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Sensorless Synchronous Reluctance Motor Drives:
Auxiliary Flux based Position Observer

Anantaram varatharajan, Gianmario Pellegrino, Senior Member, IEEE, and Eric Armando, Senior Member, IEEE,

Abstract—The concept of auxiliary flux vector is defined
for the nonlinear magnetic model of a synchronous reluctance
(SyR) machine. An auxiliary flux based position observer is
developed to circumvent the stability problems of other schemes,
notably active flux position observer, without compromising on
the simplicity. Stability analysis and sensitivity to parameter
errors are presented. The proposed observer is augmented with
high-frequency signal injection based position estimation for
sustained operation at low speeds region. Proposed technique is
experimentally validated on a 1.1 kW SyR machine test bench.

Index Terms—Synchronous reluctance machine, sensorless
control, auxiliary flux vector, stability.

I. INTRODUCTION

Control of synchronous machines without a position trans-
ducer finds importance in industrial applications and, more
recently, in automotive sector for cost reduction and relia-
bility. Many low speed sensorless control techniques rely on
high-frequency excitation approach to exploit the differential
saliency for position estimation. This comprises of schemes
based on: i) continuous excitation using periodic signal in-
jection [1], [2] and ii) discontinuous excitation schemes [3]–
[5]. Continuous excitation schemes based on the square-
wave voltage injection at half the switching frequency is
shown to benefit from simpler demodulation stage and higher
bandwidth capabilities in [6]–[8]; this is used in the present
work. The high-frequency excitation approach is accompanied
with acoustic noise and reduced available voltage for torque
production. Hence, at medium to high speed region, it is
relegated in the favor of fundamental wave excitation approach
for its general better performance [9]–[11].

An active flux based observer is a state of art technique
reported in literature [12], [13] where the position error signal
is derived from the discrepancy between the observed and
the current model along the q-axis. However, it suffers from
instability at braking and at high speeds motoring regions
as demonstrated in [14], [15]. To circumvent instability, [14]
proposed a flux observer with adaptive gain in dq rotor
reference frame, to decouple the dynamics of flux and position
observers. The additional degree of freedom is exploited
to impose a constant damping of the flux observer poles.
Alternatively, an adaptive projection vector for position error
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estimation (APP) scheme was developed in [15] where the
instability was addressed by designing an operating point
dependent APP vector. Beyond APP, this paper proposes a
new observer scheme using a different projection vector, still
retaining the simplicity and ease of computation of previous
schemes and using the same mathematical foundation of error
projection vectors introduced in [14] and further developed in
[15] [16].

The concept of auxiliary flux vector is defined and used for
designing the new projection vector and thus the new sensor-
less control system. Being based on the fundamental back-emf
or flux linkage waves, the proposed observer is supplemented
with a high-frequency excitation scheme for operation in the
low speeds region. The paper employs a square wave voltage
injection scheme for control under sustained load torque at
standstill and very low speed. The transition between the two
models is also addressed in the paper.

The notation and symbols are introduced in Section II. The
main features of the paper are enumerated as follows:

1) The concept of auxiliary flux vector for a SyR machine
is defined in Section II for a nonlinear magnetic model.

2) A position observer based on the auxiliary flux vector
is designed in Section III.

3) Stability analysis is presented to analytically evaluate the
feasibility of control at all operating regions.

4) The sensitivity to parameter errors in flux map is ad-
dressed and the resulting steady-state position error is
evaluated.

5) Section IV describes a high-frequency square voltage
injection with flux demodulation scheme for position es-
timation at low speeds region. A linear speed-dependent
fusion ensures smooth transition.

Section V presents the experimental validation of the pro-
posed sensorless technique on a 1.1 kW SyR machine test
bench and Section VI concludes the paper.

II. SENSORLESS CONTROL SYSTEM

The electrical rotor position is θ and the electrical angular
speed is ω = s θ where s is the differential operation d

dt .
Estimated vectors are represented by the superscript .̂ The
orthogonal rotational matrix is J = [ 0 −1

1 0 ] and I is the identity
matrix.

