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Abstract This paper proposes a novel approach to build refined shell mod-
els. The focus is on the free vibrations of composite panels, and the node-
dependent-kinematics is used to select shell theories node-wise. The method-
ology shown in this work can provide at least two sets of information. First,
it optimizes the use of shell models by indicating the minimum number of
refined models to use. Then, it highlights which areas of the structures are
more vulnerable to non-classical effects. Moreover, by varying various problem
features, e.g., boundary conditions, thickness, and stacking sequence, the in-
fluence of those parameters on the modelling strategy is evaluated. The results
suggest the predominant influence of thickness and boundary conditions and
the possibility to improve the quality of the solution via the proper use of the
refinement strategy.

Keywords Shell · Finite Element Method · Node Dependent Kinematics

1 Introduction

Shell theories depend on variable distributions along the thickness direction,
and such distributions define the number of degrees of freedom (DOF) per
node. Shell elements in commercial codes rely on the classical theories of
structures [1–6] and the maximum number of DOF is six, namely, three dis-
placements and rotations. Classical models are reliable if the structure is thin,
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there are no local effects, and in-plane stress and transverse displacements are
of interest. Concerning composite structures, several phenomena fall beyond
the prediction capabilities of classical models [7,8]. Examples are high trans-
verse deformability and anisotropy, edge-effects, local distortions, higher-order
oscillations, cracks, and contacts as transverse stresses and normal stretch be-
come primarily important. Other examples of critical problems are those with
multifield interactions such as thermal problems in which the material char-
acteristics can change significantly and in an anisotropic manner.
The improvement of classical models has to consider shear and normal trans-
verse stresses, and variations of the displacement field at the interface between
two layers with different mechanical properties, i.e., the zig-zag effect [9–20].
As a general guideline, the Koiter recommendations, i.e., the inclusion of both
transverse shear and axial stress in refined theories, remain a valuable guide-
line that should lead the development of shell theories [11,21,22].
The present paper deals with the free vibration analysis of composite shells via
FEM. In the last decades, many contributions have been published concerning
this topic as shown by Qatu’s comprehensive reviews [23,24]. A brief overview
of works focused on the free vibration analysis via shells follows.
Many efforts focused on the development of exact, analytical or semi-analytical
solutions to verify numerical approaches. Leissa and Reddy are among the
main contributors with special attention paid to 3D solutions and shear de-
formation theories [14,25,26]. More recent contributions are in [27–33]. The
extension of exact solutions to wider cases focused on general boundary condi-
tions and laminations [34–40], shells with cutouts [41], conical shape geometries
[42], stiffened and damaged structures [43], and non-homogeneous properties
[44].
Other solution schemes make use of various approaches. An example is the
Galerkin method for higher-order models [45,46], with mixed models based on
the Reissner mixed variational method (RMVT) [47], and for conical shapes
[48]. Another common solution is the Ritz and Rayleigh-Ritz with contribu-
tions on local boundary conditions [49,50], arbitrary boundary conditions and
complex shapes [51–55], 3D-like models [56,57], sandwich structures [58], and
comparisons with experimental results [59]. Other approaches are the spectral
method for arbitrary boundary conditions and shapes [60], domain decompo-
sition method [61–63], and the differential quadrature method [64].
The finite element method (FEM) has a great variety of contributions starting
from early works a few decades ago [65–67]. Then, research focused on the el-
ement type, i.e., four- [68–70], eight- [71,72], and nine-node elements [73,74].
and the the order of the structural model [75–78]. Recent works have tried to
improve numerical solutions via various approaches, such as assumed strain
finite elements (FE) [79], wave finite element and wave based method [80,81],
Haar wavelet method [82,83], spline collocation and convolution method [84–
86], and the reverberation ray matrix [87].
Concerning the development of the structural theories, some of the most im-
portant strategies rely on the use of higher-order models [88–93], layer-wise
models [94–98], and zig-zag [99]. Most of the contributions mentioned so far
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exploit the axiomatic approach in which assumptions on the mechanical be-
havior of shells lead to the definition of the mathematical model along the
thickness. A mathematically more rigorous approach is the asymptotic one
that can provide the accuracy of a structural theory with respect to the 3D
solution [100,101].
As mentioned above, the use of refined models is an attempt to tackle several
mechanical phenomena. Given a structural problem, the spatial distribution
of such phenomena can vary significantly and, usually, are more severe in
the proximity of geometrical and mechanical boundary conditions. The neces-
sity to use refined models in an area of the structure signals the presence of
non-classical effects. This paper presents a novel strategy to evaluate the best
distributions of shell theories over a 2D mesh, and, therefore, to determine
the most critical area to model. The proposed methodology exploits the syn-
ergies between the Carrera Unified Formulation (CUF), the Node-Dependent-
Kinematics (NDK) and the Axiomatic-Asymptotic-Method (AAM). CUF [102]
is the theoretical framework providing the governing equations for all the struc-
tural models, independently of the order of the theory or the completeness of
the expansions. Within CUF, one of the latest developments is NDK in which
each node of an FE model can assume a different shell theory [103,104]. AAM
[105,106] is a method to evaluate the accuracy of any-order shell model. The
AAM leads to the best Theory Diagram (BTD) [107,108]. The BTD is a 2D
plot to localize a shell model via its nodal degrees of freedom and accuracy.
In the past, AAM results on structural dynamics focused on beam and shell
finite elements [109,22]. The novelty of this paper stems from the evaluation
of spatial distributions of shell theories. In other words, given a problem and
a 2D mesh, the most convenient structural theory for each node is evaluated.
In other words, this paper extends the methodology from [22] by introducing
the possibility of changing the structural theory at the element level.
This paper is organized as follows: the governing equations and the method-
ology are in Sections 2 and 3; results in Section 4, and conclusions in Section
5.

