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Uniform Approximation of Solutions by Elimination of Intermediate Species in
Deterministic Reaction Networks∗

Daniele Cappelletti† and Carsten Wiuf‡

Abstract. Chemical reactions often proceed through the formation and the consumption of intermediate species.
An example is the creation and subsequent degradation of the substrate-enzyme complexes in an
enzymatic reaction. In this paper we provide a setting, based on ordinary differential equations, in
which the presence of intermediate species has little effect on the overall dynamics of a biological
system. The result provides a method to perform model reduction by elimination of intermediate
species. We study the problem in a multiscale setting, where the species abundances as well as the
reaction rates scale to different orders of magnitudes. The different time and concentration scales are
parameterized by a single parameter N . We show that a solution to the original reaction system is
uniformly approximated on compact time intervals to a solution of a reduced reaction system without
intermediates and to a solution of a certain limiting reaction systems, which does not depend on N .
Known approximation techniques such as the theorems by Tikhonov and Fenichel cannot readily be
used in this framework.

Key words. mathematical biology, reaction networks, differential equations with distributed delay, uniform
convergence, trajectory approximation, model simplification
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1. Introduction. Dynamical models of chemical reaction systems in biology and biochem-
istry have a history of more than one hundred years. Today such models are playing a crucial
role in understanding the dynamic behavior of biological and cellular systems, such as sig-
nalling pathways and the circadian clock. These systems are typically large with reactions
running at different time-scales and species abundances spanning several orders of magnitude.
The choice of model typically reflects this. If the species are in low abundance, stochastic
fluctuations should not be ignored and the preferred model is often a continuous-time Markov
chain, where the variables are the molecular counts of each species. In contrast, if the species
are in large abundance, it is customary to consider the concentrations of the species, rather
than the counts, and the dynamics is modeled as a system of ordinary differential equations
(ODEs). In this paper, we are concerned about the latter class of models.
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2260 DANIELE CAPPELLETTI AND CARSTEN WIUF

In many situations there is an interest in reducing an ODE system to a smaller sys-
tem, either because the original system is mathematically and computationally intractable
or because the full original system obscures the essential biological aspects of the system [3].
The quasi-steady state approximation and rapid equilibrium assumption are commonly used
techniques to reduce a system by making heuristic arguments about fast/slow reactions and
fast/slow species (in our context it would be more correct to say high/low concentrations of
species) [3]. When applying time-scale separation, the species are typically divided into fast
and slow species, and based on this division a reduced ODE system is deduced with only the
slow species. This is often done without mathematical justification. However, Tikhonov’s
theorem (and similar theorems) often applies and allows us to conclude that the trajectories
of the original system is uniformly approximated by the trajectories of the reduced system on
compact time intervals [17, 7, 15, 8].

The present paper addresses at the same time the issue of time-scale separation by means
of high/low concentrations as well as by fast/slow reactions, in the specific context of reaction
networks with intermediate species. Intermediate species are transient species in a reaction
pathway, which are produced and subsequently degraded in the course of time (a formal
definition is given in section 2). A well known example of an intermediate species is the
substrate-enzyme complex ES in the Michaelis–Menten mechanism,

(1) E + S ES E + P ,

κ1

κ2

κ3

but more complex intermediate structures might be considered as well. The constants κ1, κ2,
and κ3 are rate constants and relate to the propensity of the reactions to occur. Various effects
of the presence of intermediate species in reaction networks have recently been studied, for
example, in relation to the number of steady states [16, 6], persistence [10], and approximation
of stochastic trajectories [2].

To illustrate the scope of our results, consider the following system:

(2)

E + S H1

H2

E + P
κ1

N3κ2N4κ3

N2κ4

.

Here, the species H1 and H2 are intermediate species, whose production and consumption
delay the enzymatic reaction that transforms a substrate S into a product P . If we denote by
S(t) the concentration of the substrate at time t and so on, then the dynamics of the system
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ELIMINATION OF INTERMEDIATE SPECIES 2261

is modeled by (assuming mass-action kinetics)

d

dt
S(t) = −κ1E(t)S(t),

d

dt
E(t) = −κ1E(t)S(t) +N2κ4H1(t),

d

dt
P (t) = N2κ4H1(t),

d

dt
H1(t) = κ1E(t)S(t)−N3κ2H1(t) +N4κ3H2(t)−N2κ4H1(t),

d

dt
H2(t) = N3κ2H1(t)−N4κ3H2(t).

The number N is supposed to be large, representing the separation in time-scales between
reaction rates. If N is large, then the presence of the intermediate species H1 and H2 does not
de facto delay the production of the product P , since the intermediate species are consumed
almost immediately after production. Our result allows us to approximate the trajctories of
the system (2), uniformly on compact time intervals, by that of the following reduced reaction
system

(3)
E + S E + P

κ1

(also with mass-action kinetics).
In order to describe the dynamics of biologically realistic systems, we consider a multiscale

framework where not only the reaction rates scale, but also the species abundances scale in
orders of N . For example, the reduction we performed for (2) is still valid if the substrate
concentration is of order O(N), the enzyme concentration is of order O(1), and the product
concentration is of order O(Nγ), where γ ≥ 1. As a consequence, the degradation rate of
the substrate and the enzyme is also of order O(N). It is worth pointing out that while the
reaction rates that depend on N in general will increase with N , our approach also allows for
some reaction rates to become arbitrary small, as in Example 3 below.

All time and concentration scales are parameterized by a single parameter N , which
corresponds to 1/ε in the context of Tikhonov’s approach. In contrast to previous work on
reduction of deterministic reaction networks, our approach identifies a proper reduced reaction
network as in (3), with rates potentially depending on N , and a limiting reaction network with
rates independent on N , and not only an ODE system approximating the species behavior. In
the case discussed above, the two reaction networks coincide, together with their kinetics, but
we will see examples where this is not the case. Furthermore, we prove uniform convergence
of the trajectories of the original network to those of the reduced, as well as to those of
the limiting reaction network, on compact time intervals. In the particular case of (2), the
reduction cannot be performed using Tikhonov’s theorem. The problem resides in the fact that
the fast reactions are not of the same order of magnitude and this cannot be accommodated
in the setting of Tikhonov. Thus, it is not sufficient to categorize the reactions (or variables)
as fast and slow, but the exact order of each reaction is important. For example, if the rate
constant of H2 → H1 is changed from N4κ3 to Nκ3, then the intermediate structure causes
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2262 DANIELE CAPPELLETTI AND CARSTEN WIUF

a significant delay and (2) cannot be reduced to (3). (In this case, Assumption 4 below does
not hold.) This is caused by the cycle between the intermediate species H1 and H2.

The paper is organized as follows. Section 2 contains background material on reaction
networks and definitions. Section 3 discusses intermediate species and some mathematical
consequences of introducing reactions including intermediate species. In sections 4–6 we in-
troduce the multiscale setting and the reduced reaction network, and in section 7, the limiting
reaction network is introduced. The convergence results are stated in section 8 with the proofs
postponed to section 10. Section 9 relates our approach to other approaches and discusses
problems arising when considering long term behaviors. Our approach is inspired by related
work for stochastic reaction networks [11, 2].

2. Definitions and background. In this section we introduce definitions and background
material; for more details on reaction systems, see, for example, [5] and [4].

Let R, R>0, and R≥0 be the set of real, positive real, and nonnegative real numbers,
respectively. Also let N be the set of natural numbers including 0. For any vector v ∈ Rp,
we let vi be the ith component of v and ‖v‖ the Euclidean norm. We denote by e the vector
with all entries equal to one and by ei, the ith unit vector. If M is matrix (or vector),
M> denotes the transpose of M . Furthermore, for any set A, |A| denotes the cardinality
of A, and for any two sets A and B, we let A \ B be the set of elements that are in A,
but not in B. If u, v ∈ Rp are vectors and N > 0 a scalar, then Nu denotes the vector
with entries Nui and Nuv denotes the vector with entries Nuivi. Finally, if g, f : N → R
are functions, then g(N) = O(f(N)) denotes that g is of order at most that of f , that is,
lim supN→∞ |g(N)/f(N)| < ∞, and g(N) = Θ(f(N)) denotes that g is of the same order as
f , that is, 0 < lim infN→∞ |g(N)/f(N)| and lim supN→∞ |g(N)/f(N)| <∞.

