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ABSTRACT: 

 

One of the major challenges in precision viticulture in Europe is the detection and mapping of flavescence dorée (FD) grapevine disease 

to monitor and contain its spread. The lack of effective cures and the need for sustainable preventive measures are nowadays crucial 

issues. Insecticides and the plants uprooting are commonly employed to withhold disease infection, even if these solutions imply 

serious economic consequences and a strong environmental impact. The development of a rapid strategy to identify the disease is 

required to cover large portions of the crop and thus to limit damages in a time-effective way. This paper investigates the use of 

Unmanned Aerial Vehicles (UAVs), a cost-effective approach to early detection of diseased areas. We address this task with an object 

detection deep network, Faster R-CNN, instead of a traditional pixel-wise classifier. This work tests Faster R-CNN performance on 

this specific application through a comparative analysis with a pixel-wise classification algorithm (Random Forest). To take advantage 

of the full image resolution, the experimental analysis is performed using the original UAV imagery acquired in real conditions (instead 

of the derived orthomosaic). The first result of this paper is the definition of a new dataset for FD disease identification by UAV 

original imagery at the canopy scale. Moreover, we demonstrate the feasibility of applying Faster-R-CNN as a quasi-real-time 

alternative solution to semantic segmentation. The trained Faster-R-CNN achieved an average precision of 82% on the test set.  

 

 

1. INTRODUCTION 

 

Viticulture has great economic relevance in the EU (European 

Union) agriculture; however, it is also the sector with the highest 

pesticide use that has consequences such as chemical pollution 

and soil contamination. The insecticide adoption is caused by the 

presence of some diseases that constantly interfere with the 

production and influence grape yield both in terms of quantity 

and quality (Matese and Gennaro, 2015; Mazzetto et al., 2010; 

Micheloni, 2017). Among the vineyard diseases with heavy 

impact in the EU, Micheloni, 2017 includes the Flavescence 

dorée (FD). FD is a grapevine disease caused by a bacteria 

transmitted in the field by the leafhopper Scaphoideus titanus 

Ball; it is included in the A2 EPPO list (EC directive no. 

2009/297EC) as a quarantined organism (Chuche and Thiéry, 

2014). The identification of the FD disease area is currently based 

on visual inspection in the field and laboratory analysis carried 

out by teams of experts. Since this approach is time-consuming, 

especially for wide fields, the definition of rapid methods is the 

main challenge in this application field (Hruška et al., 2019).  

In this context, UAV (Unmanned Aerial Vehicle) imagery 

combined with machine learning algorithms has shown great 

potentials for rapid, non-destructive, cost-effective detection, and 

localization of the disease. Indeed, this approach allows 

monitoring large areas, detecting biophysical, biochemical, and 

optical property changes of tissues and leaves with automatic 

analysis. However, the development of automatic algorithms is 

still in an early stage in this application field due to the lack of 
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consistent datasets with a large number of labeled images 

acquired in real conditions (different lighting conditions, points 

of view, and with an inconsistent background) and due to the 

small size of the disease spots. 

Previous works addressed the detection problem with semantic 

segmentation techniques, which perform a pixel-wise image 

labeling. Machine learning algorithms, such as random forest, 

support vector machines, and deep learning techniques such as 

CNNs (e.g., AlexNET, ResNet, U-Net) have been employed for 

this purpose (Cruz et al. 2019; Rançon et al. 2019). The 

algorithms cited above were used to analyze the problem at 

different levels of detail (from leaf to canopy scale). Previous 

studies used mainly leaf disease datasets detecting the disease on 

the individual leaves, and when UAV images were adopted, the 

detection was carried out on the orthomosaic (Albetis et al. 2017, 

Kerkech, Hafiane, and Canals 2018). However, the mosaicking 

procedure performed by photogrammetric software can produce 

geometric artifacts, which can lead to problems in the 

identification of the disease. The 3D canopy reconstruction and 

orthomosaic generation are affected by the difficulties of feature 

extraction algorithms to cope with the similarity between grape 

leaves and the grass on the ground and the different position of a 

single leaf in different views due to possible presence of the wind. 

