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Abstract

It is well known that sudden variations of air temperature have the potential

to cause severe impacts on human health. Therefore, it becomes necessary to

provide information capable of quantifying the severity of the problem, consid-

ering that the continuous increase of temperature due to global warming and

urban development will cause more intense effects in heavily populated areas.

Due to its geographical location and local characteristics, Ecuador, a country

located on the western coast of South America, is characterized by a high vul-

nerability to climatic extremes. The present research develops an evaluation of

urban climate change effects through the analysis of extreme temperature indi-

ces using four meteorological stations situated in the city of Guayaquil (south-

west Ecuador). Since the available data are not adequate for extreme

temperature indices criteria, it was necessary to employ an infilling method for

times series in an innovative way that can be applicable at the small scale.

Thus, a cross-correlation-enhanced inverse distance weighting (CC-IDW)

method was proposed. The method entails a spatial interpolation based on

data of urban stations situated outside of Guayaquil by taking into account

cross-correlation among times series at precise lags that leads to an improve-

ment in the way of estimating the missing values. Subsequently, a homogene-

ity test, data quality control and the calculation of extreme temperature

indices chosen from those proposed by the World Meteorological Organization

(WMO) were implemented. The results show that there is a general tendency

of warming with quite homogenous temperatures for all considered stations.

However, it should be recognized that the climate pattern of this region is

strongly modulated by the El Niño Southern Oscillation (ENSO) cycle. Only

for two extreme indices: the highest maximum temperature (TXx) and the

warm days (TX90p), are the resulting trend co-efficients statistically signifi-

cant. The study suggests a deteriorated climatic condition due to heat stress

that warrants further study using the available database for the city of

Guayaquil.
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1 | INTRODUCTION

Climate change and variability (especially expressed in
terms of temperature fluctuations) play an essential role
in human life, and with the current and projected trends
of climate change this link has become more influential.
In essence, one of the United Nations’ (UN) Sustainable
Development Goals “[to] ensure healthy lives and pro-
mote well-being for all at all ages” (SDG 3) is closely
related with SDG 13 on climate change: “[to] take urgent
action to combat climate change and its impacts” (Pezzoli
et al., 2016). A landmark report of the UN's Intergovern-
mental Panel on Climate Change (IPCC) paints a far
more severe picture of the immediate consequences of
climate change than previously thought by expressing the
need to transform the world economy “at a speed and
scale that has no documented historic precedent” in
order to mitigate the adverse impacts (Allen et al., 2018).
The IPCC authors report that if greenhouse gas emissions
continue at the current rate, the atmosphere will warm
up by as much as 1.5�C above preindustrial levels by
2040, inundating coastlines and intensifying climate
extremes (IPCC, 2014; Allen et al., 2018).

In particular, a worrying aspect concerns the increase
in the frequency and intensity of heatwaves, especially in
large urban areas that present higher risks of exposure
than suburban and rural areas. These effects are due to
the urban heat island (UHI) that is more intense during
the night (Hass et al., 2016). Indeed, Hass et al. (2016)
studied the fact that urban areas exhibit asymmetries in
daily maximum temperatures (daytime) and daily mini-
mum temperatures (night-time) cycles compared with
the surrounding areas. Thermal stress in cities increases
with high levels of night-time temperatures, reducing the
possibility for the population to refresh itself. Many stud-
ies have noted not only the difference when comparing
urban and rural areas but also a possible increase of the
UHI effects between neighbouring urban areas (Luber
and McGeehin, 2008; Hass et al., 2016). As Nakata-Osaki
et al. (2018) reported, this characteristic is the result of a
local microclimate due to urban features that modify the
climate variables and their perception by the population,
and it demonstrates that the phenomenon of the UHI has
regional variability (Nakata-Osaki et al., 2018). Addition-
ally, scientists have shown that tropical cities observe dif-
ferent temporal developments of the UHI and that it
occurs more intensely during the daytime; this is one of

the more considerable differences from mid-latitudes
(Dias et al., 2009). The research published by Hannel
(1976) on the temperatures recorded in the equatorial city
of Quito (Ecuador) suggested the need to develop detailed
studies of the features that influence the UHI in several
other equatorial towns, which have to be weighted differ-
ently under various macroclimatic and topographic
conditions.

Moreover, it has been assessed that tropical climates
are more critical because of the higher health risk to
which the population is exposed, especially where there
is more urbanization (Johansson et al., 2018). For exam-
ple, the strong impact of high temperatures on vector-
borne diseases as dengue transmission, a mosquito-borne
viral tropical disease, can be mentioned. Stewart Ibarra et
al. (2013) evidenced the increasing risk of dengue trans-
mission due to gradual growing minimum temperatures
as a consequence of climate warming in Ecuador.

