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Abstract- High voltage batteries are a fundamental component of 
hybrid electric vehicles (HEVs). Energy management strategies 
(EMSs) for HEVs generally aim at maximizing fuel economy 

solely, yet the method of hybrid powertrain control has a strong 
impact on the battery lifetime. This paper proposes a multi-
objective formulation of dynamic programming, a popular off-

line optimization tool, which is capable of maximizing both fuel 
economy and battery lifetime. Obtained numerical results allow 
correlation of predicted fuel economy with the corresponding 

predicted battery lifetime. The developed tool can thus help 
engineers account for battery lifetime during both the HEV 
powertrain architecture design and the EMS calibration 

processes.  

I. INTRODUCTION 

Hybrid electric vehicles (HEVs) are a promising technology 

within the field of transportation electrification and their 

adoption in the global vehicle market is forecasted to intensify 

over the next few years [1]. Development processes of HEVs 

include the implementation of dedicated energy management 

strategies (EMSs), also known as hybrid supervisory 

controllers. These controllers perform vehicle-level 

management tasks involving the repartition of requested power 

from the driver among components of the hybrid electric 

powertrain. Moreover, they aim to effectively supervise some 

fundamental vehicle states such as the battery state-of-charge 

(SOC), the overall fuel consumption and the emission of 

pollutants. In general, two opposite categories of EMSs for 

HEVs can be identified, namely off-line strategies and on-line 

strategies. Off-line EMSs exploit the knowledge of the entire 

vehicle speed profile for examined driving missions to control 

the operation of the HEV powertrain according to specific 

optimization criteria [2]. They can be used for a wide range of 

purposes that involve assessing ideal fuel economy capabilities 

when designing and sizing HEV powertrains, supporting the 

optimal calibration of on-line EMSs and providing an optimal 

benchmark for on-line EMSs as well. On the other hand, on-

line EMSs do not need the knowledge of the entire driving 

mission in advance, therefore they can find straightforward 

implementation in the on-board electronic control unit of 

HEVs. 

Both the off-line and on-line EMSs presented above are 

usually designed to maximize a performance single-objective, 

the vehicle’s fuel economy which is proportionally linked to 

tailpipe emissions. In this framework, the HEV battery 

working conditions are controlled with the simple target of 

performing charge-sustaining (CS) operation over a drive 

cycle or mission. The impact of EMS operation on other HEV 

battery conditions, such as its expected lifetime, is therefore 

usually neglected. Nevertheless, battery lifetime has a crucial 

impact on several aspects of HEVs including total cost of 

ownership and maintenance [3]. This suggests that research 

activities should aim not only at the experimental verification 

[4] and on-board estimation of battery ageing effects [5], but 

also at including battery lifetime considerations in both off-line 

and on-line EMSs at early development stages of HEVs. 

Several HEV EMS control strategies which consider battery 

ageing have been proposed in the literature. For real-time 

EMSs, the current most popular battery state-of-health (SOH) 

sensitive HEV powertrain control approach utilizes the 

equivalent consumption minimization strategy (ECMS) [6]. 

An ECMS which considers battery SOH must have two 

equivalent fuel consumption terms, i.e. (1) an equivalent fuel 

term representing the usage of battery energy, as implemented 

in the standard formulation of the ECMS, and (2) an equivalent 

fuel term representing the battery lifetime consumption. Such 

multi-objective adaptations of the ECMS have been developed 

for parallel HEVs with automatic manual transmissions [7][8] 

and continuously variable transmissions [9]. Convex 

optimization is another example of real-time EMS approach 

for HEVs, and its effectiveness has been suggested when 

considering battery SOH as additional control target for a plug-

in hybrid electric city bus as well [10]. 

Little work has been done regarding battery lifetime oriented 

off-line EMSs for HEVs though. In 2013, a stochastic dynamic 

programming (DP) formulation was implemented for a power-

split HEV considering anode side resistive film formation and 

amp-hours processed as the battery SOH metrics [11]. In 2016, 

a two-point optimization problem was solved using DP for a 

plug-in HEV while retaining an application-specific target 

battery life as objective of the HEV EMS [12]. In the authors’ 

opinion, the limited amount of research on off-line battery 

SOH-aware EMSs for HEVs motivates further contribution to 

cover the topic more extensively. This paper therefore aims at 

introducing a multi-objective formulation for DP, the most 

popular off-line EMS for HEVs, which considers both fuel 

economy and battery lifetime. The rest of the paper is 

organized as follows: the macro-scale battery ageing model 



retained from literature is firstly presented. Then, the HEV 

powertrain model under consideration is illustrated. The 

operating principle of DP is recalled and its multi-objective 

formulation is detailed. Finally, results and conclusions are 

given. 

