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Abstract An effective vibration control device, the pendulum tuned mass damper (P-TMD), can be easily
realized as a mass supported on rolling or sliding pendulum bearings. While the bearings’ concavity provides
the desired gravitational restoring force, the necessary dissipative force can be obtained either from additional
dampers installed in parallel with the bearings or from the same friction resistance developing within each
bearing between the roller/slider and the rolling/sliding surface. The latter solutionmay prove cheaper andmore
compact but implies that the P-TMD effectiveness will be amplitude dependent if the friction coefficient is kept
uniform along the rolling/sliding surface, as in conventional friction bearings. In this case, the friction P-TMD
will be as efficient as a viscous P-TMD only at a given vibration level, with large performance reductions at
other levels. To avoid this inconvenience, this paper proposes a new type of sliding variable friction pendulum
(VFP) TMD, called the VFP-TMD, in which the sliding surface is divided into two concentric regions: a
circular inner region, having the lowest possible friction coefficient and the same dimensions of the slider,
and an annular outer region, having a friction coefficient set to an optimal value. A similar arrangement has
been recently proposed to realize adaptive seismic isolation devices, but no specific application to TMDs is
reported. To assess the VFP-TMD performance, first its analytical model is derived, rigorously accounting for
geometric nonlinearities as well as for the variable (in time and space) pressure distribution along the contact
area, and then, an optimal design methodology is presented. Finally, numerical simulations show the influence
of the main design parameters on the device behavior and demonstrate that the VFP-TMD can achieve nearly
the same effectiveness of viscous P-TMDs, while considerably outperforming conventional uniform-friction
P-TMDs. The proposed analytical model can be used to enhance or validate existing models of VFP isolators
that assume a constant and uniform contact pressure distribution.

1 Introduction

Tuned mass dampers (TMDs) are well-known passive control devices, extensively studied and widely applied
for the vibration mitigation of low-damped structures under natural and anthropic loads [1–6]. A TMD is
essentially a single-degree-of-freedom (SDOF) oscillator attached to the main structure, dynamically interact-
ing with a selected target structural mode by frequency tuning and damping optimization, and consequently
absorbing and dissipating part of its vibrational energy [7]. To control horizontal vibrations, pendulum TMDs
(P-TMDs) are commonly employed, using gravity to produce the required restoring force, and consisting of
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dampedmasses constrained to move along curved profiles or surfaces, whose curvature determines the P-TMD
natural frequency. While hanging-type P-TMDs are suspended by ropes or bars [8], supported-type P-TMDs
roll or slide on concave tracks or bearings [9]. Increasing interest for supported P-TMDs has been recently
observed, because of their greater compactness, durability, and versatility in shape. This has resulted in the
availability of various supported P-TMDs configurations, including rolling and sliding P-TMDs [10], ball-type
P-TMDs [11], unbalanced rolling P-TMDs [12], and track nonlinear energy sinks [13]. Each configuration can
be realized as a unidirectional or a bidirectional arrangement, in this latter case recurring either to a pair of
orthogonal tracks mounted in series, or to one three-dimensional (3D) optimal surface, non-axial–symmetrical
when the two principal frequencies of the main structure are different [14].

Whatever the configuration, two main solutions exist to provide a supported P-TMD with the required
energydissipation capability. Thefirst consists in connecting itsmass to the structure by an additional dissipative
link, e.g., a linear viscous damper [14]. The second consists in exploiting the rolling or sliding friction resistance
developing along the pendulum surface during P-TMDmotion [15]. Avoiding the additional damping devices,
this second solution is simpler, more compact, and potentially cheaper than the first one, and always adopted in
ball-type P-TMDs [16–18]. However, as long as the friction coefficient is uniform along the surface, the friction
force is virtually constant [19], which makes the P-TMD equivalent damping ratio inversely proportional to
the P-TMD displacement amplitude, and the P-TMD effectiveness amplitude dependent [15,20]. To avoid
this inconvenience, inspired by the homogeneous friction concept proposed by Inaudi and Kelly [21] and
developed by Almazan et al. [8], Matta [22] proposed a new type of supported P-TMD, characterized by a
friction coefficient that varies along the pendulum surface proportionally to themodulus of the surface gradient.
In the first-order approximation, such friction model is nonlinear but homogeneous: the friction force increases
proportionally to the radial displacement, and the P-TMD effectiveness results amplitude independent. By an
appropriate choice of the proportionality coefficient, the optimal friction pattern is determined, and the same
performance of an optimal viscous P-TMD is obtained, for any vibration level. Theoretically applicable to both
rolling and sliding P-TMDs, the concept has been experimentally validated on small-scale prototypes of rolling
P-TMDs [22] and ball-type P-TMDs [23], where the continuous optimal friction pattern is approximated by
coating the rolling surface with a series of concentric rubber layers of increasingly larger friction properties.

Focusing on spherical sliding P-TMDs, this paper proposes a new type of variable friction pendulum (VFP)
TMD, called the VFP-TMD, in which each sliding surface is divided into two concentric regions: an inner
circular region, having the lowest possible friction coefficient and the same dimensions of the slider, and an
outer annular region, having a friction coefficient set to an optimal value (Fig. 1). In this way, as the slider

(b) (c) (d) 

(a)

Sliding region “a” (low friction)

Sliding region “b” (high friction)

Slider  

Fig. 1 Some possible arrangements of a VFP-TMD: a the absorber on two double pendulum bearings (lateral and planar views);
b single pendulum bearing; c flat bearing; d rocking pendulum TMD
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Fig. 2 Planar view of a flat slider moving along x on a two-region flat sliding surface, the inner region having the same dimensions
of the slider: a rectangular slider; b circular slider. Aa and Ab are the contact areas between the slider and, respectively, the inner
region “a” and the outer region “b,” while μa and μb are their respective friction coefficients

moves across the two regions, the effective friction coefficient changes as a monotonic increasing function
of its radial displacement. A similar arrangement has been recently adopted to realize “adaptive” seismic
isolators, although several concentric regions are in that case generally admitted. VFP isolators have been
postulated in [24], proposed in [25–27], and later analyzed by several authors (e.g., [28,29]). They are meant
to outperform conventional friction pendulum bearings [30] by undergoing desired stiffness and damping
modifications at specified displacement amplitudes, so that the isolation system can be optimized for multiple
performance objectives [31]. With respect to multiple friction pendulums [32,33], VFP isolators can achieve
this without increasing the number of sliding surfaces. Although a research program involving experimental
activities is reportedly ongoing [28], no experimental results have been published to date. On the other hand,
the literature reports extensive simulations of VFP isolators, showing them a viable alternative to traditional
systems. These simulations are generally performed on simplified analytical models, neglecting second-order
effects and assuming a uniform pressure on the contact area. To the authors’ knowledge, no specific application
of VFPs to TMDs is reported.

The VFP-TMD proposed in this paper consists of a mass (upper mass) supported on one or more VFP
bearings. Figure 1a shows one possible arrangement, comprising two identical VFP bearings, each consisting
of a double friction pendulum. According to this (planar) scheme, each bearing is made of two concave plates
and a slider in between. For each VFP, the lower and upper sliding surfaces may differ from each other in
shape and material properties. Figure 1b, c shows two alternative arrangements, in which the double pendulum
is replaced with, respectively, a single pendulum bearing (Fig. 1b) and a flat bearing (Fig. 1c). In this latter
case, horizontal springs should be added in parallel, not shown for brevity. A rocking pendulum arrangement
is shown in Fig. 1d, in which the slider and the upper mass coincide and a single sliding surface exists. Clearly,
arrangements 1b to 1d are special cases of the general arrangement 1a. Figure 1a also identifies the low-friction
inner region “a” (white color), as large as the slider, and the high-friction region “b” (gray color), thick enough
to contain the slider. The edge of the sliding surface is raised to prevent excessive strokes.

In the remaining of this paper, the working principles of the VFP-TMD are demonstrated, and its effec-
tiveness is compared to that of existing P-TMD types. To this aim, first its fully nonlinear analytical model is
derived, then an optimal design method is proposed, and finally, numerical simulations are performed.

2 Analytical modeling of a VFP-TMD

This Section derives the fully nonlinear model of a VFP-TMD, based on the double pendulum arrangement
shown in Fig. 1a. The model is first obtained for the device alone and then augmented to include the main
structure. For simplicity, the motion is supposed to occur in a vertical plane, and the model is planar.
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Fig. 3 Effective friction coefficient as a function of the normalized relative displacement, for the flat configurations depicted in
Fig. 2, assuming μa = 0.02 and μb = 0.20

2.1 The variable friction concept

The variable friction concept is explained in Fig. 2, referring for simplicity to a single flat sliding surface.
Denoting with x the axis of the relative sliding motion u, Fig. 2a, b, respectively, describes a rectangular slider
of side length D (measured along x) and a circular slider of diameter D, sliding on a two-region flat surface,
the inner region having the same shape and dimensions of the slider. In both figures, Aa and Ab are the contact
areas between the slider and, respectively, the inner region “a” and the outer region “b,” while μa and μb are
their respective friction coefficients. Let A = Aa + Ab be the area of the slider surface, σ = σ(x, y) be the
contact pressure distribution along A, and N be the normal contact force. Assuming a Coulomb friction model,
the infinitesimal friction force dV exchanged through the generic infinitesimal area dA is

dV = μσdA (1)

where μ = μ(x, y) is the friction coefficient distribution along A. Supposing the contact pressure uniform
along A and therefore equal to σ = N/A and denoting with V the tangential contact force, i.e., the friction
force, the effective friction coefficient can be computed as the following function of u:

μeff = V

N
= 1

N

∫

A

dV = 1

A

∫

A

μ(x, y)dA = 1

A
(μa Aa + μb Ab) = μa +

(
μb − μa

) Ab

A
(2)

where

Ab

A
= |u|

D
≤ 1 (3)

for the rectangular case and

Ab

A
= 1 − 2

π

(
α − |u|

D
sin α

)
≤ 1 (4)

for the circular case, with α = arccos(|u|/D).
Equation (2) clearly shows that μeff is the average of the two friction coefficients, weighted by their

respective contact areas. Equations (3) and (4) provide the relative weight of the outer region “b,” which is a
linear function of |u| in the rectangular case and a nonlinear function of |u| in the circular case.

