POLITECNICO DI TORINO
Repository ISTITUZIONALE

Introducing programmability and automation in the synthesis of virtual firewall rules

Original

Introducing programmability and automation in the synthesis of virtual firewall rules / Bringhenti, Daniele; Marchetto,
Guido; Sisto, Riccardo; Valenza, Fulvio; Yusupov, Jalolliddin. - ELETTRONICO. - (2020), pp. 473-478. ((Intervento
presentato al convegno 2nd International Workshop on Cyber-Security Threats, Trust and Privacy Management in
Software-defined and Virtualized Infrastructures (SecSoft), co-located with 2020 6th IEEE Conference on Network
Softwarization (NetSoft) tenutosi a Ghent, Belgium nel 2020 [10.1109/NetSoft48620.2020.9165434].

Availability:
This version is available at: 11583/2844332 since: 2020-10-19T08:32:20Z

Publisher:
IEEE

Published
DOI:10.1109/NetSoft48620.2020.9165434

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

16 July 2022

Introducing programmability and automation
in the synthesis of virtual firewall rules

Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, Jalolliddin Yusupov
Dip. Automatica e Informatica, Politecnico di Torino, Torino, Italy, Emails: {first.last}@polito.it

Abstract—The rise of new forms of cyber-threats is mostly due
to the extensive use of virtualization paradigms and the increasing
adoption of automation in the software life-cycle. To address these
challenges we propose an innovative framework that leverages
the intrinsic programmability of the cloud and software-defined
infrastructures to improve the effectiveness and efficiency of
reaction mechanisms. In this paper, we present our contributions
with a demonstrative use case in the context of Kubernetes. By
means of this framework, developers of cybersecurity appliances
will not have any more to care about how to react to events
or to struggle to define any possible security tasks at design
time. In addition, automatic firewall ruleset generation provided
by our framework will mostly avoid human intervention, hence
decreasing the time to carry out them and the likelihood of errors.
We focus our discussions on technical challenges: definition of
common actions at the policy level and their translation into
configurations for the heterogeneous set of security functions by
means of a use case.

Index Terms—network functions virtualization, firewall, auto-
matic programmability, cloud networking, formal methods

I. INTRODUCTION

The networking field is currently facing a deep revolu-
tion based on virtualization. In the decade which has just
ended, innovative paradigms shook the traditional vision of
networks as a mesh of heterogeneous functions providing
different services. The first time when networking embraced
virtualization is represented by the born of Software-Defined
Networking (SDN) [1], [2]. The main pillars of this technology
are the decoupling between data plane and control plane,
centralization of all the control plane functions in a software
module that is referred to as SDN controller, abstraction
between the specificity of user applications and the generality
of controller interfaces. More recently, Network Functions Vir-
tualization (NFV) [3], [4] introduced the possibility to create
network functions as software programs and to make them run
as traditional virtual machines or containerized applications,
supervised by a software MANagement and Orchestration
(MANO) module [5]. Physical middleboxes have been thus
progressively replaced by general-purpose servers where the
programs implementing the network functions can run.

Among the contributions brought over, automatic
(re)programmability of the network functions are nowadays
becoming feasible, with respect to the traditional troubles
coming from a manual function configuration [6]. On one
side, a fundamental novelty provided by SDN has been the
reactive generation and deployment of forwarding rules by

978-1-7281-5684-2/20/$31.00 ©2020 IEEE

the controller onto the data plane switches. Whenever a
packet which does not match any switch rule is received, it
is forwarded to the controller, so that it can take the best
decision according to the internal logic and consequently
generates rules for all the network switches which would have
to manage packets with the same characteristics in the future.
On the other side, if the network functions are implemented
in the NFV fashion, MANO can automatically manage their
life-cycle and deployment, so as to optimize either resource
consumption for the underlying physical infrastructure or
availability of the provided services.