2 Carrera Unified Formulation

Using the reference frame in Fig. 1, the CUF displacement field for a 2D model
is

u(α, β, z) = Fτ (z)uτ (α, β) τ = 1, . . . ,M (1)

The Einstein notation acts on τ . Fτ are the thickness expansion functions. uτ
is the vector of the generalized unknown displacements. M is the number of
expansion terms. In the case of polynomial, Taylor-like expansions, a fourth-
order model, referred to as N=4, has the following displacement field:

uα = uα1 + z uα2 + z2 uα3 + z3 uα4 + z4 uα5

uβ = uβ1 + z uβ2 + z2 uβ3 + z3 uβ4 + z4 uβ5

uz = uz1 + z uz2 + z2 uz3 + z3 uz4 + z4 uz5

(2)
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Fig. 1 Shell geometry
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N=4 has fifteen nodal DOF. The order and type of expansion is a free param-
eter. Thus, the structure of the theory is an input of the analysis. The metric
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β are the principal radii of the middle surface of the kth layer, Ak

and Bk the coefficients of the first fundamental form of Ωk, see Fig. 1. This
paper focuses only on shells with constant radii of curvature with Ak = Bk =
1. The geometrical relations are
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The stress-strain relations are
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where
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(8)

Where the orthotropic material coefficients are obtainable from nine indepen-
dent coefficients, namely the Young and shear moduli, and Poisson ratios [110].
The FEM formulation adopts a nine-node shell element based on the Mixed In-
terpolation of Tensorial Component (MITC) method [111]. The displacement
vector becomes

δus = Njδusj , uτ = Niuτi i, j = 1, · · · , 9 (9)

uτi and δusj are the nodal displacement vector and the virtual displacement,
respectively. The strain expression becomes

εp = Fτ (Dp +Ap)Niuτi

εn = Fτ (DnΩ −An)Niuτi + Fτ,zNiuτi
(10)

MITC avoids the membrane and shear locking via a specific interpolation
strategy for the strain components on the nine-node shell element, as follows:

εp =

εααεββ
εαβ

 =

Nm1 0 0
0 Nm2 0
0 0 Nm3

εααm1

εββm2

εαβm3


εn =

εαzεβz
εzz

 =

Nm1 0 0
0 Nm2 0
0 0 1

εαzm1

εβzm2

εzzm3

 (11)

Strains εααm1
, εββm2

, εαβm3
, εαzm1

, and εβzm2
result from Eq. 10 and

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]

Nm3 = [NP , NQ, NR, NS ]

(12)

Subscripts m1, m2 and m3 indicate the point groups (A1,B1,C1,D1,E1,F1),
(A2,B2,C2,D2,E2,F2), and (P,Q,R,S), respectively, see Fig. 2.
According to the Principle of Virtual Displacements (PVD),∫

Ωk

∫
Ak

δεk
T
σkHk

αH
k
βdΩkdz +

∫
Ωk

∫
Ak

ρkδuk
T
ükHk

αH
k
βdΩkdz = 0 (13)
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Fig. 2 MITC9 tying points