II. MACROSCALE BATTERY AGEING MODEL 

In this paper, a throughput-based macroscale battery 

capacity fade model from [7] is employed. This numerical 

model supposes that a specific amount of charge throughput, 

which is a function of the current magnitude and temperature 

of the charge / discharge cycles, can be provided by the battery 

under steady operating conditions before reaching its end-of-

life. Compared to more complex battery ageing models (e.g. 

electrochemical models and event-based models), throughput-

based ageing models exhibit significantly improved 

computational efficiency [13]. For this reason, they seem to be 

the most suitable battery ageing models to be implemented in 

optimization based off-line HEV EMSs as these usually are 

computationally demanding [14].  

The SOH of the high-voltage battery at the generic time 

instant ti can be defined according to (1): 

𝑆𝑂𝐻(𝑡𝑖) = 𝑆𝑂𝐻0 −
1

∫
𝑁(𝑐,𝑇)

𝑐

𝑡𝑖
0

𝑑𝑡
               (1) 

where 𝑆𝑂𝐻0 denotes the initial SOH (equal to 1). c represents 

the instantaneous battery C-rate, which is defined as the ratio 

between the current in amps and the battery capacity in amp-

hours. 𝑁 is the number of roundtrip cycles before the battery 

reaches its end-of-life and it is not a constant value, rather it 

depends on the battery operating conditions (i.e. C-rate, 

temperature 𝑇). In general, the battery reaches its end-of-life as 

SOH approaches zero and the battery has no remaining 

capacity. In order to determine 𝑁, the percentage of battery 

capacity loss 𝛥𝐴ℎ𝑏𝑎𝑡𝑡% needs to be characterized by following 

the approach proposed by Bloom et al. in 2001 [15]. This takes 

inspiration from the Arrhenius equation describing the 

behavior of ideal gases. However, the general equation has 

been modified as follows in order to apply it to battery ageing:   

𝛥𝐴ℎ𝑏𝑎𝑡𝑡% = 𝐵(𝑐) ∙ 𝑒−
𝐴𝑓(𝑐)

𝑇  ∙ 𝐴ℎ𝑡𝑝
𝑧
   (2) 

Following (2), 𝛥𝐴ℎ𝑏𝑎𝑡𝑡% depends on an empirical pre-

exponential factor 𝐵, the ageing factor 𝐴𝑓, the lumped cell 

temperature 𝑇, a power-law factor 𝑧 and the total throughput 

𝐴ℎ𝑡𝑝 in ampere-hour. Here, both 𝐵 and 𝐴𝑓 are a function of the 

instantaneous battery c-rate 𝑐. The numerical values for 

parameters of an A123 26650 cell are obtained from [7], where 

the authors declared that the numerical model was in turn tuned 

according to data published in [16]. Table I reports the 

parameter values utilized here, including the pre-exponential 

factor 𝐵 tabulated with respect to 𝑐. The lumped cell 

temperature is assumed to be a constant value of 25°C (i.e. the 

battery conditioning system maintains this temperature). 

Battery SOC dependent parameters can be directly derived 

from the constant power discharge characteristics in the cell 

manufacturer catalogue [17]. 

For the modeling it is assumed that the end of the HEV 

battery lifetime corresponds to a loss of 20% of its initial 

capacity, so a value of 20% is used for 𝛥𝐴ℎ𝑏𝑎𝑡𝑡%. By using this 

information and solving (2) for 𝐴ℎ𝑡𝑝(c), it becomes possible to 

calculate the total number of roundtrip cycles 𝑁 allowed for 

the battery lifetime as function of the c-rate in (3). 𝑁 can in 

turn be considered in (1) to evaluate the rate of battery SOH.  