A reaction network is a triple (X , C,R), where X is an ordered set (Sk)1≤k≤|X |, C is an
ordered set (yi)1≤i≤|C| of linear combinations of elements of X on N, and R is a subset of
C × C, such that (yi, yi) /∈ R for all yi ∈ C. The elements of the set X are called species, the
elements of the set C are called complexes, and the elements of R are called reactions. The
complexes are identified as vectors in R|X |. A reaction (yi, yj) ∈ R is denoted by yi → yj . In
(2), there are 5 species (S,E,H1, H2, P ), 4 complexes (S+E,H1, H2, P +E), and 4 reactions.

The evolution of the species concentrations x(t) ∈ Rn
≥0 for t ≥ 0 is modeled as the solution

to the ODE system

(4)
d

dt
x(t) =

∑
yi→yj∈R

(yj − yi)λij(x(t))

with initial condition x(0) ∈ Rn
≥0 for some nonnegative, nonzero functions λij : R|X |≥0 → R≥0,

fulfilling that λij(x) > 0 implies xk > 0, whenever yik > 0, 1 ≤ k ≤ |X |. The latter assump-
tion requires that a reaction only occurs in the presence of the involved species, and therefore
prevents the concentrations from becoming negative. The functions λij(x) are called rate func-
tions and together they constitute a kinetics K for (X , C,R), and the quadruple (X , C,R,K)
is called a (deterministic) reaction system. If

(5) λij(x) = κij

|X |∏
k=1

xyikk
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ELIMINATION OF INTERMEDIATE SPECIES 2263

for all reactions, then the constants κij are referred to as rate constants and the modeling
regime as (deterministic) mass-action kinetics. In this case, the quadruple (X , C,R,K) is
called a (deterministic) mass-action system.

For convenience, we define λij(x) = 0 whenever yi → yj is not a reaction in R, in which
case (4) becomes

d

dt
x(t) =

∑
1≤i,j≤|C|

(yj − yi)λij(x(t)).

Finally, we define intermediate species as in [6].

Definition 2.1. Let (X , C,R) be a reaction network and V = (H`)`∈V be a subset of X . We
say that the species in V are intermediate species (or simply intermediates) if the following
conditions hold:

• For each H` ∈ V, the only complex involving H` is H` itself. (This implies that V ⊆ C.)
• For each H` ∈ V, there is a directed path of complexes, such that

yi → H`1 → · · · → H` → · · · → H`n → yj

with yi, yj ∈ C \ V and H`m ∈ V for all 1 ≤ m ≤ n.

According to the Definition 2.1, intermediate species always appear alone and with sto-
ichiometric coefficient one. For example, the substrate-enzyme complex in the Michaelis–
Menten mechanism (1) and the species H1, H2 in (2) meet Definition 2.1. We denote by U ,
W, the subsets of C \ V such that

• yi ∈ U if and only if yi /∈ V and there exists H` ∈ V, such that yi → H` ∈ R,
• yj ∈ W if and only if yj /∈ V and there exists H` ∈ V, such that H` → yj ∈ R.

Thus, U consists of the complexes from which intermediates are produced and W consists of
the complexes to which intermediates are degraded. We refer to U and to W, respectively,
as the initial reactants and the final products. In general, the two sets can have nonempty
intersection, as is the case for the Michaelis–Menten mechanism (1).

For convenience, we index the sets X and C, such that S` = y` = H` for any intermediate
H` ∈ V. Further, we introduce the index sets U , V , and W of U , V, andW, respectively, such
that

U = {yi}i∈U , V = {H`}`∈V , W = {yj}j∈W .

3. Effects of the intermediate species. The presence of intermediate species slows down
any reaction path that proceeds through the formation of intermediates. Intuitively, the
production and degradation of a sequence of intermediate species delay the synthesis of the
final product, while in a model without intermediates this synthesis would happen without
any delay.

Let (X , C,R,K) be a reaction system with a set of intermediate species V ⊆ X . To
investigate the effects of the presence of intermediate species in detail, we make the following
assumption.

Assumption 1 (reaction rates and intermediates). The consumption of the intermediates is
governed by mass-action kinetics, namely, for any `, `′ ∈ V and j ∈W ,

λ`j(x) = κ`jx` and λ``′(x) = κ``′x`
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2264 DANIELE CAPPELLETTI AND CARSTEN WIUF

for some constants κ`j , κ``′ > 0. Furthermore, we assume that all other reaction rates do not
depend on H` in V.

Let π be the projection onto the nonintermediate species, and ρ the projection onto the
intermediate species. To ease the notation, let x̂ = π(x) and x̌ = ρ(x), such that x = (x̂, x̌) for
x ∈ R|X |. Under Assumption 1, the rates of reactions that are not consuming intermediates
depend on x only through x̂. Hence, with a slight abuse of notation, we write

λij(x) = λij(x̂), i /∈ V.

For any i ∈ U , consider the labeled directed graph Gx̂i with node set V ∪ {?} and labeled
edge set given by

(6)

• H`
κ``′−−−−−−→ H`′ if κ``′ 6= 0 and ` 6= `′,

• H`

∑
j∈W κ`j

−−−−−−→ ? if
∑
j∈W

κ`j 6= 0,

• ?
λi`(x̂)−−−−−−→ H` if λi`(x̂) 6= 0.

By Definition 2.1, there is directed path from any H` to ?. Even though all intermediate
species are produced, there might not be a directed path from ? to an intermediate species
H`, as λi`(x̂) could be zero for some reaction yi → H` and the particular choice of x̂. Hence
Gx̂i might not be strongly connected.

If we order the nodes of the graph such that ? is the last one, (the transpose of) the
Laplacian matrix of the graph (6) takes the form

(7) Lx̂i =

 −L −λi(x̂)

e>L
∑

`∈V λi`(x̂)

 ,
where, for any `, `′ ∈ V ,

L``′ =

{
κ`′` if ` 6= `′,

−
∑

h∈V ∪W κ`h if ` = `′,

and

(8) λi·(x̂) = (λi`(x̂))`∈V .

Finally, we define the vector Λ(x̂) of length |V| by

Λ`(x̂) =
∑
i∈U

λi`(x̂).

With these definitions, x̌(t) is a solution to

d

dt
x̌(t) = Lx̌(t) + Λ(x̂(t)),
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ELIMINATION OF INTERMEDIATE SPECIES 2265

which implies that

(9) x̌(t) = exp (Lt) x̌(0) +
∫ t

0
exp (L(t− s)) Λ(x̂(s))ds.

The nonintermediate species evolve according to

d

dt
x̂(t) =

∑
`∈V
j∈W

yjκ`jx`(t) +
∑
i/∈V

1≤j≤|C|

π(yj − yi)λij(x̂(t))

=
∑
j∈W

yjκ·j x̌(t) +
∑
i/∈V

1≤j≤|C|

π(yj − yi)λij(x̂(t)),

where κ·j = (κ`j)`∈V are row vectors. Under the assumption x̌(0) = 0, it follows from (9) that

(10)
d

dt
x̂(t) =

∑
j∈W

yjκ·j

∫ t

0
exp (L(t− s)) Λ(x̂(s))ds+

∑
i/∈V

1≤j≤|C|

π(yj − yi)λij(x̂(t)).

The above is a system of delayed differential equations with a distributed delay, in the sense
of [9]. In particular, (10) does not depend explicitly on the abundance of the intermediate
species.

Remark 1. The matrix L is invertible, which follows from standard graph theory and
Gershgorin theorems. By potentially changing the order of the intermediate species, L can be
transformed into a block diagonal matrix with irreducible diagonal blocks. Moreover, in each
diagonal block there exists at least one column for which the diagonal entry is strictly smaller
than the sum of the other entries. Such a column corresponds to an intermediate species that
degrades to a final product. Therefore, we can conclude by the first and the third Gershgorin
theorem that all eigenvalues of L have negative real part [12]. In particular, zero cannot be
an eigenvalue of L, which is therefore invertible.

4. The multiscale setting. Consider a reaction system (X , C,R,K) with a set of inter-
mediate species V ⊆ X . Our aim is to study the asymptotic behavior of the trajectories of
the system under the assumption that the consumption rates of the intermediate species are
high. (Technically, what we will require is slightly different and expressed in Assumption 4.)
Formally, we introduce a sequence of kinetics KN , indexed by N ∈ N, and let xN(t) denote
the solution of the reaction system (X , C,R,KN ) with a given initial condition xN(0) ∈ R|X |≥0 .
We assume the kinetics KN , N ∈ N, satisfy Assumption 1.