South American countries have perceived for some
time the importance of the analysis and comprehension
of climate extremes. One important actor in weather risk
management in this region is the Centro Internacional
para la Investigación del Fenómeno de El Niño (CIIFEN)
which has supported decision-makers on the planning of
adaptation and mitigation politics to climate change since
2003. The CIIFEN has suggested the use of models and
software for the calculation of climatic indices and that
trends at local scales should be observed (Martínez
Guingla and Mascarenhas, 2009). One of the first
attempts to collect climate information in South America
is the analysis conducted by Vincent et al. (2005), the
result of a workshop held in Maceiò, Brazil, in August
2004 that aimed at improving the research on changes in
climate extremes. The study considers times series (1960–
2000) belonging to meteorological stations situated all
around the continent of South America in order to ana-
lyse climate change indices. The trends resulting from
this analysis showed relevance in the indices based on
daily minimum temperature, with high percentages of
warm nights in many stations (Vincent et al., 2005).
Another study by Skansi et al. (2013), resulting from a
regional workshop in Guayaquil (Ecuador) in 2013, pro-
vides a more complete analysis compared with the work-
shop held in Brazil in 2004, which had limitations
regarding the space–time availability of high-quality daily
times series. In the later study, daily maximum and mini-
mum temperatures and precipitation series were assessed
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over South America for two different periods: 1950–2010
and 1960–2009. The results of the extreme indices calcu-
lation provided evidence of warming and wetting signals
since the mid-20th century (Skansi et al., 2013). Further
analysis including those of Cáceres et al. (1998) and Nieto
et al. (2002) underline a general trend of temperature
increases in Ecuador (Cáceres et al., 1998; Nieto et
al., 2002). The emerging tendency is to deepen the analy-
sis focused on variability of temperature and precipita-
tions and their links to the El Niño southern oscillation
(ENSO), because of its significant influence on the cli-
mate of South America and especially in the coastal
region of Ecuador and Peru (Vicente-Serrano et
al., 2017). The ENSO phenomenon, when it occurs,
includes many variables that exhibit changes under nor-
mal conditions. In the specific case of Ecuador, it pro-
vides a series of damaging impacts on human health and
society, particularly regarding the effects due to changes
in rainfall regimes and oscillation of temperatures (Mora
and Willems, 2012; Morán-Tejeda et al., 2016).

Within this context, a small-scale analysis conducted on
the warm–humid city of Guayaquil may be useful to under-
stand the climatic variability within the town under the cur-
rent climate change scenarios. The goal of the research is
the analysis of extreme temperature indices variability of
daily temperature time series referred by four meteorological
stations located in the urban area of Guayaquil, on the
southwest coast of Ecuador. It was decided to study the pat-
tern of extreme temperature considering several stations
across the city instead of one. This choice was derived by the
failure of previous studies on temperature analysis in urban
areas in the identification of the small-scale climatic variabil-
ity associated with land use within a metropolitan area
(Hass et al., 2016). This made possible the fact that, for the
first time in this region, there is an intent to determine the
extreme temperatures trends in an urban area to compre-
hend whether the output could give some information about
climate change. This allows a better representativeness of cli-
matic events, and thus increasing knowledge to support mit-
igation and/or adaptation actions. Considering that the
available data, measured by the four meteorological stations
in the urban area, is] not sufficient to evaluate the extreme
temperature indices, an innovative methodology to build a
“virtual database” in a metropolitan area is developed in the
present research. The cross-correlation-enhanced inverse
distance weighting (CC-IDW) method consists of a spatial
interpolation method based on urban stations situated out-
side of Guayaquil that takes into account cross-correlations
(similarity) among lagged-times series as described in Sec-
tion 2. This technique performs well when the neighbouring
stations are closer to the target station, such as in the present
case (Shabalala et al., 2019). The infilling method for the
times-series IDW, especially for daily temperature data, is

usually developed for macro-scale analysis (Ahrens, 2006;
Morales-Moraga et al., 2019). The novelty presented here is
that this research employs the IDW method merged with
the CC to develop the spatial interpolation for urban climate
analysis, allowing the calculation of extreme indices and at
the same time reducing the high costs to maintain the dense
urban meteorological stations network. The obtained “vir-
tual” series corresponding with the four meteorological sta-
tions situated in Guayaquil were used to calculate the
extreme temperature indices chosen among those proposed
by the World Meteorological Organization (WMO) Commis-
sion for Climatology (CCl)/World Climate Research Pro-
gramme (WCRP) Climate Variability and Predictability
project (CLIVAR)/Joint Commission for Oceanography and
Marine Meteorology (JCOMM) Expert Team on Climate
Change Detection and Indices (ETCCDI). Data quality con-
trol (QC) and analysis of the selected climatic indices were
carried out using the computer program RClimDex Software
v.1.1 freely available at http://etccdi.pacificclimate.org/
software.shtml. The results and discussion are summarized
in Section 3. Conclusions and future evolution are described
in Section 4.