𝑁(𝑐, 𝑇) =
𝐴ℎ𝑡𝑝(𝑐,𝑇)

2∙𝐴ℎ𝑏𝑎𝑡𝑡
    (3) 

𝐴ℎ𝑏𝑎𝑡𝑡 is the battery energy capacity in ampere-hours. The 

factor of two in the denominator allows the model to account 

for both charging and discharging phases in the battery 

roundtrip cycles. The number of allowed roundtrip cycles as 

predicted by the described ageing model is illustrated in Fig. 1 

as a function of the battery cell current and its temperature. 

Predicting the residual battery lifetime becomes thus possible 

using the described model. Here, it is assumed that all the cells 

of the battery pack are identical and they exhibit the same state 

conditions such as SOC and SOH as example, i.e. the battery 

management system operates a uniform load distribution 

among cells at each time instant. As an additional hypothesis, 

the battery ageing model is assumed here to be independent 

from the battery SOC value. This is likely the case for this 

application because the HEV powertrain is controlled to 

operate in CS mode, where the battery SOC undertakes a 

narrow span of values. 

III. HEV POWERTRAIN MODEL 

The HEV powertrain architecture used for this study is the 

same as the third generation Toyota Prius® hybrid. This 

power-split HEV powertrain, as shown in Fig. 2 through 

TABLE I 
BATTERY AGEING PARAMETERS FOR A A123 ANR26650 CELL 

Parameter Value 
Units of 

measure 

Ageing factor, Af 3,814.7 – 44.6∙c K 

Power law factor, z 0.55 - 

Temperature, T 298 K 

Empirical pre-exponential 
factor B(c) 

[28,314 ; 21,681 ; 
12,934 ; 15,512] 

- 

Current C-rate, c [1; 2; 6; 10] - 

 

 
 

Fig. 1 Number of allowed roundtrip cycles as a function of the battery cell 
current and the temperature according to the considered ageing model. 

 



mechanical symbols, is a well-known layout and open source 

data regarding it are available [18]. An HEV model is 

developed and the parameters used for it, as defined in in Table 

II, are similar to the Prius.  The main difference is that a 1.52 

kWh battery pack consisting of 100 series and 2 parallel 

connected A123 26650 cells, the cells for which the ageing 

model in section II is developed, is utilized. Two planetary gear 

(PG) sets are embedded in the power-split HEV that regulate 

the kinematic relationships between different power 

components, namely an internal combustion engine (ICE) and 

two electric motor/generators (MGs). This powertrain layout 

features two operating modes, hybrid or pure electric, 

depending on whether the ICE is activated or not. Pure electric 

mode only utilizes MG2 and can be employed during braking 

events for example to recover electrical energy and store it in 

the battery. 

The HEV powertrain is modeled using a backward quasi-

static approach for deriving the requested power values and 

speed of components directly from the driving mission 

requirements [14]. The value of required torque at the input 

shaft of the final drive 𝑇𝐼𝑁 is determined at each time instant of 

the driving mission as  

𝑇𝐼𝑁 =
(𝐹𝑟𝑜𝑙𝑙+𝐹𝑚𝑖𝑠𝑐+𝐹𝑎𝑒𝑟𝑜+𝑚𝑣𝑒ℎ∙𝑥̈)∙𝑟𝑑𝑦𝑛

𝑖𝐹𝐷
      (4) 

where 𝑚𝑣𝑒ℎ, 𝑥̈, 𝑟𝑑𝑦𝑛 and 𝑖𝐹𝐷  respectively represent the vehicle 

mass, the vehicle acceleration, the wheel rolling radius and the 

final drive ratio. 𝐹𝑟𝑜𝑙𝑙 , 𝐹𝑚𝑖𝑠𝑐  and 𝐹𝑎𝑒𝑟𝑜 are resistive load terms 

provided by the rolling resistance, some miscellaneous terms 

(e.g. transmission losses, side forces, road slope) and 

aerodynamic drag, respectively. 