Assuming, for example,μa = 0.02 andμb = 0.20, Fig. 3 showsμeff as a function of the slider normalized
displacement, u/D. In the ideal case where the inner region was frictionless (μa = 0), the rectangular
configuration would ensure an exact proportionality between V and u, i.e., a homogeneous dissipative model,
and the circular configuration a rough approximation of it, i.e., a nearly homogeneous dissipative model. On
the other hand, the circular configuration has the advantage of being axial–symmetrical and therefore equally
effective in every direction. Not shown in Fig. 3, if u exceeds D, then μeff will remain equal to μb in both
cases, unless a third region is introduced with μc > μb, so that further increments are possible.
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Fig. 4 Mechanical model of the VFP-TMD system. Geometry (a) and free-body diagram (b) of the individual VFP bearing.
Geometry and free-body diagram of the TMD upper mass (c). Blue color: dimensions; red color: forces (color figure online)

2.2 The general VFP-TMD model

2.2.1 Kinematic relations

The planar model of the double VFP-TMD shown in Fig. 1a is schematized in Fig. 4. Figure 4a, b depicts the
geometry and the free-body diagram of each individual VFP bearing, while Fig. 4c shows the geometry and the
free body diagram of the upper mass, supported on two identical VFP bearings. All bodies are assumed rigid.
The motion is supposed to occur in the xz vertical plane, but the model accounts for the three dimensionalities
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Fig. 5 Position of the generic point P of the slider according to the three local reference systems associated with the lower
interface: x1y1z1, x10y10z10 and ρ1ϕ1ψ1

of the spherical shape. Dimensions are in blue, and forces in red. For brevity, the subscripts “L” and “R,”
denoting in Fig. 4c the left and right bearings, are omitted in Fig. 4a, b, referring to the generic bearing, and
will be avoided in the sequel unless necessary.

Each VFP bearing comprises a lower plate, integral with the main structure, an upper plate, integral with
the upper mass, and a slider. The lower sliding and slider surfaces are spherical caps of radius R1 and center
O1. The upper sliding and slider surfaces are spherical caps of radius R2 and center O2. C1 and C2 are the
central points of the lower and upper slider surfaces. The slider has mass m1, center of mass G1, and central
moment of inertia J1. The upper plate has mass m2 and center of mass G2. The upper mass has mass m3 and
center of mass G3. h1 and h2 are the distances of G1 from C1 and C2; h3 and h4 are the distances of G2 from
the upper sliding surface and from the upper mass; h5 is the height of G3 above the upper plates; b is the
relative distance between the two VFP bearings, symmetrical w.r.t. G3.

For convenience, two local Cartesian coordinate systems are associated with each sliding interface. Refer-
ring to the lower interface, they are both centered in O1: the system x1y1z1 is integral with the lower plate (i.e.,
with the structure); the system x10y10z10 is integral with the slider. Referring to the upper interface, they are
both centered in O2: the system x2y2z2 is integral with the upper plate (i.e., with the TMD upper mass), and
the system x20y20z20 is integral with the slider.

The overall system has one degree of freedom, because the three rigid bodies are constrained by four
double constraints (i.e., the sliding interfaces). No detachment is assumed possible at the sliding interfaces.
Because the two VFP bearings are identical, the upper mass cannot rotate, and the coordinate systems x1y1z1
and x2y2z2 are parallel to each other and to the xyz system of the main structure, while the systems x10y10z10
and x20y20z20 are parallel to each other and rotated by a certain θ angle w.r.t. xyz. θ , being the counterclockwise
rotation of the slider in the xz plane, is unique for the two VFP bearings and the only Lagrangian of the system.

Partially shown in Fig. 4 and better explained in Fig. 5, one further local coordinate system is associated
with each sliding interface. Referring to the lower interface (the only one shown in Fig. 5, for brevity), this
system, denoted as ρ1ϕ1ψ1, is a polar system centered in O1 and integral with the slider. According to this
system, the position of any point P of the slider is expressed by ρ1, i.e., the modulus of the vector O1P, by ϕ1,
i.e., the inclination of the plane containing O1P and y10 w.r.t. the y10z10 plane, and by ψ1, i.e., the inclination
of O1P w.r.t. the vertical plane x10z10. In this ρ1ϕ1ψ1 system, all points on the slider surface have ρ1 = R1,
and particularly C1 has ϕ1 = ψ1 = 0, while the two points where the edge of the slider intersects the x1z1
plane have ψ1 = 0 and ϕ1 = ±ϕ̄1, where ϕ̄1 > 0 is the angular semi-width of the slider. In the same way, a
polar system ρ2ϕ2ψ2 is associated with the upper interface, centered in O2 and integral with the slider.

The relations between the two Cartesian systems and the polar system are

xi = ρi cosψi sin(ϕi + θ), (5.1)

yi = ρi sinψi , (5.2)

zi = ρi cosψi cos(ϕi + θ), (5.3)

xi0 = xi (θ = 0) = ρi cosψi sin ϕi , (6.1)

yi0 = yi (θ = 0) = ρi sinψi = yi , (6.2)
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zi0 = zi (θ = 0) = ρi cosψi cosϕi (6.3)

where the subscript i stands for either 1 or 2, depending on which interface is referred to.
Equations (5.1), (5.2), (5.3), (6.1), (6.2), and (6.3) show that, duringmotion, anypoint of the slider undergoes

a circular motion around each yi axis, described by the radius ρi cosψi and the angle ϕi + θ . Considering
in particular the point G1 (characterized by ρi = ρiG1 and ϕi = ψi = yi = 0), its motion w.r.t. Oi is
given by xiG1 = ρiG1 sinθ and ziG1 = ρiG1 cosθ . This implies that the motion of O2 w.r.t. O1 is given by
x1O2 = ρ1O2 sin(θ) and z1O2 = ρ1O2 cosθ , with ρ1O2 = ρ1G1 + ρ2G1 = R1 + R2 – (h1 + h2), as evident in
Fig. 4a. Because the upper mass translates like O2, ρ1O2 represents the equivalent radius of the upper mass
and indeed the equivalent radius of the entire TMD system if the slider mass is negligible.

2.2.2 Dynamic equations

Figure 4b and 4c shows the free-body diagrams of the VFP-TMD components. Denoting as ax and az the
horizontal and vertical components of the structural acceleration imparted to the lower plate, the actions on the
various system components include weights, inertia forces and moments, contact forces, restrainer forces, and
connection forces. In particular, the contact forces Ni and Vi are the resultants of, respectively, the pressures
and the friction forces at the i th interface, while the restrainer force Fi is the force between the slider and
the raised edge of the i th sliding surface. Because pressures are oriented toward Oi but generally not evenly
distributed around Ci , Ni is directed toward Oi but inclined w.r.t. zi0 by an offset angle ϕi N . Because friction
forces are tangential but generally not evenly distributed, and set at a variable distance Ri cosψi ≤ Ri from
Oi , Vi is inclined by an angle ϕiV w.r.t. xi0 and set at a generic distance ρiV ≤ Ri from Oi . Because the
restrainer force Fi arises at the contact point between the edge of the slider and the edge of the sliding surface,
having coordinates ρi = Ri , ϕi = ϕi F = sgn θϕ̄i , ψi = 0, it follows that Fi is tangentially applied at this
point, i.e., inclined by an angle ϕi F w.r.t. xi0, and set at a distance Ri from Oi . Finally, N3,L, V3,L, M3,L and
N3,R, V3,R, M3,R are the connection forces and moments between the TMD upper mass and the upper plate
of, respectively, the left and right bearings.

Based on the free-body diagrams of Fig. 4, the following 9 equations of motion are obtained:

m1(g + az) sin θ + m1ax cos θ + m1ρ1G1θ̈ + N1 sin ϕ1N + V1 cosϕ1V ,

+F1 cos ϕ̄1 − N2 sin ϕ2N − V2 cosϕ2V − F2 cos ϕ̄2 = 0, (7.1)

m1(g + az) cos θ − m1ax sin θ + m1ρ1G1θ̇
2 − N1 cosϕ1N + V1 sin ϕ1V

+sgn θ · F1 sin ϕ̄1 + N2 cosϕ2N − V2 sin ϕ2V − sgn θ · F2 sin ϕ̄2 = 0, (7.2)

J1θ̈ − N1ρ1G1 sin ϕ1N + V1(ρ1V − ρ1G1 cosϕ1V ) + F1(R1 − ρ1G1 cos ϕ̄1)

−N2ρ2G1 sin ϕ2N + V2(ρ2V − ρ2G1 cosϕ2V ) + F2(R2 − ρ2G1 cos ϕ̄2) = 0, (7.3)

[m2(g + az) + N3] sin θ + (m2ax − V3) cos θ + m2ρ1O2θ̈ + N2 sin ϕ2N

+V2 cosϕ2V + F2 cos ϕ̄2 = 0, (7.4)

[m2(g + az) + N3] cos θ − (m2ax − V3) sin θ + m2ρ1O2θ̇
2 − N2 cosϕ2N

+V2 sin ϕ2V + sgn θ · F2 sin ϕ̄2 = 0, (7.5)