Although many organizations are migrating virtual machine
(VM)-based applications to containers, virtualization is still
present in data centers and public clouds. We are also seeing
new ways of integrating virtualization with containers and
Kubernetes (K8s) to provide innovative solutions to new
problems. In other words, virtual machines are also becoming
part of the cloud-native architecture — this concept is called
container-native virtualization. Kubernetes is an example of
the fulfillment of SDN and NFV paradigms, which is an open-
source system for automating deployment, scaling, and man-
agement of virtualized applications. It significantly simplifies
the works of network and service administrators.

However, in an environment like Kubernetes, where mul-
tiple software processes run in parallel, the correct global
management becomes more difficult than what traditionally
was with single hardware devices. The increase of complexity,
unfortunately, contributed to raising the number of cyberat-
tacks, which became more variable by having the possibility to
exploit new kinds of breaches. In particular, misconfiguration
of network functions has become more critical, because more
variable factors must be considered when enforcing a correct
security defence against both external and internal attacks.
This statement is confirmed by recent surveys, such as Veri-
zon’s most recent study [7]. In this report, the misconfigura-
tions have been identified as the third most critical threat in
cloud environments, that can lead to catastrophic breaches.

In light of these observations, the challenge we propose
to face is to effectively exploit the benefits provided by the
virtual networking paradigms, minimizing the impact of their
beforehand illustrated drawbacks. With this aim, we designed
a framework based on the innovative methodology presented
in [8], based on Maximum Satisfiability Modulo Theories
(MaxSMT), and we integrated it in the context of Kuber-
netes. The proposed approach automatically configures virtual

firewalls, where a consistent number of configuration errors
are traditionally performed. Moreover, we will particularly
describe how this methodology is effectively introduced in the
framework architecture of ASTRID (AddreSsing ThReats for
virtuallseD services), which is an EU H2020 Project [9].

The remainder of this paper is structured as follows. In
Section II, the most related works are described, so that the
main differences with respect to the methodology proposed
in this paper are illustrated. In Section III, first, the general
architecture of the ASTRID framework is presented. Then the
focus will be shifted on the methodology for the automatic fire-
wall configuration, present inside the Security Controller, the
central component of the ASTRID framework which enforces
security in cloud-based networks. In Section IV, additional
details about the implementation will be provided, alongside
with a validation based on the framework’s application in
a realistic scenario. Finally, Section V briefly concludes the
paper and describes the planned future works.

II. RELATED WORK

The focus of this paper is centered on the automatic con-
figuration of firewalling functions in Kubernetes framework.
Therefore, we briefly introduce the main characteristics of the
Kubernetes framework and then we report the main works
related to the automatic firewalls configuration.

As shown in Fig. 1, a Kubernetes cluster is composed of
multiple nodes, which can be virtual or physical. A Pod is a
minimal management unit and can accommodate one or more
containers. Each Pod is protected by a packet filter (i.e., FW
in Fig 1). Pods are assigned with network addresses and are
allocated to nodes. Containers inside a Pod share resources,
such as volumes where they can write and read data. Clients
contact the cluster through another firewall, which distributes
requests to nodes according to load balancing rules. The proxy
receives requests from this firewall and forwards them to Pods.
Each node has a proxy installed. If a Pod is replicated, the
proxy distributes the load among the replicas. The kubelet
is a component that manages Pods, containers, images and
other elements in the node. The kubelet forwards data on
the monitoring of containers to the main node, which acts
when necessary. In this framework, one of the main key points
concerns the correct and consistent configuration of this graph
of firewalls that protect the access to each container.

In literature, an automatic configuration of firewalls is
a challenge where research has been partially carried out.
However, most of the works describe either technique which
can be only applied to traditional networks (e.g., with hard-
ware firewalls), or mathematical models that do not have a
correspondent implementation proving their feasibility and ef-
fectiveness. Moreover, only a limited subset of them enrich the
computed configurations with optimality or formal correctness
assurance [10].