In the typical biological context the abundance of the nonintermediate species might differ
by orders of magnitude. In addition the rate of their degradation might likewise differ. To
accommodate this into the setting we introduce the sets

R0 = {yi → yj ∈ R | yi, yj 6∈ V }, R1 = {yi → yj ∈ R | yi 6∈ V }

of all reactions not involving intermediate species and all reactions not consuming intermediate
species, respectively. Clearly, R0 ⊆ R1.
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2266 DANIELE CAPPELLETTI AND CARSTEN WIUF

We define two real vectors α ∈ R|X\V| and β ∈ R|R1|, which record the orders of magnitude
of the nonintermediate species and of the reaction rates, respectively. We assume that the
kinetics KN , N ∈ N, are such that for any yi → yj ∈ R1,

(11) lim
N→∞

N−βijλNij (Nαx̂) = λij(x̂),

uniformly in x̂ on compact sets of R|X\V|, for some locally Lipschitz function λij : R|X\V| →
R≥0, which is nonzero for yi → yj ∈ R1 \R0. (That is, there exists x̂, such that the function is
nonzero.) The latter is a natural requirement and emphasizes that the scaling ideally should
be such that the reaction rate persists in the limit. Technically we only need this requirement
for reactions in R1 \ R0; see Remark 3.

Remark 2. For mass-action kinetics, there is a natural choice of β ∈ R|R1|. Assume the
rate constants in (5) take the form κNij = Nηijκij , where κij > 0. Then, from (11),

N−βijλNij (Nαx̂) = N−βijNηijκij

|X |∏
k=1

(Nαk x̂k)yik = N−βij+ηij+〈α,yi〉κij

|X |∏
k=1

x̂yikk ,

where 〈, 〉 denotes the scalar product. Hence, the expression converges for large N to a nonzero
limit if and only if βij = ηij + 〈α, yi〉.

5. The reduced reaction system. For simplicity we define the following.

Definition 5.1. We say that a complex y reacts to another complex y′ through intermediates,
and write y V⇒ y′, if one of the following possibilities occurs:

• y ∈ V and either y = y′ or y → y′ ∈ R;
• there exists a sequence of intermediate species H`1, H`2 , . . . ,H`n such that

y → H`1 → · · · → H`n → y′.

Consider a reaction network (X , C,R) with a set of intermediate species V ⊆ X . We define
the reduced reaction network as in [6] and [2], that is, as

(12) (X \ V, C \ V,Rr),

where Rr consists of the reactions yi → yj , such that either yi → yj is an element of R not
involving any intermediate, or the complex yj reacts to yi through intermediates. Formally,

Rr = R0 ∪ Rr1,

where
Rr1 =

{
yi → yj | yi

V⇒ yj , yi ∈ U , yj ∈ W
}
.

Note that R0 and Rr1 may have a nonempty intersection. For the reaction networks (1) and
(2), we have Rr = {E + S → E + P}.

If the original reaction networkR is equipped with the kinetics KN , we introduce a kinetics
K̃N for the reduced reaction network (12), induced by R and KN [6]. To define K̃N , we need
some further terminology.
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ELIMINATION OF INTERMEDIATE SPECIES 2267

Let the labeled directed graph Gx̂,Ni be as in (6), where we make the dependence on N

explicit. Let T x̂,Ni (·) be the set of labeled spanning trees of Gx̂,Ni rooted at the argument, and
let σN(·) be the product of the edge labels of the tree in the argument. To be precise, we say
that a tree is rooted at a node if all the directed edges are directed toward the root. Define

(13) µNi` (x̂) =

∑
τ∈T x̂,Ni (H`)

σN(τ)∑
τ∈T x̂,Ni (?) σ

N(τ)
.

The denominator is always strictly positive, since there is at least one spanning tree rooted
at ? and all labels are positive. Furthermore, σN(τ) of such a spanning tree is independent of
x̂ ∈ R|X\V|; see (6). In contrast, the numerator might be zero if there is not a spanning tree
rooted at H`. This might be the case if yi → H` /∈ R or λNi` (x̂) = 0.

The kinetics K̃N of the reduced reaction system is defined by the rate functions

(14) λr,Nij (x̂) = λNij (x̂) +
∑
`∈V

κN`jµ
N
i` (x̂) for yi → yj ∈ Rr.

Similarly to the original system, the reduced reaction system is a multiscale system, and we
assume there is a vector βr ∈ R|Rr|, such that for any compact set Γ ∈ R|X\V| and any
yi → yj ∈ Rr

(15) lim
N→∞

sup
x̂∈Γ

N−β
r
ijλr,Nij (Nαx̂) <∞.

Due to (11) and (14), there is always βrij , such that (15) holds. This also follows straightfor-
wardly from (16) below. In particular, if yi → yj ∈ R0 \ Rr1, then it also follows that βrij can
be chosen such that βrij ≥ βij .

We restrict the analysis to the case in which the species abundances balance the rate by
which they change in the sense of the following assumption. Essentially, it restricts how large
we can choose βrij in (15).

Assumption 2. For any reaction yi → yj in Rr, we have

lim
N→∞

Nβrij‖N−α(yj − yi)‖ <∞,

and βrij ≥ βij for yi → yj ∈ R0.

In particular, the assumption implies that Nβij‖N−α(yj − yi)‖ has a finite limit for all
yi → yj ∈ R0. We introduce two examples that will serve as running examples.

Example 1 (part 1). Consider the Michaelis–Menten mechanism, taken with mass-action
kinetics:

E + S ES E + P

κ1

κ2N
η2

κ3N
η3
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2268 DANIELE CAPPELLETTI AND CARSTEN WIUF

We take V = {ES} to be the set of intermediates. Then U = {E+S} andW = {E+S,E+P}.
The graph (6) is

? ES

κ1xExS

κ2N
η2 + κ3N

η3

.

Therefore,

µNE+S,ES(x) =
κ1xExS

κ2Nη2 + κ3Nη3
,

and it follows that the reduced reaction system is given by the following mass-action system
(see (14)):

E + S E + P

κ1κ3Nη3

κ2Nη2+κ3Nη3 .

Finally, Assumption 2 is satisfied with αE = 0, αS < max{η2, η3} and αP = min{αS , αS +
η3− η2}. The order of magnitude of the reaction rates are βE+S→ES = αS and βrE+S→E+P =
αS + η3 −max{η2, η3}; see Remark 2.

Example 2 (part 1). Consider the system (2) with set of intermediates V = {H1, H2}. As
in the previous example, there is only one initial reactant, U = {E+S}, and one final product,
W = {E + P}. The graph (6) is given by

? H1 H2

κ1xExS

N2κ4

N3κ2

N4κ3

.

In this case,

µNE+S,H1
(x) =

N4κ1κ3xExS
N6κ3κ4

.

Since the reaction constant of the reaction H1 → E+P is N2κ4, the reduced reaction system
is given by the mass-action system (see (14))

E + S E + P
κ1 .

Note that the kinetics of the reduced reaction system does not depend on N . Finally, Assump-
tion 2 is satisfied if, for example, αE = 0, αS ≤ αP . In this case the orders of the reaction
rates are given by βE+S→H1 = βrE+S→E+P = αS ; see Remark 2.

6. Equivalent description of the reduced reaction system. The definition of the reduced
reaction system is that of [6]. It is also used in [2], where a probabilistic interpretation of the
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kinetics KN is given in the context of stochastic reaction systems. Specifically, it is shown
that

κN`jµ
N
i` (x) = λNi` (x)πN`j ,

where πN`j is the probability that yj is the final product eventually created by a single molecule
of the intermediate species H`. In our context, πN`j might be interpreted as the fraction of the
concentration of H` that is converted into yj .

In particular the relation implies that

(16)
∑
j∈W

κN`jµ
N
i` (x) = λNi` (x).

The next lemma concerns the inverse of the matrix LN , which exists by Remark 1. A
similar result appears in [6], and we give the proof in section 10 for completeness.

Lemma 6.1. Let µNi` (x) be defined as in (13). We have that

−
((
LN
)−1

λNi·(x̂)
)
`

= µNi` (x̂) ,

where ` on the left side indicates the `th entry and λNi· (x̂) is as in (8).