Figure 1 shows an example of the orthomosaic and original image 

ground truth. On the left, due to the geometric artifacts and the 

homogeneity with the background, it is impossible to identify the 

FD in the red bounding box.  

The main limitations of available datasets for this application, as 

underlined by Arsenovic et al., 2019 are related to images 
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subjects and scale. In literature, indeed, the datasets are 

composed of images acquired in the laboratory with uniform 

background and objects on a big scale (leaves scale). To 

overcome these limitations, this study proposes to use the original 

UAV imagery acquired in real conditions to take advantage of 

the full image resolution.  

A dataset of UAV original imagery for the FD diseased plant is 

prepared with images of the diseased plant acquired in real 

condition at the canopy scale.  

In this study, FD detection is addressed with an object detection 

network, i.e., Faster R-CNN (Ren et al., 2016), instead of a 

traditional pixel-wise classifier. Faster R-CNN is selected 

because of its capability to deal with objects of various sizes at 

multiple scales. Faster R-CNN is composed of two different 

modules: a deep convolutional neural network that proposes 

regions and a Fast-R-CNN module that uses the previous regions 

to predict bounding boxes and class labels.  

The class labels output needs to distinguish multiple objects in 

images. It becomes useless information, instead, for single object 

detection, because only one class has to be identified.  

The paper aims to compere Faster RCNN with a classification 

algorithm such as Random Forest and point out the main 

differences between the two strategies. 

 

 

Figure 1. On the left a patch of the orthomosaic and on the right 

an original oblique image of the same area 

2. METHODS 

A binary classification task is applied for testing the two different 

approaches: object detection and semantic segmentation. In both 

cases, two classes are considered: FD diseased plants and 

background. The background class includes all the other objects 

that it is possible to identify in the environment such as healthy 

grapevine, terrain, poles, buildings, and other species of 

vegetation. The dataset is built by collecting and annotating UAV 

original images. Then, the dataset is divided into a training and a 

test set. After that Faster R-CNN and Radom Forest 

hyperparameters are tuned. Finally, the algorithms are tested for 

addressing FD diseased detection. In this section, and Random 

Forest algorithm (2.1) and Faster RCNN architecture (2.2) are 

briefly described. Moreover, evaluation metrics for semantic 

segmentation and object detection are presented (2.3.1 and 

2.3.2.).  

 

2.1 Semantic Segmentation: Random Forest  

Random Forest (RF) algorithm combines multi-decision trees 

that operate as an ensemble trained with a bagging mechanism 

(Breiman, 2001). The bagging mechanism samples N random 

bootstraps of the training set with replacement. The higher 

number of trees makes the algorithms more accurate than a 

simple decision tree (Zhang and Ma, 2012). Random Forest is 

based on the binary recursive partitioning trees using individual 

variables. In the classification task, the typical criterion for node 

splitting is the GINI index (Q) (1):  

 

𝑄 = ∑ �̂�𝑘   �̂�𝑘′

𝑘

𝑘≠𝑘′

  (1) 

 

    

Where pk is the proportion of class k observations in the node as 

defined in (2):  

 

�̂�𝑘 =  
1

𝑛
 ∑ 𝐼(𝑦𝑖 = 𝑘)

𝑛

𝑖=1

 (2)  

  

The GINI index measures the “purity” of classification at a node.  

Large values of a GINI index represents an impure node. 

According to the splitting criteria, a candidate split creates two 

descendant nodes and the splitting is chosen to minimize the 

following (3):  

 
𝑄𝑠𝑝𝑙𝑖𝑡 =  𝑛𝐿𝑄𝐿 +  𝑛𝑅𝑄𝑅  (3) 

  

Where QL and QR are the two descendants and nL and nR are the 

sample size. The trees grow without pruning until the terminal 

node.  

 

2.2 Object detection: Faster R-CNN 

Faster R-CNN framework is a two-stage detector and is 

composed of three components: the backbone convolutional 

network (e.g. ResNET, AlexNET), a Region proposal Network 

(RPN), and Fast R-CNN detector (Ren et al., 2016). Figure 2 

shows a generic RPN-based architecture for generic object 

detection. 

