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Guide information  
 

What is it about?  

This guide provides protocols for determining the electrical properties of graphene sheets, on insulating 
substrates, using contact methods: that is by physical contacting the graphene surface with metallic 
electrodes. Depending on the methodology the properties that can be measured are the electrical sheet 
conductivity, the concentration and mobility of electrical charge carriers. Each protocol gives advice to 
understand the measurement principle, how to implement it to perform reliable measurements traceable 
to the International System of units, and hints to express the corresponding measurement uncertainty.  

Who is it for?  

The guide is for producers and users of graphene who need to understand how to measure the electrical 
properties of graphene. Such information is essential in a host of technology application areas where 
graphene may be used.  

What is its purpose?  

This guide provides a detailed description of how to determine the key electrical properties of graphene, 
so that the graphene community can adopt a common, metrological approach that allows the comparison 
of commercially available graphene materials. The guide is intended to form a bedrock for future 
interlaboratory comparisons and support the direct collaboration with international standardisation 
organisations.  

What is the pre-required knowledge?  

The guide is for users in research and industry who have experience with and access to the advanced 
techniques described herein. It is targeted at analytical scientists and professionals who have a Bachelor’s 
degree in science. 
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Overview 
 

Introduction 
 
This guide is a deliverable of the Joint Research Project 16NRM01 GRACE --- Developing electrical 
characterisation methods for future graphene electronics. The project belongs to the European Metrology 
Programme for Innovation and Research (EMPIR). GRACE is framed within the Normative targeted 
program, and its overall goal is (1) the development of validated protocols for the measurement of the 
electrical properties of graphene, and their implementation in order to achieve accurate and fast-
throughput measurement of graphene; and (2) the collaboration with international standardisation 
committees in order to initiate and develop dedicated documentary standards for the electrical 
characterisation of graphene. The adoption of this GPGs and, when published, the corresponding 
standards, will allow industry to perform accurate measurements of the electrical properties of graphene 
and thereby provide customers with reliable and comparable specifications of graphene as an industrial 
product. 

 

Scope 
 
The electrical characterisation of graphene, either in plane sheets or in properly geometrised form can be 
approached using methods already employed for thin film materials. The extraordinary thinness (and, 
correspondingly, the volume) of graphene, however, makes the proper application of these methods 
difficult. The electrical properties of interest (sheet electrical resistivity/conductivity, concentration and 
mobility of charge carriers) must be indirectly derived from the measurement outcome by geometrical 
and electrical modelling; the assumptions behind such models (e.g., uniformity and isotropy, effective 
value of the applied fields, etc.) require careful consideration. The traceability of the measurement to the 
International System of units and a proper expression of measurement uncertainty is an issue. 

This guide focuses on contact methods, that is method where the graphene sample surface is physically 
contacted with metallic electrodes. A companion guide about non-contact and high-throughput methods 
is also available. 

The methods discussed are: 

 the in-line four-point probe (4PP); 
 the van der Pauw method (vdP) for sheet resistance measurement; 
 the van der Pauw method for charge carrier mobility measurement; 
 the electrical resistance tomography (ERT); 
 the coplanar waveguide method (CPW).  

For each method, a corresponding measurement protocol is discussed, which describes: 

 the measurement principle; 
 sample requirements and preparation;  
 a description of the measurement equipment / apparatus; 
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 calibration standards and ways to achieve a traceable measurement; 
 environmental conditions to be considered; 
 a detailed measurement procedure, with specific hints to achieve a reliable measurement; 
 modeling and data analysis to determine the electrical property of interest; 
 considerations about the expression of measurement uncertainty. 

 

Terms and Definitions  
 
The international standardisation organisations ISO (International Organization for Standardisation) and 
IEC (International Electrotechnical Commission) have published many standards in the area of 
measurement and characterisation of nanomaterials, particularly referring to some of the techniques 
detailed here. For further information the IEC/TC 113 ‘Nanotechnology in electrotechnical products and 
systems’, ISO/TC 229 'Nanotechnologies', ISO/TC 24/SC 4 'Particle characterization’ and ISO/TC 201 
‘Surface Chemical Analysis’ websites should be examined, which list both the published and under-
development standards in this area.  

Furthermore, ISO and IEC maintain terminological databases for use in standardization:  

 IEC Electropedia: available at http://www.electropedia.org/ 
 ISO Online browsing platform: available at http://www.iso.org/obp 

In particular, the terms and definitions from "ISO/TS 80004-13: Nanotechnologies -- Vocabulary -- Part 13: 
Graphene and related two-dimensional (2D) materials” apply here and should be referred 
to.  

For the purposes of this document, the following terms and definitions apply: 

Graphene; graphene layer; single layer graphene; monolayer graphene  

Single layer of carbon atoms with each atom bound to three neighbours in a honeycomb structure  

Note 1 to entry: It is an important building block of many carbon nano-objects.  

Note 2 to entry: As graphene is a single layer, it is also sometimes called monolayer graphene or single 
layer graphene and abbreviated as 1LG to distinguish it from bilayer graphene (2LG) and few-layered 
graphene (FLG).  

Note 3 to entry: Graphene has edges and can have defects and grain boundaries where the bonding is 
disrupted.  

[Source: ISO/TS 80004-13] 
 

Bilayer graphene (2LG)  

Two-dimensional material consisting of two well-defined stacked graphene layers  
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Note 1 to entry: If the stacking registry is known, it can be specified separately, for example, as “Bernal 
stacked bilayer graphene”.  

[Source: ISO/TS 80004-13] 
 

Few-layer graphene (FLG)  

Two-dimensional material consisting of three to ten well-defined stacked graphene layers 

[Source: ISO/TS 80004-13] 
 

Electrical conductivity, σ 

The SI unit of measure of σ in graphene and 2D materials is the siemens, symbol S. 
 

Sheet resistance, RS 

electrical resistance of a conductor with a square shape (width equal to length) and thickness significantly 
smaller than the lateral dimensions (thickness << width, length) 

Note 1 to entry: The SI unit of sheet resistance is ohms (Ω). However, for the purpose of this procedure, 
expressed as ohm per square (Ω/sq). 

Note 2 to entry: We define here a “sheet resistivity” as the intrinsic, local property of two-dimensional 
conductor, a two-dimensional equivalent to three-dimensional resistivity. For an electrically uniform thin 
film material, the sheet resistance and sheet resistivity are identical. 

[Source: adapted from IEC/TS 61836:2007 Ed. 2.0] 

 

Drift mobility of a charge carrier, µ 

the quotient of the modulus of the mean velocity of the charge carriers in the direction of an electric field 
by the modulus of the field strength. The SI unit of mobility is cm2 / V s. 

Note 1 to entry: The (drift) mobility is here considered to be the fundamental, intrinsic (local) property. The 
Hall and field effect mobility are then the extrinsic (sample) electrical measurements, carried out to 
determine the intrinsic mobility. 

Note 2 to entry: The (drift) mobility for electrons and holes can be very different, depending on the residual 
doping and scattering mechanisms for the given sample. 

[Source: adapted from IEV 521-02-58] 

 
Four-point probe method 

method to measure electrical sheet resistance of thin films that uses separate pairs of current-carrying 
and voltage-sensing electrodes 
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Note 1 to entry: The method is local with a characteristic length scale defined by the probe distance, and 
generally requires the resistivity variations to be on a much larger scale than the probe spacing. Depending 
on the positions of the sample-probe contact of the four probe contacts with the surface, different 
geometrical factors must be used to extract the sheet resistance. 

[Source: adapted from ISO 80004-13, 5.3.1] 

 

Inline four-point probe method 

type of four-point probe measurement where four-point electrodes are aligned in a row 

Note 1 to entry: In this method, four probes contact the test sample in a linear arrangement. A voltage 
drop is measured between the two inner probes while a current source supplies current through the outer 
probes.  

Note 2 to entry: The thickness of the layer needs to be small compared to its lateral dimensions so that the 
sample is approximately two-dimensional.  

Note 3 to entry: The distance between the probes shall be small compared to the lateral dimensions of the 
sample so that edge effects on the electric field in the sample can be neglected.  

Note 4 to entry: The resistance of the sample can be calculated by Ohm's law. Geometrical factors can be 
used for corrections if the sample is too small or if the measurement is performed close to the edges of the 
sample.  