Remark 3. From Lemma 6.1 and (11), (14), and (15), it follows that

lim sup
N→∞

−N−β
r
ij

∑
`,`′∈V

κN`′j

((
LN
)−1

e`N
βi`
)
`′
<∞,

where λNi` (Nαx̂) = Θ(Nβi`) for some x̂ ∈ R|X\V|≥0 , by (11). Therefore Assumption 2 implies
that

lim sup
N→∞

−Nβi`−α(yj − yi)κN·j
(
LN
)−1

e` <∞

for any i ∈ U , j ∈W , and ` ∈ V , such that yi → H` ∈ R.

7. The limiting reaction system. The assumptions made in the previous sections allow
us to approximate the dynamics of the original system to that of the reduced reaction system
for any N (Proposition 8.4). However, it is also of interest to study the limit as N tends to
infinity and to obtain a limiting reaction system that is independent of N . For this, we need
a stronger assumption than (15).

Assumption 3. For any reaction yi → yj ∈ Rr, there exists a locally Lipschitz function
λ∞ij : R|X\V|≥0 → R≥0, such that

lim
N→∞

N−β
r
ijλr,Nij (Nαx̂) = λ∞ij (x̂),

uniformly on compact sets of R|X\V|≥0 .
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The assumption trivially implies (15). Under Assumption 3, we can define a limiting
reaction network. We begin by introducing a new set of complexes with cardinality possibly
different from that of C. For any reaction yi → yj ∈ Rr, we define the complexes

y
(i,j)
i = lim

N→∞
NβrijN−αyi and y

(i,j)
j = lim

N→∞
NβrijN−αyj

and let

C∞ =
{
y

(i,j)
i , y

(i,j)
j : yi → yj ∈ Rr

}
, R∞ =

{
y

(i,j)
i → y

(i,j)
j : yi → yj ∈ Rr

}
.

The limiting reaction network is defined as (X \V, C∞,R∞). A kinetics K∞ for the limiting
reaction network is defined by the functions λ∞ij (x̂), introduced in Assumption 3, such that

λ∞ij (x̂) is the rate function of the reaction y
(i,j)
i → y

(i,j)
j . Note that the rate function λ∞ij (x̂)

may be the constantly zero (as in Example 3 below), in which case we remove the reaction
y

(i,j)
i → y

(i,j)
j from the reaction network. The reaction system (X \V, C∞,R∞,K∞) with such

reactions removed is called the limiting reaction system.

Example 1 (part 2). Since the enzyme E does not change in any reaction of the reduced
reaction system, its concentration remains constant over time. As the reduced reaction net-
work has only one reaction, we let βrE+S→E+P = βr. To compute the limiting reaction system,
recall that βr = αS + η3−max{η2, η3}. Assuming mass-action kinetics, we have the following
different cases with zE(0) = E0:

Condition Limiting system

η2 > η3, αP > βr ∅
in this case z(t) = z(0)

η2 > η3, αP = βr 0
κ1κ3zS(0)E0

κ2−−−−−−−−→ P

η2 = η3, αP > βr S

κ1κ3E0
κ2+κ3−−−−−→ 0

η2 = η3, αP = βr S

κ1κ3E0
κ2+κ3−−−−−→ P

η2 < η3, αP > βr S
κ1E0−−−→ 0

η2 < η3, αP = βr S
κ1E0−−−→ P

Example 2 (part 2). The limiting reaction system coincides with the reduced reaction
system.

8. Convergence results. Our aim is to approximate the evolution x̂N (t) of the noninter-
mediate species by a solution zN (t) of the reduced reaction system, or by a solution z(t) of the
limiting reaction system, when the latter is defined. Specifically, we are interested in uniform
convergence of the solutions on compact time intervals, in the sense of Proposition 8.4 and
Theorem 8.5 below. In order to obtain such a convergence, we need to make a key hypothesis
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that relates to the speed of consumption of the intermediate species. For convenience, we
define the following quantity, for any j ∈W and ` ∈ V :

aj = min
k : yjk 6=0

αk, β∗` = max
i∈U : yi→H`∈R

βi`

with the convention that the minimum (maximum) over the empty set is (minus) infinity.

Assumption 4. For any ` ∈ V , such that yi → H` for some i ∈ U , and for any `′ ∈ V, j ∈
W , such that H`

V⇒ H`′ and H`′
V⇒ yj , we assume

lim
N→∞

Nβ∗`−aj e>`′ exp
(
Naj−β∗` εLN

)
e` = 0.

Remark 4. Assumption 4 is very similar to what is required in [2] in order to have conver-
gence of the evolution of a stochastic system with intermediates to that of a reduced reaction
system without intermediates. In particular, [2] offers a probabilistic interpretation of As-
sumption 4. Let τN` denote the random time until a molecule of H` is transformed into a
nonintermediate complex, assuming a stochastic kinetics similar to KN . The time τN` then
follows a phase-type distribution conditioned on a initial distribution, and Assumption 4 is
then implied by

(17) lim
N→∞

Nβ∗`−ajP
(
τN` > Naj−β∗` ε

)
= 0

for any scalar ε > 0, any ` ∈ V , such that yi → H` for some i ∈ U , and any j ∈W , such that
H`

V⇒ yj . Here P denotes the probability of the event. Such an implication might be useful,
as in some cases (17) is easier to check than Assumption 4.

We give here some particular cases under which Assumption 4 holds. These cases arise
frequently in biological applications, so an explicit treatment may be useful. Furthermore, if
the concentrations of the nonintermediate species are of the same order of magnitude, as well
as the propensities of the reactions transforming them, then we can simply consider αk = 0
and βij = 0 (for the relevant indices). In this particular case, it follows that aj = 0 for any
j ∈W and β∗` = 0 for any ` ∈ V with yi → H` for some i ∈ U .

We first consider the particular case in which all the intermediate species have the same
order of degradation.

Proposition 8.1. Assume that there exists γ ∈ R such that for any N ≥ 1, and any ` ∈ V
and h ∈ V ∪W , we have κN`h = Nγκ`h for some nonnegative constants κ`h. Moreover, assume
that γ > β∗` − aj for any ` ∈ V , such that yi → H` for some i ∈ U , and any j ∈W , such that

H`
V⇒ yj. Then Assumption 4 holds.

Proof. If κN`h = Nγκ`h for ` ∈ V and h ∈ V ∪W , then necessarily

LN = NγL,

where for simplicity we let L = L1. Following the argument in Remark 1, we conclude that
the eigenvalues of L have a negative real part. Then, it follows that there exist two positive
constants Γ0 and Γ1 such that for any t > 0

‖ exp(tL)‖ ≤ Γ0e
−Γ1t.
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2272 DANIELE CAPPELLETTI AND CARSTEN WIUF

Hence, for any `, `′ ∈ V∣∣∣Nβ∗`−aje>`′ exp
(
Naj−β∗` εLN

)
e`

∣∣∣ = Nβ∗`−aj
∣∣∣e>`′ exp

(
Naj−β∗`+γεL

)
e`

∣∣∣
≤ Nβ∗`−ajΓ2e

−Γ1N
aj−β

∗
`+γε

for some positive constant Γ2. This concludes the proof because γ > β∗`−aj by assumption.

The second case we consider deals with the absence of cycles in the intermediate structures,
in the sense specified in the following proposition.

Proposition 8.2. Assume there does not exist a directed path of the form H`1 → · · · →
H`n → H`1 for any sequence of intermediate species H`1, H`2 , . . . ,H`n. Moreover, assume
that

(18) lim
N→∞

Naj−β∗`
∑

h∈V ∪W
κN`′h = 0

for any ` ∈ V such that yi → H` for some i ∈ U , and for any `′ ∈ V , j ∈ W such that
H`

V⇒ H`′ and H`′
V⇒ yj. Then Assumption 4 holds.

Proof. Note that by (18) the growth of the constants κN`h is at most polynomial in N .
Potentially by reordering the intermediate species, the matrix LN is lower triangular.

Indeed, by assumption it is not possible that H`
V⇒ H`′ and H`′

V⇒ H` for two intermediate
species H` 6= H`′ . It follows that for any t > 0 the matrix exp(tLN ) is lower triangular.
Specifically, LN can be written as LN = DN + TN , where DN is a diagonal matrix and TN

is a lower triangular matrix with zero diagonal entries. Therefore,

exp
(
tLN

)
= exp

(
tDN

)
exp

(
tTN

)
.