Real space vectors will be used; for example, the stator
current is id̂q = [id̂, iq̂]

T where id̂ and iq̂ are the vector
components in estimated rotor reference frame. Space vectors
in the stationary reference frame are denoted by subscript αβ.
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A. Mathematical Model of a SyR Machine

The machine model is expressed in coordinates of estimated
rotor reference frame, denoted by subscript d̂q, whose d-axis
is at θ̂ = θ − θ̃, where θ̃ is the position error. The voltage
equation of a SyR machine is given by

sλd̂q = vd̂q −Rsid̂q − ω̂ Jλd̂q (1)

where Rs is the stator resistance and λd̂q is the stator flux
linkage. The stator flux linkage and its time-derivative are
expressed as

λd̂q = eJθ̃ L e−Jθ̃ id̂q (2a)

sλd̂q = eJθ̃ L∂ e−Jθ̃ s id̂q (2b)

where s θ̃ = 0 is assumed. The incremental and apparent
inductance matrices are denoted by

L∂(idq) =

[
ld ldq
ldq lq

]
L(idq) =

[
Ld 0
0 Lq

]
(3)

where ld, lq represents the incremental inductance along direct
d and quadrature q axis, respectively, while ldq is the cross-
saturation term. Apparent inductances are defined likewise. All
quantities are functions of idq . The electromagnetic torque is
given by

T =
3p

2
iT
d̂q

Jλd̂q (4)

where p is the number of pole pairs.

B. Auxiliary Flux Vector Definition

A key assumption is that the flux linkage estimate from
back-emf integration, called voltage model flux estimate,
equals the actual flux linkage vector. This is true for those
angular frequencies that make the resistance voltage and
inverter voltage error negligible, or wherever those voltage
components are exactly compensated. Therefore, the voltage
model flux estimate will have no dedicated notation and will
be indicated as the actual flux linkage.

In generic terms, all fundamental excitation schemes rely
on the discrepancy between voltage and current model flux
linkage for position estimation.

Fig. 1. Flux map of the 1.1 kW SyR motor under test. Experimentally
identified with constant speed test reported in [17].

Let λi
d̂q

(id̂q) = Li(id̂q) · id̂q denote the current model flux
linkage based on the flux map lookup tables (LUTs), shown in
Fig. 1, where Li is the current model inductance matrix. Then,
the discrepancy between the two models can be expressed in
the estimated reference frame as

λd̂q − λ
i
d̂q

= eJθ̃ L(idq) · e−Jθ̃ id̂q −L
i(id̂q) · id̂q. (5)

Accurate flux map LUTs is assumed, i.e., λdq(idq) =
λidq(idq). Then, the stator flux linkage (voltage model) in
estimated rotor reference can be represented as

λd̂q(id̂q) = eJθ̃ λidq(idq)

=⇒ λd̂q(id̂q) = eJθ̃ λidq(e
−Jθ̃id̂q). (6)

The SyR machine exhibits strong nonlinear magnetic char-
acteristics due to both saturation and cross-saturation phe-
nomenon. Hence, linearizing the term λidq(e

−Jθ̃id̂q) in (6)
around an operating point, marked by a subscript 0, gives

λidq(e
−Jθ̃id̂q) = λidq(id̂q0 − θ̃ J id̂q0) = λi

d̂q0
−

dλi
d̂q

did̂q
θ̃ J id̂q0

=⇒ λidq(e
−Jθ̃id̂q) = (Li − θ̃L∂ J) id̂q0. (7)

In the above derivation, the first order approximation holds
for small position error, i.e., a constant incremental inductance
in the vicinity of the present operating point. From (2a) and
(6), the inductance model accounting position error (IMAP) is
derived as

L = Li + θ̃ (Li −L∂) J. (8)

The IMAP was introduced as improved inductance model in
[15]. Linearizing (5) gives

λd̂q(id̂q)− λ
i
d̂q

(id̂q) = θ̃λa
d̂q0

(9)

where the auxiliary flux vector λa
d̂q0

for nonlinear magnetic
model is defined as

λa
d̂q0

= (JLi−L∂ J) id̂q0 =

[
(ld − Liq) iq̂0 − ldq id̂0

(Lid − lq) id̂0 + ldq iq̂0

]
. (10)

The concept of the auxiliary flux vector was introduced in
a projection vector framework in [14].

C. Conventional Inductance Model

In literature, it is common to assume the current model
inductance to be equal to the real inductance, i.e.,

L(idq) = Li(id̂q). (11)

In the following text, (11) will be referred to as inductance
model not accounting position error (INAP). Note that INAP
is, however, valid only for linear magnetic machines without
saturation.