The three papers which gave birth to this research trend have
been [11], [12] and [13]. In particular, Firmato [11] represents
a vital milestone, because it is the first approach based on
policy refinement that is able to automatically synthesize

Firewall

Node 1

a

Storage

Node 2 | FW

o

Management
\ FW

Node N Kubelet

Pod
F
L Goraner |

Fig. 1: Kubernetes architecture

a firewall configuration, by exploiting an entity-relationship
model for the representation of the security policies and the
network topology. Nevertheless, its limitations are evident:the
most critical is that it has been validated on a single centralized
firewall, instead of a distributed security architecture. The
other two works ([12], [13]) added the possibility to configure
a distributed firewall as the main novelty. However, all these
three works exclusively target traditional networks, and do not
offer either optimality or formal verification.

Formal mathematical models have been, instead, presented
in [14] and [15], where formal methodologies are used to
automatically compute firewall configuration. However, in
both cases these techniques work only in specific cases, not
related to virtualized networks: [14] follows the syntax of
IPChains and Cisco’s PIX, whereas [15]’s technique has been
validated only with SCADA-firewall configuration. Besides,
optimization is overlooked in both these two works.

A recent work which, with respect to all the others, specifi-
cally targets NFV-based networks is [16], [17]. The proposed
approach is the first step toward a security policy aware NFV
management, with the introduction of a specific module, called
Security Awareness Manager (SAM), into frameworks which
provide NFV MANO, such as OpenMANO. This module
performed a complete refinement of high-level, user-specified
network security policies into the low-level configuration of
virtual network functions, using optimization models defined
for each function type. There are limitations in this work,
though: the achieved results are not formally verified and
little information is provided about how firewall policies are
managed, since this paper provides a comprehensive approach
for multiple security function types. Anyhow, it shows how,
despite its drawbacks, virtualization is altogether characterized
by features which can be positively and efficiently exploited
in the automatic programmability of next-generation computer
networks

Finally, the proposed work integrates the automatic configu-

ration approach, presented in [8], into Kubernetes. Specifically,
the solution in [8] adopts a formal approach based on the
MaxSMT problem, which provides formal assurance about the
correctness of the solution. More details will be provided in
the next sections.

III. APPROACH

This section presents the design of the ASTRID framework
and presents a generic workflow to illustrate the main function-
alities. Next, our proposed approach is presented as a Security
Controller component that resides in the ASTRID framework.

A. ASTRID framework

The term orchestration is commonly being used in the IT
field. In the NFV and microservice system, there is Service
Orchestration for Service, and in the Cloud system, there
is Cloud Orchestration for cloud resource description. With
the development and maturity of container technology, more
and more enterprises and individuals choose to containerize
traditional applications or directly develop container-based
cloud-native applications and then run applications on the
container platform. Faced with a complex container operating
environment, the needs for container orchestration have raised.
In general, container orchestration is responsible for the life-
cycle scheduling of containers, and it improves container usage
by managing container clusters. There are currently three
major industry giants such as Kubernetes, Docker Swarm,
and Apache Mesos. They belong to the category of DevOps
infrastructure management tools and are called “container
orchestration engines”.

But when developers enter the world of orchestration, one
thing that needs special attention is security. Various blogs,
videos, books, and tutorials teach developers how to use these
solutions, but only a few mention the need to add security
controls to protect applications in the cluster. Moreover, if
the underlying infrastructure of the cloud is unreliable (or
configured in a vulnerable manner), for instance, there is no
way to guarantee the security of a Kubernetes cluster built on
this foundation.

The main goal of the AddreSsing ThReats for virtuallseD
services (ASTRID) project is to address these technological
gaps in the scope of cloud infrastructures. The project proposes
a novel cyber-security framework to provide situational aware-
ness for cloud applications and NFV services. The overall
workflow of the framework is presented in Fig. 2. According
to the workflow, the ASTRID framework allows software and
service developers to provide a description of the service
request, which is enriched with security policies by security
provider entity. The Security Orchestrator component of the
framework is in charge of reaction, creation, delivering end-
to-end services.

The scope and the contribution of this work are associated
with the Initialization and Reaction phase provided in Fig. 2.
We develop the Security Controller that is in charge of this
phase in the workflow. It is one of the most valuable parts
of the run-time subsystem, conceived to automate as much as

Virtual functions o . Service
@) - Developer
oc @
Service
Software - description
Developer

N

Security ‘ Security
Provider - enhancements
Service . .
Provider Orchestration

. Initialization &
Analytics Reaction
Security .

