used to prove persistence and permanence of strongly
endotactic networks. In our setting, it can be derived as a corollary of the results on tier sequences stated in
Section 4.3.

Corollary 5.1. Let G be a strongly endotactic reaction network and consider a generalization of mass action
kinetics with parameter dependent and time variable rate constants:

λy→y′(x, t, θ) = κy→y′(t, θ)xy ,

where θ is in some parameter space Ω and t ∈ R≥0. Assume that there exists δ > 0 such that

δ < κy→y′(t, θ) <
1

δ
for all t ≥ 0, θ ∈ Ω, y → y′ ∈ R. (5.1)

Let

z(t, θ) = z(0, θ) +
∑

y→y′∈R

(y′ − y)

∫ t

0

λy→y′(z(s, θ), s, θ) ds.

Fix a set Sy as in Definition 5.2. Then, there exists a compact set Γ ⊂ Sy such that

d

dt
U(z(t, θ)) < 0 if z(t, θ) /∈ Γ,

given that z(0, θ) ∈ Sy and U(·) is as in (4.6). In particular, it follows that for any open set B containing the
origin,

inf
z(0,θ)∈R

d
>0\B

inf
t≥0

‖z(t, θ)‖∞ > 0.

Proof. If the result were not true, there would be a sequence of vectors (xn)
∞
n=0 in Sy for which limn→∞ ‖ ln(xn)‖∞ = ∞

and an increasing sequence of times (tn)
∞
n=0 such that

∑

y→y′∈R

κy→y′(tn)x
y
n〈y′ − y,∇U(xn)〉 =

∑

y→y′∈R

κy→y′(tn)x
y
n ln(x

y′−y
n ) ≥ 0, (5.2)

for all n ≥ 0. However, by Remark 4.1 we can extract a proper tier sequence from (xn)
∞
n=0, hence (5.2) cannot

hold by (5.1), Proposition 4.6 and Lemma 4.1.
The second part of the result follows by noting that the origin is a local maximum for the function U(·),

and it is not contained in the compact set Γ. Hence, for any open set B (relative to R
d
≥0) that contains the

origin, there exists a neighborhood B′ ⊆ B of the origin (relative to R
d
≥0) that does not intersect Γ (implying

that U(z(t, θ)) decreases if z(t, θ) is in B′), and such that

0 = argmax
x∈B′

U(x).

Hence, there exists an open set B′′ (relative to R
d
≥0) that contains the origin and cannot be reached by any

trajectory with z(0) ∈ R
d
>0 \B.

We will also need the following results.
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Lemma 5.2. Assume that G is strongly endotactic, and consider a non-empty subset of species S̃ ⊆ S. Let
p be the projection from R

d onto the coordinates relative to the species in S̃. Then, the reaction network
G̃ = (S̃, C̃, R̃) with

C̃ = {p(y) : y ∈ C}
R̃ = {p(y) → p(y′) : y → y′ ∈ R and p(y) 6= p(y′)}

is strongly endotactic.

Proof. Let d̃ be the cardinality of S̃. For convenience, assume without loss of generality that the species of
S̃ are ordered as the first d̃ species, such that for any x ∈ R

d
≥0 we can write x = (x̃, x̂) with p(x) = x̃ and

x̂ ∈ R
d−d̃
≥0 . Let (x̃n)

∞
n=0 be a transversal tier sequence of G̃, fix x̂ ∈ R

d−d̃
>0 and for any n ≥ 0 let xn = (x̃n, x̂).

Note that for any n ≥ 0 and for any complex y ∈ C, xy
n is equal to x̃

p(y)
n times a multiplicative constant that

is independent of n. It follows that (xn)
∞
n=0 is a transversal tier sequence of G, and that for any i ≥ 1 we

have y ∈ T i
(xn)

if and only if p(y) ∈ T i
(x̃n)

, which in turn implies that (xn)
∞
n=0 is tier descending if and only

if (x̃n)
∞
n=0 is tier descending. Hence, we conclude that G̃ is strongly endotactic by the fact that G is strongly

endotactic and by Theorem 4.2.

Lemma 5.3. Consider a deterministic mass action system (G,Λ), and assume G is strongly endotactic. Then,
for any compact set Υ ⊂ R

d
>0

sup
z(0)∈Υ

sup
t≥0

‖z(t)‖∞ < ∞ (5.3)

inf
z(0)∈Υ

inf
t≥0

zi(t) > 0 for all 1 ≤ i ≤ d. (5.4)

Proof. By Corollary 5.1, we have that there exists a compact set Γ ⊂ R
d
>0 such that the function U(z(t)) is

decreasing whenever z(t) /∈ Γ. It follows that

sup
z(0)∈Υ

sup
t≥0

U(z(t)) ≤ max

{
max

z(0)∈Υ
U(z(0)),max

x∈Γ
U(x)

}
< ∞,

and the sets of the form {x ∈ R
d
≥0 : U(x) ≤ M} are compact for any finite constant M . So (5.3) is proven.

Now, assume (5.4) does not hold: this implies that there exists 1 ≤ i ≤ d such that

inf
z(0)∈Υ

inf
t≥0

zi(t) = 0.

For simplicity, in the rest of the proof we will denote by θ an element of Υ and by zθ(·) the solution with
zθ(0) = θ. Since

{zθ(t) : θ ∈ Υ, t ≥ 0}
is contained in a compact set by (5.3), there must be an accumulation point ω ∈ ∂Rd

≥0 with

inf
θ∈Υ

inf
t≥0

‖zθ(t)− ω‖∞ = 0. (5.5)

Let S̃ ⊆ S be the species whose entries are zero in ω. Note that S̃ is not empty because ω ∈ ∂Rd
≥0, and for

convenience denote by d̃ its cardinality. Consider the associated reaction network G̃, as described in Lemma
5.2, and consider the parameter dependent time variable rate functions

λ̃ỹ→ỹ′(x̃, t, θ) = κ̃ỹ→ỹ′(t, θ)x̃ỹ for all x̃ ∈ R
d̃, θ ∈ Υ, ỹ → ỹ′ ∈ R̃,

where

κ̃ỹ→ỹ′(t, θ) =
∑

y→y′

p(y)=ỹ,p(y′)=ỹ′

κy→y′

zθ(t)
y

p(zθ(t))ỹ
.

Note that we are essentially placing the influence of those species which are not equal to zero at ω into the
(now time-dependent) rate constants. It follows that

p(zθ(t)) = p(zθ(0)) +
∑

ỹ→ỹ′∈R̃

(ỹ′ − ỹ)

∫ t

0

λ̃ỹ→ỹ′(p(zθ(s)), s, θ) ds.
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Moreover, G̃ is strongly endotactic by Lemma 5.2. Note that in a neighborhood of ω the functions κ̃ỹ→ỹ′(t, θ)

satisfy (5.1) because the entries relative to species that are not in S̃ are bounded away from 0. Hence from

(5.5) it follows that the solutions p(zθ(·)) get arbitrarily close to the origin (of Rd̃), but this is in contradiction
with the second part of Corollary 5.1 and the proof is concluded.

We now state and prove here the main results of [24]. The proofs we propose rely on Corollary 5.1 and
Lemma 5.3, and have substantial similarities with the techniques developed in [4, 5, 24].