As it can be observed from Fig. 2, the MG2 angular speed 

𝜔𝑀𝐺2 is proportionally constrained to the angular speed of the 

final drive input shaft 𝜔𝑖𝑛, while the MG1 angular speed 𝜔𝑀𝐺1 

depends on the ICE speed 𝜔𝐼𝐶𝐸  as well. Assuming a 1:1 

transmission ratio for the transfer gearset (TG) in Fig. 2, the 

resulting kinematic constraints for the hybrid electric 

drivetrain can then be outlined as: 

 [
𝜔𝑀𝐺1

𝜔𝑀𝐺2
] = [

−𝑖𝑃𝐺1
𝑖𝑃𝐺1

+ 1

𝑖𝑃𝐺2
+ 1 0

] [
𝜔𝐼𝑁

𝜔𝐼𝐶𝐸
]                (5) 

where 𝑖𝑃𝐺1 and 𝑖𝑃𝐺2 represent the ratio between number of 

teeth for the ring gear and the number of teeth for the sun gear 

for PG1 and PG2, respectively. Based on the torque ratios for 

standard epicyclic gearing, and assuming unitary efficiency for 

the transmission system, torque values for both MG1 (𝑇𝑀𝐺1) 

and MG2 (𝑇𝑀𝐺2) can be derived according to the torque request 

coming from road and driver (𝑇𝐼𝑁) and the torque of the ICE 

(𝑇𝐼𝐶𝐸), which is used as the control variable in (6). 

[
𝑇𝑀𝐺1

𝑇𝑀𝐺2
] = [

0 −
1

𝑖𝑃𝐺1+1

𝑖𝑃𝐺2+1

𝑖𝑃𝐺2
−(

𝑖𝑃𝐺1

𝑖𝑃𝐺1+1
) ∙ (

𝑖𝑃𝐺2+1

𝑖𝑃𝐺2

)
] [

𝑇𝐼𝑁

𝑇𝐼𝐶𝐸
]       (6) 

    As concerns the electrical energy path, the amount of power 

that the battery is requested to either deliver or absorb (𝑃𝑏𝑎𝑡𝑡) 

is calculated as: 

𝑃𝑏𝑎𝑡𝑡 = (∑
𝑃𝑀𝐺𝑖

[𝜂𝑀𝐺𝑖(𝜔𝑀𝐺𝑖,𝑇𝑀𝐺𝑖 )]𝑠𝑖𝑔𝑛(𝑃𝑀𝐺𝑖) 
2
𝑖=1 ) +  𝑃𝑎𝑢𝑥  (7) 

where 𝑃𝑀𝐺  and 𝜂𝑀𝐺 respectively represent the mechanical 

power and the overall efficiency of an MG, which is evaluated 

by means of empirical lookup tables with speed and torque as 

independent variables. Utilizing the sign of 𝑃𝑀𝐺  as exponent in 

the denominator allows capturing both depleting and charging 

battery conditions within this formula. Finally, 𝑃𝑎𝑢𝑥 is the 

power requested by the accessories (e.g. lubrication, air 

conditioning) and is assumed having a constant value here. The 

change in battery SOC for a timestep is then be evaluated by 

considering an equivalent open circuit model as in (8): 

𝑆𝑂𝐶̇ =
𝑉𝑂𝐶(𝑆𝑂𝐶)−√[𝑉𝑂𝐶(𝑆𝑂𝐶)]2−4∙𝑅𝐼𝑁(𝑆𝑂𝐶)∙𝑃𝑏𝑎𝑡𝑡

2∙𝑅𝐼𝑁(𝑆𝑂𝐶)
∙

𝑛𝑃

𝐴ℎ𝑏𝑎𝑡𝑡∙3600
         (8) 

where 𝑅𝐼𝑁 is the internal resistance of the battery pack, as 

obtained by interpolating in 1D lookup tables with SOC ad 

independent variable. 𝑛𝑃 stands for the number of cells in 

parallel as given by the battery pack configuration. 

Concerning the ICE, the instantaneous rate of fuel 

consumption can be finally evaluated using an empirical 

steady-state lookup table with torque and speed as independent 

variables. 

 

TABLE II 
MODELED HEV PARAMETERS 

Component Parameter Value 

Vehicle Mass 1531 kg 

ICE Capacity 1.8 L 

Power max 72 kW @ 5,000 rpm 

Torque max 142 Nm @ 4,000 rpm 

MG1 Power max 42 kW 

MG2 Power max 65 kW 

Transmission 

ratios 

iPG1 (Ring1 / Sun1) 2.6 

iPG2 (Ring2 / Sun2) 0.26 

iFD 3.27 

Auxiliaries 
Electrical subsystem 

power 
500 W 

Battery 

Pack capacity 1.52 kWh 

Pack configuration 100S – 2P 

Cell type & capacity A123 26650, 2.2Ah 

 

 
 

Fig. 2 Toyota Prius hybrid electric powertrain scheme. 
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IV. MULTI-OBJECTIVE HEV CONTROL 

This section details the multi-objective formulation of DP 

which is implemented to find an optimal solution for the HEV 

off-line control problem.  