The matrix exp(tDN ) is a diagonal matrix with `th diagonal entry equal to

etL
N
`` = e−t

∑
h∈V ∪W κN`h .

Moreover, since TN is nilpotent, exp(tTN ) is a lower triangular matrix whose entries are
polynomials in tκN``′ for `, `′ ∈ V with ` 6= `′. Hence, for any ε > 0, any ` ∈ V such that

yi → H` for some i ∈ U , and for any `′ ∈ V , j ∈ W such that H`
V⇒ H`′ and H`′

V⇒ yj , we
have

Nβ∗`−aj e>`′ exp
(
Naj−β∗` εLN

)
e` = Nβ∗`−aje−N

aj−β
∗
` ε

∑
h∈V ∪W κN

`′h exp
(
Naj−β∗` εTN

)
`′`
.

The proof is therefore concluded by (18) and by the fact that the entries of exp(Naj−β∗` εTN )
are polynomial functions in Naj−β∗` εκN`′`′′ , which grow at most polynomially in N .

In addition to the particular cases considered in Propositions 8.1 and 8.2, a simpler suf-
ficient condition implying Assumption 4 is given in the next proposition. A similar result
appears in [2].
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Proposition 8.3. If

(19) lim
N→∞

Nβ∗`−2ajµNi`′(N
αx̂) = 0

for all x̂ ∈ R|X\V|≥0 , `, `′ ∈ V , i ∈ U , and j ∈ W , such that yi → H`, H`
V⇒ H`′, and H`′

V⇒ yj,
then Assumption 4 holds.

The proof of Proposition 8.3 is based on the fact that (19) implies that the integrals of
the expression in Assumption 4 tend to zero; see the proof in section 10. Proposition 8.3
offers a convenient way to check Assumption 4, which rarely can be evaluated by hand outside
the special cases considered in Propositions 8.1 and 8.2. Even with the use of symbolic
computational software, Assumption 4 might be difficult to verify without choosing fixed
values for the rate constants. Condition (19) is in general not a necessary condition, as shown
in the next example. The probabilistic formulation of Assumption 4 given in Remark 4 also
often offers an easier way to check Assumption 4.

Example 3. Consider the following mass-action system:

S H1

H2

P1

P2

κ1 N2κ4

Nκ2

N−2κ3
.

If αS = αP1 = αP2 = 0, then Assumption 4 is satisfied, but (19) does not hold. Indeed, in
this case

N
β∗H1
−2aP2µNS,H2

(Nαx̂) = N
κ1κ2

N−1κ2κ3 + κ3κ4
x̂S ,

which is of order N . On the other hand,

N
β∗H1
−aP1 e> exp

(
N
aP1−β

∗
H1εLN

)
eH1

= N
β∗H1
−aP2 e> exp

(
N
aP2−β

∗
H1εLN

)
eH1

= exp
(
− εN(Nκ4 + κ2)

)
−
N3κ4

(
exp

(
− εN(Nκ4 + κ2)

)
− exp

(
− εκ3/N

2
))

N4κ4 +N3κ2 − κ3
,

and therefore Assumption 4 holds. Note that in this case, we could have used Proposition 8.2
to show that Assumption 4 holds, without calculating the exponential matrix explicitly. The
reduced system is

S

P1

P2

N2κ1κ4
N2κ4+Nκ2

Nκ1κ2
N2κ4+Nκ2
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and the limiting system is given by

S P1
κ1

.

We are now ready to enunciate the following convergence results on compact time intervals.

Proposition 8.4. Let T > 0 be fixed. Assume the kinetics KN satisfy Assumption 1 for all
N > 0 and that Assumption 2 and 4 hold. Then, if

lim
N→∞

∥∥N−αx̂N (0)−N−αzN (0)
∥∥ = 0 and x̌N (0) = 0,

and if there exists a constant Υ > 0, such that

sup
t∈[0,T ],N∈N

∥∥N−αzN (t)
∥∥ < Υ,

we have

(20) lim
N→∞

sup
t∈[0,T ]

∥∥N−αx̂N (t)−N−αzN (t)
∥∥ = 0.

Theorem 8.5. Let T > 0 be fixed. Assume the kinetics KN satisfy Assumption 1 for all
N > 0 and that Assumption 2, 3, and 4 hold. Then, if

lim
N→∞

∥∥N−αx̂N (0)− z(0)
∥∥ = 0 and x̌N (0) = 0

and if there exists a constant Υ > 0, such that

sup
t∈[0,T ]

‖z(t)‖ < Υ,

we have
lim
N→∞

sup
t∈[0,T ]

∥∥N−αx̂N (t)− z(t)
∥∥ = 0.

The proofs of the two statements are given in section 10.

Example 1 (part 3). In this example LN is a 1 × 1 matrix, and it is not difficult to see
that Assumption 4 holds if and only if αS < max{η2, η3}. Then, Proposition 8.4 applies, and
we obtain that on a compact interval [0, T ], the rescaled concentrations xNE (t), N−αSxNS (t),
and N−αP xNP (t) are uniformly approximated by zNE (t), N−αSzNS (t), and N−αP zNP (t), provided
that N−α(x̂N (0) − zN (0)) goes to zero as N → ∞. Here zN (t) is a solution to the reduced
reaction system in Example 1 (part 1). In this case the limiting reaction system exists; see
Example 1 (part 2). Hence the rescaled trajectory N−αx̂N (t) can also be approximated in the
sense of Theorem 8.5.

Example 2 (part 3). We have

µNE+S,H1
(x) =

N4κ1κ3xExS
N6κ3κ4

and µNE+S,H2
(x) =

N3κ1κ2xExS
N6κ3κ4

.
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Therefore, if αE = 0 and αS < 1, it follows from Proposition 8.3 that Assumption 4 is satisfied.
Using a symbolic computational software, it can be verified that Assumption 4 is satisfied for
αE = 0 and αS < 2, and thus for higher values of αS than given by Proposition 8.3.

In this case the reduced and the limiting reaction systems coincide, so when Assumption
4 holds we can use either Proposition 8.4 or Theorem 8.5 to approximate the trajectories
uniformly.

9. Discussion.

9.1. Long term behavior. A natural question arising from Proposition 8.4 and Theo-
rem 8.5 is whether the reduced reaction system or the limiting reaction system also approx-
imates the limit behavior of the original system as t → ∞. Specifically, assuming that the
limiting system exists, we inquire whether it holds that

(21) lim
N→∞

lim
t→∞

∥∥N−αx̂N (t)− z(t)
∥∥→ 0

when the above limit exists. The answer is that (21) may not hold. Consider, for example,
the case where z(0) is an unstable equilibrium point for the reduced reaction network. Then
limt→∞ z(t) = z(0), while in the original reaction network with intermediates, a small per-
turbation given by the presence of intermediate species may push N−αx̂N (t) away from the
repulsive point N−αx̂N (0) = z(0).

Consider the following deterministic mass action system:

0 A 2A 3A
H

11

6 N 6

1 .
The assumptions of Theorem 8.5 are fulfilled and the reduced reaction network is given by

0 A 2A 3A

11

6 6

1 .
The ODE governing the dynamics of the reduced reaction network, which does not depend
on N , is given by

d

dt
z(t) = −z(t)3 + 6z(t)2 − 11z(t) + 6,

= − (z(t)− 1) (z(t)− 2) (z(t)− 3) + f (z(t)) .

Note that 2 is an unstable equilibrium point of the above dynamical system. We will show
that if we assume N−αx̂N (0) = z(0) = 2 and x̌N (0) = 0, then (21) does not hold.

The ODE system governing the dynamics of the original network is

d

dt
x̌N (t) = 6−Nx̌N (t),

d

dt
x̂NA (t) = −x̂N (t)3 + 6x̂N (t)2 − 11x̂N (t) +Nx̌N (t).
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2276 DANIELE CAPPELLETTI AND CARSTEN WIUF

This means that x̌N (t) = 6(1− e−Nt)/N and

d

dt
x̂N (t) = −x̂N (t)3 + 6x̂N (t)2 − 11x̂N (t) + 6

(
1− e−Nt

)
+ gNt

(
x̂N (t)

)
.

Since for any N ≥ 1 and t > 0, we have gNt (x) < f(x), and since f(x) < 0 for any x ∈ (1, 2),

lim
t→∞

x̂N (t) ≤ 1.