[Source: IEC/TS 62607-6-9] 

 
van der Pauw method 

type of four probe measurement for samples of arbitrary shape 

Note 1 to entry: The thickness of the layer needs to be small compared to its lateral dimensions so that the 
sample is approximately two-dimensional  

Note 2 to entry: The van der Pauw method requires four probes placed arbitrarily around the perimeter of 
the sample, in contrast to the linear four-point probe which is placed on the top of the sample.  

Note 3 to entry: The van der Pauw method provides an average sheet resistivity of the sample.  

[Source: IEC/TS 62607-6-9] 

 
Electrical Resistance Tomography 

method to map the electrical conductivity of thin films that uses several contacts arranged in multiple 
pairs of current-carrying and voltage-sensing electrodes placed on the sample’s boundary 

Note 1 to entry: electrical resistance tomography requires numerical methods in order to recover the sheet 
resistance of the sample from the series of boundary electrical measurements. 
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Coplanar Waveguide measurement at GHz frequency 

method to measure the propagation constant of a linear structure (the CPW) consisting in metallic ground-
planes with graphene as the dielectric. 

Note 1 to entry: From the propagation constant the conductivity (and with geometrical considerations also 
the sheet resistance) of the sample material used placed within the CPW can be retrieved.  
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1 Measurement of sheet resistance of graphene films with in-line 4-
point probe 

 

1.1 General 
This part of the Good Practice Guide describes a method to determine the sheet resistance RS by the in-
line four-point probe method (4PP).  

The sheet resistance RS is derived by measurements of four-terminal electrical resistance performed on 
four electrodes placed on the surface of the planar sample.  

The measurement range for the sheet resistance of the graphene layer shall be in the nominal range of 1 
- 106 Ω/sq.    

The method is applicable for CVD graphene provided it is transferred to quartz substrates or other 
insulating materials as well as graphene on silicon carbide. The method is complementary to the van der 
Pauw method (see chapter 2) for what concerns the measurement of the sheet resistance and can be 
useful when it is not possible to reliably place contacts on the sample boundary.  

1.1.1  Measurement principle 
The 4PP method consists in placing four probes evenly spaced in a straight line on the sample to be 
measured. For ideal conditions no geometrical information is needed to measure RS [1]. To achieve this 
the sample should be a 2D infinite layer, i.e. i) the distance between probes, s, should be ideally negligible 
compared to the dimensions of the sample and ii) the distance x between the probes and the sample edge 
should be large compared to s. To retrieve RS, a current I is applied through the two external probes and 
the voltage V is measured between the internal probe pair. The measured I and V quantities are then used 
to calculate the sheet resistance using a formula. In practice, this formula may contain corrections, 
depending on e.g. sample dimensions, inter-probe distance, distance between the probes and the sample 
edge. 

 

Figure 1.1 – Schematic representation of the four-point probe method 
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1.1.2  Sample preparation method 
The sample is measured as it is delivered by the supplier. No special sample preparation is required. 

The sample has to be as large as possible in order to accomplish to condition of the method of space 
between probes very small compared to dimensions of the sample. For this, measurements on entire 
wafers are preferred respect to measurements on individual dice. Rule of thumb: a finite sample can be 
considered as infinite when the overall width is at least one order of magnitude larger than the probe 
spacing. 

The substrate supporting the graphene layer should be planar and insulating to prevent any contribution 
of the volume resistivity of the substrate. 

1.1.3  Description of measurement equipment / apparatus 
The equipment necessary to carry out measurements with the in line four probes method consist of a 
current source and a voltmeter. Alternatively, both instruments can be replaced by an ohmmeter with 
capability of measuring resistance by the 4-terminal method. The source/measurement range of the 
instrumentation, for measuring monolayer CVD graphene, should be of 1 µA to 1 mA for the current 
source and 1 mV to 1 V for the voltmeter, considering typical 5- or 6-digit commercial instruments. 

Furthermore, the system must include a fixture to properly hold the sample and place the probes in 
position. 

1.1.4  Ambient conditions during measurement 
Being a carbon monolayer, graphene electrical properties are strongly affected by ambient conditions, in 
particular, air humidity [2].  The ambient conditions during the whole duration of the measurement must 
be monitored and recorded. Typical ambient conditions are those of electrical calibration laboratories,      
T = (23 ± 1) °C, RH = (50 ± 4) % but can be chosen from the table 1 in of IEC 60068-1. An air bath may be 
used if it is possible to introduce the sample or the system into it. 

 

1.2  Measurement procedure 
A schematic diagram of the measurement arrangement is presented in the Fig. 1.1.  

1.2.1  Calibration of measurement equipment 
The current source and the voltmeter must be calibrated and within the specified calibration period. 

1.2.2  Detailed protocol of the measurement procedure 
Turn on the equipment before using it the time indicated in manuals. Instrumentation must be let warm 
up according to specifications.  

Place the four measuring probes aligned on the graphene sample, according to Fig. 1.1. The separation 
distance between the probes, s, must be known, as well as the one between the current probes and the 
edge, x. In this way, check if the probes are equidistant and if their position meet the condition x ≥ 4s If 
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so, the simplest case calculations apply. Otherwise correction factors must be calculated. See [3] and [4, 
Sec. 4] and the following discussion. 

 The current to be applied during the 4PP resistance measurement must have a value such as it cannot 
damage the sample, results in value that the voltmeter can measure accurately. Measurement accuracy 
is improved by performing two readings of each measurement of V with two currents equal in nominal 
magnitude and opposite in sign, and by averaging the results; this help to reduce thermoelectric effects 
which introduce systematic errors. 

Repeated measurement of V will allow to estimate the measurement standard deviation. Rule of thumb: 
a reasonable number of repeated measurements should allow to keep the measurement standard 
deviation below 0.1% for this kind of measurement with commercial laboratory grade instruments.   

1.2.3  Measurement accuracy  
 For the definition of uncertainty and related terms used in the following see Ref. [5, Sec. 2.3]. 

The 4PP measurement accuracy depends on: 

– The measurement accuracy, resulting by the combination of the measurement's standard 
deviation (type-A uncertainty) and instruments accuracy specifications (type-B uncertainty) 

–  The ambient conditions knowledge and stability. 
– Other knowledge about the measurement setup configuration, e.g. probes distance and 

placement.  

 

Table 2.1: Example of measurable values for RS, and the corresponding measurement settings and 
type-B uncertainty, when using a current source Keithley 2602B and a voltmeter HP 34420.  

(1y calibration specifications)   

Resistance R / Ω I applied / A I range / µA V meas / V V range / mV Relative type-B 
uncertainty of RS 

1E-02 1.00E-04 100 1E-06 1 1.19E-02 

1E-01 1.00E-05 10 1E-06 1 9.79E-03 

1E+00 1.00E-05 10 1E-05 1 1.43E-03 

1E+01 1.00E-05 10 1E-04 1 5.93E-04 

1E+02 1.00E-05 10 1E-03 10 5.14E-04 

1E+03 1.00E-05 10 1E-02 100 5.18E-04 

1E+04 1.00E-05 10 1E-01 1000 5.18E-04 

1E+05 1.00E-06 1 1E-01 1000 9.18E-04 
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1.2.4  Data analysis / interpretation of results 

Equidistant probes 

In the ideal case, the equations for RS and its uncertainty are as follows: 

  𝑅ୗ =  
௏

ூ
4.5324 …                                                                 (1.1) 

𝑢ோ౏
= ට𝑢A

2 + ∑ 𝑢B
2                                                                 (1.2) 

where: 

uA: is the type-A uncertainty, estimated as the measurement standard deviation. 

uB: is the type-B uncertainty, estimated from the instrumentation specifications. 

𝑢ோ౏
= ට𝑢A

2 + ∑ 𝑢B
2 = ට𝑢m

2 + 𝑢s
2 + 𝑢V

2                                               (1.3) 

where: 

um: Uncertainty due to the spread of the voltage measurements (type-A). 

uI: Uncertainty due to the specifications of the current source (type-B). 

uV: Uncertainty due to the specifications of the voltmeter (type-B). 
 