The backbone is a feature extraction network, pretrained in 

standard practice. In the first stage, the RPN, a deep fully 

convolutional network, predicts object locations and scores at the 

same time. In the second stage, Fast R-CNN handles region 

detection.  

The input of the backbone is an image that is resized: the height 

is 600 pixels and the width is not exceeding 1024. The backbone 

output features (H × W) are smaller than the original image 

depending on the backbone stride. In Liu et al., 2019, the stride 

is 16.  

RPN has to identify the object and discard the background. Then, 

for each object, RPN has to learn the location and the estimated 

size. To achieve these goals, it uses the last layer of feature map 

extracted by the CNN backbone and for each location in the 

feature map initializes k reference boxes, called anchors. Anchors 

indicates possible objects in a defined location with different 

scales (area of the bounding box) and aspect ratio (H/W). The 

scale and the aspect ratio sets allow dealing with different shapes 

and scales of the detection window (Liu et al., 2019).  

 

 

Figure 2. The Region Proposal Network (RPN) architecture 

(adapted from Liu et al., 2019) 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1483-2020 | © Authors 2020. CC BY 4.0 License.

 
1484



 

The anchor box number k is defined considering the possible 

combinations of scales and aspect ratio (Figure 3). For a set of 3 

scales and 3 aspect ratio, 9 anchors box is used. 

 

 
 

Figure 3. Example of anchors on real case images on the left. 

On the right, anchor scales (1282, 2562, 5122) and aspect ratios 

(1:1- squared shape, 1:2- horizontal rectangular shape and 2:1- 

vertical rectangular shape) for the PASCAL challenge.  

 

Each anchor is mapped with an objectness score to a lower-

dimensional vector. The objectness score indicates the 

membership to a set of object classes (sobj) versus background 

(sb). The positive score is assigned according to two different 

conditions: (i) the highest Intersection-over-Union (IoU) overlap 

with a ground-truth or (ii) an IoU overlap higher than a threshold 

(in literature it is set to 0.7) with any ground-truth. The negative 

label is assigned to a non-positive anchor with an IoU less than a 

threshold (0.3). Moreover, it is possible that for a single ground-

truth box, positive labels are assigned to multiple anchors, thus A 

Non-Maximum Suppression algorithm (NMS) is applied to 

reduce the redundancy of the anchor. It uses the Intersection of 

Union (𝐼𝑜𝑈) between each proposal and the most likely proposal. 

The IoU values have to be greater than a threshold (0.7) to select 

the ROIs with the highest probability to contain an object.  

After defined the object proposal, a 3×3 convolutional layer with 

512 units is applied to return a 512-d feature map for every 

location. The output of this last step is fed into two sibling fully-

connected layers which are 1×1 convolution layer with 18 units 

for object classification and 1×1 convolution with 36 units for 

bounding box regression. The classification branch gives an 

output of size (H×W×18) and indicates, for each feature map 

point, the probability to contain an object within all k anchor 

boxes (confidence score). The regression branch gives and output 

of size (H×W×36) and indicates bounding box coordinates.  

The Faster-RCNN, as defined also for the Fast RCNN (Girshick, 

2015), loss function combines the losses of classification and 

bounding box regression as defined in (4):  

 

𝐿({𝑝𝑖}, {𝑡𝑖}) =  
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗)

𝑖

+ 𝜆
1

𝑁𝑏𝑜𝑥
∑ 𝑝𝑖

∗  𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗)

𝑖

 

(4)

 

 

where       

i = index of an anchor  

N_cls,  Greg  and 𝜆 the normalization terms and the 

weight respectively 

 

Lcls, as defined in (5), is the log loss function over two 

classes that are object and background in a binary case.  

 

𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗) =  − 𝑝𝑖

∗𝑙𝑜𝑔, 𝑝𝑖 − (1 − 𝑝𝑖
∗)(1 − 𝑙𝑜𝑔, 𝑝𝑖)  (5) 

 

where  pi  = predicted probability of anchor I being an object. 

pi
* = ground truth object label (1 for an object, 0 for not 

object) 

 

Lreg is defined as (6). The regression loss is activated 

only for positive anchors.  