A. Multi-objective off-line HEV control problem 

The mathematical expression of the HEV off-line control 

problem formulated here is reported in (9): 

min { 𝐽 = ∫ L(𝑡)𝑑𝑡
𝑡𝑒𝑛𝑑

𝑡0

 } 

subject to: 

𝑆𝑂𝐶(𝑡0) = 𝑆𝑂𝐶(𝑡𝑒𝑛𝑑) 

𝜔𝐼𝐶𝐸 𝑚𝑖𝑛 ≤ 𝜔𝐼𝐶𝐸 ≤ 𝜔𝐼𝐶𝐸 𝑀𝐴𝑋 

𝜔𝑀𝐺1𝑚𝑖𝑛 ≤ 𝜔𝑀𝐺1 ≤ 𝜔𝑀𝐺1𝑀𝐴𝑋 

𝜔𝑀𝐺2𝑚𝑖𝑛 ≤ 𝜔𝑀𝐺2 ≤ 𝜔𝑀𝐺2𝑀𝐴𝑋 

𝑇𝐼𝐶𝐸𝑚𝑖𝑛 ≤ 𝑇𝐼𝐶𝐸 ≤ 𝑇𝐼𝐶𝐸𝑀𝐴𝑋 

𝑇𝑀𝐺1𝑚𝑖𝑛
≤ 𝑇𝑀𝐺1 ≤ 𝑇𝑀𝐺1𝑀𝐴𝑋

 

𝑇𝑀𝐺2𝑚𝑖𝑛
≤ 𝑇𝑀𝐺2 ≤ 𝑇𝑀𝐺2𝑀𝐴𝑋

 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑀𝐴𝑋 

𝑆𝑂𝐻0 = 1 

(9) 

where 𝐿(𝑡) is the instantaneous cost function is minimized 

throughout the driving mission. The battery SOC is set to be 

the same at the beginning and end of the considered driving 

missions, ensuring that charge is sustained. Finally, both 

battery SOC, speeds (𝜔) and torques (𝑇) are restricted within 

the corresponding allowed operating regions. The initial 

battery SOH is set to 1 in order to consider non-aged battery 

conditions. The explicit formulation of L is as follows: 

𝐿(𝑡) = [𝑚̇𝑓𝑢𝑒𝑙 + 𝑚𝑓𝑢𝑒𝑙−𝑐𝑟𝑎𝑛𝑘 ∙ (𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸 > 0)]

∙ $𝑓𝑢𝑒𝑙 + 𝛼𝑏𝑎𝑡𝑡 ∙ $𝑏𝑎𝑡𝑡 ∙ 𝑆𝑂𝐻̇  
(10) 

where 𝑚̇𝑓𝑢𝑒𝑙 and 𝑚𝑓𝑢𝑒𝑙−𝑐𝑟𝑎𝑛𝑘 represent the fuel mass rate at 

each time instant in which the ICE operates and the amount of 

fuel mass needed to crank the ICE throughout starting events, 

respectively. The parameter 𝑠𝑡𝑎𝑟𝑡𝐼𝐶𝐸 defines a binary variable 

detecting ICE start occurrence. The variables $𝑓𝑢𝑒𝑙  and $𝑏𝑎𝑡𝑡 

represent cost values for fuel and for the battery, respectively. 

$𝑓𝑢𝑒𝑙  is based on the November 2019 averaged US gasoline 

price of 2.62 $/gallon [19], while a value of $3,000 is used for 

$𝑏𝑎𝑡𝑡 from [20]. 𝑆𝑂𝐻̇  is the instantaneous rate of battery SOH, 

while 𝛼𝑏𝑎𝑡𝑡 denotes a scaling coefficient for the illustrated 

battery ageing model which is used to tune the value of fuel 

versus the battery. The higher the 𝛼𝑏𝑎𝑡𝑡 value, the more battery 

ageing is minimized at the expense of fuel economy.  