Theorem 5.4. Consider a deterministic mass action system (G,Λ), and assume G is strongly endotactic.
Then, (G,Λ) is persistent.

Proof. The theorem just follows from Lemma 5.3, in particular from (5.4), by considering Υ = z(0) ∈ R
d
>0.

Theorem 5.5. Consider a deterministic mass action system (G,Λ), and assume G is strongly endotactic.
Then, (G,Λ) is permanent.

Proof. Fix a set Sy as in Definition 5.2, and let Γ ⊂ Sy be as in Corollary 5.1 (the result applies if we consider
the rates κy→y′(t, θ) to be constant functions). Since Γ ⊂ R

d
>0, there exists ε > 0 such that the enlarged set

Υ = {x ∈ Sy : inf
z∈Γ

‖x− z‖∞ ≤ ε} ⊂ R
d
>0.

Moreover, note that Υ is a compact set and Γ ⊂ Υ. Our first goal is to prove that every trajectory {z(t) : t ≥ 0}
with z(0) ∈ Sy intersects Υ.

Let

τ = inf

{
t ≥ 0 :

d

dt
U(z(t)) > 0

}
.

If τ < ∞, then by Corollary 5.1, and since Γ is compact, we have z(τ) ∈ Γ ⊂ Υ. Now suppose that τ = ∞.
Since U(·) has a lower bound, the function U can not decrease indefinitely along z(·). Thus, we must have

lim sup
t→∞

d

dt
U(z(t)) ≥ 0.

Hence, by Corollary 5.1 and by compactness of Γ the closure of {z(t) : t ≥ 0} intersects Γ, which implies that
{z(t) : t ≥ 0} intersects Υ. In conclusion, we have proved that every trajectory starting in Sy intersects the
compact set Υ at a certain finite time. Then, permanence follows from Lemma 5.3 by choosing

K = {x ∈ Sy : min
1≤i≤d

xi ≥ m and ‖x‖∞ ≤ M}

where

m = min
1≤i≤d

inf
z(0)∈Υ

inf
t≥0

zi(t) > 0

M = sup
z(0)∈Υ

sup
t≥0

‖z(t)‖∞ < ∞.

This concludes the proof.

6 Asiphonic Strongly Endotactic Networks and Large Deviation

Principle

In this section, we consider large deviations of classically scaled reaction networks. In particular, we focus on
the results [1, 2], which are derived from a sufficient condition that will be denoted as Assumption 1 later in
this paper. We utilize the findings of section 4 to prove this condition holds in a straightforward manner.

For convenience, throughout this section we denote f(x) ≈ g(x) or we say f(x) grows like g(x), if

0 < lim
‖x‖1→∞

f(x)

g(x)
< ∞.
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Following [29, 30] we introduce the family of classically scaled process indexed by a real number V > 0.
In particular, we assume the process associated with V is a stochastic mass action system with rate constant
κy→y′/V ‖y‖1−1, where κy→y′ is a fixed positive constant. Hence, for a particular choice of V > 0, the intensity
function for y → y′ ∈ R is

λV
y→y′(x) =

κy→y′

V ‖y‖1−1
1{x≥y}

x!

(x− y)!
, for x ∈ Z

d
≥0.

We then denote the resulting stochastic process detailed in section 2.4 by XV . Next, we consider the scaled
process

X
V
(t) = V −1XV (t) ∈ V −1

Z
d
≥0. (6.1)

The associated transition intensities for the process X
V

are

λS,V
y→y′(x) = λV

y→y′(V x) =
κy→y′

V ‖y‖1−1

(V x)!

(V x− y)!
, x ∈ V −1

Z
d
≥0, (6.2)

and the generator is

(LV f)(x) =
∑

y→y′∈R

λS,V
y→y′(x)

(
f

(
x+

y′ − y

V

)
− f(x)

)
, x ∈ V −1

Z
d
≥0. (6.3)

Following [1, 2], we are interested in finding conditions for a reaction network to satisfy a large deviation
principle (LDP). By standard arguments, we see that for a fixed x ∈ R

d
>0 and V large

λS,V
y→y′

(⌊V x⌋
V

)
=

κy→y′

V ‖y‖1−1

(⌊V x⌋)!
(⌊V x⌋ − y)!

≈ κy→y′

V ‖y‖1−1
V ‖y‖1xy = V κy→y′xy.

Hence, we also define the analogous “deterministic” intensity function

λD,V
y→y′(x) = V κy→y′xy, for x ∈ R

d
≥0. (6.4)

For completeness, we provide the definition for a LDP in the setting of reaction networks. Following
the notations in [1] and [2], we denote by D0,T (R

d
>0) the Skorokhod space, or space of càdlàg functions

z : [0, T ] → R
d
≥0, equipped with the topology of uniform convergence.

Definition 6.1. Fix a positive T < ∞ and a lower semi-continuous mapping I : D0,T (R
d
>0) → [0,∞] such that

for any α ∈ R>0, the level set {z : I(z) ≤ α} is a compact subset of D0,T (R
d
>0). The probability distribution

of sample paths of the processes
{
X

V }
V >0

with fixed initial condition X
V
(0) = x ∈ R

d
>0 obeys a LDP with

good rate function I(·) if for any measurable Γ ⊂ D0,T (R
d
>0) we have

− inf
z∈Γo

I(z) ≤ lim inf
V →∞

1

V
ln
(
P
(
X

V
(t) ∈ Γ

∣∣ XV
(0) = x

))

≤ lim sup
V →∞

1

V
ln
(
P
(
X

V
(t) ∈ Γ

∣∣ XV
(0) = x

))
≤ − inf

z∈Γ̄
I(z)

where Γo and Γ̄ denote the interior and closure of Γ respectively.

In [1], it is shown that under Assumption 1 below, the process X
V

satisfies a sample path LDP in the
supremum norm.

Assumption 1. Let X
V

be the process (6.1). We assume

1. There exists b < ∞ and a continuous, positive function U(·) with compact sublevel sets, such that for
some non-decreasing function v′ : R>0 → R>0,

(LV U
V )(x) ≤ ebV ∀V > v′(‖x‖1), x ∈ V −1

Z
d
≥0 (6.5)

where UV (·) denotes the V th power of U(·), and LV is defined as in (6.3).
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2. With positive probability, starting at X
V
(0) = 0, the Markov process X

V
reaches in finite time some

state x+ in the strictly positive orthant V −1
Z
d
>0.

Moreover, [1] and [2] show that Assumption 1 holds for reaction networks with a certain structure. We
require the following definition before stating their result.

Definition 6.2. A non-empty subset P ⊂ S = {S1, . . . , Sd} is called a siphon if for every reaction y → y′ ∈ R
the following condition holds: if y′i > 0 for some Si ∈ P , then yj > 0 for some Sj ∈ P . A reaction network is
called asiphonic if no such P exists.

In words, P is a siphon if every reaction whose product complex contains an element of P also has an
element of P in its source complex. Note that if a network is asiphonic, then 0 ∈ CS (the set of source
complexes) for otherwise S would be a siphon.