Non-equidistant probes 

In case of non-equidistant probes, the expression for RS is as follows (adapted from [3, eq. 2.5]) 

𝑅ୗ =
௏

ூ
ቈ

ଶగ
భ

ೞభ
ା

భ

ೞయ
ି

భ

ೞభశೞమ
ି

భ

ೞమశೞయ

቉                                                              (1.4) 

The uncertainty propagation requests to consider the equation (1.4) and implies implicit derivative 
functions: 

𝑢ଶ(𝑅ୗ) = ൬
𝜕𝑅ௌ

𝜕𝑉
൰

ଶ

𝑢ଶ(𝑉) + ൬
𝜕𝑅ௌ

𝜕𝐼
൰

ଶ

𝑢ଶ(𝐼) + ൬
𝜕𝑅ௌ

𝜕𝑠ଵ
൰

ଶ

𝑢ଶ(𝑠ଵ) + ൬
𝜕𝑅ௌ

𝜕𝑠ଶ
൰

ଶ

𝑢ଶ(𝑠ଶ) + ൬
𝜕𝑅ௌ

𝜕𝑠ଷ
൰

ଶ

𝑢ଶ(𝑠ଷ) 

      (1.5) 

Calculating the uncertainty in relative mode and operating: 
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𝑢ଶ(𝑅ୗ)

𝑅ୗ
ଶ = ൦

2𝜋

1
𝑠1

+
1
𝑠3

−
1

𝑠1 + 𝑠2
−

1
𝑠2 + 𝑠3

൪

ଶ

𝑢ଶ(𝑉)

𝑉ଶ
+ ൦

2𝜋

1
𝑠1

+
1
𝑠3

−
1

𝑠1 + 𝑠2
−

1
𝑠2 + 𝑠3

൪

ଶ

𝑢ଶ(𝐼)

𝐼ଶ

+

⎣
⎢
⎢
⎢
⎡ 2𝜋 ቆ

1
(𝑠1 + 𝑠2)2 −

1
𝑠1

2ቇ

൬
1
𝑠1

+
1
𝑠3

−
1

𝑠1 + 𝑠2
−

1
𝑠2 + 𝑠3

൰
2

⎦
⎥
⎥
⎥
⎤

ଶ

𝑢ଶ(𝑠ଵ)

𝑠ଵ
ଶ

+

⎣
⎢
⎢
⎡ 2𝜋 ൬

1
(𝑠1 + 𝑠2)2 +

1
(𝑠2 + 𝑠3)2൰

൬
1
𝑠1

+
1
𝑠3

−
1

𝑠1 + 𝑠2
−

1
𝑠2 + 𝑠3

൰
2

⎦
⎥
⎥
⎤

ଶ

𝑢ଶ(𝑠ଶ)

𝑠ଶ
ଶ

+

⎣
⎢
⎢
⎢
⎡ 2𝜋 ቆ

1
(𝑠2 + 𝑠3)2 −

1
𝑠3

2ቇ

൬
1
𝑠1

+
1
𝑠3

−
1

𝑠1 + 𝑠2
−

1
𝑠2 + 𝑠3

൰
2

⎦
⎥
⎥
⎥
⎤

ଶ

𝑢ଶ(𝑠ଷ)

𝑠ଷ
ଶ  

(1.6) 

Where s1, s2 and s3 are the distances between the probes (see figure 1.1). They depend on the 
specifications and calibration of the length meter. 

Proximity to the edge 

In case of proximity to the edge, but with equidistant probes, the expression for RS, adapted from [6, eq. 
6], is as follows: 

𝑅ୗ =
௏

ூ
቎

ଶగ
భ

ೞ
 ି 
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మ
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 ቏                                                               (1.7) 

Where: 

s= distance between the probes. 

x = distance between the current probes and the edge.  

Derivative functions are requested, too: 
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Calculating the uncertainty in relative mode and operating: 
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ቇ
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⎦
⎥
⎥
⎥
⎥
⎥
⎤

ଶ

𝑢ଶ(𝑥)

𝑥ଶ
 

(1.9) 

Both u(s) and u(x) depend on the specifications and calibration of the used measurement instrument.  

Non-equidistant probes and proximity to the edge 

The case in which both conditions are combined is even more complicated.  See the bibliography for more 
specific references. 

It is not worthwhile to follow this method in this case. It is better, if possible, to rely on the van der Pauw 
method (see chapter 2). 
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2 Measurement of sheet resistance of graphene films with the van 
der Pauw method 

 

2.1  General 
This part of the Good Practice Guide establishes a method to determine the key control characteristics 
sheet resistance RS (measured in Ω/sq), by the van der Pauw method (van der Pauw, 1958). The van der 
Pauw (vdP) method is a technique that can be applied to a sample of arbitrary shape. 

The sheet resistance, carrier mobility and density are derived by measurements of four-terminal electrical 
resistance performed on four electrical contacts placed on the boundary of the planar sample. During the 
resistance measurements, the sample can be in a uniform dc magnetic field perpendicular to the sample 
surface. 

The sheet resistance can be derived with a mathematical expression involving two resistance 
measurements. 

The method assumes a uniform and isotropic carrier mobility and carrier density of the sample. 

The measurement range for the sheet resistance of the graphene layer shall be in the nominal range of 
10-2 – 104 Ω/sq.   

The method is applicable for CVD graphene provided it is transferred to quartz substrates or other rigid, 
insulating materials as well as graphene on silicon carbide. The method is complementary to the in-line 
four-contact method for what concerns the measurement of the sheet resistance and can be applied 
when it is possible to reliably place contacts on the sample boundary. 

2.1.1  Measurement principle 
The measurement principle of the vdP method applied to the assessment of the sheet resistance RS of 
graphene films is based on the measurement of two transresistances, performed on four contacts on the 
sample boundary. A mathematical theorem, derived from conformal mapping theory, relates the 
transresistance of the sample measured in two different configurations with its sheet resistance [1]. The 
problem is practically solved with an explicit formula that has as input the two measured four-terminal 
resistances and as output RS. The method is not sensitive to the sample shape and contacts positioning in 
principle; corrections for real cases exist. 

2.1.2  Sample preparation 
The sample is measured as it is delivered by the supplier. No special sample preparation is required. An 
insulating, planar, material must support the graphene; hence graphene synthesized on conductive 
material must be transferred on an insulating support.  
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2.1.3  Description of measurement equipment / apparatus 
The measurement setup for the measurement of RS with the vdP method consists of: 

– a source of dc current;  
– a voltmeter;  
– a fixture/sample holder; 
– an optional switching system for measurement automation; 
– an optional acquisition and data processing system. 

A block schematic diagram of the typical vdP system is shown in Figure 2.1. The switch connects the 
current source to one pair of contacts, and the voltmeter to the other pair. 

 

Figure 2.1: Scheme of a van der Pauw measurement setup. 

The current source must be able to supply current in the range 1 µA to 1 mA.  

The voltmeter must be able to measure voltage in the range 1 mV to 1 V.  

The sample holder fixture must have purely mechanical contacts. This is in order to avoid additional 
lithographic steps that inevitably would contaminate the sample surface. Contacts probe must be 
adjustable in position and height.  It is recommended to test symmetric samples and place the electrodes 
in symmetric positions.  

The switch must be a 4 × 4 matrix able to connect each terminal of the source and meter to each of the 
contacts on the sample. 

2.1.4  Ambient conditions during measurement 
Being a carbon monolayer, graphene electrical properties are strongly affected by ambient conditions, in 
particular air humidity [2].  The ambient conditions during the whole duration of the measurement must 
be monitored and recorded. Typical ambient conditions are those of electrical calibration laboratories,     
T = (23 ± 1) °C, RH = (50 ± 4) % but can be chosen from the table 1 in of IEC 60068-1. 
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2.2  Measurement procedure 
2.2.1  Calibration of measurement equipment 
The current source and the voltmeter must be calibrated and within the specified calibration period. 

2.2.2  Detailed protocol of the measurement procedure 
Quantities definition:  

Iij : current applied to a pair of contacts entering contact i, and exiting at contact j.  

Vkl : voltage measured between contacts k and l.  

Rij,kl : four-terminal resistance calculated as  Iij / Vkl. 

RS : van der Pauw sheet resistance calculated from Rij,kl. 

In the following we call the four contacts A,B,C,D. The contacts must be placed on the sample in counter 
clock-wise order along the sample boundary (see labels in figure 2.2). 

The four-terminal resistance measurements to be performed are  

𝑅୅୆,େୈ =
௏ిీ

ூఽా
                                                          (2.1) 

𝑅୆େ,ୈ୅ =  
௏ీ ఽ

ூాి
                                                         (2.2) 

These are measured following the configurations reported in figure 2.2-a and –b respectively. 

 

Figure 2.2: Schematic of a typical vdP measurement setup in the two measurement configurations, 
RAB,CD  (a) and RBC,DA  (b). Red leads carry the current Iij, blue ones are used for the measurement of the 

corresponding Vkl. 