 

𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) =  𝑅 (𝑡𝑖 − 𝑡𝑖

∗) (6) 

 

where  

ti = vector of 4 parametrized coordinates of the 

predicted   box  

ti
* = ground truth box coordinate 

R= robust loss function (smooth L1) 

 

2.3 Evaluation Metrics 

2.3.1 Segmentation  

 

To characterize the performance of semantic segmentation: out 

of bag score and testing accuracy have been selected. The out-of-

bag score (OOB) is computed as the number of a correctly 

predicted sample from the out of bag samples. The out-of-bag 

samples are excluded from training observations and they allow 

to estimate the generalization of the model (Zhang and Ma, 

2012). The accuracy measures the set of labels predicted for a 

sample that exactly match the corresponding set of ground truth 

labels. 

 

2.3.2 Object Detection  

 

Average precision (AP), recall, and Intersection-Over- Union are 

used as evaluation metrics for Faster RCNN. The Average 

Precision is defined as the mean precision at a set of eleven 

equally spaced recall levels [0,0.1,...,1] (7) (Everingham et al., 

2010) : 

 

AP =
1

11
 ∑ 𝑝𝑖𝑛𝑡𝑒𝑟𝑝

𝑟∈{0,0.1,…,1}

(𝑟) (7) 

   

where p is the precision at each recall level r, interpolated by 

taking the maximum precision measured as in (8):  

 

𝑝𝑖𝑛𝑡𝑒𝑟 = max 𝑝(𝑟)  (8) 

 
where p(r) is the measured precision at recall r. The case in which 

the bounding box sufficiently overlaps the ground truth is defined 

as true positives (TP). False Positive (FP) is the case in which the 

bounding box overlaps with the ground truth insufficiently. False 

negatives (FN) are the ground-truth that could not be detected. 

The IoU determines whether the proposed bounding box overlaps 

with the ground truth sufficiently and it is used to measure the 

accuracy of object detection. It is defined as (9)  (Liu et al., 2019):  

 

IOU =  
𝑎𝑟𝑒𝑎 (𝑏 ⋂ 𝑏𝑔)

𝑎𝑟𝑒𝑎 ( 𝑏 ⋃ 𝑏𝑔)
     (9) 

      

     

where  b = predicted Bounding Box b 

 bg = ground-truth 

 

The IOU must be greater than a fixed threshold, typically set at 

0.5 (50%). 
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3. CASE STUDY 

For our experimental analysis, a vineyard case study was selected 

in Baldichieri d'Asti (Piedmont, Italy). The vineyard, surrounded 

by a dense forest, is composed of two types of grape (Fresia and 

Barbera) and it covers two hectares of a hilly area (Figure 4). The 

presence of several types of grapes implies different responses to 

the FD, detected through the color transformation of the leaves 

from green to dark red (Figure 6). 

 

 

Figure 4. The case study area. On the left an overview of the 

position of the area. On the right, the map of the vineyard (in 

pink the Barbera grapes in brown the Fresia grapes) 

 

 

Figure 5. Example of FD diseased plants. The FD diseased parts 

are reddish. 

3.1 Data collection 

To build a consistent dataset, a measurement campaign was 

carried out in September 2019, a period in which the symptoms 

of the disease are more evident. During this campaign, four 

acquisitions with different platforms, sensors (Table 1), flight 

altitude (20 and 25 m), and patterns (nadir and oblique) were 

carried out (Table 2). The UAV was chosen according to the size 

of the study area, flight time, and expected output of the survey. 

Based on this, it was used DJI Phantom 4 Pro and the DJI Matrice 

210 v2. The flight height was determined and computed to obtain 

a centimeter resolution of the final model. Therefore, 522 images 

were acquired with a resolution of 4000×3000 pixels. To 

georeference the images, the coordinates of 16 plastic markers 

have been acquired using the Network Real-Time Kinematic 

(NRTK) Global Navigation Satellite System (GNSS) technique 

(Cina et al., 2015). The georeferencing procedure allows 

retrieving positions of the bounding boxes in a global reference 

system after the object detection procedure on the original 

images. Moreover, 20 well-distributed ground-truth points have 

been acquired adopting the same technique for an accurate and 

quick dataset sampling operation (Figure 6).  