M3 + V3h4 + N2ρ2G2 sin(θ + ϕ2N ) + V2[ρ2V − ρ2G2 cos(θ + ϕ2V )]
+F2[R2 − ρ2G2 cos(θ + ϕ̄2)] = 0, (7.6)

V3,L + V3,R + m3ax + m3ρ1O2(θ̈ cos θ − θ̇2 sin θ) = 0, (7.7)

N3,L + N3,R − m3(g + az) − m3ρ1O2(θ̈ sin θ + θ̇2 cos θ) = 0, (7.8)

M3,L + M3,R − (N3,L − N3,R)b/2 − (V3,L + V3,R)h5 = 0. (7.9)

Equations (7.1)–(7.3) refer to the slider and are, respectively, written along x10, along z10, and around G1.
Equations (7.4)–(7.6) refer to the upper plate, respectively, along x20, along z20, and around G2. Equations
(7.7)–(7.9) refer to the upper mass, respectively, along x2, along z2, and around G3. To completely describe
the VFP-TMD system, Eqs. (7.1)–(7.6), referring to the individual VFP bearing, are to be written twice, i.e.,
once for the left bearing and once for the right, providing a total of 15 equations; 31 variables appear in
these 15 equations. They include the Lagrangian θ (the only time-differentiated variable) plus 15 variables for
each bearing, i.e., 6 contact/restrainer forces at each interface (Ni , ϕi N , Vi , ϕiV , ρiV , Fi ) plus 3 connection
forces and moments (N3, V3, M3). The 16 missing equations required to solve the system are four constitutive
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Fig. 6 Vertical section in the xz plane of motion of the pendulum TMD in its generic deformed position. Determination of the
pressure distribution for an assigned Ni – ϕi N pair

equations at each of the four interfaces, including: (i) three contact equations, providing Vi , ϕiV and ρiV as
functions of Ni , ϕi N , θ and θ̇ , and (ii) one restrainer equation, providing Fi as a function of θ and θ̇ .

2.2.3 Constitutive equations

The three contact equations at each interface are obtained by the two-step procedure explained below.
As the first step, Ni and ϕi N are used to derive the distribution of pressures σi over the interface Ai . The

problem is statically indeterminate, so the arbitrary assumption is made that

σi = σim cosψi cos(ϕi − ϕim) ≥ 0 (8)

where σim is the maximum (real or virtual, depending if it falls within Ai or not) of the distribution, and ϕim is
the offset angle of the plane containing σim. Figure 6, referring to the lower interface, exemplifies Eq. (8) when
σim is virtual (|ϕim| > ϕ̄i ) and the neutral axis (located at ϕi = ϕim − sgn (ϕim) · π/2) intersects the interface
Ai . Denoting with ximyimzim the local reference system obtained rotating xi0yi0zi0 around yi0 by the angle
ϕim, Eq. (8) states that σi is proportional to the distance from the ximyim plane according to σi = σim · zim/Ri
and becomes null in the half-space where zim < 0, as negative pressures are impossible. If the spherical surface
tends to become flat (i.e., ϕ̄i , ϕi , and ψi tend to 0), Eq. (8) converges to σi = σim(cosϕim + ϕi sin ϕim) ≥ 0,
corresponding to the Navier–Bernoulli planar beam section theory.

According to Eq. (8), the pressure distribution depends entirely on σim and ϕim, which on their turn can be
determined by expressing the contact force Ni as the resultant of σi over Ai . Written along zi0 and around Ci ,
this equivalence, respectively, provides
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Fig. 7 Dependence of ϕim on ϕi N obtained by inverting Eq. (16), for 4 different values of ϕ̄i . Functions are plotted only for ϕi N≥ 0 because they are symmetrical with respect to ϕim = ϕi N = 0

Ni cosϕi N =
∫

Ai

σi d Ai cosψi cosϕi

= σim

∫

Aci

cos(ϕi − ϕim)d Ai cos
2 ψi cosϕi = σimR2

i B1(ϕ̄i , ϕim) (9)

and

Ni sin ϕi N Ri =
∫

Ai

σi d Ai cosψi Ri sin ϕi

= σimRi

∫

Aci

cos(ϕi − ϕim)d Ai cos
2 ψi sin ϕi = σimR3

i B2(ϕ̄i , ϕim) (10)

where Aci is the compressed part of Ai and functions B1 and B2 are detailed in Appendix A.
Dividing Eq. (10) by Eq. (9), the following relation is finally obtained:

tan ϕi N = B2(ϕ̄i , ϕim)

B1(ϕ̄i , ϕim)
= B3(ϕ̄i , ϕim). (11)

Remarkably, B1, B2 and therefore B3 are functions of only ϕ̄i and ϕim. Because ϕ̄i is a constant parameter
depending only on the slider’s shape and B3 is an odd monotonically increasing function of ϕim, then Eq.
(11) univocally relates ϕim with ϕi N . Once ϕim is derived from ϕi N by inverting Eq. (11), σim is subsequently
obtained from Eq. (9) as σim = Ni cosϕi N/[R2

i B1(ϕ̄i , ϕim)].
So, the pressure distribution along each interface can be determined at every instant. Noticeably, inverting

Eq. (11) can be performed numerically offline, rather than during the integration of the dynamic equations,
drastically reducing the computational effort. For example, Fig. 7 shows ϕim as a function of ϕi N , for four
different values of ϕ̄i , i.e., for four different shapes of the slider. This is obtained by directly computing Eq.
(11) for discrete values of ϕim ranging from — π/2 — ϕ̄i to π/2 + ϕ̄i . A linear interpolation of this function
ensures a rapid and sufficiently accurate evaluation of the pressure distribution during simulation.

As the second step of the procedure, Eq. (1) is recalled to obtain the distribution of the infinitesimal friction
forces dVi on the i th interface, and the equivalence is then imposed between such distribution and the resultant
force Vi (Fig. 4). By imposing the equivalence along xi0, along zi0, and around Oi , the following equations
are, respectively, obtained:
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(a) (b)

Fig. 8 Steady-state response of an SDOF structure under a harmonic force input, controlled with a linear viscous TMD or with
a homogeneous friction TMD (ζs = 1%,mR = 1%): a TFs for the two optimal TMDs; b dissipative force–displacement loops
for the two optimal TMDs (at ω f = ωs)

Vi cosϕiV = sgn θ̇

∫

Ai

cosϕi dVi , (12)

Vi sin ϕiV = sgn θ̇

∫

Ai

sin ϕi dVi , (13)

ViρiV = sgn θ̇Ri

∫

Ai

cosψi dVi . (14)

Equations (12)–(14), with dVi determined by Eqs. (1), (8), (9), and (11), represent the three constitutive
contact equations, providing Vi , ϕiV , and ρiV as functions of Ni , ϕi N , θ , and θ̇ , and directly usable in Eqs.
(7.1)–(7.9). The evaluation of the integrals in their right-hand side must be performed numerically on each
interface, accounting for a friction coefficient distribution that varies along the interface with time, as the slider
moves across the two regions. Denoting with μa

i and μb
i the friction coefficients of the inner and outer regions

(as shown in Figs. 1 and 2), and assuming that the inner region has the same dimensions of the slider, the
distribution of the friction coefficientμi along the i th interface is expressed by the following step-wise function
of ϕ̄i , θ , ϕi , and ψi :

μi = μi (ϕ̄i , θ, ϕi , ψi ) =
{

μa
i , if cosψi cos(ϕi + θ) ≥ cos ϕ̄i

μb
i , if cosψi cos(ϕi + θ) < cos ϕ̄i

. (15)

With the friction coefficient distribution expressed by Eq. (15), a partially analytic solution of the integrals in
Eqs. (12) to (14) becomes possible, which considerably reduces the computational effort. The procedure is
reported in Appendix B and ultimately provides the values of

∫
Ai

cosϕi dVi ,
∫
Ai

sin ϕi dVi , and
∫
Ai

cosψi dVi as

functions of the constant parameters Ri , ϕ̄i , μa
i , μ

b
i , and of the variables θ , σim, and ϕim.

On the other hand, the restrainer constitutive equation, providing Fi as a function of θ and θ̇ , is defined as

Fi = [sgn θ · kFi (|θ | − θFi ) + cFi θ̇ ]Ri · step(|θ | − θFi ). (16)

Equation (16) represents a dissipative viscoelastic impact, occurring whenever |θ | exceeds an activation angle
θFi > 0, and is governed by the stiffness kFi and the damping coefficient cFi of a Kelvin–Voigt spring–dashpot
system placed along the sliding surface, i.e., at a distance Ri from Oi . Remarkably, if θFi = 2ϕ̄i , the restrainer
is activated exactly when the slider entirely exits the inner region.

Equations (12)–(14) and Eq. (16) are the four constitutive equations at each sliding interface making the
problem statically determined.
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2.2.4 Integration of the equations of motion

The VFP-TMD response to an assigned acceleration input is obtained by solving Eq. (7.1), (7.2), (7.3), (7.4),
(7.5), (7.6), (7.7), (7.8), and (7.9), supplemented with Eqs. (12)–(14), and (16). The integration is performed
numerically using a MATLAB ODE solver, working in the state space according to the following incremental
procedure, applied at every time step:

• The integrals in Eqs. (12)–(14) are computed according to Appendix B, based on the values of θ , σim, and
ϕim obtained at the previous step.

• Equations (12)–(14) and (16) then provide Vi cosϕiV , Vi sinϕiV , Vi ρiV , and Fi as known functions of θ ,
and θ̇ , making the TMD system completely described by Eqs. (7.1), (7.2), (7.3), (7.4), (7.5), (7.6), (7.7),
(7.8), and (7.9).