Settings and precautions for the measurement of Rij,kl 

– The magnitude of Iij is a trade-off between the need to achieve a Vkl magnitude that can be 
measured with enough accuracy by the voltmeter, and the need to avoid sample heating on the 
contact point. Heating effects can be identified, by performing measurements at two different 
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current levels (e.g., I and 2I) and comparing the measurement outcome. High contact resistance 
may produce sample heating even at low injecting currents. Heating of the sample exposed to the 
laboratory ambient may also cause sample oxidation which could alter irreversibly the sample’s 
properties [3,4].  

– A too large magnitude of Iij can also cause an abrupt breakdown of the sample. It has been 
reported that, for CVD graphene samples having sheet resistance in the range of 1000 Ω/sq the 
breakdown current is in the range of 107 A /cm2 [3,4].  A 100 µA current injected through 50 µm 
diameter needle probe would produce a current density of 4 × 104 A/cm2, well below the reported 
breakdown level. 

– The current source must be set in manual range mode. The current source must be switched on 
with zero current level before connecting the contacts to the sample to avoid any voltage 
transient that could damage the sample.  

– Measurement accuracy is improved by performing two readings of Rij,kl with two currents equal 
in nominal magnitude and opposite in sign, and by averaging the results. 

– Measurement accuracy is improved, and type A contribution to measurement uncertainty 
estimated, by recording time series of individual measurements and computing averages and 
standard deviations. 

Note: for a symmetric sample in principle RAB,CD = RBC,DA hence only a single measurement would be 
necessary (e.g. RAB,CD). In practice samples are never perfectly symmetric in shape and concerning the 
position of the contacts; as a consequence, a two-measurement protocol is suggested.  

 

2.2.3  Measurement accuracy 
The accuracy of the sheet resistance measured with the vdP method depends on the uncertainty of the 
two transresistance measurements. For the definition of uncertainty and related terms used in the 
following see Ref. [5, sec. 2.3]. 

The combined uncertainty 𝑢ோ౏
 is obtained from the type-A and type-B uncertainty components of the 

measurement of Rij,kl. 

𝑢ோ౟ౠ,ౡౢ
= ටቀ𝑢஺,ோ౟ౠ,ౡౢ

ቁ
ଶ

+ ቀ𝑢஻,ோ౟ౠ,ౡౢ
ቁ

ଶ

                                        (2.3) 

Type-A uncertainty uA,Rij,kl, or standard uncertainty, is in this case the standard deviation of the repeated 
series measurement. The type-B uncertainty component uB,Rij,kl, is calculated from the instruments' 
documentation and will depend on the absolute values of the measured transresistance Rij,kl. In table 1 
are reported possible transresistance values and the current and voltage range needed to measure them 
with standard instrumentation. CVD graphene typically shows a sheet resistance within the range of 10 -
100 Ω (shaded rows in table 2.1). 
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Table 2.1: Example of measurable transresistance values for Rij,kl, and the corresponding measurement 
settings and type B uncertainty, using  a current source Keithley 2602B and a voltmeter HP 34420  

(within 1y calibration specifications)   

Resistance R / Ω I applied / A I range / µA V meas / V V range / mV Relative uncertainty 
of R 

1E-02 1.00E-04 100 1E-06 1 1.19E-02 

1E-01 1.00E-05 10 1E-06 1 9.79E-03 

1E+00 1.00E-05 10 1E-05 1 1.43E-03 

1E+01 1.00E-05 10 1E-04 1 5.93E-04 

1E+02 1.00E-05 10 1E-03 10 5.14E-04 

1E+03 1.00E-05 10 1E-02 100 5.18E-04 

1E+04 1.00E-05 10 1E-01 1000 5.18E-04 

1E+05 1.00E-06 1 1E-01 1000 9.18E-04 

 

2.2.4  Data analysis / interpretation of results 

Calculation of RS 

The sheet resistance RS is calculated from RAB,CD and RBC,DA by means of the formula                                         

𝑅ୗ =
గ

௟௡ଶ

ோఽా,ిీାோాి,ీఽ

ଶ
𝑓                                                        (2.4) 

Where f is a numerical factor, function of the ratio RAB,CD / RBC,DA , defined in ref. [1], and reported in 
table in ref [6].  

For the case in which the sample geometry is symmetric, it is expected that RAB,CD / RBC,DA = 1 (f  = 1), and 
the equation (2.4) simplifies as                   

𝑅ୗ =
గ

௟௡ଶ

ோఽా,ిీାோాి,ీఽ

ଶ
                                                           (2.5) 

Further corrections 

Depending on the contacts position (distance from physical edge) and size, further corrections may be 
applied [7, 8, 9].  

For square samples with contacts at the four corners (symmetric samples), in particular: 

– If contacts are placed within a distance d from the border for which the ratio d/D is 0.05, where 
D is the lateral size of the sample, 

– The size of the contact is such that the ratio β/D < 0.1, where β is the contact lateral size and D is 
the lateral size of the sample, 
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no further correction must be calculated, because their entity becomes negligible compared to the 
instrumental accuracy given in table 2.1. The above conditions are very easy to meet with needle probe 
contacts. 

Expression of uncertainty on RS 

The uncertainty 𝑢ோ౏
 of RS depends on the measurement accuracy of RAB,CD  and RBC,DA.   

In the general case of a non-symmetric samples with RAB,CD / RBC,DA ≠ 1 (f >1), the uncertainty shall be 
calculated following the general formula for the propagation of uncertainty [5]                                            

𝑢௚(௫೔) = ට∑ ቀ
డ௚(௫೔)

డ௫೔
𝑢௫೔

ቁ
ଶ

௜                                                               (2.6) 

where g(xi) is an arbitrary function of several variables xi. In the case of vdP method eq. (2.6) reads 

𝑢ோ౏
=

𝜋

2𝑙𝑛2
ඨ(𝑓 ⋅ 𝑢ோాి,ీఽ

)ଶ + (𝑓 ⋅ 𝑢ோఽా,ిీ
)ଶ + ቆ

𝜕𝑓

𝜕𝑅஺஻,஼஽
⋅ 𝑢ோఽా,ిీ

ቇ

ଶ

+ ቆ
𝜕𝑓

𝜕𝑅஻஼,஽஺
⋅ 𝑢ோాి,ీఽ

ቇ

ଶ

 

     (2.7) 

which contains partial derivatives of f which is an implicit function of RAB,CD and RBC,DA [1]. 

In this case two scenarios are possible: 

1) RAB,CD / RBC,DA ~ 1, f ~ 1 and the partial derivatives of f are negligible. 
2) RAB,CD / RBC,DA ≠ 1, the derivative of f is not negligible. 

For the case 1) consider that if RAB,CD  and RBC,DA and are equal within 1%, f is equal to 1 within 0.001% and 
can be neglected [10], RS can be calculated with eq.  (2.5). Hence eq. (2.7) get simplified and the calculation 
of the uncertainty  𝑢ோ౏

 is  

𝑢ோೞ
=

గ

ଶ௟௡ଶ
ට൫𝑢ோಳ಴,ವಲ

൯
ଶ

+ ൫𝑢ோಲಳ,಴ವ
൯

ଶ
                                          (2.8) 

For the case 2) the uncertainty propagation requests to consider the full vdP form eq. (2.4) and implies 
implicit derivative functions calculations of eq. (2.7) not presented here. 

 

2.3  Bibliography 
[1]  L. J. van der Pauw, “Method of measuring resistivity and Hall coefficient on lamellae of arbitrary 

 shape,” Philips Tech. Rev., vol. 20, no. 8, pp. 220–224, 1959. 

[2]  C. Melios, C. E. Giusca, V. Panchal, and O. Kazakova, “Water on graphene: Review of recent 
progress,” 2D Materials, vol. 5, no. 2, 2018. 



  
 

20 
 

[3]  X. Chen et al., “Breakdown current density of CVD-grown multilayer graphene interconnects,” 
IEEE Electr. Device L., vol. 32, no. 4, pp. 557-559, 2012.    

[4]  X. Chen, D. H. Seo, S. Seo, H. Chung, and H. S. P. Wong, “Graphene interconnect lifetime: a 
reliability analysis,” IEEE Electr. Device L., vol. 33, no. 11, pp. 1604 - 1606, 2012.    

[5]  JCGM100:2008, GUM1995, Joint Committee for Guides in Metrology, JCGM100:2008, and 
GUM1995, “Evaluation of measurement data — Guide to the expression of uncertainty in 
measurement,” JCGM 1002008 GUM 1995 with Minor Correct., 2008.  