 

Figure 6. Example of ground truth point monography. 

 

The NRTK survey was performed with a Trimble SP80 GNSS 

receiver, using the real-time correction of the permanent GNSS 

station in Canelli (AT). 

 

Camera RGB: FC330 DJI ZenMuse XT2 

Sensors 1/2.3” CMOS 1/1.7" CMOS 

Lens FOV 94° 20 mm FOV 57.12°× 42.44° 

Focal 

length 

8.8 mm 8 mm 

Pixel size 2.4 μm - 

Dimensions - 125.06 x 109.15 x 

90.98 mm 

 

Table 1. Sensors specifications.   

 

Imaging  

Sensors 

Flight Height (m) 

and schema 

GSD 

(cm/pix) 

N of 

images 

RGB: 

FC330  
20 nadir 0,70 584 

RGB: 

FC330 
20 oblique (45°) 1.40 322 

RGB: 

FC330 

25 nadir 255 255 

ZenMuse 

XT2 
25   nadir 0,65 255 

 

Table 2. Acquisition configurations.   

 

3.2 Grapevine orchard disease dataset and data annotation 

A subset of 200 images was extracted from several acquisitions 

with different UAV platforms as described in 3.1. Indeed, the 

diseased grapevine dataset is built with images with different 

scales, conditions of lighting, points of view, and with an 

inconsistent background (Figure 7).  

 

 

Figure 7. Example of original images obtained in different 

acquisition conditions.  
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In this way, we addressed the problem of insufficient training 

images enhancing, at the same time, the model generalization 

capability. Starting with the dataset of images, the images 

containing the FD diseased areas were split in overlapped tiles 

with a size of 1024x1024 pixels to avoid the resize that the Faster 

applies before the first step as described in section 2.2. Then all 

the images are manually annotated with bounding box and class. 

All images contain multiple diseased areas and all diseased areas 

are of the same size approximately. The annotation outputs were 

coordinates of bounding boxes of different sizes with their 

corresponding class. 

The annotation process is different for the two algorithms. For 

the Random Forest, two classes were selected: FD diseased areas 

(FD) and No diseased FD area (NFD). In our case, NFD has 

included all the possible classes that it is possible to define in this 

environment.   

However, for the Faster RCNN, only the FD diseased areas were 

annotated. The annotation operations were performed using 

LabelImage API open-source tool developed from MIT 

(Tzutalin, 2015). The labeling procedure was particularly 

difficult for the lack of shapes (the leaves shape is not evident at 

this scale). Thus the bounding boxes were digitized aiming at 

covering the small diseased areas in a precise way. It is evaluated 

also the possibility to define bigger bounding boxes, however, the 

presence of sparse green leaves does not allow to use it. Thus, 

4575 polygons were manually annotated and exported in 

TFRecord format. This is a format for storing a sequence of 

binary records and a requirement for reading data efficiently 

(TensorFlow, 2020) As shown in Figure 8, the background 

prevailing on the diseased area is making the problem more 

challenging. To increase the accuracy, the detection task is 

addressed with images in which objects cover the main part of 

the image.  

 

 

Figure 8. Data annotation examples for Random Forest. The 

blue boxes show the diseased areas of the vineyard, and pink 

boxes refer to the background. 

3.3 Disease detection 

After the data preparation, the images were randomly divided 

into a training set and test set as described in 3.2. For the Random 

Forest, 2360 polygons have been annotated and from them, 5000-

pixel samples are randomly selected from different images for the 

training and 2000-pixel samples for the testing. Furthermore, 

because of the imbalance between FD disease class and the 

background, a class balance rectification was made. For the 

Faster R-CNN, 3660 and 915 polygons are chosen for training 

and testing the model, respectively. Moreover, the training and 

the validation set are split assuring that the images were equally 

distributed through the different types of images (Figure 8). 