Theorem 6.1. If the network is asiphonic and strongly endotactic (ASE), then the Markov process X
V

satisfies Assumption (1) with U defined as in (4.6) (which is the usual Lyapunov function) and the function
v′(x) = ex.

Note that there is a simple argument showing that asiphonic reaction networks automatically satisfy the
second part of Assumption 1 (see Remark 1.11 in [1]). It is significantly harder to show ASE reaction networks
satisfy the first condition in Assumption 1. Here we will provide a proof showing that ASE reaction networks
satisfy the first condition of Assumption 1, and will do so using a tier structure argument. Specifically, we will
prove Theorem 6.2 below, which implies Theorem 6.1, and is the main result of this section.

Theorem 6.2. Suppose the reaction network (S, C,R) is ASE. Furthermore, let U be defined as in (4.6)
and let v′(x) = ex. Then there exists a compact set B ⊂ R

d such that for all pairs (V, x) satisfying
V > v′(‖x‖1) = e‖x‖1 , x ∈ V −1

Z
d
≥0, and x ∈ Bc, we have

(LV U
V )(x) < 0. (6.6)

Before getting to the proof of the Theorem, we need a preliminary technical result which we prove using
the tier sequence technique. Later when we prove the theorem, it will be apparent that the term H(xn, Vn) in
Lemma 6.3 determines the sign of (LV U

V )(x).

Lemma 6.3. Suppose that there is a sequence (xn, Vn)
∞
n=0 such that:

• (xn)
∞
n=0 is a tier sequence (6.7)

• lim
n→∞

‖xn‖1 = ∞ (6.8)

• Vn > e‖xn‖1 and xn ∈ V −1
n Z

d
>0. (6.9)

Let c1 ∈ R and c2 ∈ R>0 and let

H(xn, Vn) =
∑

y→y′∈R

κy→y′xy
nU(xn)

(
exp

(
ln(xy′−y

n ) + c1
c2U(xn)

)
− 1

)
. (6.10)

Then

lim inf
n→∞

H(xn, Vn) = −∞. (6.11)

Proof. Note that U(xn) grows like ‖xn‖1 ln(‖xn‖1), as n → ∞, which itself converges to ∞ by (6.8). Thus it

must be that lim supn→∞
ln(xn,i)
U(xn)

≤ 0 for each i ∈ {1, . . . , d}. Let us consider the set of indices

E =

{
i : lim inf

n→∞

ln(xn,i)

U(xn)
< 0

}
.

The set E can be non-empty, and consists of the indices of those species which are in relatively low abundance.
To make this notion more concrete, we illustrate it with an example that is not part of the proof. Consider a
two-dimensional system with xn = (e−n2

, n) and Vn = en
2

. In this case, ln(xn,1) = −n2 whereas U(xn) grows

like n ln(n) as n → ∞. Thus, limn→∞
ln(xn,1)
U(xn)

= −∞ and 1 ∈ E.
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We now return to the proof. By potentially considering another subsequence, we may replace all the lim inf
and lim sup by lim in the above. Using E, we can partition the set of reactions R into 3 mutually exclusive
groups: those that consume a species in E, those that produce a species in E but do not consume one, and
those that neither consume nor produce a species in E. Specifically, we let

• R1 = {y → y′ : yi 6= 0 for some i ∈ E},

• R2 = {y → y′ : yi = 0 ∀i ∈ E and y′i 6= 0 for some i ∈ E}, and

• R3 = {y → y′ : yi = y′i = 0 ∀i ∈ E}.
Note that because the network is asiphonic, 0 ∈ CS . Hence, R1 6= R. We then decompose H in the obvious
manner as H(xn, Vn) = H1(xn, Vn) +H2(xn, Vn) +H3(xn, Vn), where

Hi(xn, Vn) =
∑

y→y′∈Ri

κy→y′xy
nU(xn)

(
exp

(
ln(xy′−y

n ) + c1
c2U(xn)

)
− 1

)
.

We will prove that reactions from R1 give insignificant contribution to the network dynamics along a tier
sequence, while there are “good” reactions in R2 and R3 that help stabilizing the dynamics by consuming
species with high abundance. Specifically, we will show that (i) limn→∞ H1(xn, Vn) = 0, (ii) the terms in H2

are negative, and (iii) the negative terms in H2 and H3 are sufficient to guarantee that (6.11) holds.
We turn to H1(xn, Vn). First note that for y → y′ ∈ R1, we have that

ln(xy′−y
n ) = 〈y′, ln(xn)〉 − 〈y, ln(xn)〉 ≤ c3

∑

i∈E

| ln(xn,i)| = −c3
∑

i∈E

ln(xn,i),

for some positive constant c3. Hence, there is a c4 > 0 so that for n large enough

xy
nU(xn) exp

(
ln(xy′−y

n ) + c1
c2U(xn)

)
≤ xy

nU(xn) exp

(
− c4

∑
i∈E ln(xn,i)

U(xn)

)

= exp

( d∑

i=1

yi ln(xn,i) + ln(U(xn))−
∑

i∈E c4 ln(xn,i)

U(xn)

)

= exp

(∑

i∈E

ln(xn,i)

(
yi −

c4
U(xn)

)
+
∑

j /∈E

yj ln(xn,j) + ln(U(xn))

)
.

(6.12)

Note that from the construction of E, for i ∈ E and j /∈ E, we must have | ln(xn,i)| ≫ ln(U(xn)) and
| ln(xn,i)| ≫ ln(xn,j). Since yi ≥ 1 for some i ∈ E, we must have

lim
n→∞

∑

i∈E

ln(xn,i)

(
yi −

c4
U(xn)

)
+
∑

j /∈E

yj ln(xn,j) + ln(U(xn)) = −∞.

Moreover, by a similar argument we see that for y → y′ ∈ R1

lim
n→∞

xy
nU(xn) = lim

n→∞
exp

(∑

i∈E

yi ln(xn,i) +
∑

j /∈E

yj ln(xn,j) + ln(U(xn))

)
= 0. (6.13)

By combining all of the above it follows that for each y → y′ ∈ R1

lim
n→∞

xy
nU(xn)

(
exp

(
ln(xy′−y

n ) + c1
c2U(xn)

)
− 1

)
= 0

and so limn→∞ H1(xn, Vn) = 0.
Next, we consider H2(xn, Vn). Let y → y′ ∈ R2. We know that yj = 0 for all j ∈ E and that there exist

an i ∈ E with y′i > 0. Hence, using that limn→∞ U(xn) = ∞ and the definition of E, we have

exp

(
ln(xy′−y

n ) + c1
c2U(xn)

)
− 1 = exp

(∑
i∈E y′i ln(xn,i) +

∑
j /∈E(y

′
j − yj) ln(xn,j) + c1

c2U(xn)

)
− 1

< e−c5 − 1 < −c6 < 0
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for some positive constants c5 and c6 and n large enough. Thus

H2(xn, Vn) < −c6
∑

y→y′∈R2

κy→y′xy
nU(xn). (6.14)

We turn to H3(xn, Vn). Let y → y′ ∈ R3. Since yi = y′i = 0 for all i ∈ E, we have by the definition of E
that

lim
n→∞

ln(xy′−y
n ) + c1

c2U(xn)
= 0.