Despite the SyR machine exhibiting nonlinearity, if the

INAP is used in (5), the auxiliary flux vector λ̂
a′

d̂q0 becomes

λa
′

d̂q0
= (JL−L J) id̂q0 = (Ld − Lq)

[
iq̂0
id̂0

]
. (12)
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Fig. 2. Hybrid flux observer in stator reference frame with the proposed differential-mode flux based position observer augmented with high-frequency
injection for low speeds region. Also shown are the linear speed-dependent fusion mechanism and PLL.

D. Hybrid Flux Observer

The flux observer is defined in the stationary reference
frame as

sλ̂αβ = vαβ −Rsiαβ +G
(

eJθ̂ λi
d̂q
− λ̂αβ

)
(13)

where G = g I is a 2 × 2 gain matrix. The gain g dictates
the dominance of current model on flux observer. The term
hybrid indicates that for electrical speeds below g rad/s, the
current model flux linkage λi

d̂q
prevails while voltage model

flux linkage λd̂q for speeds above.
In estimated rotor reference frame, the flux observer in (13)

transforms to

s λ̂d̂q = vd̂q −Rsid̂q − ω̂J λ̂d̂q +G
(
λi
d̂q
− λ̂d̂q

)
. (14)

To aid in further analysis, the nonlinear flux estimation error
dynamics [15] is derived from (1) and (14) as

s λ̃d̂q = −(G+ ωJ) λ̃d̂q +G (λd̂q − λ
i
d̂q

) (15)

where λ̃d̂q = λd̂q−λ̂d̂q is the flux estimation error. Using (10),
the flux estimation error dynamics is expressed as a function
of position error and auxiliary flux linkage vector as

λ̃d̂q = (sI +G+ ω0J)
−1
Gλa

d̂q0
θ̃. (16)

III. FUNDAMENTAL FREQUENCY EXCITATION - HIGH
SPEED MODEL

Let εθ denote the position error signal of high speed model
from the back-emf based fundamental excitation approach.
The block diagram of flux and position observer is shown
in Fig. 2.

A. Active Flux Position Observer

An active flux based position observer is a state of art
sensorless technique that is known for its simplicity and ease
of implementation. The active flux is defined under position
error as

λaf
d̂q

= λd̂q − L
i
q id̂q =

[
(Lid − Liq) id̂

0

]
+ λa

d̂q0
θ̃ (17)

where the q-axis component of active flux is proportional to
position error. In practice, the position error signal is designed
from the observed active flux in HFO as

εθ =
1

2Li∆ id̂

[
0
1

]T

(λ̂d̂q − λ
i
d̂q

) (18)

where Li∆ =
Li

d−L
i
q

2 . This error function is sensitive to the flux
observer gain g and has been shown to suffer from instability
at braking and high speed motoring regions in [14], [15].

Note that the active flux position error signal is derived
only to provide a quantitative comparison with the proposed
auxiliary flux position error signal in terms of simplicity and
computational load.

B. Auxiliary Flux Position Observer

It is desired to alleviate the aforementioned instability and
yet retain the simplicity of active flux observer. To this end,
it can be inferred from (9) that the position error is along the
auxiliary flux vector and not along q-axis. Hence, it is intuitive
to design an error function of nature

εθ =
1

|λa
d̂q0
|2
(
λa
d̂q0

)T
(λ̂d̂q − λ

i
d̂q

). (19)

The proposed error function (19) is similar in structure to (18)
while maximizing the amplitude of position error information.
It is to be noted that the proposed error function differs from
the APP position observer in [15] in that (19) is independent
of the operating speed and the flux observer gain G.

C. Speed and Position Observer

A conventional phase lock loop (PLL) with a proportional-
integral (PI) controller is employed to drive the position error
signal εθ to zero as

ω̂ = kp εθ +

∫
ki εθ dt θ̂ =

∫
ω̂ dt (20)

where kp and ki are the respective gains. The gains of the PLL
are tuned for a critically damped response considering ε = θ̃
by placing the two poles at s = −Ωω:

kp = 2 Ωω ki = Ω2
ω. (21)
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Fig. 3. Locus of poles of position observer for |ω| = 0.. . . 2 p.u. The circle,
diamond and square represents the speeds 0. p.u, 1 p.u and 2 p.u respectively.
The poles of PLL are in blue and flux observer in red. Parameters: g = 2π ·10
rad/s and the gains of PLL are tuned according to (21) with Ωω = 2π · 25
rad/s.