It is possible to prove a more precise result, namely, that limt→∞ x̂
N (t) = 1, and it is worth

noting that 1 is a stable steady state of the reduced reaction system. Since

lim
t→∞

z(t) = z(0) = 2,

we have that (21) does not hold.
Few questions are, however, left open by this counterexample. First, if instead of x̌N (0) = 0

we had x̌N (0) = 6/N , then we would have x̌N (t) = 6/N for any t ∈ R≥0, and the dynamics of
the nonintermediate species in the full and in the reduced reaction network would coincide for
all t ≥ 0. This is true in general, whenever we can impose dx̌N (t)/dt to be 0 for all time. This
would imply that the dynamics of the system is confined within the so called slow manifold.
It is natural to wonder when this is possible. Another natural question is whether (21) is false
only if some instability of the system is present, as in the previous case. In general, what
conditions could assure (21)?

9.2. Some relationships to other approaches. It has previously been demonstrated that
under certain conditions, an ODE system with fast and slow reactions (two categories only)
might be transformed into an equivalent ODE system with fast and slow variables for which
Tikhonov’s approach is applicable [14, 8]. In general, the ODE systems we consider do not
fulfil the requirements for this transformation to be valid. It is, however, worth pointing
out that a standard assumption in Tikhonov’s approach, namely, that the eigenvalues of the
Jacobian of the fast subsystem have negative real parts, is also fulfilled in our case. (Here the
Jacobian corresponds to the matrix LN in (7).)

Reference [13] also provides a method to reduced a multiscale reaction system to a smaller
reaction system. Reactions are removed iteratively in such a way that only the reactions
with the highest rates remain. If a reaction system can be reduced by our method as well
as by their method, the two reduced reaction systems might not agree, as illustrated by the
following example:

0 H

A

B
κ1N κ2N

3

κ3N
2

.

Let xN (t) denote the solution to the system for some initial condition xN (0). Here, the
concentration of the species A grows with rate of order O(1), while the concentration of the
species B changes with rate of order O(N). In accordance with these rates, we assume that
the abundance of the species A and B are such that xNA (0) = O(1) and xNB (0) = O(N).
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In [13], the reduction is performed such that only the reaction consuming H with the
highest rate is kept, and this leads to the following reduced reaction system:

0 B
κ1N ,

where the concentration of A remains constant. However, in the original system, the concen-
tration of A grows at rate O(1), so its dynamics is not well captured by the reduced model.
Note that the concentration of species A could be important for the dynamics of another part
of the network, for example, if A is an enzyme catalyzing a reaction of interest. If that is the
case, using the above reduced system could lead to an important error.

The reduced system we propose, which correctly approximate the dynamics of the original
system by Theorem 8.5, is the following:

0

A

B
κ1

κ1κ3

κ2

.

Denote by z(t) the solution of the latter, and suppose z(0) = limN→∞ x
N
A (0)N−1xNB (0). Then,

by Theorem 8.5, on compact time intervals, zA(t) and zB(t) provide a uniform limit for xNA (t)
and N−1xNB (t), respectively.

10. Proofs. This section contains the proofs of Lemma 6.1, Propositions 8.3 and 8.4, and
Theorem 8.5.

Proof of Lemma 6.1. The result does not depend on N , and thus for the sake of simplicity
N is suppressed in the notation of this proof. Consider the Laplacian matrix in (7). The first
|V| columns (and rows) are indexed by V , and let q be the index of the last column (row). By
the matrix tree theorem [18] we have

µi` (x̂) =

∑
σ∈θi,x̂(H`)w(σ)∑
σ∈θi,x̂(?)w(σ)

=
det
(
Lx̂i
)

(`,`)

detL
,

where (Lx̂i )(`,`′) are the minors of Lx̂i . Since the last row of Lx̂i is minus the sum of the other
rows, we have

det
(
Lx̂i

)
(`,`)

= (−1)`+|V|+1 det
(
Lx̂i

)
(q,`)

= −det
(
Lx̂i

)
(q,̂̀)

,

where (Lx̂i )(q,̂̀) denotes the matrix Lx̂i with the last row eliminated, the column indexed by `

replaced by the column λi(x̂), and the last column eliminated. The last equality follows from
changing the order of the columns. Moreover, by Cramer’s rule we have

µi` (x̂) =
−det

(
Lx̂i
)
(q,̂̀)

det
(
Lx̂i
)

(q,q)

= −
(
L−1λi(x̂)

)
`
,

which concludes the proof.
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Preliminary results. Before proving Propositions 8.3 and 8.4 and Theorem 8.5, we need
some preliminary results. In order to prove Proposition 8.3, only the first lemma is necessary,
which is concerned with some properties of the matrix exp(LN t).

Lemma 10.1. The following statements are true.
(i) For any t > 0, any entry of the matrix exp(LN t) is nonnegative.

(ii) We have
lim
t→∞

exp
(
LN t

)
= 0.

(iii) For 0 ≤ s ≤ t, we have that

e> exp
(
LNs

)
≥ e> exp

(
LN t

)
.

In particular, for s = 0 and any t > 0, e> exp(LN t) ≤ e>.
(iv) Any entry of the matrix −(LN )−1 is nonnegative.
(v) For any nonnegative vector x̌ ∈ R|V|≥0 and any 0 ≤ s ≤ t,

0 ≤ −κN·j
(
LN
)−1

exp
(
LN t

)
x̌ ≤ −κN·j

(
LN
)−1

exp
(
LNs

)
x̌.

In particular, for s = 0 and any t > 0,

0 ≤ −κN·j
(
LN
)−1

exp
(
LN t

)
x̌ ≤ −κN·j

(
LN
)−1

x̌.

Proof. If we put ΛN (t) ≡ 0, then from (9) we have

x̌N (t) = exp
(
LN t

)
x̌N (0).

This implies that each column of exp(LN t) represents the concentrations of the intermediate
species at time t given the initial condition x̌N (0) = e`. In turn this implies that the entries
of exp(LN t) must be nonnegative for any t > 0, which proves part (i). Furthermore, the
condition ΛN (s) ≡ 0 implies that the intermediates are not produced, and thus the sum of
their concentrations decreases independently of their actual value. Indeed, the stoichiometric
coefficients of the intermediate species are one, and hence the net flow among intermediates is
0, while they can degrade to produce a nonintermediate complex. These considerations prove
parts (ii) and (iii). Finally, −LN is a Z-matrix, as all nondiagonal entries are nonpositive.
Using the first and the third Gershgorin theorems [12] as in Remark 1, it can be shown that
the real parts of the eigenvalues of −LN are strictly positive. Namely, for any N ∈ N, −LN
is a nonsingular M-matrix and in particular all the entries of −(LN )−1 are nonnegative [1].
The proof of part (iv) is therefore concluded. For part (v), the former inequality follows from
parts (i) and (iv). The latter inequality follows from

−κN·j
(
LN
)−1

exp
(
LN t

)
x̌ =

∫ ∞
t

κN·j exp
(
LNu

)
x̌du

≤
∫ ∞
s

κN·j exp
(
LNu

)
x̌du

= −κN·j
(
LN
)−1

exp
(
LNs

)
x̌,

where the equalities in the first and the third lines follow from part (ii), while the inequality
in the second line follows from part (i).
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Lemma 10.2. Consider the notation introduced in sections 4 and 5. Let T > 0 be fixed.
Assume that the kinetics KN , N ∈ N, satisfy Assumption 1. Furthermore, assume that
Assumption 4 holds and that there exists a constant Υ > 0, such that

(22) sup
t∈[0,T ]
N∈N

∥∥N−αx̂N (t)
∥∥+

∥∥N−αzN (t)
∥∥ < Υ.

Finally, assume that

lim
N→∞

∥∥N−αx̂N (0)−N−αzN (0)
∥∥ = 0 and x̌N (0) = 0.

Then, for any yj ∈ C,

lim
N→∞

sup
t∈[0,T ]

−N−αyjκN·j
∫ t

0

(
LN
)−1

exp
(
LN (t− s)

)
ΛN (s)ds = 0.

Proof. By linearity, what we need to prove is that for every k such that yjk 6= 0

(23) lim
N→∞

sup
t∈[0,T ]

−N−αkκN·j
∫ t

0

(
LN
)−1

exp
(
LN (t− s)

)
e`ΛN` (s)ds = 0.