• Denoting the state variables as q1 = θ and q2 = θ̇ and adding the further equation q̇1 = q2, a system of
16 equations in 16 variables is obtained. The 16 equations are nonlinear w.r.t. the states, q1 and q2, but
linear w.r.t. the state derivatives, q̇1 and q̇2, as well as w.r.t. the remaining following 14 variables: Ni cosϕi N
and Ni sinϕi N (repeated 4 times, once for each interface), and N3, V3, M3 (repeated twice, once for each
bearing).

• Algebraically solving the linear system provides q̇1, q̇2 and the 14 variables as nonlinear functions of q1
and q2 and as linear functions of the acceleration input. The knowledge of q̇1 and q̇2 feeds the dynamic
integration algorithm. The knowledge of the 14 variables provides Ni and ϕi N and ultimately σim and ϕim
for the next step.

2.3 Reduced VFP-TMD models

The VFP-TMD model derived in Sect. 2.2 can represent any arrangement in Fig. 1, but gets simpler if some
additional assumptions are made. Four possible reduced models are described below.

2.3.1 Reduced model M1: infinitely distant bearings

If the two bearings are infinitely distant from each other (b → ∞), then they are subjected to the same values
of N3, V3, M3 and can be jointly modeled as a single bearing. The dynamic model reduces to Eq. (7.1)–(7.5)
in the 5 variables θ , N1, ϕ1N , N2, ϕ2N , with V3 and N3 derived from Eq. (7.7) and (7.8) as follows:

V3 = −[m3ax + m3ρ1O2(θ̈ cos θ − θ̇2 sin θ)]/2, (17.1)

N3 = [m3(g + az) + m3ρ1O2(θ̈ sin θ + θ̇2 cos θ)]/2. (17.2)

M3 is irrelevant for the integration and, if of interest, can be computed using Eq. (7.6).

2.3.2 Reduced model M2: infinitely distant symmetrical bearings with massless slider

If not only are the two bearings infinitely distant (as in model M1), but also their lower and upper surfaces are
identical (symmetrical double VFP bearing) and the slider mass is negligible (m1 = 0), then the two interfaces
are symmetrically excited, i.e., N1 = N2, ϕ1N = ϕ2N , V1 = V2, ϕ1V = ϕ2V , ρ1V = ρ2V , F1 = F2. The
dynamic model reduces to the following three equations in θ , N1, and ϕ1N :

m∗[L θ̈ + (g + az) sin θ + ax cos θ ] + N1 sin ϕ1N + V1 cosϕ1V + F1 cos ϕ̄1 = 0, (18.1)

m∗[(g + az) cos θ − ax sin θ + L θ̇2] − N1 cosϕ1N + V1 sin ϕ1V + sgn θ · F1 sin ϕ̄1 = 0, (18.2)

J1θ̈ − N1L sin ϕ1N + V1(κρ1V − L cosϕ1V ) + F1(κR1 − L cos ϕ̄1) = 0 (18.3)

where m∗ = m2 + m3/2 is the amount of TMD mass pertaining to the individual bearing, L is the equivalent
pendulum length, here coinciding with ρ1O2, and κ is the multiplicative factor, here equal to 2.

2.3.3 Reduced model M3: rocking P-TMD

If instead of a supported TMD a rocking TMD is considered (Fig. 1d), the upper TMD mass and the upper
plate disappear. Equations (18.1), (18.2), and (18.3) are still valid, with m∗ = m1, L = ρ1G1, and κ = 1.
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2.3.4 Integration of the equations of motion for the reduced models M2 and M3

The integration procedure presented above for the generalVFP-TMDmodel gets simpler for the reducedmodels
M2 and M3, described by Eqs. (18.1), (18.2), and (18.3). Combining Eqs. (18.1) and (18.3) and rearranging Eq.
(18.2) give

θ̈ = −{Lm∗[(g + az) sin θ + ax cos θ ] + κ(V1ρ1V + F1R1)}/J ∗, (19.1)

N1 cosϕ1N = m∗[(g + az) cos θ − ax sin θ + L θ̇2] + V1 sin ϕ1V + sgn θ · F1 sin ϕ̄1, (19.2)

N1 sin ϕ1N = − J1
J ∗m

∗[(g + az) sin θ + ax cos θ ] + V1

(
κ
m∗Lρ1V

J ∗ − cosϕ1V

)

+F1

(
κ
m∗LR1

J ∗ − cos ϕ̄1

)
(19.3)

where J ∗ = J1 + m∗L2 is the rotational inertia around O1 of the slider plus that of m∗ supposed hinged in
O2. Introducing the state variables q1 = θ and q2 = θ̇ , the following state space system is obtained:

q̇1 = q2, (20.1)

q̇2 = f1(q1, q2, ax , az), (20.2)

N1 cosϕ1N = f2(q1, q2, ax , az), (20.3)

N1 sin ϕ1N = f3(q1, q2, ax , az) (20.4)

where Eqs. (20.1) and (20.2) are the two first-order ODEs (respectively, linear and nonlinear) describing the
evolution of the dynamic system, while Eqs. (20.3) and (20.4) are two algebraic equations updating N1 and
ϕ1N .

2.4 The mechanical model of the VFP-TMD on an MDOF structure

Let us consider a linear multi-degree-of-freedom (MDOF) planar structure, modeled as an ns-storey building
having one lateral DOF per storey, with the VFP-TMD attached to the j th storey. Denoting by us the structural
displacement vector, byMs ,Cs , andKs the structural mass, damping, and stiffness matrices, by fs the external
force vector, and by üg and ẅg the horizontal and vertical ground acceleration components, the equation of
motion of the i th storey is

msi (üg + üsi ) + Csi u̇s + Ksius = fsi + δi jλd , i = 1, 2, ..., ns (21)

where (i) the subscript i denotes the i th row of a vector/matrix, (ii) the topological operator δi j is 1 if i = j
and 0 otherwise, and (iii) λd is the horizontal component of the TMD reaction force, given by

λd = −
∑
k

mk[ax + ẍ1k] = −
∑
k

mk[ax + ρ1k(cos θ θ̈ − sin θ θ̇2)] (22)

where the index k denotes the kth component of the TMD.
Equations (21) and (22), complemented with the equations of the VFP-TMD, are the equations of motion

of the structure-TMD coupled system, with ax = üg + üs j and az = ẅg being the acceleration of the TMD
support.

2.5 The simplified TMD model on a generalized SDOF structure

To better understand the VFP-TMD properties and to establish an optimal design method, some simplifications
of the fully nonlinear models presented above are appropriate.

Regarding the structure, this is approximated as a generalized SDOF system.
Regarding the absorber, the following assumptions are made:

• The reduced model M2 is adopted, expressed by Eqs. (19.1), (19.2) and (19.3) with m∗ = m2 + m3/2,
L = ρ1O2 and κ = 2.
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• The slider angular amplitude ϕ̄1 and the rotation θ are assumed very small, so only first-order terms are
retained in their nonlinear expansions. Accordingly, any spherical region degenerates in its horizontal
projection, so that ρ1V = R1.

• The normal contact force N1 is supposed to be centered on A1 (i.e., ϕ1N = ϕ1m = 0), as if the slider height
were null (h1 = 0).

• The vertical acceleration input is neglected (az = 0), as well as the slider inertia (J1 = 0).

Under these assumptions, the pressure gets uniform on A1 and equal to

σ1 = σ1m = N1

A1
= m∗g

A1
, (23)

the friction force consequently becomes

V1 = sgn θ̇

∫

A1

dV1 = sgn θ̇σ1

∫

A1

μ1d A1 = sgn θ̇m∗gμeff1 (24)

where

μeff1 = 1

A1

∫

A1

μ1d A1 = 1

A1

(
μa
1A

a
1 + μb

1A
b
1

)
= μa

1 + (μb
1 − μa

1)
Ab
1

A1
, (25)

the VFP-TMD equation of motion becomes

L θ̈ + sgn θ̇ηgμeff1 + ηF1/m
∗ + gθ + ax = 0, (26)

and the overall TMD reaction force becomes:

λd = −m(ax + L θ̈ ) (27)

where η = 2R1/L ≥ 1 and m = 2m∗ is the total TMD mass.
As a result of these simplifications, the coupled system is eventually described by

üs + 2ζsωs u̇s + ω2
s us = fs/ms − üg − mR(üg + üs + L θ̈ ), (28.1)

L θ̈ + ω2L( f̄μ + f̄ F + θ) = −(üg + üs) (28.2)

where ωs = √
ks/ms is the structural circular frequency, ζs = cs/(2ωsms) is the structural damping ratio,

mR = m/ms is the TMD mass ratio, ω = √
g/L is the TMD circular frequency, f̄ F = ηF1/(m∗g) is the

TMD normalized restrainer force, and

f̄μ = f̄μ(θ, θ̇) = ηV1/(m
∗g) = sgn θ̇ημeff1 (29)

is the TMD normalized equivalent friction force.
Equations (28.1) and (28.2) represents a linear system except for f̄μ and f̄ F , intrinsically nonlinear.