For the PLL of structure (20), the closed loop transfer function
is given by

θ̂(s)

θ(s)
=

(skp + ki)K(s)

s2 + (skp + ki)K(s)
(22)

where K(s) = εθ/θ̃. Note that the position error signal is
supplemented with high-frequency model at low speeds as
described in section IV.

D. Stability Analysis of Proposed Observer

The stability is studied by analyzing the dynamics of closed
loop transfer function of the position observer. Using (9), the
linearized form of the error signal (19) becomes

εθ =
1

|λa
d̂q0
|2
(
λa
d̂q0

)T (
λa
d̂q0

θ̃ − λ̃d̂q
)
. (23)

It follows from the flux estimation error dynamics (16) that the
transfer function between the position error signal and position
error is

K(s) =
εθ

θ̃
=

(
λa
d̂q0

)T

|λa
d̂q0
|2

(s I +G+ ω0J)−1 (s I + ω0J)λa
d̂q0

(24)
With G = gI and simplifying,

K(s) =
s2 + s g + ω2

0

(s+ g)
2

+ ω2
0

. (25)

The transfer function K is observed to be independent of
the operating point id̂q and the direction of rotation.

Using (25) in (22), the locus of poles of the closed loop
transfer function is traced in Fig. 3 for electrical speeds from
zero to twice rated. The poles are confined to the second
quadrant at all operating points and thus, ensuring stability.

Fig. 4. The steady-state position error θ̃0 in degrees (electrical) for +15%
error in d-axis flux map, λ̂i

d̂
= 0.85λd̂, at different electrical speeds: (a)

ω = 2π · 15 rad/s; (b) ω = 2π · 50 rad/s. In red is the MTPA trajectory.

Fig. 5. The steady-state position error θ̃0 in degrees (electrical) for +15%
error in q-axis flux map, λ̂iq̂ = 0.85λq̂ , at different electrical speeds: (a)
ω = 2π · 15 rad/s; (b) ω = 2π · 50 rad/s. In red is the MTPA trajectory.

E. Sensitivity to Parameters Errors

Let the parameter error in the current model flux linkage
and the inductance be denoted by λ̃

i

d̂q = λi
d̂q
− λ̂

i

d̂q and L̃ =

Li − L̂
i
, respectively. Then, it follows from (8) and (9) that

λd̂q(id̂q)− λ̂
i

d̂q(id̂q) = θ̃ λ̂
a

d̂q0 + λ̃
i

d̂q (26)

where the auxiliary flux vector is λ̂
a

d̂q0 = (J L̂
i
− L∂ J) id̂q0.

Inculcating the parameter error, the position error function
becomes

εθ =

(
λ̂
a

d̂q0

)T

|λ̂
a

d̂q0|
2 (s I +G+ ω0J)−1 (s I + ω0J) (λ̂

a

d̂q0 θ̃ + λ̃
i

d̂q).

(27)
The steady-state position error can be computed by equating
the error signal (27) to zero in steady-state, εθ

∣∣
s=0

= 0, as

θ̃0 = −

(
λ̂
a

d̂q0

)T

ω0|λ̂
a

d̂q0|
2 (ω0I + g J) λ̃

i

d̂q. (28)

Fig. 4(a) and 4(b) shows the contour plots of steady-state
position error for +15% error in d-axis, λ̂i

d̂
= 0.85λd̂, at

the electrical speeds ω = 2π · 15 rad/s and ω = 2π · 50
rad/s, respectively. It can be discerned that the sensitivity to
parameter error is high at lower speeds with position error of
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Fig. 6. The steady-state value of K in (31) for error function along auxiliary
flux vector based on the INAP at ω = 2π · 10 rad/s: (a) g = 2π · 5 rad/s; (b)
g = 2π · 10 rad/s. In red is the MTPA trajectory.

≈ −12◦ along the MTPA trajectory. Fig. 5 reports the similar
test for +15% error in q-axis, λ̂iq̂ = 0.85λq̂; the maximum
position error is ≈ −3◦. It is observed to be less sensitive
than d-axis due to the smaller absolute error (L̃q < L̃d).

As the low speed position estimation deteriorates under pa-
rameter error and is potentially unstable, it is recommended to
switch to the high-frequency excitation schemes for operations
at very low speeds.