Moreover, by standard properties of the Laplacian matrix of a graph we have that the entries(
exp

(
LN t

)
e`
)
`′

and
((
LN
)−1

e`

)
`′

are different from zero if and only if H`
V⇒ H`′ . For any j ∈ W , let Vj ⊆ V be the set of

indices ` for which H`
V⇒ yj . Note that H`

V⇒ yj if and only if either κN`j > 0 or H`
V⇒ H`′

with κN`′j > 0. Therefore, it suffices to show (23) for k such that yjk 6= 0 and for any ` ∈ Vj .
Moreover, since ΛN` (s) is different form zero only if yi → H` ∈ R for some i ∈ U , it suffices to
prove (23) only for those ` such that yi → H` ∈ R for some i ∈ U .

By (11) and (22), there exists a positive constant B` such that

sup
N∈N
t∈[0,T ]

N−β
∗
` ΛN` (t) < B`.

Therefore, since −κN·j (LN )−1 exp(LN (t − s)) has all nonnegative entries according to
Lemma 10.1(v), in order to prove (23) it suffices to show that

(24) lim
N→∞

sup
t∈[0,T ]

−Nβ∗`−αkκN·j

∫ t

0

(
LN
)−1

exp
(
LN (t− s)

)
e`ds = 0.

By definition of LN , we have

κN`j ≤
∑
j∈W

κN`j = −
(
e>LN

)
`
.
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By Lemma 10.1(iv) it follows that −κN·j (LN )−1 ≤ e>. Moreover, if `′ V⇒ yj does not hold,(
κN·j
(
LN
)−1

)
`′

=
∑
`∈V

κN`j
(
LN
)−1
``′

= 0.

Indeed, if it were κN`j(L
N )−1

``′ 6= 0 for some ` ∈ V , it would follow that H`′
V⇒ H` and H` → yj ,

which would in turn imply `′ V⇒ yj . Hence, we can conclude

(25) − κN·j
(
LN
)−1 ≤

∑
`′∈V :H`′

V⇒yj

e>`′ ≤ e>.

We distinguish between two different cases: first, suppose that αk > β∗` . Then, we have
by application of the first part of Lemma 10.1(v) for the first inequality and by application of
the second part of Lemma 10.1(v) together with (25) for the second inequality that

0 ≤ sup
t∈[0,T ]

−Nβ∗`−αkκN·j

∫ t

0

(
LN
)−1

exp
(
LN (t− s)

)
e`ds ≤ sup

t∈[0,T ]
Nβ∗`−αk

∫ t

0
e>e`ds ≤ Nβ∗`−αkT

and the latter tends to 0 as N tends to infinity, proving (24). If αk ≤ β∗` , then, due to
Lemma 10.1(v) for the first inequality below, (25) and Lemma 10.1(i) for the second inequality,
Lemma 10.1(v) and (iii) for the third, and (25) and Lemma 10.1(i) for the forth, we have for
any ε > 0,

0 ≤ sup
t∈[0,T ]

−Nβ∗`−αkκN·j

∫ t

0

(
LN
)−1

exp
(
LN (t− s)

)
e` ds

≤ sup
t∈[0,T ]

−Nβ∗`−αkκN·j
(
LN
)−1

∫ (t−εNαk−β
∗
` )∨0

0
exp

(
LN (t− s)

)
e` ds

+ sup
t∈[0,T ]

Nβ∗`−αk
∫ t

(t−εNαk−β
∗
` )∨0

e> exp
(
LN (t− s)

)
e` ds

≤ Nβ∗`−αk
(
−TκN·j

(
LN
)−1

exp
(
LNεNαk−β∗`

)
e` + εNαk−β∗` e>e`

)
≤ Nβ∗`−αkT

∑
`′∈V :H`′

V⇒yj

e>`′ exp
(
LNεNαk−β∗`

)
e` + ε.

By Assumption 4 the latter tends to ε as N tends to infinity, and the proof is concluded by
the arbitrariness of ε > 0.

We are now ready for the proof of Proposition 8.4 and Theorem 8.5.

Proof of Proposition 8.3. Note that, due to Lemma 10.1(ii),

(26) Nβ∗`−aj
∫ ∞

0
e>`′ exp

(
Naj−β∗`LNs

)
e`ds = −N2β∗`−2aje>`′

(
LN
)−1

e`,
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for any `, `′ ∈ V . By (11), for any i ∈ U and ` ∈ V with yi → H` ∈ R, λNi` (Nαx̂) = O(Nβi`)
for any x̂ ∈ R|X\V|, and there exists x̂ ∈ R|X\V| such that λNi` (Nαx̂) = Θ(Nβi`). Therefore,
(26) goes to zero as N tends to infinity if and only if

lim
N→∞

−Nβ∗`−2aje>`′
(
LN
)−1

e`λ
N
i` (Nαx̂) = 0

for any i ∈ U with yi → H` and any x̂ ∈ R|X\V|. By Lemma 6.1, the latter holds for any
i ∈ U , `, `′ ∈ V , and j ∈W such that yi → H`, H`

V⇒ H`′ and H`′
V⇒ yj , if and only if

lim
N→∞

Nβ∗`−2ajµNi`′ (N
αx̂) = 0

for any i ∈ U , `, `′ ∈ V , and j ∈ W such that yi → H`, H`
V⇒ H`′ , and H`′

V⇒ yj . The latter
implies that

lim
N→∞

Nβ∗`−aj
∫ ∞

0
e>`′ exp

(
Naj−β∗`LNs

)
e`ds = 0

for any i ∈ U , `, `′ ∈ V , and j ∈W such that yi → H`, H`
V⇒ H`′ , and H`′

V⇒ yj . This in turn
implies that Assumption 4 holds, since the entries of e>`′ exp(Naj−β∗`LNs) are nonnegative and
nonincreasing by Lemma 10.1(i) and (iii).

Proof of Proposition 8.4. We first assume that (22) holds, that is, there exists a constant
Υ > 0 such that

(22) sup
t∈[0,T ]
N∈N

∥∥N−αx̂N (t)
∥∥+

∥∥N−αzN (t)
∥∥ < Υ.

We will drop this assumption later. For convenience, we introduce the vector ΛN (t) of length
|V| with entries indexed by V and

ΛN` (t) =
∑
i∈U

λNi` (z(t)).

Due to (10) and Lemma 6.1, we have

(27)
∥∥N−αx̂N (t)−N−αzN (t)

∥∥ ≤ ∥∥N−αx̂N (0)−N−αzN (0)
∥∥+

∥∥AN (t)
∥∥+

∥∥BN (t)
∥∥ ,

where

AN (t) = N−α
∫ t

0

∑
j∈W

yjκ
N
·j

∫ u

0
exp

(
LN (u− s)

)
ΛN (s)ds+

∑
j∈W

yjκ
N
·j
(
LN
)−1

ΛN (u)

 du

and

BN (t) = N−α
∫ t

0

∑
j∈W

yjκ
N
·j
(
LN
)−1

ΛN (u)−
∑
j∈W

yjκ
N
·j
(
LN
)−1

ΛN (u)

 du

+N−α
∫ t

0

 ∑
i/∈V

1≤j≤|C|

π(yj − yi)
(
λNij (x̂(t))− λNij (z(t))

) du.
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We have

AN (t) =
∑
j∈W

N−αyjκ
N
·j

[∫ t

0

(∫ t

s
exp

(
LN (u− s)

)
du

)
ΛN (s)ds+

(
LN
)−1

∫ t

0
ΛN (s)ds

]

=
∑
j∈W

N−αyjκ
N
·j

[∫ t

0

(
LN
)−1 (

exp
(
LN (t− s)

)
− I
)

ΛN (s)ds+
(
LN
)−1

∫ t

0
ΛN (s)ds

]

=
∑
j∈W

N−αyjκ
N
·j

∫ t

0

(
LN
)−1

exp
(
LN (t− s)

)
ΛN (s)ds.

Therefore, by Lemma 10.2 we have

(28) lim
N→∞

sup
t∈[0,T ]

∥∥AN (t)
∥∥ = 0.