However, in the ideal case where μa
1 = 0, and for any |θ | not significantly larger than 2ϕ̄1, μeff1 can be

approximated as a linear function of |θ |, i.e., as μeff1 = μ̃eff1 |θ |. In fact, for |θ | → 0 the (tangential)
linearized expression for μeff1 can be derived as

μeff1 = μ+
eff1 = 4

π
μb
1

|θ |
2ϕ̄1

= μ̃+
eff1 |θ | (30)

while for |θ | = 2ϕ̄1 the (secant) linearized expression for μeff1 is

μeff1 = μ−
eff1 = μb

1
|θ |
2ϕ̄1

= μ̃−
eff1 |θ | (31)

where μ−
eff1 ≤ μeff1(θ) ≤ μ+

eff1 for any |θ | ≤ 2ϕ̄1.
With this linearization, Eq. (29) becomes

f̄μ = f̄μ(θ, θ̇) = sgn (θ̇)ημ̃eff1 |θ | (32)
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where μ̃eff1 denotes either μ̃−
eff1 or μ̃+

eff1 depending on the expected range of θ , and the constant factor
χ = ημ̃eff1 is the friction ratio of the absorber, as defined in [22].

With all the previous assumptions, and as long as the collision with the restrainer is avoided, the VFP-TMD
and hence the coupled system are nonlinear but homogeneous systems, and their response is proportional to
the excitation amplitude. Because those assumptions and this result hold only to an approximate extent, Sect. 3
tests their validity by numerical simulations.

3 Design and simulation of the device

In this Section, a nearly optimal design procedure is first presented for VFP-TMDs, and then, the optimized
absorber is simulated on SDOF and MDOF structures. For brevity, only the reduced model M2 is addressed.
The restrainer stiffness and damping parameters, kF1 and cF1, excluded from optimization, are assigned to
represent a relatively rigid inelastic impact. Recalling that in the M2 model the lower and upper plates are
connected by two identical restrainers placed in series, and denoting by kFeq = kF1/2 and cFeq = cF1/2 their
equivalent coefficients, it is assumed that:

• kF1 = 2kFeq = 2ω2
Feqm

∗, with ωFeq = 10ω [34];

• cF1 = 2cFeq = 4ζFeqωFeqm∗, with ζFeq = − ln eFeq√
π2+ln2 eFeq

, where eFeq is the elastic restitution coefficient

[35], here taken as 0.5.

3.1 Design methodology

Several TMD design approaches exist in the literature [36,37]. A nearly optimal criterion is here proposed
for VFP-TMDs, based on the simplified model obtained in Sect. 2.5. Because that model is approximately
homogeneous, the criterion is inspired by the optimal design method proposed for homogeneous P-TMDs in
[22] and improved in [38]. Such method consists in a first-order H∞ or H2 optimum synthesis, minimizing
the corresponding norm of an appropriate input–output transfer function (TF) of the structure-TMD system.
A similar approach is adopted here, with due modifications accounting for VFP bearings features.

In detail, referring to the ideal case where μa
1 = 0, the design criterion comprises the following steps:

1. Identification of the structural damping ratio ζs and choice of the TMD mass ratio mR .
2. Determination of the optimal values of the TMD frequency ratio, ωR = ω/ωs , and the TMD friction ratio,

χ = ημ̃eff1, by minimizing the H∞ or H2 norm of a selected TF.
3. Derivation of the optimal equivalent pendulum length L = ρ1O2 = g/ω2 = g/(ωRωs)

2.
4. Assumption of a value for the slider angular semi-width ϕ̄1.
5. Assumption of a value for the restrainer activation angle θF1 ≥ 2ϕ̄1.
6. Assumption of a value for the height s1 of the surface raised edge and derivation of (i) the sliding surface

radius R1 = (L/2 + s1)/ cos(θF1 + ϕ̄1), (ii) the ratio η = 2R1/L; (iii) the slider semi-height h1 =
R1 − L/2 = R1(1 − 1/η); and (iv) the slider aspect ratio aR = h1/(R1 sin ϕ̄1) = (1 − 1/η)/ sin ϕ̄1.

7. Determination of the optimal friction coefficient μb
1 for the Ab

1 region, computed as μb
1 = π

2 μ̃eff1ϕ̄1 or
as μb

1 = 2μ̃eff1ϕ̄1 depending if small or large displacements are expected; in these expressions, μ̃eff1 is
computed as μ̃eff1 = χ/η from the results of previous steps.

8. After simulations under the design loads, iterative improvement of ϕ̄1 and θF1 in steps 4 and 5.

The above design criterion has two limitations: First, it is based on a simplified model that assumes small
displacements and a flat surface. Second, it presumes a frictionless inner region (μa

1 = 0). These limitations
are discussed in the sequel.

3.2 Simulations of the simplified VFP-TMD model on an SDOF structure

In this Section, the simplified TMD model presented in Sect. 2.5 is used to simulate the response of a VFP-
TMD on an SDOF structure under a sinusoidal force input. That model, representing the nearly flat case,
seems appropriate for a preliminary performance assessment, being simple enough to neglect the effects of
geometrical nonlinearities and uneven contact pressure distributions, but also advanced enough to catch the
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nonlinear dependence of the friction force and the restrainer force on θ , and the consequent control losses
w.r.t. a perfectly homogeneous device. To highlight these losses, first a homogeneous TMD is considered in
Sect. 3.2.1, and then, the actual VFP-TMD is analyzed in Sect. 3.2.2.

3.2.1 Perfectly homogeneous TMD

An SDOF structure having frequency ωs and damping ratio ζs = 0.01 is analyzed under a sinusoidal force
having amplitude fs0, circular frequency ω f and duration sufficient to approximately induce a steady-state
response. A TMD is considered, having mass ratiomR = 0.01 and being either a perfectly linear viscous TMD
or a perfectly homogeneous friction TMD. The viscous TMD is classically defined [7]. The friction TMD is
defined by Eqs. (28.2) and (29), assuming f̄ F = 0 (no restrainer) and μeff1 = μ̃eff1 |θ |, as per Eq. (30) or (31).
For simplicity, admittedly, s1 = 0, so that η = 1 and μ̃eff1 = χ . Both TMD types are designed to minimize the
H∞ norm of the TF from the force to the structural displacement [38]. Because both models are homogeneous
(linearly or nonlinearly), the design solution is amplitude independent. The optimal parameters of the linear
TMD are ωR = 0.9886 and ζ = 0.0625 (ζ being the TMD viscous damping ratio); those of the homogeneous
TMD are ωR = 0.9971 and μ̃eff1 = 0.1945. Figure 8a compares the corresponding TFs, normalized to the
uncontrolled TF peak uuncs,peak , which appear nearly identical. Figure 8b shows the corresponding steady-state
dissipative force–displacement loops under a harmonic force having ω f = ωs . The two loops have different
shapes but similar area, i.e., similar cyclic energy dissipation. The homogeneous friction TMD is concluded
to be as effective as a linear TMD.

3.2.2 Actual VFP-TMD

In fact, even the VFP-TMD simplified model is homogeneous only in approximate terms and for limited values
of θ . Its actual performance degrades for three reasons: (i) the dependence of μeff1 on |θ | is nonlinear even if
μa
1 = 0 and if |θ | ≤ θF1; (ii) it may be that μa

1 > 0; (iii) it may be that |θ | > θF1 (restrainer activated). To
examine this degradation, but also the advantages of the VFP-TMD over uniform-friction devices, four cases
are considered:

• Case I: μa
1 = 0 & θF1 → ∞

• Case II: μa
1 = 0 & θF1 = 2ϕ̄1

• Case III: μa
1 = μb

1& θF1 → ∞
• Case IV: μa

1 = μb
1/10 & θF1 → ∞

Cases I and II represent the ideal condition of a frictionless inner region. In case I, the restrainer is inactive,
while in case II it activates as the slider exits the inner region. Cases III and IV, both unrestrained, admit friction
in the inner region. In particular, case III represents a uniform-friction P-TMD, while case IV represents a
VFP-TMD in which μa

1 is 10% of μb
1.

The structure is the same SDOF system assumed above (ζs = 0.01), and the VFP-TMD is derived from the
same optimal homogeneous TMD (mR = 0.01, ωR = 0.9971, μ̃eff1 = χ = 0.1945), by further applying Eq.
(30) to obtain μb

1 from the assigned ϕ̄1. The system is still excited by a sinusoidal force of varying frequency
and sufficient duration, but its amplitude fs0 is now varied, to highlight the amplitude dependence of the
response. For the results to be independent from the assigned ϕ̄1, fs0 is normalized to 2mgϕ̄1, i.e., to the force
which, statically applied to the TMD, would make the slider exit the inner region.

Results are reported in Figs. 9 and 10.
Figure 9 shows the TFs obtained in the four cases for 10 values of fs0/(2mgϕ̄1) (from0.01 to 10). Figure 9a–

d shows the structural displacement, Fig. 9e–h the TMD displacement. The 8 subfigures are arranged in four
columns, orderly referred to cases I to IV.

Figure 10 shows the peak of the same TFs as a function of fs0/(2mgϕ̄1), for the four cases. Figure 10a
shows the structural displacement and Fig. 10b the TMD displacement. The black dashed line in Fig. 10b
represents the TMD displacement at which the TMD exits the inner region.

Figures 9 and 10 show that:

• Cases I and II substantially ensure the sameperformance of a homogeneousTMDas long as fs0/(2mgϕ̄1) ≤
1.15, i.e., as long as |θ | ≤ 2ϕ̄1. In this range, the nonlinear dependence of μeff1 on |θ | does not practically
affect effectiveness.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 Amplitude dependence of the input–output transfer functions (TFs) in the assumption of the simplified model. Top
subfigures: force-to-structural displacement TFs. Bottom subfigures: force-to-TMD displacement TFs. a and e: Case I. b and f:
Case II. c and g: Case III. d and h: Case IV. In each subfigure, TFs are drawn for 10 different values of the normalized force
amplitude fs0/(2mgϕ̄1), ranging from 0.01 to 10.0 (as per the legend)

(a) (b)

Fig. 10 Amplitude dependence of the peak value of the input–output TFs in the assumption of the simplified model. a: structural
displacement. b: TMD displacement. Cases I to IV described in the legend. Black dashed line in subfigure b: θ = 2ϕ̄1

• As |θ | exceeds 2ϕ̄1, case I undergoes a gradual performance degradation, as μeff1 can no longer increase
beyond μb

1 and the TMD equivalent damping ratio decreases. Case II, instead, undergoes a sudden degra-
dation as the slider collides against the restrainer, worsening with increasing excitation. Softening the
restrainer and/or increasing its activation angle will reduce and/or delay this degradation, but will also
increase the bearing dimensions and the slider aspect ratio. This trade-off should be carefully considered
in design.