Note that we can choose a subsequence for which each term on the left above is either non-negative or non-
positive for each n and each y → y′ ∈ R3. If the terms are non-positive, we may use that eρ − 1 ≤ 1

2ρ for
small ρ ≤ 0 to conclude that

κy→y′xy
nU(xn)

(
exp

(
ln(xy′−y

n ) + c1
c2U(xn)

)
− 1

)
≤ 1

2c2
κy→y′xy

n(ln(x
y′−y
n ) + c1). (6.15)

Moreover, if the terms are non-negative, we use that eρ − 1 ≤ 2ρ for small ρ ≥ 0 to conclude that

κy→y′xy
nU(xn)

(
exp

(
ln(xy′−y

n ) + c1
c2U(xn)

)
− 1

)
≤ 2

c2
κy→y′xy

n(ln(x
y′−y
n ) + c1). (6.16)

Thus, there are positive constants cy→y′ for which

H3(xn, Vn) ≤
∑

y→y′∈R3

cy→y′κy→y′xy
n(ln(x

y′−y
n ) + c1). (6.17)

Finally, we return to H(xn, Vn) = H1(xn, Vn) +H2(xn, Vn) +H3(xn, Vn). To conclude that (6.11) holds, it
is now sufficient to show two things. First, we will prove that there is always a term in either (6.14) or (6.17)
(i.e., terms associated with reactions in R2 or R3) that goes to −∞, as n → ∞. Second, we will prove that
any positive term in the sum (6.10) is dominated, in the sense of Lemma 4.5, by a negative term.

Since the network is asiphonic, there must be a reaction for which 0 is the source complex. By definition
of T 1,S we have 0 -(xn) y for all y ∈ T 1,S, which implies that for all y ∈ T 1,S

lim
n→∞

xy
n > 0. (6.18)

Since the network is strongly endotactic it must be tier descending by Theorem 4.2. Hence there exists a
reaction y → y′ ∈ R with y ∈ T 1,S and y′ ≺(xn) y. Recall that (6.13) showed that xy

nU(xn) → 0, as n → ∞, if
y → y′ ∈ R1. Hence, (6.18) shows that y → y′ /∈ R1. If y → y′ ∈ R2, we consider the relevant term in (6.14)
and conclude

lim
n→∞

−c6κy→y′xy
nU(xn) = −∞

due to the fact that limn→∞ U(xn) = ∞. Finally, if y → y′ ∈ R3, we have

lim
n→∞

cy→y′κy→y′xy
n(ln(x

y′−y
n ) + c1) = −∞

since y′ ≺(xn) y. Thus, in either case, we have a term which converges to −∞ as n → ∞.
Next, we will show that a positive term is necessarily dominated by a negative term. Specifically, note that

the only terms that could be positive and not tend to zero come from the sum (6.17) and are associated with
reactions y → y′ ∈ R3 with y -(xn) y′. Fix such a reaction y → y′ ∈ R3. We will now show that there is
necessarily a term either in the sum (6.14) or the sum (6.17) that is negative and dominates it.

Suppose first that there is a reaction ỹ → ỹ′ ∈ R2 for which y -(xn) ỹ. Because y → y′ ∈ R3, we know

U(xn) ≫ ln(xy′−y
n ).

Hence, the term in (6.14) associated with ỹ → ỹ′ dominates the positive term.
Now assume there is no such reaction ỹ → ỹ′ ∈ R2 with y -(xn) ỹ. Because our network is strongly

endotactic, we may apply Lemma 4.5 to conclude that there exists y⋆ ∈ C and y⋆ → y⋆⋆ ∈ R such that
y -(xn) y⋆, y⋆⋆ ≺(xn) y⋆ and for any choice of constants c′1, c

′
2 ∈ R>0 and c′3, c

′
4 ∈ R, the inequality (4.7)
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holds for n large enough. Thus, if we can show that y⋆ → y⋆⋆ ∈ R3, then the term in (6.17) associated with
y⋆ → y⋆⋆ dominates the positive term.

Since y -(xn) y⋆, we know from our assumption that y⋆ → y⋆⋆ /∈ R2. Moreover, since y -(xn) y⋆, the
reaction y⋆ → y⋆⋆ cannot be in R1 (for otherwise the definition of E and the fact that y → y′ ∈ R3 would
imply y⋆ ln(xn) − y ln(xn) → −∞, as n → ∞). Thus, we must have y⋆ → y⋆⋆ ∈ R3, and this concludes the
proof of the Lemma 6.3.

We now turn to the proof of Theorem 6.1

Proof of Theorem 6.1. We will prove the theorem by contradiction. We therefore suppose that there is a
sequence (xn, Vn)

∞
n=0 such that:

• lim
n→∞

‖xn‖1 = ∞ (6.19)

• Vn > e‖xn‖1 and xn ∈ V −1
n Z

d
≥0 (6.20)

• (LVn
UVn)(xn) ≥ 0. (6.21)

It is important to note that the sequence (xn, Vn)
∞
n=0 could lie on a boundary where some species remain zero.

In order to deal with those species, later in the proof we consider a modified sequence (x̃n, Vn)
∞
n=0 that lie away

from the boundary but close enough to (xn, Vn)
∞
n=0 so that (LVn

UVn)(xn) and (LVn
UVn)(x̃n) are relatively

close. This allows us to make a conclusion on (LVn
UVn)(xn) by studying the easier object (LVn

UVn)(x̃n).
Taking the zero species into consideration, and after potentially taking a subsequence, we may assume the
following

(i) (xn)
∞
n=0 is a tier sequence (this follows from Remark 4.1),

(ii) there is an ℓ ∈ {0, . . . , d} for which xn,1 = · · · = xn,ℓ = 0 and xn,j > 0 for all j ≥ ℓ + 1 and all n (note
that ℓ can be zero), and

(iii) there is a subset of the reactions, P ⊆ R, for which

λS,Vn

y→y′(xn)

{
> 0 if y → y′ ∈ P
= 0 if y → y′ ∈ R \ P (6.22)

for every n.

(iv) the sign of the terms UVn(xn)− UVn(xn + y′−y
Vn

) are constant in n, for each y → y′ ∈ P .

We will prove that lim infn→∞(LVn
UVn)(xn) = −∞, leading to a contradiction.

First, note that for any reaction y → y′ ∈ P we have

λS,Vn

y→y′(xn) = Vnκy→y′

d∏

i=1

xn,i

(
xn,i −

1

Vn

)
. . .

(
xn,i −

yi − 1

Vn

)
,

which is positive by assumption. Hence, xn,i ≥ yi

Vn
. Thus, for any 1 ≤ j ≤ yi − 1,

xn,i −
j

Vn
= xn,i −

j

yi

yi
Vn

≥ xn,i

(
1− j

yi

)
.