Random forest and Faster R-CNN have been trained and 

evaluated on the same set of images. The two algorithms were 

experimentally compared to support the possibility to use an 

object detection approach. This task was implemented in Python 

programing language with the sklearn library for Random Forest 

(Pedregosa et al., 2011) and Tensorflow object detection API 

(Huang et al., 2017). The tests were performed on an Ubuntu 

workstation (18.04.4 LTS distribution) with an Intel(R) Xeon(R) 

CPU E5-1650 v4@3.60GHz (12 CPU with 6 cores per socket) 

and an NVIDIA GP102 -TitanX with 12 GB memory.  

 
3.3.1 Random Forests: hyperparameter tuning and results 

 

For the RF algorithm, we tuned two hyperparameters: the number 

of estimators (trees) and the number of features. The number of 

estimators,  which is the maximum number of trees in the forest, 

was tuned according to the accuracy. For this application, the best 

fit is achieved with the number of estimators equal to 21. 

Moreover, the number of features to consider for the best split 

was set to all features, that in our case are three: Red, Green, Blue 

(RGB). According to a feature analysis importance, indeed, the 

RGB features are equally relevant. The RF test accuracy and the 

out-of-bag scores are 88% and 89%, respectively. The OOB 

score shows that even if the images with different scales, light 

conditions, the model achieved a promising level of 

generalization. From the qualitative point of view, as shown in 

Figure 9, the FD areas are well classified. Some false positive 

zone is located on the forest trees, that are characterized also by 

a red color. It is, however, possible that also the forest is affected 

by the disease.  

 

 
 

Figure 9. Semantic segmentation test result. On the left the 

original image, on the right the classified image. In the red box 

is underlined an FD diseased areas that are detected from RF. 

 

3.3.2 Faster R- CNN: hyperparameter tuning and results 

 

The experiments are performed based on the Faster R-CNN 

detector which employs as backbone ResNet-50 and ResNet-101. 

The model is pre-trained on ImageNet classification weight and 

fine-tuned on the FD dataset. The use of a pre-trained model, in 

this case, was necessary to reduce the computational time. In all 

the experiments, we trained both the RPN and Fast R-CNN 

branch. For the training optimization, the momentum was set to 

0.89 and the learning rate was set to 0.001 according to the 

literature. Moreover, a maximum number of proposals per class 

(FD class) was decreased from 300 to 100 according to the 

number of bounding boxes annotated per images, which in the 

best case is 100 on average. For tuning the hyperparameters, 4 

tests were performed as summarized in  

Table 3. 

The main tuned hyperparameters were: the anchor box scales and 

ratios, the IoU, and the number of training steps. These 

parameters were set according to the following considerations.  

 

• Anchor boxes scale and ratio: two groups of parameters 

were used. The first has three scales [1282,2562,5122] 

and three ratios: [0.5,1,2] and the second has four 

scales [0.252, 0.52, 12, 22] and three ratios [0.5,1,2]. The 
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first set was the starting point following the literature 

as described in 2.2. However, the second group was 

tuned according to the areas of the annotated bounding 

box in this application case study. Since the diseased 

plants/leaves could be classified as a small object due 

to the small scale, their areas are been estimated 

(between102 pixels and 502 pixels). The ratios instead 

have been maintained with the same value, because in 

the annotation shapes are still with the same ratios. 

 

• IoU was set at 0.7 and 0.5. The intersection over Union 

was decreased compared with the literature, to increase 

the possibility to detect more objects. Indeed, with an 

IoU equal to 0.7 the half number of boxes was 

discarded.  

 

• The training steps number was selected according to 

the loss function of the training dataset and the 

validation accuracy.  

 
 Test Anchor box 

(scale and 

ratios) 

IoU N of 

steps 

AP@IoU50 

Faster 

RCNN

-
ResNet

-50 

1 [1282,2562,5122

] 

[0.5, 1, 2] 

0.7 60K 20% 

2  [0.252, 0.52, 12, 

22] 

 [0.5,1,2] 

0.5 

 

80K 65% 

Faster 

RCNN
- 

ResNet
-101 

3 [1282,2562,5122

] 
[0.5, 1, 2] 

0.7 60K 40% 

4  [0.252, 0.52, 12, 
22] 

ratio: [0.5,1,2] 

0.5 80K 82% 

 

Table 3. Test configurations. IoU stands for Intersection over 

Union and AP@50 is Average precision at 50% of Intersection 

over Union. 