2 | MATERIALS AND METHODS

2.1 | Study area

Due to its geographical location, Ecuador is a country char-
acterized by a high vulnerability to climatic extremes
(CIIFEN, 2012). The city of Guayaquil (located at 2� 120 S,
79� 540 W) has a relatively smooth topography, with the low-
est points of the city located at 4 masl and the highest at
around 100 masl. Moreover, it is surrounded by two bodies
of water: the Guayas River and an estuary (Estero Salado),
which connects directly with the Pacific Ocean. Guayaquil is
the largest city in Ecuador, with a population of about 2.6
million inhabitants when considering the entire conurbation
(Delgado, 2013). In the stereotype of most South American
metropolises, Guayaquil presents large areas reserved for a
few wealthy families, in contrast to several crowded areas
where the most impoverished population lives. The typical
landscape is characterized by regular orthogonal streets
lined mostly with low buildings, which are frequently con-
structed from a material with a high albedo and which are
not capable of insulation, and which are responsible for high
temperatures due to energy storage (Dias et al., 2009).

Although the city is part of the coastal region of Ecua-
dor, with a stable warm–humid climate, the area is mod-
erated by the cooling effect of the Humboldt Current
along the coast. There are two seasons: the rainy season
from December to April (with 80% of the annual rainfall
and mean temperature of 26.4�C), due to the presence of
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both the El Niño current that warms the western coast of
South America and the latitudinal migration of the Inter-
tropical Convergence Zone (ITCZ), which produces an
excess of humidity; and the dry season from May to
November (mean temperature of 23.6�C), modulated by
the Humboldt Current which introduces cold air (Rossel
and Cadier, 2009). Overall, the temperatures do not show
extreme variations to clearly distinguish the seasons
(Morán-Tejeda et al., 2016). It should be kept in mind
that this typical pattern can be drastically altered with
the presence of the ENSO events (Shabbar, 2006).

2.2 | Data description

Data on maximum and minimum temperatures (�C) were
obtained from the Instituto Nacional de Meteorología e
Hidrología (INAMHI), which is the institution that manages
weather stations in Ecuador. The four stations inside Guaya-
quil present a registry activity that covers the period 2013–
2014. Although the INAMHI was founded in 1961, it
exhibits huge deficits due to the undeveloped infrastructures
of the country (roads, media and specialised staff)
(Emck, 2007). Thus, given that the available time series are
incomplete and short for the calculation of accurate
ETCCDI extreme temperature indices, it is necessary to find
other data sets from urban weather stations situated outside
of Guayaquil to create a “virtual data set” inside the metro-
politan area. The spatial distribution of weather stations
available is not optimal since they are located far from each
other, thus generating spatial gaps. Thus, the working radius
to search for suitable meteorological stations was extended
to 80 km from Guayaquil when in the presence of areas
with a similar topography and climatic dynamics. Only three
times series associated with meteorological stations located
outside Guayaquil in three different cities are incorporated
into the analysis because their eligibility threshold of missing
data is acceptable (not exceeding 25% of not available—n.a.).
Another station within Guayaquil (located at the
Universidad Estatal named Guayaquil U.E.) was considered
to check the indices, even though the temporal coverage
was different. Tables 1 and 2 give an overview of the stations
considered in the present research; Figure 1 shows the area
of study and the location of all stations.

2.3 | Descriptive statistical analysis and
missing data imputation strategy

Figure 2 shows the pattern of the overall methodology
implemented in this analysis.

The time-series were subjected to a preliminary
descriptive statistical analysis using R software (R Core

Team, 2016). This involved obtaining an overview of the
series patterns and identifying anomalies and potential
outliers (through, for instance, graphical output such as
monthly box plots). Data series gathered from all consid-
ered weather stations were studied through descriptive
statistical analysis of maximum and minimum tempera-
tures. The intent is to understand the dynamism and
composition of missing values, and eventually to under-
line the periodicity, namely the constancy of seasonality
seen as a repetition of phenomena through time. From
this first analysis emerges a significant deficiency of mini-
mum temperatures series concerning the meteorological
archive, which provides only integer and not decimal
values. In such a situation, it is difficult to obtain a reli-
able variability's estimate of temperatures, and it is symp-
tomatic of the bad quality and low reliability of
measurements.