F. Shortcomings of INAP-based Auxiliary Flux Observer

The position error function in (19) is constructed using the
auxiliary flux vector with IMAP (10). If INAP is used instead,
the error function defined along the auxiliary flux vector in
(12) is

εθ =
1

|λa′
d̂q0
|2
(
λa

′

d̂q0

)T
(λ̂d̂q − λ

i
d̂q

). (29)

It can be shown that the error function of the INAP-based aux-
iliary flux observer is equivalent to the fundamental saliency
technique proposed in [18]. The transfer function between the
position error signal and position error is expressed in terms
of the two auxiliary flux vectors, with IMAP λa

d̂q0
and with

INAP λa
′

d̂q0
, as

K(s) =

(
λa

′

d̂q0

)T

|λa′
d̂q0
|2

(s I +G+ ω0J)−1 (s I + ω0J)λa
d̂q0
. (30)

The steady-state value of K attests to the amplitude of position
error signal, given by

K
∣∣
s=0

=
ω2

0

g2 + ω2
0

[(
λa

′

d̂q0

)T
λa
d̂q0

|λa′
d̂q0
|2

+
g

ω0

(
λa

′

d̂q0

)T
Jλa

d̂q0

|λa′
d̂q0
|2

]
.

(31)
It is worth reminding that, unlike (25), the transfer function

(31) does depend on the operating point id̂q . In this sense,
equation (31) is also a metric of the shortcomings of using
INAP-based auxiliary flux vector.

Fig. 6 shows the contour plot of (31) at electrical speed of
ω = 2π · 10 rad/s in motoring operation for two different

values of flux observer gain g. It is discerned that the am-
plitude of position error signal deteriorates at high load and
with increasing g, revealing critical regions for stability. This
highlights the susceptibility of INAP and the significance of
IMAP.

IV. HIGH FREQUENCY EXCITATION - LOW SPEED MODEL

Let εh denote the position error signal of the low speed
model from high-frequency excitation approach. The com-
ponents of high-frequency injected signal in estimated rotor
reference frame are denoted by subscript d̂qh. For a pulsating
voltage injection of magnitude vh and frequency ωh along d̂
axis, the high-frequency flux is given by

vd̂qh = vh

[
cos(ωht)

0

]
=⇒ λd̂qh =

vh
ωh

[
sin(ωht)

0

]
. (32)

A. Current Demodulation

In the current demodulation scheme, the error signal εh is
proportional to the high-frequency current in q-axis, iq̂h. It
follows from (2b) that

id̂qh = eJθ̃ L−1
∂ e−Jθ̃ λd̂qh (33a)

=⇒ iq̂h =
−l∆ sin(2θ̃)− ldq cos(2θ̃)

ldlq − l2dq
vh sin(ωht)

ωh
(33b)

where l∆ =
ld−lq

2 .
The position error signal is obtained by demodulating (33b)

with a heterodyne process. It results in a steady-state position
error due to the cross-saturation phenomenon [13], given by

θ̃0 = −1

2
tan−1 ldq

l∆
. (34)

B. Flux Demodulation

The demodulation of q-axis high-frequency flux, instead of
current, is shown to alleviate the cross-saturation effects [13].
Assuming accurate incremental inductance, the high-frequency
current model flux linkage is given by

λi
d̂qh

= L∂ eJθ̃ L−1
∂ e−Jθ̃ λd̂qh. (35)

Linearizing for small position error,

λiq̂h = 2θ̃
−lq l∆ + l2dq
ldlq − l2dq

vh sin(ωht)
ωh

. (36)

Through the heterodyne process with a low pass filter (LPF),
the error signal is obtained as

εh =
ωh(ldlq − l2dq)
vh(−lq l∆ + l2dq)

LPF
[
λiq̂h · sin(ωht)

]
. (37)
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Fig. 7. Experimental Setup of 1.1 kW SyR motor under test on a dspace
DS1103 control platform at a sampling frequency of 5 kHz.