The set of control variables 𝑈 contain speed and torque 

values for the ICE as formulated in (11).  

𝑈 = {
𝜔𝐼𝐶𝐸

𝑇𝐼𝐶𝐸
}                                 (11) 

As illustrated in the previous section, the reported set of 

control variables is sufficient for determining the operating 

conditions of all the remaining power components of the 

electrified powertrain. 

B.    Dynamic Programming formulation 

In general, DP is an optimization approach that solves the 

control problem for dynamic systems by exhaustively 

exploring all the possible control actions backwardly at each 

time step. DP is popular for solving HEV off-line control 

problems because it effectively returns a global optimal 

solution. The minimum overall value of the predefined cost 

function, corresponding to the global optimal solution, is 

determined by sweeping discretized values for control and 

state variables of the analyzed control problem at each time 

step [21]. While control variables for the multi-objective 

control problem have been outlined in the previous paragraph, 

related state variables still need definition. The DP states are, 

by definition, the parameters which are a function of the 

preceding time steps, and consist of 𝑋 for this system: 

𝑋 = {
𝑆𝑂𝐶

𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓
}           (12) 

where battery SOC is a state because it is the integral of the 

battery current , the ICE state (i.e. on/off) is included because 

cranking events are only allowed at a certain frequency so the 

comfort of the ride is reasonable. A third state variable term 

could theoretically be considered here for the battery SOH, but 

since this value changes very slowly and DP solution time 

increases exponentially with additional state variable terms it 

was decided to be unnecessary.  

V. RESULTS 

The simulation results obtained by implementing the 

described EMS algorithm are presented in this section. Six 

driving missions were used including both standard drive 

cycles (UDDS, HWFET, WLTP, US06) and real-world 

driving missions recorded by the authors including the extra-

urban uphill (RWC uphill) and extra-urban downhill (RWC 

downhill) driving conditions respectively [22]. All the listed 

driving missions have been simulated for the considered 

power-split hybrid electric powertrain while being controlled 

off-line by the multi-objective DP approach. Thirty elements 

are used for the DP grid for each control variable. 

Approximately 40 minutes is required for the DP algorithm to 

run on a desktop computer with Intel Core i7-8700 (3.2 GHz) 

and 32 GB of RAM. 

Several simulations are performed for each driving mission, 

with 𝛼𝑏𝑎𝑡𝑡 ranging from zero (optimization goal OG: fuel 

economy only) to a value large enough to achieve a battery 

lifetime of around 350,000 km. The battery lifetime is 

determined by assuming the corresponding driving mission is 

steadily repeated until battery capacity has decreased by 20%. 

Fig. 3 illustrates the optimal operating power of the 

components of the HEV powertrain in a selected portion of 

WLTP as predicted by DP considering fuel economy as OG. 

On the other hand, optimal time series of battery power and 

battery SOC are compared in Fig. 4 considering fuel economy, 

150k km battery lifetime and 300k km battery lifetime as OGs 

in US06, respectively. The battery lifetime and normalized fuel 

economy for each modeled value of 𝛼𝑏𝑎𝑡𝑡 is finally plotted in 



Fig. 5, showing that when optimizing for greater fuel economy 

the battery lifetime can be reduced substantially.  For example 

for the WLTP profile, an increase in fuel economy of around 

7% reduces the battery lifetime to just 80,000 km. Table III 

reports numerical values for some key points of Pareto 

frontiers for each modeled driving mission. Finally, HEV 

operational statistics such as the root mean square (RMS) of 

battery cell current, friction brake energy, fuel economy,  ICE 

deactivation time and average efficiency are compared 

between key points of the Pareto frontiers for all the driving 

missions in Fig. 6. 

    Looking at results obtaind for the power-split HEV in Fig. 5 

and Table III, the predicted battery lifetime in correspondence 

with 𝛼𝑏𝑎𝑡𝑡 = 0, where the optimization only targets fuel 

economy, is below 100,000 km for all the considered driving 

missions. Battery lifetime can be increased to 300,000 km or 

more, a suitable design lifetime, by progressively increasing 

𝛼𝑏𝑎𝑡𝑡 to place more value on battery lifetime.  The steeper the 

Pareto frontier is for a driving mission in Fig. 5, the more 

beneficial the adopted optimization approach is in extending 

the predicted battery lifetime while limiting the increase in fuel 

consumption. As an example, for the WLTP and HWFET 

cycles the control algorithm can achieve around a four fold 

increase in battery lifetime with a corresponding fuel 

consumption increase of 5.5 % and 1.9 %, respectively.  

