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Modelling physical limits of migration by a kinetic model

with non-local sensing

Nadia Loy ∗

Luigi Preziosi†‡

February 28, 2020

Abstract

Migrating cells choose their preferential direction of motion in response to different signals
and stimuli sensed by spanning their external environment. However, the presence of dense
fibrous regions, lack of proper substrate, and cell overcrowding may hamper cells from mov-
ing in certain directions or even from sensing beyond regions that practically act like physical
barriers. We extend the non-local kinetic model proposed by Loy and Preziosi (2019) to in-
clude situations in which the sensing radius is not constant, but depends on position, sensing
direction and time as the behaviour of the cell might be determined on the basis of informa-
tion collected before reaching physically limiting configurations. We analyse how the actual
possible sensing of the environment influences the dynamics by recovering the appropriate
macroscopic limits and by integrating numerically the kinetic transport equation.

Keywords: Biased cell migration, Extracellular matrix, Taxis, Physical limit of migra-
tion.

1 Introduction

During their motion, cells sense the external environment thanks to their protrusions which may
extend up to several cell diameters. The captured chemical or mechanical signals activate trans-
duction pathways inside the cell leading to the cell response which consists in (i) the formation of
a “head” and a “tail”, (ii) in the triggering of actin polimerization at the front edge and depolar-
ization at the rear of the cell, and (iii) in the activation of adhesion molecules and traction forces
leading eventually to motion (Abercrombie and Heaysman, 1953; Adler, 1966; Block et al., 1983).
The above steps can be somewhat distinguished in polarization and mobility mechanisms. For
instance, Devreotes and Janetopoulos (2003) showed that D. Discoideum cells polarize in response
to cAMP even when treated with inhibitors of the cytoskeleton, such as latrunculin A, that inhibit
cell motion.

After external stimuli determine the preferential direction of a cell, in addition to internal
causes, other environmental cues may promote or hamper the movement in that direction, such as
the cell density. For instance, the presence of other cells influences cell migration in a two-fold way.
On one hand cells may be attracted due to the mutual interaction of transmembrane adhesion
molecules (e.g ., cadherin complexes). On the other hand, cells may stay away from too crowded
regions or just lean on the boundaries of those regions. Another important migration determinant
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is the extra-cellular matrix (ECM), i .e. the network of macro-molecules (such as proteoglycans,
collagen, fibronectin, and elastin) representing one of the main non-cellular component of all
tissues and organs. In fact, it provides cells with a physical scaffold. Its density, stiffness, and
microstructure highly influence the behaviour of cells and in particular their migration mode
(te Boekhorst et al., 2016). Again, the presence of ECM is necessary to form focal adhesion sites
through the activation of integrins that are used by the cell to exert traction forces, but if it is too
dense it might represent a steric obstacle to cell motion.

In particular, experiments (see, for instance, Schoumacher et al. (2010); Shankar et al. (2010))
show that while the cytoplasm is very flexible and able to accommodate nearly any pore size
(including 1µm2 gaps in collagen gels and 0.8µm2 pores of polycarbonate membranes), the cell
nucleus is five- to ten-fold stiffer than the surrounding cytoplasm and, with a typical diameter of
3 − 10µm, might be larger than the ECM fiber spacing (Davidson et al., 2014). During MMP-
independent migration (i .e., when the proteolytic machinery is inhibited) and in spite of cell
cytoplasm protrusions into the ECM trying to pull the nucleus through a pore, the stiff nucleus
may be unable to squeeze through narrow pores, setting a critical pore size below which MMP-
inhibited cells remain trapped (Wolf et al., 2013). This phenomenon is named physical limit
of migration and it has been recently studied from the modelling point of view by Scianna et al.
(2013); Scianna and Preziosi (2013, 2014) using cellular Potts models and by Arduino and Preziosi
(2015); Giverso et al. (2014, 2017) using continuum mechanics methods.

The aim of this article is to include such effects extending the kinetic model developed by
Loy and Preziosi (2019), where possibly independent cues are sensed by cells in a non-local way
and used to determine respectively cell polarization and speed. The transport kinetic equation
implements then a velocity jump process that describes the movement performed by the cell as an
alternation of runs over straight lines and re-orientations (also called tumbles or turnings) (Stroock,
1974), also considering the bias induced by external stimuli, as done by Alt (1980) and Othmer
et al. (1988). Such an equation describes the evolution of a single-particle density distribution like
in the Boltzmann equation (Cercignani, 1987). The main elements of the velocity-jump process
are the tumbling frequency, the mean speed, and the transition (also called turning or tumbling)
probability that describes the probability of choosing a certain velocity after re-orientation. The
mean speed, mean runtime (which is the inverse of the frequency), and the tumbling probability
may be measured from individual patterns of members of the population.