Among the several techniques for missing data impu-
tation available to overcome this lack of useful data
within urban areas (e.g. Donders et al., 2006), the site-
dependent effect method (SDEM), introduced by Plaia
and Bondì (2006) in research concerning the spatio-tem-
poral variability of PM10 concentration due to meteoro-
logical variables, was evaluated. Those authors focused
on the importance of each monitoring site's effect, con-
sidering its space and time information: weekly, daily
and hourly impact depending on the site, and summariz-
ing them to achieve the evaluation of missing values. The
performance of this method was tested through a simula-
tion of one incomplete data set. However, the method
was not entirely satisfactory for the present research
because it allows only for the input of missing data inside
the temporal domain of the considered series, while with
a spatial interpolation technique it is possible to obtain a
value outside the temporal domain of a series (if data in
close sites are available). Therefore, a strategy of imputa-
tion suitable for spatio-temporal data with a small num-
ber of nearby sites where data are available for a longer
period of time is proposed. This provides a technique to
build the “virtual data” for four urban stations in Guaya-
quil, taking advantage of the available information close
in both space and time, even for a sub-period. In more
detail, a two-step procedure is proposed: (1) analysis of
cross-correlation functions (CCFs) in the temporal
subdomain with data available at urban sites (both in
Guayaquil and outside the city); and (2) spatial interpola-
tion at urban sites in Guayaquil of temporally lagged data
with the lag chosen in order to maximize the observed
cross-correlations in the first step. This proposal was
named the cross-correlation-enhanced inverse distance
weighting method (CC-IDW), since the CCF estimation
is used to improve the IDW spatial interpolation in the
second step.
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With the intent to observe the similarity in temperatures
patterns between four urban stations and those three outside
of Guayaquil and to study the dynamic evolution of times
series, it is then necessary to consider the aspect of
correlation having to deal with data observed in different
moments. In this specific case, the CCF is used to analyse
the relationship between two times series at several lags
(Chatfield, 2004). Therefore, using the open-source R soft-
ware, the CCFs are estimated for each urban series in couple
with the other three out of Guayaquil on both variables
(daily maximum and minimum temperatures). The results
show positive correlation co-efficients, implying that when
one series increases/decreases, the other increases/decreases
with a certain delay in time (lag). In particular, it was
observed that all the evaluated CCFs have a peak at lag
h = 1, meaning that one series has the highest linear correla-
tion co-efficient with the other one considered one day
before. A one day lag refers to one day before, and it means
that the data series is regarded at time t – 1.

For the second step, given the small number of sites close
to the urban area considered, the IDW method was chosen
for spatial interpolation (Shepard, 1968). Data at time t – 1 for
the three urban stations out of Guayaquil were weighted

depending on distance (Figure 3) to each of the four urban
sites (Duran, Montebello, Puerto Hondo and Songa) and aver-
aged to obtain a spatial prediction for the urban site at time t.
It is important to remember that the IDW is not a stochastic
spatial prediction method so that there is no variance associ-
ated with the prediction. For this reason, in order to assess
the goodness of this spatial prediction, it was realized that a
comparison between original data and interpolated ones (Fig-
ure 4) showed a good correlation. It was then possible to
rebuild the four data sets through the IDW prediction over
24 years (a common period among the considered stations:
January 2, 1990–January 1, 2014). For maximum tempera-
tures series, this imputation was conducted on missing values;
meanwhile, for minimum temperatures, it was performed on
entire data sets because of their limited reliability.

2.4 | Descriptive statistical analysis,
time-series quality control (QC) and
homogeneity testing

After a preliminary descriptive statistical analysis, data
were ready for examination under the QC criteria by

TABLE 1 Meteorological stations used in the study and their locations

Station Locality Region Latitude (� N, 0, 00) Longitude (� E, 0, 00)

EMA DURAN-RADIOSONDEO Guayaquil Guayas 2� 100 10.2000 S 79� 500 0.2400 W

EMA_COE MONTEBELLO Guayaquil Guayas 2� 50 20.8600 S 79� 560 25.6300 W

EMA PUERTO HONDO Guayaquil Guayas 2� 110 26.4300 S 80� 10 26.5900 W

EMA SONGA Guayaquil Guayas 2� 50 20.8600 S 79� 560 25.6300 W

GUAYAQUIL UNIVERSIDAD ESTATAL (RADIO
SONDA)