(a) Components of εαα and
εαz

(b) Components of εββ and
εβz

(c) Components of εαβ

Ωk is the in-plane domain of a layer over the element and Ak is the thickness
one. Via the constitutive equations, geometrical, MITC and CUF relations,
the following governing equation reads

mk
τisjü

k
τi + kkτsiju

k
τi = 0 (14)

kkτsij and mk
τsij are 3×3 matrices referred to as the fundamental nucleus of

the stiffness and mass matrices, respectively. The components of the nuclei are
given in [112]. The assembly over all nodes and elements and the introduction
of the harmonic solution leads to the well-known eigenvalue problem,

(−ω2
nM +K)Un = 0 (15)

In CUF, the shell theory is a property of the node. In other words, each node
can have a shell theory and the neighbour nodes others. In this work, the shell
theory is the same for each node of an element and FSDT, and N=4 are the
models adopted. Figure 3 shows an example of a shell mesh in which each
element is either N=4 or FSDT. For more details on NDK, the reader may
refer to [103,104]. NDK offers various options to deal with the edge nodes
between elements with different theories. In this paper, the shared nodes have
FSDT.

Fig. 3 Distribution of FSDT and fourth-order shell theories over a 2D mesh

FSDT

N=4
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3 Axiomatic/asymptotic method and best theory distributions

The axiomatic/asymptotic method (AAM) is a methodology to assess the
influence of generalized variables and the accuracy of structural models [105,
106]. In previous works, AAM acted on the set of variables of the expansion,
e.g., in the case of N=4, AAM considered the fifteen primary variables and
evaluated their influence. In the present paper, AAM acts on the distribution of
shell theories over a given mesh. For instance, in the case of a 4×4 mesh, AAM
evaluates the accuracy of every combination of FSDT and N=4, as shown in
Fig. 3. Overall, 216 mesh distributions are evaluated. The implementation of
the AAM may follow various approaches; in this work:

1. Definition of parameters such as geometry, boundary conditions, materials,
and layer layouts.

2. Axiomatic choice of a starting theory and definition of the starting nodal
unknowns. Usually, the starting theory provides 3D-like solutions. The
fourth-order, equivalent single layer shell model is the reference model of
this paper.

3. Definition of a FEM mesh. In this work, a 4×4 mesh nine-node mesh was
used as, for the considered problems, provides good accuracy.

4. The CUF generates the governing equations for the theory distributions
considered.

5. For each structural theory distribution, the accuracy evaluation makes use
of one or more control parameters; in this paper, the first ten natural
frequencies.

6. The analysis is carried out multiple times to evaluate the relevance of
problem parameters, e.g., thickness, orthotropic ratio, stacking sequence,
boundary conditions.

Fig. 4 FE distributions in a 2D Cartesian reference frame and an example of BTD

Error

D
O
F

FSDT

N=4

(a) Three shell theory distributions
Error

D
O
F

FSDT

N=4

(b) Best Theory Distributions (BTD)

Two parameters can identify a distribution, namely, the number of DOF
of the model and the error or accuracy provided. The use of two parameters
allows the insertion of each FE distribution in a Cartesian reference frame,
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as in Fig. 4a. The Best Theory Distribution (BTD) is the curve composed
of all meshes with a given number of N=4 and FSDT elements providing the
minimum error, see Fig. 4b. In the case of sixteen elements, the BTD will have
sixteen models, the first one with all N=4 and the last one with all FSDT.
To have a single error parameter, the BTD uses the average of the errors as
follows:

Error =

10∑
i=1

fi/f
N=4
i

10
(16)

Where fi is the i-th frequency from a generic shell model, and fN=4
i is the

one from the reference solution. As explained in the numerical result section,
further control parameters, such as the standard deviation and the Modal
Assurance Criterion (MAC), are useful to control the quality of the results.

4 Results

The numerical results consider spherical shells with geometrical and material
characteristics retrieved from [26,113,108,22]. The shell can be obtained by
considering a portion of a sphere with the following geometrical characteristics:
a = b, Rα = Rβ = R, and R/a = 5. The material properties are E1/E2 =
25, G12/E2 = G13/E2 = 0.5, G13/E2 = 0.2, ν = 0.25. The lamination angle
is zero if aligned with β, and 90° if aligned with α. Two sets of geometrical
boundary conditions were adopted, namely, simply-supported and clamped-
free. The former acts on all four edges, in the latter, the edges parallel to
α are clamped, and the others free. Unless otherwise stated, the focus is on
symmetric modal shapes and the FE considers a quarter of shell. In all cases,
a 4×4 mesh was used as in [108]. The analysis of symmetric modes allowed us
to use a reduced number of elements via symmetric boundary conditions with
a significant lower computational cost.