Thus, letting cy =
∏d

i=1

∏yi−1
j=1

(
1− j

yi

)
> 0, we have

Vnκy→y′xy
n ≥ λS,Vn

y→y′(xn) ≥ cyVnκy→y′xy
n. (6.23)

Combining (6.23) with the fact that the signs of the terms UVn(xn)−UVn(xn + y′−y
Vn

) are constant over n, we
may conclude that

(LVn
UVn)(xn) ≤

∑

y→y′∈P

Vnκ̃y→y′xy
n

(
UVn

(
x+

y′ − y

Vn

)
− UVn(x)

)
(6.24)

25



for all n and for some positive constants κ̃y→y′ , with y → y′ ∈ P . For notational convenience, we define the
operator

(L̃V f)(x) =
∑

y→y′∈P

Vnκ̃y→y′xy
n

(
f

(
x+

y′ − y

V

)
− f(x)

)
, x ∈ V −1

Z
d
≥0,

and we point out that this operator is similar to the generator of the process X
V

for the modified reaction
rates κ̃y→y′ . In fact, we are simply exchanging the stochastic intensities for the “deterministic” intensities for
the reactions in P . By (6.24), it suffices to show that

lim inf
n→∞

(L̃Vn
UVn)(xn) = −∞. (6.25)

We consider the terms of (L̃Vn
UVn)(xn) individually. Let y → y′ ∈ P and note that we must have yi = 0

for each i ≤ ℓ. Let

Cy→y′(Vn) =

ℓ∑

i=1

y′i

(
ln

(
y′i
Vn

)
− 1

)
. (6.26)

Note that |Cy→y′(Vn)| grows at most logarithmically in Vn, as n → ∞. Utilizing a Taylor expansion of the
logarithm yields

U

(
xn +

y′ − y

Vn

)
= d+ 1 + V −1

n Cy→y′(Vn) +

d∑

i=ℓ+1

(
xn,i +

y′i − yi
Vn

)(
ln

(
xn,i +

y′i − yi
Vn

)
− 1

)

= d+ 1 + V −1
n Cy→y′(Vn) +

d∑

i=ℓ+1

(
xn,i +

y′i − yi
Vn

)(
ln(xn,i) +

y′i − yi
xn,iVn

+ ri(xn,i, Vn)− 1

)

= U(xn) +
1

Vn

(
Cy→y′(Vn) +

d∑

i=ℓ+1

(y′i − yi) ln(xn,i) +

d∑

i=ℓ+1

(
(y′i − yi)

2

xn,iVn
+ (xn,iVn + y′i − yi)ri(xn,i, Vn)

))
,

where

|ri(xn,i, Vn)| ≤
c1

x2
n,iV

2
n

,

for some c1 > 0. We denote

Ri(xn,i, Vn) =
(y′i − yi)

2

xn,iVn
+ (xn,iVn + y′i − yi)ri(xn,i, Vn).

We have xn,iVn ≥ 1 for all i ≥ ℓ+ 1, thus

|Ri(xn,i, Vn)| ≤
(y′i − yi)

2

xn,iVn
+

c1
xn,iVn

+
c1|y′i − yi|
x2
n,iV

2
n

≤ c2
xn,iVn

≤ c2, (6.27)

for some positive constant c2. Combining the above, and utilizing the inequality

(1 + ε)n ≤ eεn,

which holds for all integers n when |ε| < 1, it follows that for n large enough

(L̃Vn
UVn)(xn)

=
∑

y→y′∈P

Vnκ̃y→y′xy
nU(xn)

Vn

×
((

1 +
1

Vn

Cy→y′(Vn) +
∑d

i=ℓ+1(y
′
i − yi) ln(xn,i) +

∑d
i=ℓ+1 Ri(xn,i, Vn)

U(xn)

)Vn

− 1

)

≤ VnU(xn)
Vn−1HP(xn, Vn)

(6.28)
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where

HP(xn, Vn)

=
∑

y→y′∈P

κ̃y→y′xy
nU(xn)

(
exp

(
Cy→y′(Vn) +

∑d
i=ℓ+1(y

′
i − yi) ln(xn,i) +

∑d
i=ℓ+1 Ri(xn,i, Vn)

U(xn)

)
− 1

)
.

In order to justify the inequality above, we use that (i) limn→∞ U(xn) = ∞, (ii) the terms Ri(xn,i, Vn)

are uniformly bounded by (6.27), and (iii) ln(xy′−y
n ) is at most of order ln(Vn) because of (6.20) and since

xn,i ≥ V −1
n for i ≥ ℓ+ 1.

We will now show that lim infn→∞ HP(xn, Vn) = −∞. To do so, we consider a new sequence x̃n, where

x̃n,1 = · · · = x̃n,ℓ =
α

Vn
(6.29)

with α = maxz∈C,i∈{1,...,d} zi, and
x̃n,i = xn,i for i > ℓ.

Because of (6.29) and since u defined in (4.5) is a decreasing function in a positive neighborhood of zero,

we have that U(x̃n) < U(xn) for all n. Also, since limn→∞ x̃n,i = 0 for i ≤ ℓ, we have limn→∞
U(x̃n)
U(xn)

= 1.

Recalling that y → y′ ∈ P implies yi = 0 for i ≤ ℓ, we have

xy
n = x̃y

n. (6.30)

From (6.26), and because in (6.29) we chose α ≥ y′i for all i,

Cy→y′(Vn) <

ℓ∑

i=1

y′i ln(x̃n,i). (6.31)

Combining (6.31), limn→∞
U(x̃n)
U(xn)

= 1, and the bound on Ri, we may conclude there exists c3 ∈ R and c4 ∈ R>0

such that

Cy→y′(Vn) +
∑d

i=ℓ+1(y
′
i − yi) ln(xn,i) +

∑d
i=ℓ+1 Ri(xn,i, Vn)

U(xn)
<

ln(x̃y′−y
n ) + c3
U(xn)

<
ln(x̃y′−y

n ) + c3
c4U(x̃n)

for n large enough. Therefore, utilizing (6.30) and the above yields

HP(xn, Vn) <
U(xn)

U(x̃n)

∑

y→y′∈P

κ̃y→y′ x̃y
nU(x̃n)

(
exp

(
ln(x̃y′−y

n ) + c3
c4U(x̃n)

)
− 1

)
. (6.32)

By Lemma 6.3 we have

lim inf
n→∞

∑

y→y′∈R

κ̃y→y′ x̃y
nU(x̃n)

(
exp

(
ln(x̃y′−y

n ) + c3
c4U(x̃n)

)
− 1

)
= −∞. (6.33)

Therefore, in order to conclude that lim infn→∞ HP(xn, Vn) = −∞, it is sufficient to show that

lim
n→∞

∑

y→y′∈R\P

κ̃y→y′ x̃y
nU(x̃n)

(
exp

(
ln(x̃y′−y

n ) + c3
c4U(x̃n)

)
− 1

)
= 0. (6.34)

Let y → y′ ∈ R \ P . At least one of the following must be true

1. there is a k with k > ℓ such that yk > 0 and xn,k < yk

Vn
. In this case we also have x̃n,k = xn,k < yk

Vn
.

2. there is a k with k ≤ ℓ such that yk > 0. In this case we have x̃n,k = α
Vn

.
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In either case we have 1
Vn

≤ x̃n,k ≤ α
Vn

. We select one such k. Using this, together with the fact that
ln(‖xn‖1) < ln(ln(Vn)), implies there is a c5 > 0 for which

exp

(
ln(x̃y′−y

n ) + c3
c4U(x̃n)

)
≤ exp

(
c5 lnVn

U(x̃n)

)
= V c5/U(x̃n)

n .