 

As Table 3 shows, the average precision for both tested 

architectures (Faster RCNN_ResNet 50 and Faster 

RCNN_ResNet 101) increases with smaller anchor boxes, 

because the area of the proposal and the ground truth is almost 

the same and the model is capable to learn the real size of objects. 

The number of detected instances and the associated confidence 

score increases with the accuracy percentage rising. In Figure 10, 

some visual test results are shown for Faster RCNN_ResNet 101. 

It is possible to notice that the confidence scores of the detected 

instances in most of the cases are greater than 80% for tests 2 and 

4. The model achieved also a great generalization because it can 

find instances in all types of original images.  

An analysis of the computing time shows that the Faster 

RCNN_ResNet 50 takes less time for the training compared to 

the Faster RCNN_ResNet 101. Indeed, the Faster RCNN_ResNet 

50 trains with a speed of 0.3 sec/step, instead of 0.45 sec/step of 

the Faster RCNN_ResNet 10.  

 

 

 

 

 

 

Figure 10. Object detection test results with the Faster 

RCNN_ResNet 101 architecture (test 4) on different types of 

images. In black, the reference data and in green the bounding 

box detected and the confidence score.  

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1483-2020 | © Authors 2020. CC BY 4.0 License.

 
1488



 

4. DISCUSSION 

Since all the results related to the RF and Faster R CNN have 

been explained in the previous section, the focus of the discussion 

is the comparison between the two applied approaches: semantic 

segmentation and object detection approach. First, the two 

approaches present a different annotation process. For the RF, in 

a binary classification, all the possible classes in the image have 

to be annotated. For this reason, FD diseased area and all the 

other classes (buildings, trees, people, and streets) in the image 

were annotated. Instead, for the Faster- RCNN, only the FD 

diseased class was labeled. More effort has to be applied in the 

annotation process for the RF. 

Moreover, as it has been underlined, regarding the achieved 

results, both algorithms show a good generalization of the model, 

despite the challenging task. The task can be considered difficult 

for three main reasons: the various nature of the dataset (images 

with different illumination conditions, scales, and prospectives), 

the sizes of the FD area at canopy scale,  and the presence of 

similarity between plants and background.  

Figure 9 and Figure 10 display the great difference between the 

two approaches: the semantic segmentation classified the whole 

images in FD class and background, instead the object detection 

localizes the diseased spots. Since the disease is localized in 

precise spots and on the plants, in most common cases, object 

detection can fit better to the task of avoiding the classification 

of useless classes.  

 

5. CONCLUSION 

In this paper, an approach to object detection for FD disease 

detection using UAV original images was tested. To address this 

purpose, UAV images have been collected during the most 

critical period for FD and fully annotated, because there is none 

ready-to-use dataset to face this specific task. To manage the FD 

detection in quasi-real-time at different scales, the Faster RCNN 

architecture was selected, because it is considered the trade-off 

between speed and accuracy in the categories of high-speed 

detection algorithms. The main challenges of this work were the 

hyperparameter tuning for the detection of small size objects and 

the mixture of provided images. Even if the image resolution in 

this application was 1 cm/ pixel in the worst case, the FD areas 

were still small compared to the prevalence of the background 

and it is not possible to identify the fixed shape (leaves or plant 

shape) at canopy scale. A large number of these architecture 

applications aim to detect objects with a shape such as people and 

building, etc. In this study case, only the radiometric information 

is used as features (reddish color of the leaves).  

This experimental analysis demonstrates the feasibility of using 

this model for the proposed goal with an average precision value 

of 82%. 

As future work, we plan to use multispectral and hyperspectral 

images. The use of spectral information could help both for better 

distinguishing diseased areas and background and identifying 

different stages of FD disease.  
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