• Case III shows the limitations of a uniform-friction TMD. Unrestrained as case I, case III achieves a similar
performance only at a specific input amplitude (i.e., at fs0/(2 mgϕ̄1) ≈ 1), proving otherwise less effective,
either because insufficiently damped (at larger amplitudes) or excessively damped (at smaller amplitudes).
Under a certain input threshold, the friction force exceeds the inertial force on the TMD, which remains
stuck to the structure.

• Case IV shows pros and cons of a plausible realization of VFP-TMD. It is nearly as effective as case I
over a wide range of force amplitudes and still quite effective under amplitudes at which case III is totally
useless. The complete inefficiency of the device occurs only at a very small input amplitude, 100 times
smaller than that which activates the restrainer.
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Table 1 Simulations of the rigorous VFP-TMD model on an SDOF structure—the 5 examined cases

Configuration ϕ̄1 aR η μ̃eff1 μb
1

(◦) (–) (–) (–) (%)

Case 1 1 0.079 1.0014 0.194 0.532
Case 2 5 0.391 1.0353 0.188 2.58
Case 3 10 0.772 1.1547 0.168 4.62
Case 4 15 1.132 1.4142 0.138 5.66
Case 5 20 1.462 2.0000 0.0972 5.33

(a) (b) (c)

(d) (e) (f)

Fig. 11 Amplitude dependence of the VFP-TMD response in the assumption of the rigorous model, for 5 values of ϕ̄1 (in the leg-
end). Appropriately normalized, the following response quantities are reported: a structural displacement; b TMD displacement;
c restrainer force; d offset angle; e normal contact force; f friction force

3.3 Simulations of the rigorous VFP-TMD model on an SDOF structure

If the rigorous VFP-TMD model is used instead of the simplified one, other interesting nonlinear phenomena
are visible. The same SDOF structure examined before is reconsidered under a long-duration sinusoidal force
having ω f = ωs . TMD parameters mR , ωR , and χ are also the same. Five VFP-TMDs are considered, with
ϕ̄1 varying from 1◦ to 20◦ following Table 1. In all cases, θF1 = 2ϕ̄1, μa

1 = 0, and Eq. (30) holds, as in
previous case II. Assuming s1 = 0, the slider aspect ratio significantly increases with ϕ̄1, augmenting the
slider’s susceptibility to overturning under the couple of friction forces acting at its lower and upper surfaces.
Also η increases with ϕ̄1, and μ̃eff1 = χ1/η and μb

1 = πμ̃eff1ϕ̄1/2 vary accordingly (Table 1).
In all cases, the normalized force amplitude fs0/(2mgϕ̄1) is progressively increased (from 0.01 to 10) and

the amplitude dependence of the response is observed.
Results are presented in Figs. 11 and 12.
In Fig. 11, fs0/(2mgϕ̄1) is reported in the abscissae and various response quantities in the ordinates,

namely the steady-state structural displacement us , normalized to uuncs,peak; the steady-state TMD displacement
u, normalized to uuncs,peak; the maximum (over time) transient total restrainer force 2F1,max, normalized to fs0;
the maximum (over time) transient offset angle ϕ1N ,max, normalized to ϕ̄1; the steady-state minimum and
maximum normal contact force N1, normalized to m∗g; the steady-state total friction force 2V1, scaled times
η and normalized to fs0.

Figures 11a and 11b are similar to Figs. 10a and 10b. At a first glance, they show a similar performance
of the 5 cases, with a nearly optimal effectiveness until restrainer activation, which approximately occurs at
the same force amplitude for the 5 cases (Fig. 11c). After that, the structural displacement increases, and the
TMD displacement decreases. A major difference, however, exists with respect to Fig. 10, because, except
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(a) (b)

Fig. 12 Normalized friction force (a) and the normal contact force (b) versus the TMD displacement for 5 values of ϕ̄1 (in the
legend), under the largest input amplitude with no restrainer activation

for ϕ̄1 = 1◦ , the curves are defined only until a certain threshold input amplitude, beyond which a steady-
state response is no longer possible. At some instant during the transient response, in fact, ϕ1N ,max exceeds ϕ̄1
(Fig. 11d), i.e., N1 exits the slider contour, and equilibrium is violated. Although a more comprehensive model,
accounting for the slider detachment, might track the actual TMD behavior after that instant, the condition
ϕ1N ,max = ϕ̄1 reasonably defines a failure state. From Fig. 11c, such failure always follows the restrainer
activation. The smaller ϕ̄1, the larger the margin from restrainer activation to failure. While for ϕ̄1 = 1◦
this margin is conspicuous, for cases 4 and 5 failure immediately follows. Obviously, the susceptibility to
overturning is related to the slider aspect ratio and therefore increasing with ϕ̄1 (Table 1). Another obvious
effect of increasing ϕ̄1 is that geometric nonlinearities increase. This is evident in Fig. 11e, where the minimum
and maximum normalized normal contact force (respectively, reached when |u| is maximum and when u is
zero) increasing diverge from1 as fs0/(2mgϕ̄1) increases and/or as ϕ̄1 increases. Less significant is, instead, the
influence of ϕ̄1 on the friction force (Fig. 11f), nearly constant before the restrainer activation, and decreasing
after it.

Finally, in Figs. 12a and 12b, the normalized friction force 2ηV1/ fs0 and the normalized normal contact
force N1/(m∗g) are plotted versus the normalized TMD displacement u/uuncs,peak. They are obtained, for each
value of ϕ̄1, under the largest input force that does not activate the restrainer. The friction loops in Fig. 12a
correspond to the triangular loops of a homogeneous model. For small ϕ̄1, the loops follow Eq. (25). For large
ϕ̄1, the loops change with the instantaneous amplitude of the TMD strokes: for small amplitudes (in the first
instants of the transient), the loops follow Eq. (25), while for large amplitudes (as the response becomes steady)
they appear increasingly curved. As visible in Fig. 12b, this is because N1 increasingly deviates from its static
value as the TMD amplitude of motion increases. Because N1 is maximum when u = 0 and minimum when
|u| is maximum, the ordinates of the friction loops increase with the motion amplitude for small values of |u|
and decrease with the motion amplitude for large values of |u|. Furthermore, the friction loops in Fig. 12a are
asymmetric w.r.t. the horizontal axis because N1 in Fig. 12b depends, for any value of u, on the direction of
motion.

3.4 Simulation of the device on an MDOF structure

In this Section, the VFP-TMD is simulated on an MDOF high-rise building under wind excitation. The VFP-
TMD design follows Sect. 3.1, and analyses adopt the fully nonlinear reduced model M2. The VFP-TMD is
compared with classical TMD types and observed under deviations of μa

1 and μb
1 from optimum.

3.4.1 The structure

The structure is the 42-storey high-rise building studied in [38], having a 168m height and a 25×25 m2 square
section. The model is a planar 10-elements tapered cantilever beam, with a total mass of 22.69 · 106 kg. The
first three modes have periods of 4.00 s, 1.23 s, and 0.52 s, and participating modal masses of 45.3%, 21.8%,
and 11.1%. A 2% damping ratio ζs is assumed in every mode.
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Table 2 Case study: maximum and rms responses to the along-wind component

Configuration usN ,max usN ,rms ax,max ax,rms umax urms
V1,max
m∗g

F1,max
m∗g

ϕ1N
ϕ̄1

(cm) (cm) (cm/s2) (cm/s2) (cm) (cm) (–) (–) (–)

Uncontrolled 15.8 5.0 47.4 13.3 – – – – –
Linear TMD 11.4 3.1 32.1 8.6 18.7 5.9 – – –
VFP-TMD – Case 1 11.0 3.1 32.3 9.8 17.5 5.9 0.018 0 0.01
VFP-TMD – Case 2 10.3 3.1 33.1 9.8 14.7 5.2 0.020 0 0.01
VFP-TMD – Case 3 11.0 3.4 41.4 10.5 9.9 3.5 0.027 0 0.01
VFP-TMD – Case 4 12.6 3.8 39.9 10.5 10.6 2.4 0.020 0 0.01

3.4.2 The wind load

The planar model is separately simulated under the along-wind or the across-wind components of a moderate-
to-high wind flow, blowing for 60min. Both components are applied to the structural nodes as deterministic
wind load time histories, obtained as the realization of a stationary nonhomogeneous stochastic process, exactly
defined as described in [38].