[6]  A. A. Ramadan, R. D. Gould, and A. Ashour, “On the Van der Pauw method of resistivity 
measurements,” Thin Solid Films, vol. 239, no. 2, pp 272 - 275, 1994. 

[7]  D. S. Perloff, “Four-point sheet resistance correction factors for thin rectangular samples,” Solid-
State Electron., Elsevier, vol. 20, pp. 681-687, 1977.  

[8]  W. Versnel, “Analysis of symmetrical Van der Pauw structures with finite contacts,” Solid-State 
Electron., vol. 21, pp. 1261-1268, 1978 

[9]  R. Chwang, B. Smith, and C. Crowell, “Contact size effects on the van der Pauw method for 
resistivity and hall coefficient measurement,” Solid-State Electron., vol. 17, no. 12, pp. 1217–1227, 
1974. 

[10]  G. Rietveld, et al., “DC conductivity measurements in the van der Pauw geometry,” IEEE Trans. 
Instrum. Meas., vol. 52, no. 2, pp. 449–453, 2003. 

 

  



  
 

21 
 

3 Measurement of charge carrier mobility of graphene films with the 
van der Pauw method with a permanent magnet 

 

3.1  General 

This part of the Good Practice Guide establishes a method to determine the carrier mobility, µ, of a 
graphene sample of arbitrary shape. 

3.1.1  Measurement principle 
The measurement principle of the vdP method [1] applied to the assessment of µ of graphene films is 
based on the measurement of two four-terminal resistances, performed on four contacts on the sample 
boundary, measured without and with applied magnetic field. The algebraic expression that returns µ has 
as input quantities two measured four-terminal resistances, RS measured as described in chapter 2, and 
the intensity of the applied magnetic field B. The method is not sensitive to the sample shape and contacts 
positioning in principle; corrections for real cases exist. 

3.1.2.  Sample preparation 
Same as vdP for the measurement of RS. 

3.1.3.  Description of measurement equipment / apparatus  
The measurement setup for the measurement of µ with the vdP method consists of: 

– a source of dc;  
– a nano-voltmeter  
– a permanent magnet; 
– A Hall probe sensor; 
– a fixture/sample holder; 
– an optional switching system for measurement automation; 
– an optional acquisition and data processing system. 

A block schematic diagram of the typical vdP system is shown in Figure 3.1. The switch connects the 
current source to one pair of contacts, and the voltmeter to the other pair. A seat for a permanent magnet 
is located within the sample holder. 
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Figure 3.1: Scheme of a van der Pauw measurement setup for the measurement of the mobility; the 
sample holder (square) must be able to host a permanent magnet (disc). 

The current source must be able to supply current in the range from 1 µA to 1 mA. 

The voltmeter must be able to measure voltage in the range from 1 nV to 1 V.  

The magnet must be able to produce a magnetic field in the range of 100-1000 mT. 

The sample holder fixture must have purely mechanical contacts to avoid additional lithographic steps 
that inevitably would contaminate the sample surface. Each contact probe must be adjustable in position 
and height.  It is recommended to test symmetric samples and place the electrodes in symmetric 
positions.  

The switch must be a 4 x 4 matrix able to connect each terminal of the source and meter to each of the 
contacts on the sample. 

3.1.4  Ambient conditions during measurement  
Same as vdP for the measurement of RS. 

 

3.2  Measurement procedure 
3.2.1  Calibration of measurement equipment 
The current source and the voltmeter must be calibrated and within the specified calibration period. 

3.2.2.  Detailed protocol of the measurement procedure  

Quantities definition:  

– Iij : current applied to a pair of contacts entering contact i, and exiting at contact j.  
– Vkl : voltage measured between contacts k and l .  
– Rb

ij,kl : four-terminal resistance calculated as  Iij / Vkl  with or without applied magnet b = 0,1.  
– µ : van der Pauw mobility calculated from { Rb

ij,kl  }. 
– B: the magnetic field at sample position. 
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In the following we call the four contacts {A,B,C,D}. The contacts must be placed on the sample in counter 
clock-wise order along the sample boundary (see labels in figure 3.2). 

The four-terminal resistance measurements to be performed are: 

    𝑅୅େ,୆ୈ
଴ =

௏ా ీ

ூఽి
   (B off)                                                (3.1a) 

     𝑅୅େ,୆ୈ
ଵ =

௏ా ీ

ூఽి
  (B on)                                                (3.1b) 

 

These are respectively measured as described in Figure 3.2-a and -b. 

 

Figure 3.2: Measurement configuration without (a) and with (b) the permanent magnet in place. 

Initially, the sample transresistance R0
ACBD is measured without magnetic field by applying a bias current 

IAC and measuring the voltage VBD. Then the Hall effect is induced by placing a permanent magnet (green 
disc) that produces a magnetic field B. The sample transresistance R1

ACBD is measured with the magnetic 
field on. The magnet seat should be accessible without moving the sample. 

The intensity of the magnetic field at the sample position must be measured accurately in order not to 
introduce systematic errors larger than the uncertainty contribution coming from the electrical 
measurements. A Hall probe can be used, which should guarantee enough accuracy. The magnetic field 
intensity should be measured before mounting the sample, by placing the Hall probe sensor in place of 
the sample itself. 
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Settings and precautions to be adopted for the measurement of Rij,kl: 

– The magnitude of Iij is a trade-off between the need to achieve a Vkl magnitude that can be 
measured with enough accuracy by the voltmeter, and the need to avoid sample heating on the 
contact point. Heating effects can be identified, by performing measurements at two different 
current levels (e.g., I and 2I) and comparing the measurement outcome. High contact resistance 
may produce sample heating even at low injecting currents. Heating of the sample exposed to the 
laboratory ambient may also cause sample oxidation which could alter irreversibly the sample’s 
properties [2.3].  

– A too large magnitude of Iij can also cause an abrupt breakdown of the sample. It has been 
reported that, for CVD graphene samples having sheet resistance in the range of 1000 Ω/sq the 
breakdown current is in the range of 107 A /cm2 [2.3].  A 100 µA current injected through 50µm 
diameter needle probe would produce a current density of 4 × 104 A/cm2, well below the reported 
breakdown level. 

– The current source must be set in manual range mode. The current source must be switched on 
with zero current level before connecting the contacts to the sample to avoid any voltage 
transient that could damage the sample.  

– Measurement accuracy is improved by performing two readings of Rb
ij,kl with two currents equal 

in nominal magnitude and opposite in sign, and by averaging the results. 
– Measurement accuracy is improved, and type-A contribution to measurement uncertainty 

estimated, by recording time series of individual measurements and computing averages and 
standard deviations. 

If measurement noise limits the measurement of the Hall voltage, some variant of the measurement can 
be implemented: 

– In some case the transverse voltage drop Vkl is too weak to be measured with acceptable stability 
in dc regime with a nano-voltmeter without increasing the bias current Iij too much. Then Vkl can 
be measured in ac regime with an AC current generator and a phase sensitive detection approach, 
using a lock-in amplifier to measure Vkl. The Lock-in reference channel is fed with a reference 
signal at the same frequency of the current source. Note that the overall accuracy of a lock-in is 
far worse than the accuracy of a dc nano-voltmeter on the other hand. This is recommended only 
in case of measurement noise is a limit to the measurement itself. 

– Another solution to deal with noisy measurements, is to keep a dc current source, and using an 
electromagnetic coil to generate an AC magnetic field. The lock-in amplifier used to measure the 
Hall voltage is referenced to a signal of the frequency of the modulation of the magnetic field. 
Figure 3.3 shows a schematic diagram of the implementation. As in Figure 3.2, measurements are 
performed with and without applied magnetic field. 
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Figure 3.3: Measurement configuration without (a) and with (b) applied magnetic field. 

– If working with an AC current, a frequency dependence test on the transverse voltage Vkl must be 
done to avoid possible errors. 

Note: the same precautions adopted in the static measurement should be taken in account anyway.  

3.2.3  Measurement accuracy  
The accuracy of the mobility measured with the vdP method depends on 1) the accuracy of RS, 2) the 
accuracy on the Hall resistance measurements Rb

ij,kl  and 3) the accuracy of the measurement of the 
magnetic field B. 

For the definition of uncertainty and related terms used in the following see Ref. [4, Sec. 2.3]. 

The uncertainty on RS is expressed in section 2.2.3. 