Guayaquil Guayas 2� 100 5000 S 79� 530 5900 W

MILAGRO (INGENIO VALDEZ) Milagro Guayas 2� 80 100 S 79� 360 100 W

BABAHOYO-UTB Babahoyo Los Rios 1� 470 4900 S 79� 320 000 W

INGENIO AZTRA (LA TRONCAL) La Troncal Cañar 2� 260 1500 S 79� 210 0900 W

TABLE 2 Observations, missing data and temporal length of the reference stations

Station Observations “n.a.” Tmax % “n.a.” Tmax “n.a.” Tmin % “n.a.” Tmin Period

DURAN 423 178 42% 178 42% 2013/03–2014/03

MONTEBELLO 423 173 41% 173 41% 2013/03–2014/03

PUERTO HONDO 423 172 41% 172 41% 2013/03–2014/03

SONGA 423 172 41% 172 41% 2013/03–2014/03

GUAYAQUIL U.E. 8,583 910 11% 942 11% 1992/02–2015/07

MILAGRO 16,649 2,325 14% 2,453 15% 1970/01–2015/07

BABAHOYO 12,358 2,596 21% 2,664 21.5% 1980/06–2014/03

INGENIO AZTRA 9,620 1,276 13% 1,264 13% 1989/05–2015/08
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testing for the presence of possible extreme values (out-
liers), inhomogeneity (sudden changes in the trend of a
variable) or absence of measurements in the series due to
changes in the detecting instruments, relocation of tools,
measurement error, activity pauses, change in land use,
and so on (García-Garizábal and Romero, 2016). Through
the use of the RClimDex software, this assessment allows
for the identification and documentation of potential
non-systematic errors and ensures that the data series are
free of gross errors (Skansi et al., 2013). For the elimina-
tion of outliers, a reception region was first defined as
[mean – n*std, mean + n*std], namely the mean ± n
times the standard deviation of the daily value. It was
used n = 3 for this study. Some studies use n = 4 to
reduce the detection of outliers (Zhang et al., 2005;
Keggenhoff et al., 2015). On the other hand, many
researchers prefer n = 3 to guarantee a more accurate
and finer analysis (Aguilar et al., 2005). The outliers iden-
tified were replaced with not available (n.a.) values. This
pre-processing data analysis is a very tricky phase for the

consecutive steps of the analysis so that it is considered
appropriate to follow the automatized process QC in
Rclimdex. Having removed the outliers, it is possible to
test the time series for homogeneity and, if necessary,
run a homogenization technique. This step is necessary
because it allows the elimination of irregularities in the
time series due to non-weather factors that could invali-
date the results of the climatic analysis. These irregulari-
ties are called “changepoints” and are caused by many
anthropic causes, as stated above. For example, in urban
areas such as Guayaquil, with a high concentration of
vehicles, industries, construction, pollution, and so on,
temperatures tend to reach extremes as the UHI effect.
Aguilar et al. (2003) identified 14 assessment methods
available in the literature for the homogeneity test pro-
posed in the World Climate Data and Monitoring Pro-
gramme (WCDMP). The selection of an appropriate
homogenization technique depends on the climatic vari-
ables and time scale (annual, monthly or daily times
series). The homogeneity testing chosen in the present

FIGURE 1 (a) Location map of Ecuador; (b) focus on the provinces (Guayas, Los Rios, Cañar) considered in the analysis (stars show

the urban stations used to create the “virtual data set”); and (c) triangles show the urban weather stations of the city of Guayaquil
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study is an indirect method: the penalized maximal F-test
(PMFT) which works through the opensource software
RH_Test_V4 (freely available at http://etccdi.
pacificclimate.org) provided by ETCCDI (2013). This
method requires two distinct phases: first, detecting

(which deals with the identification of changepoints);
and second, adjustment (which sees the homogenization
with the correction of breakpoints identified). The PMFT
proposed by Wang (2008) is more desirable than the
other tests because it considers the existence of linear

FIGURE 2 Flowchart of the methodology
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autocorrelation of a time series at a specific delay (lag 1)
when the changepoint was identified. The results of the
homogenization are analysed to understand the origin of
changepoints.

After verifying with the INAMHI that there were no
changes in the measurement instruments or relocation of
meteorological stations during the period considered, and
not having enough and reliable metadata, it was believed
that there could be external causes, probably natural cau-
ses. Besides, this hypothesis is strengthened by the fact
that the number of changepoints is the same for the max-
imum and minimum temperature series of all four sta-
tions, and there is not a unique situation for each station.