3.4.3 The VFP-TMD

The VFP-TMD is tuned to the structural fundamental mode (ωs = 1.571 rad/s), and its massm is chosen as 1%
the building mass (m = 226900kg), corresponding to an ‘effective’ mass ratiomR = 6.45%. This assumption
is the same as made in [38]. Because the structure and the wind loads are also the same, the results obtained
here for the VFP-TMD can be compared with those obtained in [38] for other devices and for the uncontrolled
building. Solving the H∞ SDOF design problem for ζs = 2% and mR = 6.45% provides the VFP-TMD
optimal dimensionless parameters, ωR = 0.982 and χ = 0.4524, resulting in ω = ωR · ωs = 1.542 rad/s and
L = ρ1O2 = g/ω2 = 4122mm. Adopting θF1 = 2ϕ̄1, ϕ̄1 is tentatively assumed as 6◦, resulting in θF1 = 12◦.
With s1 = 10mm, this implies R1 = 2177mm and h1 = 117mm, eventually producing a slider having
height 233mm and width 455mm (aR = 0.512) and a sliding surface having width 1346mm. This also gives
μ̃eff1 = χ/(2R1/L) = 0.4282. Once μ̃eff and ϕ̄1 are established, the optimal friction coefficient μb

1 is to be
determined, and an assumption is to be made aboutμa

1. To this regard, the following four cases are considered:

• Case 1: μb
1 = π

2 μ̃eff1ϕ̄1 = 7.04% & μa
1 = 0,

• Case 2: μb
1 = 2μ̃eff1ϕ̄1 = 8.97% & μa

1 = 0,
• Case 3: μb

1 = 4μ̃eff1ϕ̄1 = 17.94% & μa
1 = 0,

• Case 4: μb
1 = 10

112μ̃eff1ϕ̄1 = 8.15% & μa
1 = 1

10μ
b
1 = 0.815%.

Cases 1 to 3 assume μa
1 = 0 (ideal case) and μb

1, respectively, given by Eq. (30), by Eq. (31), and by twice this
latter value. Case 4 approximates case 2, assuming, more realistically, μa

1 = μb
1/10 and μb

1 = 10
112μ̃eff1ϕ̄1.

3.4.4 Results

Results of wind analyses are reported in Tables 2 and 3, respectively, for the along-wind and across-wind
components; 6 configurations are compared in each Table. The first two configurations correspond to the
uncontrolled structure and to the structure controlled via a linear TMD. The remaining four configurations
correspond to the four VFP-TMD cases. Various response quantities are used to measure the absorber perfor-
mance. Denoting by usN the top storey displacement, by ax the top storey acceleration and by u the TMD
horizontal stroke, those quantities include: maximum and rms structural displacement (usN ,max and usN ,rms),
maximum and rms structural acceleration (ax,max and ax,rms), maximum and rms TMD stroke (umax, and
urms), maximum normalized friction and restrainer forces (V1,max/(m∗g) and F1,max/(m∗g)), and maximum
normalized offset angle (ϕ1N /ϕ̄1).

Furthermore, for the four VFP-TMD cases, the dissipative loops described by the normalized friction
force V1/(m∗g) vs the TMD angular displacement θ are presented in Fig. 13a and 13b, respectively, for the
along-wind and the across-wind components.
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Table 3 Case study: maximum and rms responses to the across-wind component

Configuration usN ,max usN ,rms ax,max ax,rms umax urms
V1,max
m∗g

F1,max
m∗g

ϕ1N
ϕ̄1

(cm) (cm) (cm/s2) (cm/s2) (cm) (cm) (–) (–) (–)

Uncontrolled 73.8 26.7 176.0 65.3 – – – – –
Linear TMD 35.5 11.8 85.3 28.2 99.2 33.0 – – –
VFP-TMD – Case 1 37.3 11.5 113.2 29.0 87.7 33.0 0.073 0.64 0.40
VFP-TMD – Case 2 34.6 12.0 96.2 30.7 78.1 29.1 0.086 0 0.05
VFP-TMD – Case 3 43.9 15.1 133.5 38.6 55.5 19.5 0.144 0 0.08
VFP-TMD – Case 4 34.9 12.4 95.6 30.9 81.2 27.6 0.079 0 0.04

Fig. 13 Case study: friction force vs angular stroke dissipative loops for the four examined VFP-TMD cases, respectively, under:
a the along-wind component; b the across-wind component

3.4.5 Discussion

Previous results can be commented as follows:

(i) For the uncontrolled structure, the response to the along-wind component is 4÷ 5 times smaller than
the response to the across-wind component, with the maximum displacement being, respectively, 16cm
(along wind) and 74cm (across wind). These two load scenarios allow investigating the VFP-TMD
performance under two significantly different input levels.

(ii) The linear TMDappears quite effective, particularly for the across-wind component (which induces larger
dynamic amplifications). The max and rms structural response (in both displacement and acceleration)
drops to 70% and 63% under the along-wind load and to 48% and 44% under the across-wind load. The
maximumTMDdisplacement is 19cmunder the along-wind component and 99cmunder the across-wind
component.

(iii) The VFP-TMD designed according to cases 1 and 2 achieves nearly the same performance as the linear
TMD, under both wind components, with even a reduction in the TMD displacement. In case 1, such
good performance occurs despite the activation of the restrainer under the across-wind load. In case 2,
the larger friction ratio naturally reduces the TMD strokes and avoids bumping, slightly outperforming
case 1. The similarity of cases 1 and 2 shows the VFP-TMD robustness to variations in its friction ratio.

(iv) The VFP-TMD designed according to case 3 proves less effective, with a significant increase in structural
displacements and, even more, accelerations. This is the drawback of doubling the friction ratio. The
advantage is the reduction in the TMD stroke, which decreases by 44% with respect to the linear TMD.

(v) The VFP-TMD described by case 4 resents the presence of friction in the inner region (μa
1 > 0), which

diminishes control under low excitation levels. Compared to case 2, the TMD effectiveness diminishes
against the less severe along-wind load, but keeps substantially unchanged against the across-wind load,
also showing similar strokes. This proves that, even removing the zero friction assumption, still the
VFP-TMD can achieve a satisfactory performance provided that μa

1 is sufficiently smaller than μb
1.

(vi) The last three columns of Tables 2 and 3 indicate that only in one case the restrainer is activated and that
relatively small friction forces are applied on the sliding surfaces. The normal contact force is generally
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Fig. 14 Assignment of the integration boundaries in Eqs. (A.11) and (A.12) in the 7 possible cases when θ ≥ 0. Left column:
conditions on θ and ϕim for each case. Middle column: graphical representation of the 4 (or less) portions of the interface surface.
Right column: identification the integration boundaries for Aa

ci and Ab
ci (ψ

s
i and ψr

i defined according to Eqs. (A.13) and (A.14))
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quite centered on the sliding interface, except for case 1 under the across-wind load, when the maximum
offset angle ϕ1N equals 0.4ϕ̄1, in which case ϕim = 87.0◦ (partial decompression of the sliding interface).

(vii) Figures 13a and 13b compare the dissipative loops of the four VFP-TMD cases. Figure 13a shows a
nearly linear increase of V1 with θ , because of the small angular displacements occurring during along-
wind load. In cases 1 to 3, the linear trend is also proportional (in fact homogeneous), and the loops pass
through the origin with a slope dictated by μb

1. In case 4, the linear trend is no longer proportional, and
the loops intersect the vertical axis at V1,max/(m∗g) = ±μa

1. Figure 13b shows the curved loops typical
of large angular displacements, with the vertical intersect of case 4 appearing less significant.

4 Conclusions

TheVFP-TMD is presented in this paper, consisting of amass supported on sliding pendulumbearings, inwhich
each sliding surface is divided into two concentric regions: an inner circular region, having the lowest possible
friction coefficient and the dimensions of the slider, and an outer annular region, with a friction coefficient
set to an optimal value. To assess the VFP-TMD performance, its model is derived, a design methodology is
established, and simulations are performed, comparing it with classical TMD types.

The main conclusions can be summarized as follows:

1. The proposed analyticalmodel improves conventionalmodels of sliding friction pendulums, and particularly
existing models of VFP isolators, by considering (i) the spherical geometry of the problem, (ii) the effects
of geometric nonlinearities, and (iii) the dependence of the friction force vector on the distributions of
contact pressures along the sliding interface. From the rigorous general model, several simplified models
are derived which can be useful in specific situations.

2. The proposed design methodology proves simple and effective. Fundamental design parameters are the
slider angular width, ϕ̄1, and the restrainer activation angle, θF1, which governs: (i) bearing dimensions
(i.e., cost); (ii) TMD displacement capacity (i.e., efficiency); (iii) slider aspect ratio (i.e., susceptibility to
overturning). Other main design parameters are obviously the friction coefficients of the two regions, which
should be kept as different as possible.

3. Numerical simulations have shown the influence of design parameters on VFP-TMD behavior in different
design scenarios. In the ideal case of a frictionless inner region (μa

1 = 0), the VFP-TMD is substantially
equivalent to a linear TMD, provided that no collision with the restrainer occurs; otherwise, a control loss
is observed, whose mode and extent depend on ϕ̄1 (gradual loss with fully compressed interface at low
ϕ̄1, sudden loss with incipient slider upheaval at large ϕ̄1). In the realistic case that 0 < μa

1 << μb
1, the

effectiveness slightly decreases at small excitation levels but remains nearly optimal at large levels.
4. In all examined cases, the VFP-TMD achieves nearly the same effectiveness of viscous P-TMDs, while

considerably outperforming conventional uniform-friction P-TMDs.
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Appendix A—Evaluation of the Bi functions in Eqs. (9) and (10)

The functions B1 and B2 introduced in Eqs. (9) and (10) are defined, respectively, as

B1(ϕ̄i , ϕim) = 1

R2
i

⎡
⎢⎣cosϕim

∫

Aci

cos2 ϕi cos
2 ψi d Ai + sin ϕim

∫

Aci

sin ϕi cosϕi cos
2 ψi d Ai

⎤
⎥⎦

http://creativecommons.org/licenses/by/4.0/
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= cosϕim