The combined uncertainty of Rb
ij,kl  is obtained from the type-A and type-B uncertainty components of the 

measurements: 

              𝑢ோ౟ౠ,ౡౢ
್ = ටቀ𝑢୅,ோ౟ౠ,ౡౢ

್ ቁ
ଶ

+ ቀ𝑢୆,ோ౟ౠ,ౡౢ
್ ቁ

ଶ

                                              (3.3) 

Type-A uncertainty 𝑢୅,ோ, or standard uncertainty, is in this case the standard deviation of the repeated 
series measurement. The type-B uncertainty component 𝑢୆,ோ, is calculated from the instruments' 
documentation and will depend on the absolute values of the measured Hall resistance Rb

ij,kl. In table 3.1 
are reported possible Hall resistance values and the current and voltage range needed to measure them 
with standard instrumentation. Depending on the magnetic field intensity, CVD graphene typically shows 
Hall resistance within the range of 0.01 - 1 Ω. 
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Table 3.1: Example of measurable Hall resistance values for Rb
ij,kl (R in column 1), the corresponding 

measurement settings and type-B uncertainty due to the electrical measurement instrumentation, 
when using a current source Keithley 2602B and a voltmeter HP 34420  

(within 1y calibration specifications).   
 

R / Ω I applied / A I range / µA V meas / V V range / mV Relative uncertainty 
of R 

1E-02 1.00E-05 10 1E-07 1 2.05E-01 

1E-01 1.00E-05 10 1E-06 1 2.10E-02 

1E+00 1.00E-05 10 1E-05 1 2.55E-03 

1E+01 1.00E-05 10 1E-04 1 7.05E-04 

1E+02 1.00E-05 10 1E-03 1 5.20E-04 

1E+03 1.00E-05 10 1E-02 10 5.03E-04 

 

The uncertainty on B depends on the type of Hall probe used to the measurement of the field intensity. 
Commercial Hall probe sensors have typically sensitivity of 30 mV/T, which means that for permanent 
magnets of the order of 300 mT, voltage of about 10 mV are measured at the sensor terminals. This means 
that using the same voltmeter used for the other voltage measurements in this protocol the accuracy on 
B would be in the order of 10-4 in relative terms, which means of the same order of 𝑢ோ౏

. 

3.2.4  Data analysis / interpretation of results  
Calculation of the carrier mobility µ 

The carrier mobility µ is given by  

                                  𝜇 =
∆ோ

஻ோ౏
                                                                                                                  (3.4) 

Where ΔR is the resistance difference R0
AC,BD - R1

AC,BD, due to the Hall effect, B is the intensity of the 
magnetic field, and RS is the sheet resistance measured as described in chapter 2. 

Expression of the uncertainty on µ 

The uncertainty uµ of µ depends on the measurement accuracy of RS, ΔRS and B. 

Concerning RS, for uncorrelated RAB,CD  and RBC,DA that are equal within 1%, f is equal to 1 within 0.001% 
and can be neglected [10], RS can be calculated with eq. (2.4). Hence eq. (2.6) gets simplified and the 
calculation of the uncertainty  𝑢ோ౏

  is  

      𝑢ோ౏
=

గ

ଶ௟௡ଶ
ට൫𝑢ோాి,ీఽ

൯
ଶ

+ ൫𝑢ோఽా,ిీ
൯

ଶ
                                               (3.5) 

 

Note: For the case of correlated transresistances RAB,CD and RBC,DA the uncertainty propagation requests to 
consider the full vdP form eq. (2.4) and implies implicit derivative functions calculations as in eq. (2.7). 
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As regards ΔR, the combined uncertainty 𝑢∆ோೞ
 is the sum of the combined uncertainties of  R0

AC,BD and 
R1

AC,BD  

                  𝑢∆ோೞ
= ටቀ𝑢ோಲ಴,ಳವ

బ ቁ
ଶ

+ ቀ𝑢ோಲ಴,ಳವ
భ ቁ

ଶ

                                                   (3.6) 

The uncertainty on B, 𝑢஻, can be expressed as the type B uncertainty of the Hall voltage measurement at 
the output terminal of the Hall probe. 

Hence the combined uncertainty on µ is  

            𝑢ఓ = ට𝑢ோೞ

ଶ + 𝑢∆ோ
ଶ + 𝑢஻

ଶ                                                           (3.7) 

Looking at table 3.1 chapter 3, it can be seen that 𝑢∆ோೞ
 is likely to be larger than  𝑢ோ౏

 and 𝑢஻.   
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4 Electrical Resistance Tomography of graphene layers 
 

4.1  General 
This part of the Good Practice Guide describes a method to determine the key control characteristic sheet 
resistance RS (measured in Ω/sq) using electrical resistance tomography (ERT). This method is applicable 
for measuring the spatial distribution of the conductivity, σ(x,y), expressed in units of siemens S, of 
graphene films supported on a rigid insulating material and evaluate the sheet resistance RS as the map 
average of σ(x,y). The technique is non-destructive and does not require lithographic steps [1].   

With this method a map of σ(x,y) is obtained from a series of four-terminal electrical transresistance 
measurements made on the sample surface. This method allows direct metrological traceability to the SI. 
The method is applicable for graphene grown by CVD on Si/SiO2 or transferred on any rigid, insulating 
substrate. The spatial resolution of ERT is limited by the number of electrodes (e.g. for a 16-electrode 
array on a 1 × 1 cm2 sample it is about 400 µm). The map resolution can be increased by placing more 
electrodes. The measurement range for the sheet resistance RS of the graphene layer shall be in the 
nominal range of 10 – 5 × 103 Ω/sq.  

4.1.1  Measurement principle 
The electrical resistance tomography is based on the solution of an electrostatic problem in which the 
conductivity distribution of an object is estimated based on boundary transresistance measurements 
[2,3]. By means of iterative numerical methods, starting from a guess conductivity distribution, the final 
σ(x,y)  is reconstructed [3,4]. To do that, the difference between the measured transresistance and 
calculated values at each step are minimized. The outcome of ERT (measurements + calculations) is a 
conductivity map - a color map of σ(x,y),  which is also called reconstructed image in the following, from 
the spatial average reciprocal of which the sheet resistance RS is obtained. 

4.1.2  Sample preparation method 
The sample is measured as it is delivered by the supplier. No special sample preparation is required. An 
insulating, planar, material must support the graphene; hence graphene synthesized on conductive 
material must be transferred on an insulating support. 

4.1.3  Description of measurement equipment / apparatus 
The measurement setup for the ERT method consists of: 

– a source of dc current;  
– a voltmeter;  
– a fixture/sample holder; 
– a switching system for measurement automation; 
– an acquisition and data processing system. 

 

A schematic of an ERT probe configuration and a picture of a probe fixture are respectively shown in Figure 
4.1-a and -b. The ERT fixture consists of n spring-mounted metal needle probes with uniform tip radius. 
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Measurements are performed in several 4-contact configurations. The current source (I) supplies current 
through a pair of probes, and a voltmeter (V) measures the voltage across another pair of probes to 
measure the sample transresistance. A relay switch provides the different combinations of 4-terminal 
measurements. The current source, voltmeter and switch are commercially available, while the sample-
holder is custom. The measurements are automated with remote instruments programming [5]. 

 

Figure 4.1 – Scheme of the experimental setup (a) and a picture of the sample-holder with the contact 
fixture on top (b) sample is seated in the plastic block between the black base and the aluminium 

head 

The current source must be able to supply current in the range 100 nA to 1 mA with proper accuracy.  

The voltmeter must be able to measure voltage in the range 1 µV to 100 mV with proper accuracy.  

The sample holder fixture must have purely mechanical contacts. This in order to avoid additional 
lithographic steps that inevitably would contaminate the sample surface. Contact probes should be 
adjustable in position and height. Contact-fixture should be engineered in order to place the contacts as 
near as possible to the sample’s boundary. This because even though ERT does not require strictly 
boundary measurements, the information of the outermost area would be lost in during the image 
reconstruction. The switch must be a 4 × n matrix able to connect each terminal of the source and meter 
to each of the n contacts on the sample. 

4.1.4  Ambient conditions during measurement 
Being a carbon monolayer, graphene electrical properties are strongly affected by ambient conditions, in 
particular the humidity [6].  The ambient conditions during the whole duration of the measurement must 
be monitored and recorded. Typical ambient conditions are those of electrical calibration laboratories, T 
= (23 ± 1) °C, RH = (50 ± 4) % but can be chosen from the table 1 in of IEC 60068-1. 
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4.2  Measurement procedure 
4.2.1  Calibration of measurement equipment 
The current source and the voltmeter must be calibrated and within the specified calibration period. 