Thus
∣∣∣∣x̃

y
nU(x̃n)

(
exp

(
ln(x̃y′−y

n ) + c3
c4U(x̃n)

)
− 1

)∣∣∣∣

≤ U(x̃n)

(∏

i6=k

x̃yi

n,i

)
αyk

V yk
n

V c5/U(x̃n)
n + U(x̃n)

(∏

i6=k

x̃yi

n,i

)
αyk

V yk
n

= U(x̃n)

(∏

i6=k

x̃yi

n,i

)
αyk

V
yk−c5/U(x̃n)
n

+ U(x̃n)

(∏

i6=k

x̃yi

n,i

)
αyk

V yk
n

.

(6.35)

Since Vn ≥ e‖x̃n‖1 and U(x̃n) grows like ‖x̃n‖1 ln ‖x̃n‖1, as n → ∞, both terms go to 0, showing (6.34).
Combining (6.28), (6.32), (6.33), and (6.34), allows us to conclude that (6.25) holds. Thus, the proof of the
theorem is complete.

7 Network conditions for positive recurrence of strongly endotactic

reaction networks

As we showed in Example 3.1 and Example 3.2, strong endotacticity is not a sufficient condition for positive
recurrence of the associated Markov model introduced in section 2.4. Thus, in this section we provide additional
network conditions for strongly endotactic reaction networks that guarantee positive recurrence. We note that
while the previous section considered families of models under the “classical scaling,” this section does not.
We therefore drop the V -dependence in the notation. For example, the generator will now be denoted as L
instead of LV .

We require two definitions.

Definition 7.1. A reaction network (S, C,R) is binary if ‖y‖1 ≤ 2 for each y ∈ C.
Many reaction networks in biology and chemistry are binary as it is rare that more than two molecules

would interact simultaneously.

Definition 7.2. The reactions 0 → S and S → 0 are the in-flow and out-flow of species S ∈ S, respectively.
A reaction network is fully open if 0 → S ∈ R and S → 0 ∈ R for each S ∈ S.

The main theorem provided in this section, Theorem 7.2 below, will allow us to conclude that, for example,
the Markov process associated with a reaction network that is a union of (i) a binary, strongly endotactic
network, and (ii) some in-flows and all out-flows, is necessarily positive recurrent. This is made precise in the
following corollary.

Corollary 7.1. Let (S, C,R) be a binary, strongly endotactic reaction network. Let Rout be the union of
outflows, ∪S{S → 0}, and let Rin be a subset of the inflows, ∪S{0 → S}. Then let

R̃ = R∪Rout ∪Rin

and C̃ = C ∪ {S ∈ S} ∪ {0}. Then, for any choice of rate constants, the Markov process with reaction network

(S, C̃, R̃) and stochastic mass action kinetics satisfies the following: each state in a closed, irreducible compo-
nent of the state space is positive recurrent; moreover, if τx0 is the time for the process to enter the union of
the closed irreducible components given an initial condition x0, then E[τx0 ] < ∞.

Note that Corollary 7.1 implies that if a reaction network, (S, C,R) is strongly endotactic, binary, and
fully open, then the associated Markov model is necessarily positive recurrent, regardless of the choice of rate
constants. This follows since in this case, (S, C,R) = (S, C̃, R̃).

We also note that when (S, C,R) 6= (S, C̃, R̃) in Corollary 7.1, the resulting reaction network (S, C̃, R̃) may
not be strongly endotactic. We provide an example.
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Example 7.1. Consider the reaction network with species S = {S1, S2} and reactions

2S1 ⇄ S1 + S2.

This network is binary and strongly endotactic (for example, this follows because the network is weakly
reversible and consists of a single linkage class [24]). However, the fully open network

2S1 ⇄ S1 + S2

S1 ⇄ 0 ⇄ S2,
(7.1)

is not strongly endotactic. This can be seen by noting that the transversal tier sequence (n, n) is not tier
descending. Of course, by Corollary 7.1 the fully open network (7.1) is positive recurrent for any choice of rate
constants. �

Corollary 7.1 is a special case of Theorem 7.2 below, which can be seen as a generalization to non-binary
reaction networks. In Theorem 7.2, the role of Rout and Rin is played by the sets of reactions R′ and R′′,
respectively, which are defined below. Specifically, R′ is a set of reactions that decrease the total number of
molecules, and R′′ is a set of reactions that increase it. The reactions in R′′ are not used in the proof, and are
considered in Theorem 7.2 only to add to the generality of the result. The reactions in R′, on the other hand,
play an important role in the proof of positive recurrence, and as illustrated in Example 3.1 the statement
would not hold true without the inclusion of R′.

Let (S, C,R) be a reaction network with S = {S1, . . . , Sd} and m = max{‖y‖1 : y ∈ CS}. We remind the
reader that CS denotes the set of source complexes. Next, for Si ∈ S, we let Ri be a nonempty, finite subset
of 


aSi →

d∑

j=1

r′jSj : a ≥ m− 1 and

d∑

j=1

r′j ≤ a− 1





and let
R′ = ∪d

i=1Ri.

Let C′ be the set of complexes associated with the reactions in R′. Next, we let R′′ be a subset of




d∑

j=1

rjSj →
d∑

j=1

r′jSj :
d∑

j=1

rj ≤ m− 2





and let C′′ be the set of complexes associated with the reactions in R′′. Note that it is possible, though not
required, that either R′ ⊂ R or R′′ ⊂ R. It is also possible that R′′ = ∅.
Theorem 7.2. Let (S, C,R) be a strongly endotactic reaction network with S = {S1, S2, . . . , Sd} and let

m = max{‖y‖1 : y ∈ CS}. Let R′,R′′, C′, and C′′ be as above and let R̃ = R ∪R′ ∪ R′′ and C̃ = C ∪ C′ ∪ C′′.
We assume further that

max
y→y′∈R′

‖y′‖1 < min
y→y′∈R′

‖y‖1. (7.2)

Then, for any choice of rate constants, the Markov process with reaction network (S, C̃, R̃) and stochastic mass
action kinetics satisfies the following: each state in a closed, irreducible component of the state space is positive
recurrent; moreover, if τx0 is the time for the process to enter the union of the closed irreducible components
given an initial condition x0, then E[τx0 ] < ∞.

Corollary 7.1 follows from Theorem 7.2 by considering the case m = 2.
To prove Theorem 7.2, we require the following well-known result, sometimes referred to as the “Foster-

Lyapunov criterion.” For completeness, we include here a proof that makes use of the techniques developed
in [32], which we refer to for more on this topic.

Theorem 7.3. Let X be a continuous-time Markov process on a state space S ⊆ Z
d
≥0 with generator L.

Suppose there exists a finite set K ⊂ S and a function U : S → R≥0 such that U(x) tends to infinity as
|x| → ∞ and

(LU)(x) ≤ −1 (7.3)

for all x ∈ S \K. Then each state in a closed, irreducible component of S is positive recurrent. Moreover, if
τx0 is the time for the process to enter the union of the closed irreducible components given an initial condition
x0, then E[τx0 ] < ∞.