TABLE I
MOTOR PARAMETERS

Parameters Symbol Values Units

Rated power Pn 1.1 kW
Rated voltage Vn 340 V
Rated speed ωn 1500 rpm
Rated current In 2.3 A
Rated torque Tn 7.1 Nm
Pole pairs p 2 -
Stator resistance Rs 6.8 Ω
Shaft inertia J 0.04 kgm2

C. Square Wave Voltage Injection
The low pass filter in the demodulation stage (37) hinders

the maximum achievable bandwidth of the position observer.
This is circumvented with a square wave voltage injection at
half the switching frequency [8] as

vk
d̂h

= vh cos(πk) =

{
+vh, if k == 2n

−vh, if k == 2n+ 1
(38)

where n is an integer and the superscript k denotes the discrete
domain representation of kth sampling instant.

Let ∆ symbolize the operation ∆xk = xk − xk−1. Then,
the error signal in (37) simplifies to

εh = κ∆λiq̂h κ =
ldlq − l2dq

(−lq l∆ + l2dq) vh cos(πk)Ts
(39)

where Ts is the sampling time.
At very high loads, the incremental inductance of the d-

axis diminishes due to the magnetic saturation, as is evident
from Fig. 1. Consequently, the incremental saliency becomes
weak, threatening the stability of the position observer. Thus,
the over-load operations are not recommended at low speeds.

D. Fusion Structure
The position observer is designed to transition from low to

high speed model at the cross-over frequency g, akin to the
flux observer. To refrain from sharp discontinuous transition
and chattering, the two position models are fused together with
a linear speed-dependent fusion coefficient fω as

ε = fω · εθ +
(
1− fω

)
· ε0. (40)

The speed dependency of fusion coefficient is defined as

fω =


0, if |ω̂| < g − ωg
1, if |ω̂| > g + ωg
g+ωg−|ω̂|

2ωg
, otherwise

(41)

Fig. 8. Test for dynamic stiffness with rated load torque step at standstill:
(a) TL = 0→ 7.1 Nm at t = 0 s; (b) TL = +7.1→ −7.1 Nm at t = 0 s

where ωg signifies the span of transition on either sides of
cross-over frequency g. Thus, fusion structure is designed for
a smooth transition over the speed span g − ωg to g + ωg .

V. EXPERIMENTAL RESULTS

The proposed sensorless scheme is validated experimentally
on a 1.1 kW SyR motor on a dspace DS1103 control platform
running at a sampling frequency of 5 kHz. A picture of the
setup is shown in Fig. 7. The parameters of the SyR motor
under test are tabulated in Table I. The SyR machine is
sensorless speed controlled while the load torque is imposed
by an auxiliary drive.

The PLL gains are tuned for Ωω = 2π · 25 rad/s. The flux
observer gain is g = 2π ·10 rad/s. The span of fusion window
is ωg = 2π·2 rad/s. The speed PI controller is tuned for critical
damping at s = −2π · 1 rad/s. A minimum current imind = 1
A is imposed for ensuring saturation of ribs at low speeds and
minimum fundamental excitation at high speeds.

The motor parameters reside in the flux map LUTs from
where the apparent and incremental inductance matrices are
retrieved point by point in real-time; as an example:

l̂d(idq) =
Λ̂d(id + δid, iq)− Λ̂d(id, iq)

δid
(42)

where δid is a small value (≈ 10 mA). The other inductances
are computed in a similar fashion.

A. Dynamic Stiffness

The test for dynamic stiffness of the low speed model is
performed at standstill with a rated step in load torque in
Fig. 8(a) and a rated reversal in load torque in Fig. 8(b). In
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Fig. 9. Test for dynamic stiffness with rated load torque step at rated speed
ω = 2π·50 rad/s: (a) TL = 0→ 7.1 Nm at t = 0 s; (b) TL = +7.1→ −7.1
Nm at t = 0 s

either case, the position error is observed to be negligible and
the speed sag to be around 100 rpm for step torque and 200
rpm for torque reversal test.

Similarly, the test for dynamic stiffness of the high speed
model is performed at rated speed in Fig. 9. The position error
is observed to be negligible and speed sag to be similar to the
former standstill test.

To demonstrate faster dynamic performance, a rated torque
reversal is imposed at half-rated speed with the poles of speed
PI controller at s = −2π · 1 rad/s and s = −2π · 3 rad/s in
Fig. 10(a) and 10(b), respectively. A 50% reduction in speed
sag is observed from 200 rpm to 100 rpm. As expected,
the trade-off is the increase in high-frequency noise that can
discerned in the estimated torque.