For this reason, and because Ecuador is an area subjected
to a critical regional climate forcing (the ENSO cycle),
the dates at which changepoints occurred for each meteo-
rological station and the dates at which occurred El Niño
and La Niña (ENSO phenomena) were compared. For
this comparison, the values from the Indice Costero El Niño
(ICEN), the index provided by the Instituto Geofisico del
Perù (http://www.met.igp.gob.pe/variabclim/indices.html),
were considered. These data are divided into two categories:
“hot condition” and “cold condition.” The first, which
includes four levels (extraordinary, substantial, moderate
and weak), is associated with positive values of the ICEN
(i.e. El Niño events), while negative values of the ICEN

FIGURE 3 Distance between stations (km)

FIGURE 4 Spatial prediction

at time t – 1 (light) versus original

data set at time t (dark) with

missing values (for Duran station)

for maximum temperatures
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correspond to La Niña events, or “cold condition”
(strong, moderate and weak). The aim of this passage is
the assessment of a possible correspondence between the
intensity level of the ENSO phenomena and the occur-
rence of changepoints (Takahashi et al., 2014). The analy-
sis revealed that a large number of identified breakpoints
follow the succession of two ENSO events, mainly for
minimum temperatures. For just a few changepoints not
associated with the ENSO (especially for maximum tem-
peratures), it was assessed that there were no anomalies.
After this process, the maximum and minimum tempera-
tures series were now homogeneous and suitable for
computing extreme temperature indices.

2.5 | The ETCCDI extreme temperature
indices

To calculate the ETCCDI extreme temperature indices,
data should have a long, continuous, QC and homoge-
neous daily time series. However, this is not the only con-
dition, because the implementation in the RClimDex
software requires, for instance, no more than 15% of
missing values in one year to calculate the annual value
for an index. The percentile-based indices are also com-
puted if there are at least 80% of the data in the consid-
ered period (Zhang and Yang, 2004). These constraints
had an impact on the final number of calculated indices.
Table 3 contains a brief description of the computed indi-
ces, which includes threshold indices, absolute indices
and percentile-based indices, among others. The results

obtained were represented in a Qgis map, which helps to
make a more intuitive interpretation as commented in
the “Results and discussion” (Section 3) where the two
cases are analysed.

2.6 | Linear trend estimation of indices

The extreme temperature index time series, given as the
RClimDex software output, were regressed against time
by using a linear regression model (with co-efficients esti-
mated by ordinary least squares—OLS) to analyse the
temporal evolution of extreme temperature indices. To
simplify this analysis, it is possible to observe the graphi-
cal outputs (Figure 5) with each index time series plotted,
the estimated regression line and a curve obtained by
locally weighted regression (LWR). The latter is a regres-
sion model where the predicted value at a point of inter-
est is achieved by using only training data that are in
proximity (“local”) to that point (Cleveland, 1979). The
LWR curve considers the correlation of the temperatures
in time and shows the influence of close values on the
estimated trend. Other four values that resume the
regression are shown on the graphics: R2, p-value, slope
estimate and slope error. As is well known, the R2 of a
linear regression permits one to assess how well the esti-
mated straight line describes the data. Meanwhile, the p-
value is the observed statistical significance level, and it
has to be compared with theoretical one that, in the
study, it is chosen at the 5% level (α = 0.05). When statis-
tically different from zero, the sign of the estimated trend

TABLE 3 Extreme temperature indices from the Expert Team on Climate Change Detection and Indices (ETCCDI) analysed in this

assessment with associated definitions, index typology and units

ID Index Index definition Typology Units

SU25 Number of summer days Annual count of days when TX > 25�C Threshold index Days

TR20 Number of tropical nights Annual count of days when TN > 20�C Threshold index Days

TXx Highest Tmax Annual highest daily maximum temperature Absolute index �C

TXn Lowest Tmax Annual lowest daily maximum temperature Absolute index �C

TNx Highest Tmin Annual highest daily minimum temperature Absolute index �C

TNn Lowest Tmin Annual lowest daily minimum temperature Absolute index �C

TmaxMean Mean Tmax Mean annual monthly mean of maximum daily
temperature

Absolute index �C

TminMean Mean Tmin Mean annual monthly mean of minimum daily
temperature

Absolute index �C

TN90p Warm nights Percentage of days when TN > 90th percentile for the
referenced period

Percentile-based index % days

TX90p Warm days Percentage of days when TX > 90th percentile for the
referenced period

Percentile-based index % days

DTR Daily temperature range Annual mean difference between TX and TN Other indices �C
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co-efficient allows one to highlight an increasing or a
decreasing trend. Finally, the slope error defines the esti-
mation of the standard error of the trend co-efficient (if
this value is the lower, the slope of the estimated regres-
sion line will be more reliable).