The increase in fuel consumption when progressively 

extending battery lifetime can be traced back to three main 

factors as illustrated in Fig. 6, including (1) the increase in the 

usage of friction brakes to decelerate the HEV to reduce high 

values of battery current which result in more ageing, (2) the 

increase in the overall on time of the ICE due to the need to 

balance the power flow in the system with less battery usage 

and hence reduced battery ageing, and (3) the reduction of ICE 

overall efficiency when changing its operational conditions in 

order to preserve battery lifetime. Finally, the results illustrated 

in Fig. 6 show that battery cell RMS current decreases 

substantially as battery lifetime is increased, which correlates 

with the battery ageing plot in Fig. 1. 

VI. CONCLUSIONS 

Battery lifetime is an important aspect to be considered 

when designing EMSs for HEVs. A multi-objective off-line 

EMS for HEVs was developed, which utilizes dynamic 

programming and accounts for both fuel economy and battery 

lifetime. The developed method was applied to a power-split 

electrified powertrain and allows prediction of the battery 

lifetime for different predefined driving missions. 

Consideration of battery ageing in the control method is shown 

to greatly increase battery lifetime while having a minor effect 

TABLE III 
DP RESULTS FOR FUEL ECONOMY AND BATTERY LIFETIME 

Driving mission 

Point #1 (𝛼𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 0) 

Tuned for fuel economy only 

Point #2 (αbattery = 0.01 to 0.5) 

Tuned for ≈150k km lifetime  

Point #3 (αbattery = 0.5 to 6.5)  

Tuned for ≈350k km lifetime 

Fuel economy 

(mpg) 

Battery lifetime 

(thousands of km) 

Fuel economy 

(mpg) 

Battery lifetime 

(thousands of km) 

Fuel economy 

(mpg) 

Battery lifetime 

(thousands of km) 

HWFET 74.8 97 74.8 (-0.0 %) 154 (x 1.6) 73.4 (-1.9 %) 381 (x 3.9) 

UDDS 90.0 90 86.2 (-4.2 %) 149 (x 1.7) 64.7 (- 28.1%) 361 (x 4.0) 

WLTP 66.7 80 66.3 (-0.6 %) 155 (x 1.9) 63.0 (-5.5 %) 376 (x 4.7) 

US06 56.6 10 48.8 (-13.7 %) 157 (x 15.3) 43.1 (-23.9 %) 340 (x 33.1) 

RWC_uphill 45.8 10 43.0 (-6.2 %) 144 (x 14.1) 40.4 (-11.9 %) 373 (x 36.7) 

RWC_downhill 102.2 7 73.9 (-27.6 %) 182 (x 26.2) 57.9 (-43.3 %) 391 (x 56.1) 

 
 

 

 

 
 

Fig. 5 Pareto frontiers for the multi-objective DP over different driving 

missions. 
 

 

αbatt = 6.5

(Optimizing for fuel economy 

and battery lifetime)

αbatt = 0

(Optimizing for fuel economy only)

 
Fig. 3 HEV operation predicted by DP for selected portion of WLTP. 

 

 
 

Fig. 4 Battery power and SOC as predicted by the multi-objective DP in 

US06 for different optimization goals. 

 
 

 



on fuel economy in many cases. For example a 1.9 times 

increase in battery lifetime and only a 0.6% reduction in fuel 

economy was achieved for the WLTP cycle for one 

optimization tuning case.  A range of results are observed when 

tuning the optimization goals to achieve 350k km battery 

lifetime, with a reduction in fuel economy compared to the fuel 

economy only optimization case of between 1.9 and 43.4% for 

the six drive cycles investigated. This numerical approach 

could be implemented in HEV design methodologies, allowing 

designers to develop control algorithms with a suitable trade-

off between fuel economy and battery lifetime. 
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Fig. 6 HEV operational statistics for the multi-objective DP. 
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