4.1 Simply-supported, 0/90/0

The first assessment deals with a simply-supported shell with symmetric lam-
ination and various thickness ratios, a/h. Table 1 presents the first natural
frequency from different models including higher- and first-order shear defor-
mation theories, HSDT and FSDT, respectively, classical lamination theory,
CLT, a layer-wise fourth-order model, LD4, and the present equivalent single
layer full fourth-order expansion, N=4. The latter provides good accuracy if
compared to LD4 and is set as the reference solution to build the BTD. Figure
5 shows the error given by each of the 216 mesh combinations. The vertical axis
reports the ratio between the total DOF of a given mesh and the total DOF in
the case of the mesh with only fourth-order shell theories. The boundary val-
ues are D = 1, i.e., fifteen DOF per node and 1215 in total, and D = 0.333, i.e.,
five DOF per node and 405 overall. Figure 6 reports the mesh configurations
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Table 1 0/90/0, a/h = 10, ω = ω
√

ρa4

h2ET

Model
HSDT [26] 12.060
FSDT [25] 12.372
CLT [114] 15.233
LD4 [113] 11.685
N = 4 11.972

with the minimum error. The vertical axis reports the number of elements
with the fourth-order shell theory and ranging from sixteen - all N=4 - to zero
- all FSDT. The mesh distributions in the case of a/h = 100 are in Fig. 7. For
the sake of brevity, just some of those distributions are reported in Fig. 8 for
all the thickness ratios considered. Mesh distributions over one-quarter of the
mesh and having four, eight and twelve elements with fourth-order kinemat-
ics are shown with the error, E, indicated in the captions. The bottom and
left edges are those with the simply-supported boundary conditions applied.
Such figures show where the higher-order kinematics is more relevant. In other
words, considering four N=4 elements, the best configurations shown indicate
the zones in which those elements are more necessary to minimize the error.
Figure 9 reports MAC distributions obtained by averaging all those obtained
by the mesh configurations in Fig. 6. The MAC values were obtained by using
as reference the modal shapes from the full fourth-order model. The results

Fig. 5 All combinations for 0/90/0
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Fig. 6 BTD for 0/90/0
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Fig. 7 Best theory distributions for 0/90/0, a/h = 100
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suggest the following:

– By considering all combinations of mesh distributions, the error range is
higher than 5%, and, for thick shells, such a range increases significantly.

– The use of FSDT over the entire mesh provides acceptable errors in the
case of thin shells only. The inclusion of a few fourth-order elements may be
detrimental to the accuracy. Such an effect is very significant in the case of
thin shells. The accuracy of FSDT could improve via more accurate shear
correction factors. However, such factors strongly depend on the problem
characteristics - shear stress distributions over the thickness, geometry, and
modal shapes considered - and the order of the theory adopted. In other
words, the calculation of these factors requires the use of refined models
[115].

– The shell zones in which the fourth-order kinematics is more relevant de-
pend on the thickness of the structure. In the case of thin shells, the
higher-order models spread from the centre to the opposite corner. For
thicker shells, the influence of the boundary conditions is more relevant,
and higher-order kinematics appear along the simply-supported edges.

– The MAC distributions prove that the best mesh configurations detect the
modal shapes with no significant accuracy losses.

Figures 10 and 11 show the results on the thin shell structure but without
symmetry conditions; that is, the entire structure is considered to detect all
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Fig. 8 Best theory distributions for 0/90/0
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Fig. 9 Averaged MAC for 0/90/0

1 2 3 4 5 6 7 8 9 10

N=4, Mode number

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

B
T

D
, 
M

o
d

e
 n

u
m

b
e

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
A

C
 V

a
lu

e

(a) a/h = 100

1 2 3 4 5 6 7 8 9 10

N=4, Mode number

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

B
T

D
, 
M

o
d

e
 n

u
m

b
e

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
A

C
 V

a
lu

e

(b) a/h = 10

1 2 3 4 5 6 7 8 9 10

N=4, Mode number

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

B
T

D
, 
M

o
d

e
 n

u
m

b
e

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
A

C
 V

a
lu

e

(c) a/h = 5

first ten modes. The results show that the error ranges are very similar to
the previous case and the best mesh distributions follow the same patterns as
before except for the last configuration in which, presumably, the presence of
new modal shapes modifies the distribution. Given that no significant changes
were found, all the subsequent assessments consider symmetric modes only.
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Such a choice is due to the possibility of using a finer mesh and having a
higher definition in the mesh distributions.