4.2.2  Detailed protocol of the measurement procedure 
Input quantities for the ERT numerical solvers are a series of transresistance measurements that can be 
obtained following a so-called stimulation/measurement pattern [7]. 

To perform the measurements the sample is placed into an engraved seat (e.g. the plastic block in figure 
4.1-b). The probe tips contact the sample through adjustment of the height of the stage by a lever. Physical 
contact between the point probe and sample surface is assured by the probe’s springs action with a travel 
of 1 mm.  

Quantities definition:  

– Iij : current applied to a pair of contacts entering contact i, and exiting at contact j.  
– Vkl : voltage measured between contacts k and l.  
– Rij,kl : four-terminal resistance calculated as  Iij / Vkl .  

In the following we label the contacts with integers i,j,k,l form 1 to n. The contacts are placed on the 
sample boundary (see labels in figure 4.1-a). 

The four-terminal resistance measurements to be performed are of the type          

               𝑅௜௝,௞௟ =
௏ೖ೗

ூ೔ೕ
                                                                          (4.1) 

Typically, in ERT, a so-called adjacent/adjacent stimulation/measurement pattern (AD/AD) is followed. In 
the AD/AD protocol, one pair {i,j} of adjacent contacts is used to inject the current Iij, while another pair 
{k,l} is used to measure the voltage. Depending on the number of electrodes, the total number of 4-
terminal measurements with the AD/AD pattern is N= n(n-3), where n is the number of electrodes. The 
electrode number is n = 16 in the present case so N = 208.  

In figure 4.1 is represented one of the 208, 4-terminal measurement configurations, corresponding to the 
measurement R15,16;8,9, I.e. current supplied through contacts {15,16} and voltage measured at pair {8,9}. 

Settings and precautions to be adopted for the measurement of Rij,kl: 

– The magnitude of Iij is a trade-off between the need to achieve a Vkl magnitude that can be 
measured with enough accuracy by the voltmeter, and the need to avoid sample heating at 
contacts. Heating effects can be identified, by performing measurements at two different current 
levels (e.g., I and 2I) and comparing the measurement outcome. High contact resistance may 
produce sample heating even at low injecting currents. Heating of the sample exposed to the 
laboratory ambient may cause sample oxidation which would change the measurement outcome 
[8,9].  
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– A too large magnitude of Iij can also cause an abrupt breakdown of the sample. It has been 
reported that, for CVD graphene samples having sheet resistance in the range of 1000 Ω/sq the 
breakdown current is in the range of 107 A /cm2 [8,9].  A 100µA current injected through 50 µm 
diameter needle probe would produce a current density of 4 × 104 A/cm2, well below the reported 
breakdown level. 

– The current source must be set in manual range mode. The current source must be switched on 
with 0 A level before connecting the contacts to the sample to avoid any voltage transient that 
could damage the sample.  

– Measurement accuracy is improved by performing two readings of Rij,kl with two currents equal 
in magnitude and opposite in sign, and by averaging the results. 

– Measurement accuracy is improved, and type A contribution to measurement uncertainty 
estimated, by recording time series of individual measurements and computing averages and 
standard deviations. 

4.2.3  Measurement accuracy 
ERT is a multi-parametric optimization problem. This makes complex to trace the accuracy of the 
reconstructed σ(x,y) map and hence of RS to the measured transresistance series. Moreover, 
regularization techniques tend to smooth the solution and limit the spatial resolution. This implies that 
sharp changes in resistance (which are likely in graphene) will be always relatively smeared out on the 
map. This represents an additional problem in the assignment of an accuracy value to each pixel of the 
map. 

Nevertheless, the lower is the measurement noise, the lower is the minimum required regularization and 
the more reliable is the reconstructed map. Hence accurate electrical measurements should guarantee, 
provided a correct numerical treatment, the optimal image reconstruction. 

At least it is possible to consider the overall transresistance measurements accuracy as an indicator of an 
accurate reconstruction.  

Accuracy on the transresistance measurement can be calculated as for the vdP method. Transresistance 
measurements with accuracy better than 0.1 % in relative terms are enough to perform ERT without 
limitations due to the electrical measurements. 

4.2.4  Data analysis / interpretation of results 
ERT image reconstruction can be obtained with several numerical approaches [10,11,12]. A finite element 
model (FEM) of the sample geometry and contact placement must be generated. The mesh must be dense 
enough (element size ~ 10% of the interelectrode distance). The model is used to calculate projected 
transresistances, Rp, starting from a guess σ0(x,y) distribution  (e.g. initially uniform). Iteratively the 
difference between the projected transresistances and the measured ones (Rm) is minimized and the 
distribution σi(x,y) is updated until a threshold is reached. The problem of guessing R(x,y) from the 
transresistance data is called ill-posed [2,3]. To deal with ill-posed nature of the problem, it must be 
regularized, and the optimization problem reads  

                               min
஢

ฮ𝑅୫ − 𝑅୮(𝜎)ฮ
ଶ

+ 𝜆‖𝐌‖ଶ

 
                                                     (4.3) 
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Where λ is the regularization parameter, and the matrix M is the regularization term which imposes 
bounds on the solution and also may contain prior information about the expected σ(x,y). With a too small 
λ the image reconstruction may fail. Increasing the regularization term has the effect of damping the 
effects of noise in the solution of the inverse problem, but also smooths the reconstructed image. A too 
large λ yields flat and featureless images. 

The choice of the regularization term is then critical for a meaningful reconstruction; many methods exist 
to search for the optimal regularisation term given a model and a data set. For a review see refs [12, 13]. 

A typical ERT map of a monolayer 1 × 1 cm2 CVD graphene sample  interpolated to a 100 × 100 pixel grid 
is shown in figure 5.1. 

Figure 4.2 – Conductivity map of a 1 × 1 cm2 CVD graphene sample reconstructed with ERT. The colour 
scale represents the conductivity distribution. Adapted from Sci. Rep. 9, 10655, 2019 [1]. 

 

The map in figure 5.1 was obtained using the MATLAB routines library EIDORS [4] that includes all the 
functions to perform the following steps and obtain a sheet resistance map are: 

3) Make a FEM of the sample and contacts 
4) Define a stimulation/measurement protocol coherent with the experiment 
5) Chose a forward solver to calculate the Rp transresistances at each iteration 
6) Chose an inverse solver and M to define and minimize the functional (4.3) 
7) Set the regularization parameter λ 
8) Evaluate RS = 1/<σ(x,y)>, where < . > represent the spatial average. 
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5 Measurements with the coplanar waveguide method 
 

5.1  General 
This part of the protocol establishes a standardized method to determine the key control characteristic 
sheet resistance RS using the Co-Planar Waveguide (CPW) method. The method is applicable for graphene 
grown by CVD on or transferred to quartz substrates or other insulating materials as well as graphene on 
silicon carbide. The measurement range for the sheet resistance of the graphene layer shall be in the 
nominal range of 102 – 104 Ω/sq. 

The measurement can be performed in two configurations:   

1) Series configuration: graphene constitutes the central line of the CPW.  

2) Shunt configuration: graphene is the CPW dielectric.  

Which method is preferable is determined by the graphene conductivity σ.  

5.1.1  Measurement principle 
A coplanar waveguide consists of a strip of thin metallic film on the surface of a dielectric slab with two 
ground electrodes running adjacent and parallel to the strip. Practical applications of the coplanar 
waveguides have been experimentally demonstrated by measurements on resonant isolators and 
differential phase shifters fabricated on low-loss dielectric substrates with high dielectric constants [1]. 
Low-loss dielectric substrates with high dielectric constants may be employed to reduce the longitudinal 
dimension of the integrated circuits because the characteristic impedance of the coplanar waveguide is 
relatively independent of the substrate thickness. The measurement of the S-parameters by means of 
vector network analysers (VNA) allows to recover the ac conductivity of graphene when it is made part of 
the CPW itself [2,3]. 

5.1.2  Sample preparation method 
Graphene CPW samples are prepared by geometrization (typically by lithography) and deposition of metal 
contacts. The contacts are shaped as a CPW. Two different configurations of samples are possible (see Fig. 
5.1 and Sec. 5.2.2), they can be realised using the same lithographic methods. The graphene to be 
measured constitutes either the whole or a part of the central conductor of the CPW (in the "series" 
geometry) or fills the spacing between the CPW lines (in the "shunt" geometry). An example of 
lithographic process is reported in Ref. [2]. 