29



Proof. Non-explosivity follows from [32, Theorem 2.1], hence the random variable U(X(t)) is well-defined for
all t > 0 and

sup
0≤s≤t

U(X(s)) < ∞ a.s. (7.4)

for any t > 0 and any initial condition X(0) = x0.
To conclude the proof, by standard arguments on continuous-time Markov chains [33], it is sufficient to

show that the hitting time τK of the finite set K has finite expectation for any initial condition. For any
M ∈ R>0, let

τM = inf{t > 0 : U(X(t)) ≥ M}.
By Dynkin’s formula, for any initial condition x0 and any M, t ∈ R>0

E [U(X(t ∧ τK ∧ τM ))] = U(x0) + E

[∫ t∧τK∧τM

0

LU(X(s))ds

]

≤ U(x0)− E [t ∧ τK ∧ τM ] ,

and by non-negativity of U we have

E [t ∧ τK ∧ τM ] ≤ U(x0) < ∞. (7.5)

By (7.4), for any fixed t > 0 the random variable t ∧ τK ∧ τM converges almost surely to t ∧ τK , as M → ∞.
Therefore, by the monotone convergence theorem and (7.5) we have

E [t ∧ τK ] ≤ U(x0) < ∞ for all t ∈ R>0.

Since U(x0) does not depend on t, the stopping time τK is almost surely finite. Hence, t ∧ τK converges
almost surely to τK as t → ∞ and by applying the monotone converge theorem again we obtain that E[τK ] is
finite.

The next lemma, introduced in [10, Lemma 4.1], provides an upper bound on (LU)(xn), where (xn)
∞
n=0 is

a sequence in Z
d
≥0 satisfying limn→∞ ‖xn‖1 = ∞, and U is the usual Lyapunov function defined in (4.6).

Lemma 7.4. Let L be the generator of the Markov process associated with a reaction network (S, C,R) with
stochastic mass-action kinetics (2.3). Let U be the function defined in (4.6). For a sequence (xn)

∞
n=0 in Z

d
≥0

such that limn→∞ ‖xn‖1 = ∞, there is a constant C > 0 for which

(LU)(xn) ≤
∑

y→y′∈R

λS
y→y′(xn)

(
ln((xn ∨ 1)y

′−y) + C
)
, for every n ≥ 0.

We will also require the following lemma in the proof of Theorem 7.2.

Lemma 7.5. Let S be the stoichiometric subspace of a reaction network (S, C,R). Let (xn)
∞
n=0 ⊂ Z

d
≥0 be a

sequence such that xn − xm ∈ S for all n,m ∈ Z≥0. If (xn ∨ 1)∞n=0 is a tier sequence, then (xn ∨ 1)∞n=0 is
transversal.

Proof. The proof is essentially the same as that of Lemma 4.1, except xn is replaced with xn ∨ 1.

Now we provide the proof of Theorem 7.2.

Proof (of Theorem 7.2). Let S and S be the state space of the associated Markov process X and stochiometric

subspace of (S, C̃, R̃), respectively. We will show by contradiction that (7.3) holds with U defined in (4.6).
Thus, we suppose that there exists a sequence (xn)

∞
n=0 ⊂ S such that

lim
n→∞

‖xn‖1 = ∞ and (LU)(xn) ≥ −1 for all n.

By Lemmma 7.4, there is a positive constant C such that

(LU)(xn) ≤
∑

y→y′∈R̃

λS
y→y′(xn)

(
ln ((xn ∨ 1)y

′−y) + C
)
. (7.6)
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We will show that there exists a subsequence (xnk
)∞k=0 such that

lim
k→∞

∑

y→y′∈R̃

λS
y→y′(xnk

)
(
ln ((xnk

∨ 1)y
′−y) + C

)
= −∞, (7.7)

in which case the proof is completed by contradiction.
By Remark 4.1, there must exist a subsequence (xnk

∨ 1)∞k=0 of (xn ∨ 1)∞n=0 which is a tier sequence. By
Lemma 7.5, (xnk

∨ 1)∞k=0 is a transversal tier sequence. Since any subsequence of a transversal tier sequence
is a transversal tier sequence, we can also assume that

1. for each reaction y → y′ ∈ R̃, either λS
y→y′(xnk

) 6= 0 for all k or λS
y→y′(xnk

) = 0 for all k,

2. for each reaction y → y′ ∈ R̃, we have limk→∞ λS
y→y′ ln ((xnk

∨ 1)y
′−y) ∈ [−∞,∞] and

3. there exists an index p ∈ {1, . . . , d} such that xnk,p ≥ xnk,i for all k ≥ 0 and all i ∈ {1, . . . , d}.
We note that since (xnk

∨ 1)∞k=0 is a tier sequence, xnk,p → ∞, as k → ∞. We denote by aSp → ySp
a reaction

from Rp. Note that, by construction, ySp
≺(xnk

∨1) aSp and that λS
aSp→ySp

(xnk
) → ∞, as k → ∞.

We decompose R̃ into two parts,

R̃-(xnk
∨1)

= {y → y′ ∈ R̃ : y -(xnk
∨1) y

′} and

R̃≻(xnk
∨1)

= {y → y′ ∈ R̃ : y ≻(xnk
∨1) y

′}.

By (7.6) we have

(LU)(xnk
) ≤

∑

y→y′∈R̃-(xnk
∨1)

λS
y→y′(xnk

)
(
ln ((xnk

∨ 1)y
′−y) + C

)
(7.8)

+
∑

y→y′∈R̃≻(xnk
∨1)

λS
y→y′(xnk

)
(
ln ((xnk

∨ 1)y
′−y) + C

)
. (7.9)

For y → y′ ∈ R̃≻(xnk
∨1)

we have

lim
k→∞

λS
y→y′(xnk

)
(
ln ((xnk

∨ 1)y
′−y) + C

)
= −∞,

so long as λS
y→y′(xnk

) 6= 0 for each k. Moreover, aSp → ySp
∈ R̃≻(xnk

∨1)
and λS

aSp→ySp
(xnk

) → ∞. Hence, the

sum in (7.9) converges to −∞, as k → ∞.

Turning to (7.8), we will show that for each y → y′ ∈ R̃-(xnk
∨1)

there exists a ỹ → ỹ′ ∈ R̃≻(xnk
∨1)

such

that for any positive constant D,

lim
k→∞

(
λS
y→y′(xnk

)
(
ln ((xnk

∨ 1)y
′−y) + C

)
+DλS

ỹ→ỹ′(xnk
)
(
ln ((xnk

∨ 1)ỹ
′−ỹ) + C

))
= −∞, (7.10)

where C is as in (7.6), which will complete the proof.

We now fix a reaction y → y′ ∈ R̃-(xnk
∨1)

. We have three cases, depending upon the type of reaction:

• Case 1: y → y′ ∈ R∩ R̃-(xnk
∨1)

.

• Case 2: y → y′ ∈ R′ ∩ R̃-(xnk
∨1)

.

• Case 3: y → y′ ∈ R′′ ∩ R̃-(xnk
∨1)

.