Dashboard

Provider

Fig. 2: Overall workflow of the ASTRID framework [18]

possible the behaviour of the security functions, in the control
plane. In the next subsection, we describe the component in
detail.

B. Security Controller

The Security Controller has been developed on the ba-
sis of the methodology presented in [8]. It incorporates
programmability and automation in the synthesis of virtual
firewall rules from a user-provided security policy. With this
respect, the Security Controller works in close coordination
along with the service orchestrator. The service orchestrator
is in charge of providing a description of the service graph
as well as the infrastructure information. The infrastructure
information includes the actual number of launched virtual
network functions and parameters assigned after the enforce-
ment process such as IP and port addresses. After receiving
the required data from the orchestrator, the controller performs
an automatic translation from the high-level policy to low-
level configuration parameters for firewall network functions.
This process of automatic configuration is formally proven to
meet these security policies as a part of this analysis. The
security controller formulates the problem of the automatic
configuration of firewall rule tables as the Maximum Satis-
fiability Modulo Theories (MaxSMT) problem. It is a basic
constraint optimization problem that we use to provide two
main features: i) high assurance in the correctness of the

computed solutions, thanks to the intrinsic formal correctness-
by-construction paradigm; ii) optimality of the solution, by
minimizing the number of automatically generated firewall
rules, with the purpose to improve the filtering operations.

To this day, optimization problems are modeled by Integer
Programming (IP) languages. At the same time, most of them
are NP-hard classes, and large-scale integer problems are
difficult to solve. Moreover, none of the variations of the
IP formulation are able to model the problem of automatic
firewall configuration having in mind the verification of end-
to-end reachability. This is due to the less expressive power
of the approaches compared to the Constraint Satisfaction
Problem (CSP) representations. An instance encoding of CSP,
MaxSMT in our case, is defined by a set of variables, a set of
possible values (or domains) for each variable, and a set of soft
and hard constraints, each constraint involving one or more
variables. A MaxSMT solver determines for a given instance
whether it is possible to assign a value to each variable from
its respective domain in order to satisfy all hard constraints
and an optimal number of soft constraints simultaneously.

The Security Controller translates the input service graph
into a MaxSMT instance by means of a set of First-Order
Logic formulas. In a nutshell, these formulas will be converted
to boolean variables in Conjunctive Normal Form, eventually.
In addition to the topological definition of the service graph,
each network function of the service graph will be translated
into the abstract model according to the guidelines given
by Verigraph [19]. This allows us to provide a higher level
of assurance that the automatically generated configuration
parameters of the firewall will satisfy the security policies
in the presence of complex network functions. The level
of abstraction of these models covers all the forwarding
behavior of the network and their configuration parameters that
are already defined. Instead, we model the firewall network
function by introducing soft constraints over variables, which
then will be decided to satisfy or not by the MaxSMT solver.
These variables represent the IP and port addresses to be
autoconfigured in order to satisfy the end-to-end policies.
Initially, these variables are set to false, which means that a
firewall does not contain any rule. If the policy requires that the
firewall must block the traffic, it must falsify the soft constraint
in favor of satisfying the policy requirement. Hence, the policy
requirement is modeled as a hard constraint, which means
it must be always satisfied. In this way, the solver tries to
minimize the falsifying constraints in the formula and satisfy
the hard constraints. This is the definition of the optimization
problem we pursue to solve.

In order to represent the reachability policies by means of
hard constraints, we introduce the concept of packet flows
between endpoints. The first constraint we assert is that the
network function model defined in the service graph must
forward a packet flow if it receives a packet flow. This
constraint must be true under the functional behavior of the
network device. For instance, this is true if a firewall network
function does not contain any rule that drops packets. The
second constraint states that the packet flow sent from a

source node must be received by the destination node. Other
constraints include the forwarding path definitions and static
configuration parameters of network functions.