B. Fusion Evaluation

The competence of fusion is evaluation with a test for
dynamic stiffness at the mid-fusion speed, ω = g = 2π · 10
rad/s, with rated torque step and rated torque reversal in
Fig. 11(a) and 11(b), respectively. Also shown is the fusion
coefficient fω to illustrate the relative dominance of the two
models. The position error is observed to be negligible and
the speed sag is similar to former tests at other speeds.

To further demonstrate the smooth transition, an accelerat-
ing and decelerating slow speed ramp reference is imposed
at half rated torque in Fig. 12(a) and 12(b), respectively. It
can be observed that the noise in position error diminished
as the control transitions towards the high speed model. No
discontinuity is discerned.

Fig. 10. Comparative torque step test with speed controller tuned for critical
damping at: (a) s = −2π · 1 rad/s; (b) s = −2π·3 rad/s. Rated load torque
reversal TL = −7.1 → +7.1 Nm at t = 0 s and speed ω = 2π · 25 rad/s
(0.5 p.u).

C. Transient Performance

The transient performance is evaluated with an accelerating
and decelerating speed ramp reference, rate limited at 5000
rpm/s, at no load in Fig. 13(a) and 13(b), respectively. A 50%
overload in torque is permitted. It can be observed that the
position error during transients is |θ̃0| < 5◦.

D. Sensitivity to Parameter Errors

The sensitivity to d-axis flux map error is evaluated at rated
load torque by imposing an incremental error from +15%
(λ̂i
d̂

= 0.85λd̂) to -15% (λ̂i
d̂

= 1.15λd̂) in steps of 5%
increment every 0.5 s at two different speeds. The maximum
position error at ω = 2π · 15 rad/s in Fig. 14(a) is ≈ 11◦ and
at ω = 2π · 40 rad/s in Fig. 14(b) is ≈ 7◦. The experimental
result corroborates with the estimation of steady-state position
error in Fig. 4.

In a similar fashion, the sensitivity to q-axis flux map is
evaluated at rated load torque by imposing an incremental error
from +15% (λ̂iq̂ = 0.85λq̂) to -15% (λ̂iq̂ = 1.15λq̂) in steps of
5% increment at two different speeds. The maximum position
error at either speeds in Fig. 15 is ≈ 3◦. The experimental
result corroborates with the estimation of steady-state position
error in Fig. 5.

E. Significance of IMAP-based Modeling

To demonstrate the significance of IMAP, a speed ramp
reference test at half rated torque under 10% error in d-axis
flux map is performed with the error function built with INAP
(29) in Fig. 16(a) and with IMAP (19) in Fig. 16(b). Due
to the poor amplitude of position error signal (see Fig. 31),
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Fig. 11. Load torque step test at mid-fusion speed ω = 2π · 10 rad/s (0.2
p.u): (a) TL = 0 → 7.1 Nm at t = 0 s; (b) TL = +7.1 → −7.1 Nm at
t = 0 s

Fig. 12. A slow ramp speed reference to illustrate the smooth fusion between
the two models at TL = 3.5 Nm (0.5 p.u).

the sensitivity to parameter error deteriorates to the point of
instability as seen in Fig. 16(a). On the other hand, the error
function with IMAP is more resilient and does not succumb
to instability.

Fig. 13. Transient performance evaluation with speed ramp reference rate
limited at 5000 rpm/s: (a) ω∗ = 0 → 1500 rpm at t = 0 s; (b) ω∗ =
1500→ 0 rpm at t = 0 s. A 50% overload in torque is permitted.

VI. CONCLUSION

The concept of auxiliary flux vector is define and developed
for nonlinear magnetic model. An auxiliary flux based position
observer is developed in this paper to alleviate the stability
problems in active flux position observer while retaining
its simplicity and the ease of implementation. Furthermore,
this paper illustrates the importance of nonlinear magnetic
modeling of IMAP in designing a stable control system. The
conventional INAP is shown to be unstable. A stability anal-
ysis with combined dynamics of flux and position observer is
presented. In addition, the sensitivity of the proposed scheme
to parameter error is addressed.

The proposed auxiliary flux position observer is supple-
mented with square wave voltage injection for low speeds
region. A flux demodulation is performed to overcome the
cross-saturation error. A speed-dependent linear fusion mech-
anism is designed for smooth transition between the two
models. Finally, the transient and steady-state performance
of the proposed sensorless control system is experimentally
validated on a 1.1 kW test bench.
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