Moreover, it follows from ∑
j∈W

κN·j
(
LN
)−1

= e>LN
(
LN
)−1

= e>

(by definition of LN ) or from (16) that B(t) can be written as

BN (t) =
∫ t

0

∑
i∈U
j∈W

N−α(yj − yi)

(∑
`∈V

κN·j
(
LN
)−1

e`

(
λNi`
(
x̂N (u)

)
− λNi`

(
zN (u)

) ))
du

+
∫ t

0

∑
i,j /∈V

N−α(yj − yi)
(
λNij
(
x̂N (u)

)
− λNij

(
zN (u)

))
du.

In particular, due to (22) and (11), for any ε > 0 and any N large enough

‖BN (t)‖

≤
∫ t

0

∑
i∈U
j∈W

‖N−α(yj − yi)‖

(∑
`∈V

κN·j
(
LN
)−1

e`N
βi`
∥∥∥λi` (N−αx̂N (u)

)
−λi`

(
N−αzN (u)

)
+ε
∥∥∥) du

+
∫ t

0

∑
i,j /∈V

Nβij
∥∥∥N−α(yj − yi)

(
λij
(
N−αx̂N (u)

)
− λij

(
N−αzN (u)

)
+ ε
) ∥∥∥du.

Note that the limit functions λij are locally Lipschitz, which implies that they are Lipschitz
on compact sets contained in their domain. Moreover, from Assumption 2 and Remark 3, it
follows that there exists two positive constants 0 < Γ0,Γ1 <∞ such that

∥∥BN (t)
∥∥ ≤ Γ0ε+ Γ1

∫ t

0

∥∥N−αx̂N (u)−N−αzN (u)
∥∥ du.
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Hence, by (27) and Gronwall inequality,∥∥N−αx̂N (t)−N−αzN (t)
∥∥

≤
∥∥N−αx̂N (0)−N−αzN (0)

∥∥+
∥∥AN (t)

∥∥+ Γ0ε

+ exp(Γ1t)
∫ t

0

(∥∥N−αx̂N (0)−N−αzN (0)
∥∥+

∥∥AN (s)
∥∥+ Γ0ε

)
ds.

Hence, (20) follows from (28), from the arbitrariness of ε > 0, and from the hypothesis

lim
N→∞

∥∥N−αx̂N (0)−N−αzN (0)
∥∥ = 0.

To complete the proof, we need to prove (20) without assuming (22). We will do so by
showing that (22) follows from what we have already shown. By hypothesis we have that
there exists a finite positive constant Υ such that

(29) sup
t∈[0,T ]
N∈N

∥∥N−αzN (t)
∥∥ < Υ.

We need to prove the existence of an upper bound for the rescaled solutions N−αxN (t). Choose
a constant 0 < δ < 1 and consider the following modified kinetics: for any 1 ≤ i, j ≤ |C| with
yi → yj ∈ R, we let

λ̃Nij (x̂) =


λNij (x̂) if ‖N−αx̂‖ ≤ Υ + δ,

(1 + ‖N−αx̂‖ −Υ− δ)λNij
(

Υ+δ
‖N−αx̂‖ x̂

)
+ (‖N−αx̂‖ −Υ− δ)Nβij if Υ + δ < ‖N−αx̂‖ ≤ Υ + δ + 1,

Nβij otherwise.

The consumption rates of intermediate species are not modified, as well as the starting condi-
tions. Let x̃N (t) be the projection of the solution of the modified system onto the space of the
nonintermediate species. The modified kinetics for (X , C,R) lead to a new family of kinetics
for the reduced reaction network (X \ V, C \ V,Rr), which is defined as in (14). The solution
to the modified reduced reaction systems, however, are still zN (t), assuming the same initial
condition. Indeed, due to (29), the argument of the reaction rates of the modified kinetics
have always norm smaller than Υ + δ, so the changes in the kinetics have no effect. On the
other hand, as the convergence in (11) is uniform on compact sets, the modified reaction rates
are such that N−βij λ̃Nij (Nαx̂) converges uniformly to

λ̃ij(x̂) =


λij(x̂) if ‖x̂‖ ≤ Υ + δ,

(1 + ‖x̂‖ −Υ− δ)λij
(

Υ+δ
‖x̂‖ x̂

)
+ (‖x̂‖ −Υ− δ) if Υ + δ < ‖x̂‖ ≤ Υ + δ + 1,

1 otherwise.

Note that the limit functions λ̃ij(x̂) are bounded. This implies that the functions N−βij λ̃Nij (x̂)
are uniformly bounded by a finite positive constant Υ′. Therefore, by (10), (16), and Lem-
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mas 6.1 and 10.1,

d

dt
N−αx̃N (t) ≤

∑
i∈U
j∈W

N−α(yj−yi)
∑
`∈V

κN·j

∫ t

0
exp (L(t− s)) e`Nβi`Υ′ds+

∑
i,j /∈V

N−α(yj−yi)NβijΥ′.

By Assumption 2 and Remark 3, we conclude that the derivative d
dtN

−αx̃N (t) is uniformly
bounded for t ∈ [0, T ] and N ∈ N. It follows that there exists a finite constant Υ′′ such that

sup
t∈[0,T ]
N∈N

∥∥N−αx̃N (t)
∥∥ < Υ′′,

which implies that the solutions x̃N (t) are uniformly bounded for t ∈ [0, T ] and N ∈ N. Then,
for what we have shown in the first part of the proof,

lim
N→∞

sup
t∈[0,T ]

∥∥N−αx̃N (t)−N−αzN (t)
∥∥ = 0.

In particular, this means that for N large enough

sup
t∈[0,T ]

∥∥N−αx̃N (t)
∥∥ < Υ + δ.

Hence, for N large enough the modification of the kinetics does not affect the solutions x̃N (t)
for t ∈ [0, T ]. Therefore, for N large enough we have that for any t ∈ [0, T ]

x̃N (t) = x̂N (t).

It follows that (22) holds, by eventually changing Υ to 2Υ+δ, and this concludes the proof.

Proof of Theorem 8.5. By hypothesis, there exists a finite positive constant Υ such that

(30) sup
t∈[0,T ]

‖z(t)‖ < Υ.

Following the same trick used in the proof of Proposition 8.4, we consider a modification of the
kinetics (14) for the reduced reaction network (X \V, C \V,Rr). Choose a constant 0 < δ < 1
and for each yi → yj ∈ Rr, define

λ̃r,Nij (x̂) =


λr,Nij (x̂) if ‖N−αx̂‖ ≤ Υ + δ,

(1 + ‖N−αx̂‖ −Υ− δ)λr,Nij
(

Υ+δ
‖N−αx̂‖ x̂

)
+ (‖N−αx̂‖ −Υ− δ)Nβij if Υ + δ < ‖N−αx̂‖ ≤ Υ + δ + 1,

Nβij otherwise.

Denote by z̃N (t) the solution to the ODE with modified rate functions and initial condition
z̃N (0) = zN (0). By Assumption 3, the functions N−β

r
ij λ̃r,Nij (Nαx̂) converge uniformly to the

functions

λ̃∞ij (x̂) =


λ∞ij (x̂) if ‖x̂‖ ≤ Υ + δ,

(1 + ‖x̂‖ −Υ− δ)λ∞ij
(

Υ+δ
‖x̂‖ x̂

)
+ (‖x̂‖ −Υ− δ) if Υ + δ < ‖x̂‖ ≤ Υ + δ + 1,

1 otherwise.
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By (30), the solution of the limiting reaction network (X \ V, C∞,R∞) endowed with the
modified kinetics and with initial condition z(0) coincide with z(t) on [0, T ]. Since for any
yi → yj ∈ Rr, we have

lim
N→∞

sup
x̂∈R|X\V|≥0

∥∥∥N−α(yj − yi)λ̃r,N (Nαx̂)− (y(i,j)
j − y(i,j)

i )λ̃∞(x̂)
∥∥∥ = 0,

it follows that
lim
N→∞

sup
t∈[0,T ]

∥∥N−αz̃N (t)− z(t)
∥∥ = 0.

This in turn implies that, for N large enough,

sup
t∈[0,T ]

∥∥N−αz̃N (t)
∥∥ ≤ Υ + δ.

Therefore for N large enough and for any t ∈ [0, T ], we have z̃N (t) = zN (t). In particular,

lim
N→∞

sup
t∈[0,T ]

∥∥N−αzN (t)− z(t)
∥∥ = 0.

Moreover by Proposition 8.4,

lim
N→∞

sup
t∈[0,T ]

∥∥N−αx̂N (t)−N−αzN (t)
∥∥ = 0.

The proof is therefore concluded by the triangular inequality.
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