This concludes the fact that IP formulation of the same
problem would be limited to a set of constraints over binary,
integer, or real variables. Instead, the approach presented in
this paper allows us to model the problem and using very
expressive constraints. These constraints include configuration
parameters of network functions, forwarding behavior of the
service graph, and complex security policies, in addition to the
automatic configuration constraints of the problem. Therefore,
existing IP algorithms are not comparable to our algorithm for
that class of problems. In the next section, we demonstrate our
approach by means of a representative scenario.

IV. USE CASE SCENARIO

This section presents our framework in greater detail with
a practical use case and motivates our design decisions. For
the sake of simplicity, we focus our attention on a specific
component of the ASTRID framework, the Security Controller,
and emphasize the fact that the interaction between other
components is performed by means of a REST APIL. We expose
a number of resource endpoints to the Security Orchestrator,
which will use to deliver the service graph and infrastructure
information and to retrieve the automatically generated firewall
rules. We underline the fact this methodology can be extended
to more general scenarios than the ASTRID framework. In
fact, the Security Controller is a standalone web service
application, which makes it possible to be easily incorporated
into existing cloud platforms and orchestrators.

We consider the scenario where an administrator predefines
the logical service graph presented in Fig. 3a and feeds it
to the dashboard of the ASTRID framework. This service
graph represents a realistic scenario where the nginx web
server is made public to the Internet and functions as a
reverse proxy to fetch dynamic data from multiple instances
of nodejs and apache servers. In this case, both servers can
acquire data from a mysql database. As we can see from the
figure, reachability policies required by the use case are rather
obvious (i.e., highlighted with arrows). Instead, the isolation
property required by the service graph is not evident. For
instance, all the communications, which are not highlighted
with arrows must be isolated. Considering the fact that each
service in the graph is associated with a firewall, firewalls
are preconfigured with deny-all rules, in order to satisfy this
policy. This ensures that all other interactions within the
service graph must be isolated, except the ones predefined by
the user (i.e., arrows).

A Service Orchestrator of the ASTRID framework is in
charge of deploying the service graph onto the infrastructure
and generating the enriched service graph shown in Fig. 3b.
During this enforcement phase, all the services are assigned
with corresponding IP addresses and ports where these ser-
vices can be reached. It is important to highlight that the
multiple instances of the services are deployed in separate
Pods and each will have its own IP addresses. In this scenario,

nodas mysq|
®— 00—

ooy
§..
5 [O—>

3
o
e

3306
170.20.1.14

apache

8080
170.20.1.13

) 8080
/ ‘?’ @‘ 170.20.1.10
‘ (A 8080
\ "~ 4 170.20.1.11
8080
170.20.1.12

Fig. 3: a) a logical service graph b) enriched service graph after the deployment

the user specified to have two instances of the nodejs server
to handle the load. To illustrate the complexity introduced by
this simple use case, we included all the links connecting each
service in the infrastructure in Fig. 3b. Taking into account the
deny-all rules of each firewall of the service, we can assure
that there is no reachability between the Pods in this phase.
Although, we have specified the user policy that needs to be
satisfied by means of the arrows in the figure. As an example,
apache server needs to be configured to allow traffic from itself
to a mysql database and allow communication from nodejs.
However, it needs to be isolated from each instance of the
nodejs servers.

Without the Security Controller, an administrator of the
infrastructure must manually configure each firewall. This
process of manual configuration of each firewall is error-
prone and time-consuming. This scenario motivates the use
of the Security Controller presented in this paper, in order to
automatically generate firewall configurations for each service
and provide formal assurance that the network policy defined
by the user is satisfied. To obtain the low-level configuration of
each firewall component, the Security Controller accepts as an
input the infrastructure information and logical service graph
as described in Section III. Infrastructure information contains
the IP and port addresses of each service that is shown in Fig.
3b. This information is required to define the firewall rules,
which allows to block specific packet flows involving specific
Pods. In the next step, the Security Controller automatically
generates an output with a low-level configuration of each
firewall component. As an example, we present the partial
output format and the actual configuration parameters gener-
ated by the Security Controller in Listing 1. In this prototype
evaluation experiment, we use a machine with 3.40 GHz Intel
i7-6700 CPU and 32GB of RAM. The average time needed
for the overall procedure is less than a second. We need to
emphasize the fact that for most service requests, the time

required to schedule VMs to be several orders of magnitude
larger than the this computation time.