∫

Aci

cos2 ϕi cos
2 ψi dϕi dψi + sin ϕim

∫

Aci

sin ϕi cosϕi cos
2 ψi dϕi dψi

= cosϕimB11(ϕ̄i , ϕim) + sin ϕimB12(ϕ̄i , ϕim) (A.1)

and as

l B2(ϕ̄i , ϕim) = 1

R2
i

⎡
⎢⎣cosϕim

∫

Aci

sin ϕi cosϕi cos
2 ψi d Ai + sin ϕim

∫

Aci

sin2 ϕi cos
2 ψi d Ai

⎤
⎥⎦

= cosϕim

∫

Aci

sin ϕi cosϕi cos
2 ψi dϕi dψi + sin ϕim

∫

Aci

sin2 ϕi cos
2 ψi dϕi dψi

= cosϕimB12(ϕ̄i , ϕim) + sin ϕimB22(ϕ̄i , ϕim)

(A.2)

where B11, B12 and B22 are given as follows:

B11(ϕ̄i , ϕim) =
∫

Aci

cos2 ϕi cos
2 ψi dϕi dψi =

min(ϕ̄i ;ϕim+π/2)∫

max(−ϕ̄i ;ϕim−π/2)

cos2 ϕi

⎛
⎜⎝2

ψs
i∫

0

cos2 ψi dψi

⎞
⎟⎠ dϕi

=
min(ϕ̄i ;ϕim+π/2)∫

max(−ϕ̄i ;ϕim−π/2)

cos2 ϕi [cosψi sinψi + ψi ]
ψs
i

0 dϕi

=
min(ϕ̄i ;ϕim+π/2)∫

max(−ϕ̄i ;ϕim−π/2)

cos2 ϕi (cosψ s
i sinψ s

i + ψ s
i )dϕi , (A.3)

B12(ϕ̄i , ϕim) =
∫

Aci

sin ϕi cosϕi cos
2 ψi dϕi dψi

=
min(ϕ̄i ;ϕim+π/2)∫

max(−ϕ̄i ;ϕim−π/2)

sin ϕi cosϕi (cosψ s
i sinψ s

i + ψ s
i )dϕi , (A.4)

B22(ϕ̄i , ϕim) =
∫

Aci

sin2 ϕi cos
2 ψi dϕi dψi =

min(ϕ̄i ;ϕim+π/2)∫

max(−ϕ̄i ;ϕim−π/2)

sin2 ϕi (cosψ s
i sinψ s

i + ψ s
i )dϕi . (A.5)

In Eqs. (A.3) to (A.5), the integration boundaries are chosen to delimit the compressed interface Aci . The
relation ψ s

i = arccos (cos ϕ̄i/ cosϕi ) expresses the ψi coordinate of the contour of Aci as a function of its ϕi
coordinate and of the geometric parameter ϕ̄i .

Appendix B—Evaluation of the integrals in Eqs. (17.1), (17.2) to (19.1), (19.2), (19.3)

This Appendix presents a procedure for evaluating the integrals in Eqs. (12) to (14) as functions of the constant
parameters Ri , ϕ̄i , μa

i , μ
b
i and of the variables θ , σim, and ϕim. The procedure is partly analytical and partly

numerical. Using Eqs. (1) and (8), the three said integrals can be expressed as follows:∫

Ai

cosϕi dVi = σim

∫

Aic

μi cosϕi cosψi cos(ϕi − ϕim)d Ai = σimR2
i [cosϕimE11 + sin ϕimE12] , (B.1)

∫

Ai

sin ϕi dVi = σim

∫

Aic

μi sin ϕi cosψi cos(ϕi − ϕim)d Ai = σimR2
i [cosϕimE12 + sin ϕimE22] , (B.2)
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∫

Ai

cosψi dVi = σim

∫

Aic

μi cos
2 ψi cos(ϕi − ϕim)d Ai = σimR2

i [cosϕimE31 + sin ϕimE32] (B.3)

where

E11 = E11(ϕ̄i , μ
a
i , μ

b
i , ϕim, θ) =

∫

Aic

μi cos
2 ϕi cosψi dϕi dψi , (B.4)

E12 = E12(ϕ̄i , μ
a
i , μ

b
i , ϕim, θ) =

∫

Aic

μi sin ϕi cosϕi cosψi dϕi dψi , (B.5)

E22 = E22(ϕ̄i , μ
a
i , μ

b
i , ϕim, θ) =

∫

Aic

μi sin
2 ϕi cosψi dϕi dψi , (B.6)

E31 = E31(ϕ̄i , μ
a
i , μ

b
i , ϕim, θ) =

∫

Aic

μi cosϕi cos
2 ψi dϕi dψi , (B.7)

E32 = E32(ϕ̄i , μ
a
i , μ

b
i , ϕim, θ) =

∫

Aic

μi sin ϕi cos
2 ψi dϕi dψi . (B.8)

If μi were uniform on Aic, the integrals in Eqs. (B.4) to (B.8) would be similar to those in Eqs. (A.3) to
(A.5). Instead, μi varies with ϕ̄i , θ , ϕi , and ψi as a step-wise function, according to Eq. (15). Consequently,
the integration can still be performed similarly as in Eqs. (A.3) to (A.5), once the integration boundaries are
properly redefined.

To this purpose, Eqs. (B.4) to (B.6) can be jointly expressed as

E jk = μa
i

∫

Aa
ic

f jk(ϕi ) cosψi dϕi dψi + μb
i

∫

Ab
ic

f jk(ϕi ) cosψi dϕi dψi (B.9)

while Eqs. (B.7) and (B.8) as

E jk = μa
i

∫

Aa
ic

f jk(ϕi ) cos
2 ψi dϕi dψi + μb

i

∫

Ab
ic

f jk(ϕi ) cos
2 ψi dϕi dψi (B.10)

where f jk(ϕi ) are the various trigonometric functions of ϕi appearing in Eqs. (B.4) to (B.8) and Aa
ci and Ab

ci
are the portions of the compressed part of the i th interface, respectively, belonging to regions “a” and “b.”

The first integral in Eq. (B.9) can be expressed as

∫

Aa
ic

f jk(ϕi ) cosψi dϕi dψi =
ϕa+
i∫

ϕa−
i

f jk(ϕi )

⎛
⎜⎜⎝2

ψa+
i∫

ψa−
i

cosψi dψi

⎞
⎟⎟⎠ dϕi

= 2

ϕa+
i∫

ϕa−
i

f jk(ϕi )(sinψa+
i − sinψa−

i )dϕi (B.11)

where ϕa−
i , ϕa+

i , ψa−
i = ψa−

i (ϕi ) and ψa+
i = ψa+

i (ϕi ) denote the integration boundaries of the one half of
Aa
ci , characterized by ψi ≥ 0 (hence the factor “2” in the right-hand side term).
With identical notation, the first integral in Eq. (B.10) can be expressed as

∫

Aa
ic

f jk(ϕi ) cos
2 ψi dϕi dψi =

ϕa+
i∫

ϕa−
i

f jk(ϕi )

⎛
⎜⎜⎝2

ψa+
i∫

ψa−
i

cos2 ψi dψi

⎞
⎟⎟⎠ dϕi
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=
ϕa+
i∫

ϕa−
i

f jk(ϕi )(cosψa+
i sinψa+

i + ψa+
i − cosψa−

i sinψa−
i − ψa−

i )dϕi .

(B.12)

The second integrals in Eqs. (B.10) and (B.11) can be expressed similarly, with only the “b” superscript
replacing the “a” superscript.

Once the integration boundaries are appropriately identified, the integrals in Eqs. (B.11) and (B.12) can be
computed numerically, because their integrands are functions of the single variable ϕi . This determines first
the functions E jk in Eqs. (B.4) to (B.8) and ultimately the integrals in Eqs. (B.1) to (B.3).

Therefore, the crucial point is now to correctly identify the integration boundaries for both Aa
ci and Ab

ci .
To this purpose, it should be observed that in general the interface is delimited and subsequently parted

(in four or less portions), by three or less characteristic lines. The four portions are regions “a” and “b,” each
further divided into a “compressed” portion and a “decompressed” portion. The three lines are, respectively,
the contour of the slider given by

ψi = ψ s
i = arccos (cos ϕ̄i/ cosϕi ) , (B.13)

the contour of the inner region given by

ψi = ψr
i = arccos[cos ϕ̄i/(cosϕi cos θ − sin ϕi sin θ)], (B.14)

and the neutral axis given by

ϕi = ϕim − sgn (ϕim) · π/2. (B.15)

Depending on how the three lines mutually intersect to generate the four or less portions of the interface,
the integration boundaries take different values. Figure 14 shows the 7 possible cases corresponding to θ ≥ 0
(the cases corresponding to θ < 0 are similar and omitted for brevity). The first 6 cases refer to 0 ≤ θ ≤ 2ϕ̄i
(corresponding to the slider intersecting the inner region), and are ordered for increasing values of ϕim. The
7th case refers to θ > 2ϕ̄i (corresponding to the slider being entirely comprised into the outer region). Each
subfigure schematically represents the inner region “a” in white color, the outer region “b” in gray color, the
slider contour and the neutral axis in red lines, the compressed interface in red hatching. For brevity, only
half the space is represented, corresponding to ψi ≥ 0, coherently with the integration boundaries defined in
Eqs. (B.11) and (B.12). Beside each subfigure, the corresponding integration boundaries for Aa

ci and Ab
ci are

reported, expressed in terms of ϕi and ψi .
With the integration boundaries of Fig. 14, all terms in Eq. (B.11) and (B.12) are known, so the respective

integrals can be numerically evaluated by appropriately discretizing the ϕi axis, therefore providing the first
terms of Eqs. (B.9) and (B.10), referring to Aa

ci . The second terms of Eqs. (B.9) and (B.10), referring to Ab
ci ,

are obtained in the same way. The three integrals in Eqs. (B.1) to (B.3) are finally obtained by applying Eqs.
(B.1) to (B.8).
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