Fig. 10 BTD, all combinations, and MAC for 0/90/0, a/h = 100, all first ten modes
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Fig. 11 Best theory distributions for 0/90/0, a/h = 100, all first ten modes
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4.2 Simply-supported, 0/90

The second shell configuration considers a different stacking sequence. All
other parameters remain like those of the previous cases. Figure 12 shows all
combinations and related errors, whereas Fig. 13 shows the best distributions.
Selected mesh configurations are given in Fig. 14 and the MAC distributions
in Fig. 15.

The analysis of the results suggests that

– The accuracy distributions lie within similar ranges as compared to the pre-
vious numerical case. However, in the thin case, misplaced refined models
may be more detrimental than in the 0/90/0.

– The patterns followed by the higher-order kinematics over the mesh present
a more significant influence of the external edges.

– The MAC distributions have some non-diagonal terms, but the overall
match is good.
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Fig. 12 All combinations for 0/90
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Fig. 13 BTD for 0/90
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4.3 Clamped-free, 0/90/0

The last assessment considers a different set of boundary conditions in which
the top and bottom edges are clamped and the lateral ones free. All the other
features of the problem remain as in the previous cases. The results are pro-
vided in Figs. 16, 17, 18, 19. The results confirm the predominant role of
the boundary conditions and the thickness in the determination of the best
mesh distribution. In the thin case, the higher-order theories are needed far
from the geometrical boundary conditions. On the other hands, in the thicker
cases, the influence of the geometrical boundary conditions is evident.

5 Conclusion

This paper has presented a new methodology to determine the most critical
areas of given shell problems by providing the best distributions of refined
shell theories over the FE mesh. The methodology makes use of CUF for
governing equations, the NDK to distribute different shell theories node-wise,
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Fig. 14 Best theory distributions for 0/90
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Fig. 15 Averaged MAC for 0/90
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and the AAM to evaluate the accuracy. The numerical results focused on the
free vibration analyses and assessed various shell configurations concerning
boundary conditions, thickness and lamination. The main findings are the
following:

– The thickness of the structure and the boundary conditions are the leading
features to establish the most critical areas.

– For thin shells, the areas demanding the use of refined models are far from
the geometrical boundary conditions. For thick shells, on the other hand,
the vicinity of boundary conditions is a more significant indicator.

– The use of asymmetric laminations makes the influence of boundary con-
ditions greater.
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Fig. 16 All combinations, clamped-free
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Fig. 17 BTD, clamped-free
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– The accuracy of the various mesh distributions can change significantly.
For thick, shells, in particular, errors higher than 10% may show up.

The approach presented in this paper can be further extended to consider more
complex configurations and aiming at providing guidelines for the structural
modelling of engineering structures. To this purpose, the use of machine learn-
ing techniques represents a viable way as the methodology presented has good
coding capabilities and the generation of data for deep-learning is feasible with
low computational costs.
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Fig. 18 Best theory distributions, clamped-free

1 2 3 4

1

2

3

4

FSDT

N=4

(a) 0/90/0, a/h = 100,
twelve FSDT, E=2.4 %

1 2 3 4

1

2

3

4

FSDT

N=4

(b) 0/90/0, a/h = 100, eight
FSDT, E=1.5 %

1 2 3 4

1

2

3

4

FSDT

N=4

(c) 0/90/0, a/h = 100, four
FSDT, E=0.7 %

1 2 3 4

1

2

3

4

FSDT

N=4

(d) 0/90/0, a/h = 20, twelve
FSDT, E=10.3 %

1 2 3 4

1

2

3

4

FSDT

N=4

(e) 0/90/0, a/h = 20, eight
FSDT, E=6.2 %

1 2 3 4

1

2

3

4

FSDT

N=4

(f) 0/90/0, a/h = 20, four
FSDT, E=3.4 %

Fig. 19 Averaged MAC for 0/90/0, clamped-free
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