Listing 1 shows the configuration parameters generated for
the firewall component of the mysql service. It includes all
the neighbors of the firewall in the infrastructure network
and firewall rule entries. According to the output, we need
to configure the firewall with 3 entries.

Listing 1: Automatic Configuration Output for mysql

1 <node name="172.20.1.34” functional_type="FIREWALL”>
2 <neighbour name="172.20.1.14"/>

3 <neighbour name="172.20.1.30"/>

4 <neighbour name="172.20.1.317"/>

5 <neighbour name="172.20.1.32"/>

6 <neighbour name="172.20.1.33"/>

7 <configuration name="mysql” description="172.20.1.14">
8 <firewall defaultAction="DENY">

9 <elements>

10 <action>ALLOW</ action>

1 <source>172.20.1.13</source>

12 <destination>172.20.1.14</destination>
13 <protocol>ANY</protocol>

14 <src_port>#</src_port>

15 <dst_port>s</dst_port>

16 </elements>

17 <elements>

18 <action>ALLOW</ action>

19 <source>172.20.1.11</source>

20 <destination>172.20.1.14</destination>
21 <protocol>ANY</protocol>

22 <src_port>#</src_port>

23 <dst_port>#</dst_port>

24 </elements>

25 <elements>

2 <action>ALLOW</ action>

27 <source>172.20.1.12</source>

28 <destination>172.20.1.14</destination>
29 <protocol>ANY</protocol>

30 <src_port>#</src_port>

31 <dst_port>x</dst_port>

32 </elements>

33 </firewall>

34 </configuration>

35 </node>

The first rule states that the packets arriving from the Pod
with an IP address 172.20.1.13 need to be allowed. The rest

of the rules are associated with the two instances of the nodejs
server of the service graph. Due to the default action set by
the firewall in line 8, Listing 1, all the other packets arriving
from the network is dropped. For instance, intruders from the
Internet are not able to access the mysqgl database in accordance
with these rules. This, in fact, ensures the satisfiability of the
initial service graph policy defined by the user. Eventually, the
output file generated by the Security Controller is sent back
to the Context Broker, which is in charge of translating the
low-level configuration of each firewall into a vendor-specific
format of the firewall.

An important feature of the Security Controller is in the
possibility to have firewalls without any configuration as in
the use case or with partial configuration, giving to the tool
itself the task of providing the missing configurations as an
output. The tool generates the configuration with the objective
of satisfying all the requested policies while minimizing the
number of generated rules in order to achieve it. In the case
of partial configuration, a firewall may include static rule
entries that will not be changed in the output. This is useful
when the service graph is updated according to an event
when a Pod is terminated or a new Pod has been created
to handle the overhead to the service. In this scenario, in
order not to recompute the configuration parameters of all the
other services, we can provide their rules in a static manner,
meaning that they can be left unchanged. This process not only
generates a set of configuration parameters but also provides
an optimal set of rules to satisfy the user policy. Optimality
is achieved by minimizing the number of rules inside each
firewall to improve the performance of the virtual network
functions.

V. CONCLUSION AND FUTURE WORKS

In this paper, we illustrated the benefits which the intro-
duction of automatic programmability would bring for the
synthesis of firewall rule sets in virtual networks, in the respect
of NFV and cloud infrastructures with special emphasis on
Kubernetes. In particular, the role of the presented automated
methodology in the ASTRID framework architecture has been
described, with an emphasis on the contributions provided
to the Security Controller. We formulate the problem of
automatic firewall configuration as a MaxSMT instance and
solve it to provide reachability assurance between endpoints.

As possible future works, we are currently planning to
introduce programmability for other kinds of network security
functions, such as intrusion detection systems and security
devices for channel protection (e.g., VPN gateways). More-
over, we plan to provide automatic configuration settings in the
presence of minor changes in the initial service graph without
solving the problem from scratch. As the initial results show
promises in smaller instances, we plan to evaluate the model
in larger scale scenarios.