5.1.3  Description of measurement equipment / apparatus 
CPW is a two-port rf network. The instrument that allows to measure the electrical parameters of a n-port 
network in a wide frequency range is the Vector Network Analyzer (VNA). The basic architecture of a VNA 
involves a signal generator, one or more detectors, directional couplers and switches. A test signal, which 
is typically a sinewave swept in frequency in a given bandwidth, is applied to one port (either port 1 or 
port 2); reflected signal by the same port and the transmitted signal to the other port are measured in 



  
 

35 
 

magnitude and phase. In the S-parameter representation, the properties of the network being measured 
are given as a scattering parameter matrix S = [S11, S12; S21, S22]. S is a complete representation of the 
(linear) two-port network. Other representations of a network are the impedance matrix Z and the 
admittance matrix Y. All representations are linked through matrix mathematical expressions. 

Standard VNA is provided with coaxial ports. The measurement on planar devices as a CPW is performed 
with a probe station, a mechanical device which allows to position and align two mechanical probes on 
the CPW. Each probe converts the coaxial transmission line connected to the VNA to a planar transmission 
line compatible with CPW geometry. The most common probe has a Ground-Signal-Ground geometry 
which adapts to the CPW geometry. 

5.1.4  Calibration standards 
VNA calibration is the process of determining the VNA systematic measurement errors, which are called 
error coefficients. The process is based on a VNA error model. A VNA error model relates the values 
indicated by the VNA (raw S-parameters) to the S-parameters of the device connected to the test port of 
the VNA. Part of this mathematical relationship are the unknown error coefficients. During VNA 
calibration, a set of known calibration standards is measured, and the error coefficients are determined. 
They can then be used to transform the raw S-parameters of a DUT measurement into corrected S-
parameters, a step which is usually being referred to as VNA error correction. 

Wafer calibration standards are provided to calibrate the VNA together with the probes and define a 
reference plane for the measurements at the probe tips.  

Several types of wafer calibration standards are available: SOLT (short - open - load - thru); an alternative 
to SOLT is the SOLR (short - open - load - reciprocal, also known as Unknown Thru) calibration. TRL 
(through - reflect - line) is employed in the higher frequency range.   

5.1.5  Ambient conditions during measurement 
Being a carbon monolayer, graphene electrical properties are strongly affected by ambient conditions, in 
particular the humidity [2].  The ambient conditions during the whole duration of the measurement must 
be monitored and recorded. Typical ambient conditions are those of electrical calibration laboratories,      
T = (23 ± 1) °C, RH = (50 ± 4) % but can be chosen from the table 1 in of IEC 60068-1. 

 

5.2  Measurement procedure 
The electrical properties of graphene modify the characteristic impedance and the propagation constant 
of the CPW. The CPW S-matrix is measured with the VNA. A mathematical model is employed to recover, 
from the S matrix and the geometrical dimensions of the CPW, the conductivity and permittivity of 
graphene. 

5.2.1  Calibration of measurement equipment 
VNA and probe station calibration are performed with a wafer calibration kit, which includes several 
microwave structures having a certified S-matrix. Modern VNA software applications are available that 
guide the operator through the VNA calibration steps and the subsequent measurement.  
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Manufacturer operation manual should be followed for compatibility between the specific calibration kit 
and the VNA probe of choice. For example, when using calibration kits with aluminium metallization, the 
probe pads must break through the aluminium oxide and therefore hard-metal (nickel or tungsten) probe 
tips are required.   

The calibration is part the measurement procedure. The geometry of the calibration kit structures 
employed in the calibration is dependent on the geometry of the CPW under measurement. 

5.2.2  Detailed protocol of the measurement procedure 

Single CPW 

When the sample includes a single CPW, the VNA must be calibrated in order to define the reference 
planes at the level of the CPW ports.   

– The probes are mounted on the probe station holders. 
– The sample (or, in the calibration phase, the calibration kit) is positioned on the probe station 

under the optical microscope, focusing on the sample (the probes tips if in the field of view, should 
appear out of focus) 

– The probes are positioned above the sample at a significant vertical distance, to avoid lateral 
scratching -- which would damage both the probes and the sample. Once positioned above the 
pads, the probes are slowly lowered on the sample. While approaching the sample, the probes 
enter the focus plane of the microscope field of view. Lateral adjustment of the position can be 
made in order to land the probe on the desired position on the sample pads. The contact between 
the probes and the sample can be checked by looking at the VNA response.  

– The calibration procedure is performed. The sequence depends on the geometry and the 
calibration method implemented in the VNA software. The calibration can involve one or both 
ports, depending on the measurement chosen (one- or two-port scattering parameters). 

– The probes are raised, and the calibration kit is replaced with the sample. The probe approach 
sequence is repeated. 

– The measurement starts. The VNA performs a sequence of excitation and measurements at the 
two ports and recovers the individual components of the scattering parameter matrix.  

– At the end of the measurement, the measurement software displays the frequency dependence 
of the scattering parameter matrix elements with the desired representation (bode diagram, 
Smith chart).  

Multiple CPW with different lengths 

The sample may be provided with several CPW lines having different lengths (with all other geometrical 
parameters kept equal), see Fig. 5.2. If this set of structures is available, the material properties can be 
extracted without the need to perform a VNA calibration, since an accurate determination of the VNA 
reference planes is not necessary and raw measurement data can be used as input of the measurement 
model. 
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  a)                    b) 

Figure 5.1 – Possible CPW configurations of different lengths for the characterisation of graphene. 
Series (a) and shunt (b) configurations are shown, graphene in black, metal in yellow, quarts substrate 

in light blue. 

5.2.3  Measurement accuracy 
The EURAMET Guide on calibration of VNA [4] gives lists the quantities which mainly affect the 
measurement of S-parameters accuracy:  

– Characterization of calibration standards 
– VNA noise floor and trace noise  
– VNA non-linearity 
– VNA drift 
– Isolation (cross-talk) 
– Test port cable stability  
– Connection repeatability 

When performing measurements on individual CPWs the measurement accuracy is affected by the 
determination of the reference planes in the course of the calibration phase: the distance between the 
reference planes should match the distance between the physical landing points of the probe fingers, and 
the CPW should not extend beyond these planes.  Hence, an accurate positioning of the probes at the 
CPW ports is essential. 

For the specific case of multiple-length CPW (see 5.2.2), since no calibration is performed, the absolute 
distance between reference planes is not determined, and only differences in the reference plane spacing 
for the measurements on the various CPW lengths is considered in the measurement model.  

5.2.4  Data analysis / interpretation of results 
Several CPW calibration and measurement methods are available. As an example, we give here a summary 
of the measurement model that can be employed for the multiple-length CPW described in 5.2.2, see [5]. 
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Consider the case of two CPW lines of lengths L1 and L2 (and otherwise identical). The two transmission 
matrices T(L1) and T(L2) can be computed from the measured scattering parameter matrices S(L1) and S(L2) 
[5]. 

The transmission matrix of a CPW with equivalent length L= L2-L1 can be computed with the cascade rule:   
P1 --- L1 ---- L ---- P2, 

T(L2) = T(L)•T(L1),                                                                   (5.1) 

hence 

T(L) = T(L2)•T-1(L1).                                                                 (5.2) 

 

The complex propagation constant of a CPW of length L is 𝛾 = 𝛼 + j𝛽, where 𝛼 is the line attenuation 
(dependent on the resistivity) and 𝛽 is the line phase constant (a measure of the speed of the 
electromagnetic waves, related to the refractive index) [1, 6].  

The quantity 𝛾 can be computed from the eigenvalues of T(L), see sec. IV of [1] for the extended solution 
of the eigenvalue problem. 

Once 𝛾 is computed from T(L), 𝛼 can be obtained.  The relation between 𝛼 and the conductivity of the 
graphene included in the DUT can be retrieved from the relations reported in [7]. 
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Conclusions  
Using this guide, users with previous characterisation expertise within industry can more reliably, 
quantitatively and comparably measure the electrical properties of commercially supplied graphene.  

This guide forms the basis for future international standards in this area, specifically, standards currently 
under development within IEC/TC 113 ‘Nanotechnologies’ for the characterisation of the electrical 
properties of graphene. This will lead to the continual improvement in the measurement of the electrical 
properties of graphene, as well as reveal any reproducibility issues in performing these graphene 
measurements in different laboratories across the world.  
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