3 | RESULTS AND DISCUSSION

This section shows the results of the analysis used to
assess the climatic variability over the city of Guayaquil,
where urbanization has grown over time. Table 4 shows
that the estimated trend co-efficient of each index is posi-
tive/negative when maximum and minimum tempera-
tures are increasing/decreasing along the reference
period 1990–2014. This output suggests that most of the
trend co-efficients are not statistically significant, and
therefore no great changes in temperature trends during

these 24 years can be detected. At the same time, there
are a few co-efficients (Table 4) that prove statistically
significant at the 5% and 10% levels. The results highlight
a general situation of growing warming signals. The
Rclimdex outcomes of simple linear regression suggest
that the times series of extreme temperatures do not
show essential variations. Instead, when looking at the
LWR regression, it is possible to observe increasing and
decreasing trends in time, as in Figure 5 (shown are only
some interesting cases because of limited space).

The threshold indices SU25 and TR20 have both non-
statistically significant co-efficient trends, meaning that
there are no important variations in the number of days
in each year with a maximum temperature > 25�C
(SU25) or with a minimum temperature > 20�C (TR20).

Significant co-efficient trends emerged among the
absolute indices. Indeed, for the highest maximum tem-
perature (TXx), three out of four meteorological stations

FIGURE 5 Outputs of the indices: (a) lowest maximum temperature (TXn); (b) mean maximum temperature (TmaxMean); and (c)

daily temperature range (DTR) for each meteorological station. Reproduced is a curve representing the annually temporal evolution of the

index, with the continuous line showing the estimation trend and the dotted line the locally weighted linear interpolation (locally weighted

regression—LWR)
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showed a slightly statistically consistent growth (Fig-
ure 6). In other words, there is a growing variety of the
highest annual maximum monthly of maximum daily
temperature during the referred period. On the other
hand, the lowest maximum temperature (TXn) presents a
co-efficient trend not statistically significant and shows a
curious situation for analysis by observing the LWR
regression (Figure 5a). This weighted interpolation indi-
cates a decreasing trend up to 2002, which is followed by
an increase in the number of the annual lowest daily
maximum temperature in the consecutive period. This
condition could be explained by the ENSO phenomenon,
which shows one of the extraordinary events of La Niña
during 1988. The effect appears as an intense and rapid
cooling of temperature. Also, for the index concerning
the highest minimum temperature (TNx), there are no
significant results. On the other hand, it seems there is a
definite variation in the number of annual lowest value
in daily minimum temperature (TNn), as shown by the
resulting trend co-efficient statistically significant at the

10% level (Table 4 and Figure 6). The two indices con-
cerning the monthly mean maximum and minimum
temperatures (TmaxMean and TminMean) do not reach
statistical significance for Guayaquil. Still, again the LWR
regression shows a decrease until about 2001 (in concor-
dance with a La Niña event) followed by a constant
growth for all meteorological stations (Figure 5b).

Among the percentile-based indices (TN90p for mini-
mum temperatures and TX90p for maximum tempera-
tures), only the percentage of days in the year with daily
maximum temperatures > 90% percentile, that is, TX90p,
shows a positive variation (an increase of warm days),
with a significant co-efficient trend for two stations
(Table 4).

Finally, the annual diurnal temperature range (DTR)
is the index that shows in Figure 4 a moderate downward
trend over all stations. Still, not one presents co-efficient
trends that are statistically significant (Table 4). The
locally weighted regression illustrates, however, a
decrease until 2004, followed by a considerable growth of

FIGURE 5 (Continued)
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FIGURE 5 (Continued)

TABLE 4 Co-efficients’ trend signs for the period 1990–2014 for average temperature indices using a robust linear trend estimate

DURAN MONTEBELLO PUERTO HONDO SONGA

SU25 +(0.424) +(0.29) +(0.489) +(0.44)

TR20 +(0.382) +(0.315) +(0.253) +(0.302)

TXx +(0.082) +(0.058) +(0.035) +(0.103)

TXn +(0.346) +(0.205) +(0.203) +(0.295)

TNx +(0.245) +(0.456) +(0.324) +(0.178)

TNn +(0.092) +(0.054) +(0.057) +(0.088)

TmaxMean −(0.899) +(0.682) +(0.673) 0 (0.976)

TminMean +(0.517) +(0.455) +(0.376) +(0.389)

TN90p +(0.944) +(0.922) +(0.892) +(0.856)

TX90p +(0.191) +(0.043) +(0.049) +(0.118)

DTR −(0.291) −(0.666) −(0.556) −(0.226)

Note: Co-efficients’ signs shown in dark grey are significantly different from zero at the 5% level, while light grey is assigned to values signifi-
cant at the 10%. All the other co-efficients are not statistically significant at the 10% level. p-values are given in parentheses.
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the pattern as a symptom of an increase of the DTR of
the last years (Figure 5c). That difference between daily
maximum and minimum temperatures could be caused
by a rising TX and stability of TN, or the opposite,
although this latter alternative should be discarded since
the area of interest is hot.