ACKNOWLEDGMENT

This work has been partially supported by the EU H2020
Projects ASTRID (Grant Agreement no. 786922) and Cyber-

Sec4Europe (Grant Agreement no. 830929).

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

D. Kreutz, F. M. V. Ramos, P. J. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76,
2015.

M. Cheminod, L. Durante, L. Seno, F. Valenza, A. Valenzano, and
C. Zunino, “Leveraging sdn to improve security in industrial networks,”
in 2017 IEEE 13th International Workshop on Factory Communication
Systems (WFCS), May 2017, pp. 1-7.

R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications Surveys and Tutorials,
vol. 18, no. 1, pp. 236-262, 2016.

W. John, G. Marchetto, F. Nemeth, P. Skoldstrom, R. Steinert,
C. Meirosu, 1. Papafili, and K. Pentikousis, “Service provider devops,”
IEEE Communications Magazine, vol. 55, no. 1, pp. 204-211, 2017.
European Telecommunications Standards Institute, “Network functions
virtualisation (nfv); architectural framework,” December 2014. [On-
line]. Available: https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/
01.02.01_60/gs_nfv002v010201p.pdf

B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” IEEE Communications Surveys and
Tutorials, vol. 16, no. 3, pp. 1617-1634, 2014.

Verizon, “Data Breach Investigations Report,” 2019.

D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Au-
tomated optimal firewall orchestration and configuration in virtualized
networks,” in NOMS 2020, apr 2020, to appear.

“ASTRID EU H2020 Project,” https://www.astrid-project.eu/index.php,
accessed: 2020-02-12.

P. B. Copet, G. Marchetto, R. Sisto, and L. Costa, “Formal verification
of lte-umts and lte-Ite handover procedures,” Computer Standards and
Interfaces, vol. 50, pp. 92 — 106, 2017.

Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” ACM Trans. Comput. Syst., vol. 22, no. 4, pp. 381—
420, Nov. 2004.

P. Verma and A. Prakash, “FACE: A firewall analysis and configuration
engine,” in 2005 [EEE/IPSJ International Symposium on Applications
and the Internet (SAINT 2005), 31 January - 4 February 2005, Trento,
Italy, 2005, pp. 74-81.

J. D. Guttman, “Filtering postures: Local enforcement for global poli-
cies,” in 1997 IEEE Symposium on Security and Privacy, May 4-7, 1997,
Oakland, CA, USA, 1997, pp. 120-129.

J. Govaerts, A. K. Bandara, and K. Curran, “A formal logic approach
to firewall packet filtering analysis and generation,” Artif. Intell. Rev.,
vol. 29, no. 3-4, pp. 223-248, 2008.

D. Ranathunga, M. Roughan, P. Kernick, and N. Falkner, “The mathe-
matical foundations for mapping policies to network devices (technical
report),” CoRR, vol. abs/1605.09115, 2016.

C. Basile, F. Valenza, A. Lioy, D. R. Lopez, and A. P. Perales,
“Adding support for automatic enforcement of security policies in NFV
networks,” IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 707-720, 2019.
C. Basile, D. Canavese, C. Pitscheider, A. Lioy, and F. Valenza, “Assess-
ing network authorization policies via reachability analysis,” Computer
and Electrical Engineering, vol. 64, no. C, pp. 110-131, Nov. 2017.
ASTRID an EU H2020 Project , “D1.2 - astrid archi-
tecture,” January 2020. [Online]. Available: https://private.astrid-
project.eu/Documents/PublicDownload/31

S. Spinoso, M. Virgilio, W. John, A. Manzalini, G. Marchetto, and
R. Sisto, “Formal verification of virtual network function graphs in an
sp-devops context,” in Service Oriented and Cloud Computing, S. Dust-
dar, F. Leymann, and M. Villari, Eds. Cham: Springer International
Publishing, 2015, pp. 253-262.