Case 1. We assume y → y′ ∈ R ∩ R̃-(xnk
∨1)

. We apply Lemma 4.5 to conclude that there exists a complex

y⋆, a reaction y⋆ → y⋆⋆ ∈ R∩ R̃≻(xnk
∨1)

for which y -(xnk
∨1) y

⋆ and for which

lim
k→∞

(
c1(xnk

∨ 1)y
(
ln (xnk

∨ 1)y
′−y) + c2

)
+ c3(xnk

∨ 1)y
⋆
(
ln (xnk

∨ 1)y
⋆⋆−y⋆

) + c4

))
= −∞, (7.11)
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for any choice of constants c1, c2 ∈ R>0 and c3, c4 ∈ R.
Note that if λS

y⋆→y⋆⋆(xnk
) 6= 0, then (6.23), with Vn = 1, and (7.11) together imply (7.10). Hence, we

may assume that λS
y⋆→y⋆⋆(xnk

) = 0 for all k. We will show that apSp → ySp
is the desired reaction ỹ → ỹ′

satisfying (7.10).
Since λS

y⋆→y⋆⋆(xnk
) = 0 for all k, we know there is some i ∈ {1, . . . , d} for which xnk,i < y⋆i for all k. Hence,

since m = max{‖y‖1 : y ∈ CS}, we may conclude that

(xnk
∨ 1)y

⋆ ≤ (y⋆i )
y⋆
i x

m−y⋆
i

nk,p ≤ (y⋆i )
y⋆
i xm−1

nk,p (7.12)

and so
y⋆ -(xnk

∨1) aSp,

where we recall that a ≥ m− 1. In particular, there is a c5 ∈ R>0 such that for all k,

λS
aSp→ySp

(xnk
) = λS

aSp→ySp
(xnk

∨ 1) ≥ c5(xnk
∨ 1)y

⋆

. (7.13)

Turning to the logarithms, we have

ln
(
(xnk

∨ 1)ySp−aSp
)
≤ ln(xa−1

n,p )− ln(xa
n,p) = − ln(xn,p). (7.14)

Further, for c6 = −y⋆i ln(y
⋆
i ),

ln((xnk
∨ 1)y

⋆⋆−y⋆

) ≥ − ln((xnk
∨ 1)y

⋆

) ≥ − ln(xm−1
nk,p

) + c6 = −(m− 1) ln(xnk,p) + c6, (7.15)

where we utilized (7.12) in the final inequality. Combining (7.14) and (7.15) shows

ln
(
(xnk

∨ 1)ySp−aSp
)
≤ 1

m− 1

(
ln((xnk

∨ 1)y
⋆⋆−y⋆

)− c6

)
. (7.16)

Finally, combining (7.13), (7.16), and (7.11) gives the desired result (7.10), completing the proof of Case 1.

Case 2. We assume y → y′ ∈ R′ ∩ R̃-(xnk
∨1)

. Then, by the definition of R′, for some i ∈ {1, . . . , d} we have

y = a′Si with a′ ≥ m− 1 and y′ =
∑d

j=1 r
′
jSj with ‖y′‖1 =

∑d
j=1 r

′
j ≤ a− 1, where we utilized (7.2). Because

we are assuming that y → y′ ∈ R̃-(xnk
∨1)

, we know a′Si -(xnk
∨1) y

′. Hence, there is a c7 ∈ R>0 such that

λS
a′Si→y′(xnk

) ≤ κa′Si→y′(xnk
∨ 1)a

′Si ≤ c7(xnk
∨ 1)y

′ ≤ c7x
a−1
nk,p, (7.17)

for k large enough. Since λS
aSp→ySp

(xnk
) is a degree a polynomial in xnk,p, there is a constant c8 ∈ R>0 such

that

xa−1
nk,p

≤ c8
λS
aSp→ySp

(xnk
)

xnk,p
for each k. (7.18)

We may now combine (7.17) and (7.18) to conclude that (7.10) holds if we take ỹ → ỹ′ = aSp → ySp
.

Specifically, for any D > 0,

lim
k→∞

λS
aSi→y′(xnk

)
(
ln ((xnk

∨ 1)y
′−aSi) + C

)
+DλS

aSp→ySp
(xnk

)
(
ln ((xnk

∨ 1)ySp−aSp) + C
)

≤ lim
k→∞

λS
aSp→ySp

(xnk
)

(
c7c8
xnk,p

(
ln (xa−1

nk,p
) + C

)
+D

(
ln ((xnk

∨ 1)ySp−aSp) + C
) )

= −∞

where for the last equality we used the following facts: (i) limk→∞ ln ((xnk
∨ 1)ySp−aSp) = −∞ and (ii)

limk→∞
1

xnk,p
ln(xnk,p) = 0.

Case 3. We assume y → y′ ∈ R′′∩R̃-(xnk
∨1)

. We will again show that (7.10) holds if we take ỹ → ỹ′ = aSp → ySp
.
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Since y → y′ ∈ R′′, there is a constant c9 > 0 for which

λS
y→y′(xnk

)

λS
aSp→ySp

(xnk
)
≤ κy→y′(xnk

∨ 1)y

λS
aSp→ySp

(xnk
)

≤ κy→y′xm−2
nk,p

λS
aSp→ySp

(xnk
)
≤ c9

xnk,p
, for k large enough. (7.19)

Then (7.19) implies that for any constant D > 0

lim
k→∞

(
λS
y→y′(xnk

)
(
ln ((xnk

∨ 1)y
′−y) + C

)
+DλS

aSp→ySp
(xnk

)
(
ln ((xnk

∨ 1)ySp−aSp) + C
))

≤ lim
k→∞

λS
aSp→ySp

(xnk
)

(
c9

xnk,p

(
ln (x‖y′‖1

nk,p ) + C
)
+D

(
ln ((xnk

∨ 1)ySp−aSp) + C
))

= −∞,

where the equality follows by the same argument as the end of Case 2. Hence, the proof is complete.

Example 7.2. Now we consider the strongly endotactic reaction network (S, C,R) introduced in Example 3.1.

0 → 2A+B → 4A+ 4B → A, (7.20)

As we showed in Example 3.1, the associated Markov process for this reaction network is transient. Note that
m = max{‖y‖1 : y ∈ CS} = 8 for this reaction network. We let

RA = {7A → 5A+B}, RB = {7B → 6B}, R′ = RA ∪RB , (7.21)

and C′ = {7A, 5A + B, 7B, 6B}. Then by Theorem 7.2, the Markov process associated to (S, C̃, R̃), where

C̃ = C ∪ C′ and R̃ = R∪R′, is positive recurrent for any choice of rate constants.
Note that we could even add extra reactions, via R′′, that seem to push the process away from the origin,

and still reach the same conclusion. For example, we could let

R′′ = {6A → 10A+ 10B, 5A+B → 110A+ 20B, 3A+ 2B → 30B}, (7.22)

and
C′′ = {6A, 10A+ 10B, 5A+B, 110A+ 20B, 3A+ 2B, 30B}.

Then by Theorem 7.2, the Markov process associated to (S, C̃, R̃), where

C̃ = C ∪ C′ ∪ C′′ and R̃ = R∪R′ ∪R′′,

is positive recurrent for all choice of rate constants. �
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