In general, the evidenced results indicate warming
temperatures up to 2004, and this situation reinforces the

idea that more extreme events could occur, especially the
occurrence linked to warm climate such as those of Gua-
yaquil city. More specifically, the west and north sectors
of the town—“Puerto Hondo Canton” and “Montebello
Canton”—mainly suffered from the increasing air tem-
perature (also evidenced in Figure 6). The present
research contributes to maintaining information useful to
sustainable urban planning adaptation policies since air
temperature is one of the most important meteorological
variables for evaluating the vulnerability of an urban area
linked to its development (Norton et al., 2015). Norton et
al. (2015) suggest mitigation measures for high tempera-
tures in the urban landscape well known as urban green
infrastructure (UGI), for example, street trees, parks,
green roofs and facades. Therefore, it emerges how
important could be the development of an appropriate
strategy for the UGI implementation in Montebello Can-
ton of Guayaquil (see also Figure 5). Otherwise, the
warming situation in Puerto Hondo Canton is less worry-
ing because this area is a completely green area with a
low population density (Figure 1c). On the other hand,
the slow growth of temperature (Table 4) associated with
the high density and urbanized Duran Canton (Figure 1c)
should be managed through the implementation of the
UGI's strategy to reduce the vulnerability of this area in
the face of climate change.

4 | CONCLUSIONS

The present research highlights the need to create and
maintain an information system in order to implement
adaptation policies for different districts’ management
within the city. It was possible to study the changes in
temperature extremes through the “reconstruction” of
data sets, even though the time series available presented
many problems (i.e. lack of climate series completeness
with large amounts of missing periods and values). In
line with the latest Intergovernmental Panel on Climate
Change (IPCC) reports, which suggest a possible incre-
ment on the number of warm days and nights, the results
of this research evidence a deterioration of climatic con-
ditions concerning the maximum and minimum temper-
ature variables. This situation reinforces the idea that
more extremes events could occur, especially those linked
to warm climate such as presented in the study area.

For future efforts, it is necessary to consider the limits
of this research. First, the simple linear regression model
was fitted on indices with annual values for only
24 years. Greater data availability would allow one to
specify and fit a non-linear model that could provide fur-
ther insights into the analysis. Indeed, the analysed time
series were collected in a too short a period and did not

FIGURE 6 Qgis maps for the indices: (a) highest maximum

temperature (TXx); and (b) lowest minimum temperature (TNn).

Symbols represent the location of meteorological stations, and its

dimension is proportional to the values of trend co-efficients (non-

dimensional), within a circle for significant cases. Numbers near

the symbols represent the estimated trend co-efficients, whereas in

the legend are created intervals of trend co-efficients expressed in

absolute values to define the dimension of the symbols

proportionally
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show continuity in their measurements, presenting sig-
nificant gaps. This issue is common for climate analysis,
especially in South America and other developing
regions.

To prepare adequately and effectively for the effects
of climate change and their related extreme weather
events requires long-term (strategic) thinking that is
often well beyond any individual policy-maker's tenure
in office. Strategic thinking about climate disaster risk
reduction will be a precursor for goals concerned with
planning for sustainable development, and these activi-
ties must be undertaken with the prospects of longer
term, sustainable development in mind.

It should be noted that the aim of the study was not
to define climate scenarios, but to evidence the tempera-
ture evolution in a specific equatorial city in the face of
climate change and contributing to the literature by
building the foundations for future research in urban
areas. Indeed, the cross-correlation-enhanced inverse dis-
tance weighting (CC-IDW) methodology for obtaining
more extended time series starting from data for one or
two years of measurement could be useful for further
analysis. Since dense detecting networks in urban areas
demand high costs of maintenance, the use of methods
such spatial interpolation to obtain more data for urban
analysis in order to improve climate change knowledge is
more sustainable in economic terms. In this way, small-
scale studies should increase the assessment of the vul-
nerability of urban areas. It is certainly not easy to con-
tribute to the awareness of policy-makers, considering
that one's efforts aim to indicate structural actions to
improve the management of data, which present high
costs of implementation without direct benefits. This is
because it is not easy to quantify the value of human life
and health risks. As defined in the public volume con-
cerning the politics of climate change in South America,
each city has own microclimate due to all the urban char-
acteristics that modify the weather elements, such as
increases in population and use of vehicles, emission of
pollutants, eradication of vegetation, presence of water-
proof materials, and so on (Dias et al., 2009).
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