In the literature many models considered different sensing strategies and their relation to the
determination of cell re-orientation and speed. Focusing on non-local aspects, tipically in position
jump processes the transition probabilities depend on the acquisition of information sensed at a
certain location (e.g . at the target or at the present location) or by averaging the signal over a
certain neighborhood as done by Othmer and Stevens (2001) and by Painter and Sherratt (2003).

In general, a way of including cell sensing is to consider a non-local average of the external
fields. Othmer and Hillen (2002) and Hillen et al. (2007) introduced a finite sensing radius and
defined a non-local gradient as the average of the external field on a surface which represents
the membrane of the cell. This idea was also used for cell adhesion and haptotaxis by Armstrong
et al. (2006) yielding a macroscopic integro-differential equation. Buttenschön et al. (2018) recently
derived this type of models from a space jump process. Other macroscopic models describing cell
migration with non-local measures of the environment were proposed by Painter et al. (2010,
2015); Painter and Hillen (2002). Schmeiser and Nouri (2017) considered a kinetic model with
velocity jumps biased towards the chemical concentration gradient. Similar equations were also
proposed in 2D set-ups by Colombi et al. (2015, 2017), and applied to model crowd dynamics and
traffic flow for instance by Tosin and Frasca (2011). Eftimie (2012) and Carrillo et al. (2015) also
proposed a non-local kinetic models including repulsion, alignement and attraction and used it for
modelling tumor dynamics (Eftimie et al., 2017) and cell polarisation in heterogeneous cancer cell
populations (Bitsouni and Eftimie, 2018).

In Loy and Preziosi (2019) the transition probability of the transport equation models the
probability of choosing a certain velocity direction and speed according to an environmental sens-
ing over a finite neighbourhood of the cell, giving the kinetic model a non-local character. In
particular, a double bias is considered, as cells perform a double sensing both of a tactic cue in-
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fluencing the probability of polarizing in a certain direction and of an environmental cue, usually
of mechanical origins, affecting its speed in the polarization direction. For instance, in presence
of a chemoattractant giving a preferential direction of motion, a volume filling effect can hamper
the motion in a certain direction due to cell overcrowding.

In the present work, then, the focus is on how to include in kinetic models the effect of physical
limits of migration. These include the dependence of the sensing radius on physical characteristics
of the environment and on the spatial distribution of cells, that might even hamper the real
possibility of cells of measuring in a certain region. In particular, this means that the interval
with valuable information to determine cell motion, depends on space, time and direction of
sensing. We also discuss how limiting the sampling volume determines the type of macroscopic
limit that can be performed.

With this aim in mind, the plan of the article is then the following. In Section 2 the kinetic
modelling framework is introduced and then specialised to the case of physical limits of migration
in Section 3. In particular, the concept of limitation of sensing radius and its effect on motility is
qualitatively described. Section 4 focuses on deducing the appropriated macroscopic limit of the
kinetic model showing that in presence of physical limits of migration the macroscopic speed does
not vanish in general and therefore the appropriate limit is hyperbolic. Section 5 starts analysing
the model from a simpler case in which there is no cue determining a preferred polarization in
space, e.g ., no chemotaxis, but only mechanical cues influencing cell speed. Simulations of the
kinetic model are performed focusing on volume filling effects in Section 5.1 and on cell-ECM
interactions in Section 5.2. A particular attention is paid to pointing out what is the effect of
different modelling assumptions and how some choices might lead to non-physical results. Then,
in Section 6 chemotaxis and cell-cell adhesion are added as mechanisms influencing cell polarization
in order to consider the simultaneous presence of physical limits of migration and cell polarization.
A final section draws some conclusions pointing out to other open issues.

2 Modelling framework

Let us describe the cell population through the distribution density p = p(t,x, v, v̂) parametrized
by the time t > 0, the position x ∈ Ω ⊆ Rd, the speed v ∈ [0, U ], where U is the maximal speed a
cell can achieve, and the polarization direction v̂ ∈ Sd−1 where Sd−1 is the unit sphere boundary
in Rd. The choice of representing the distribution function p depending on velocity modulus and
direction, instead of the velocity vector v = vv̂, lies in the need of separating the mechanisms
governing cell polarization and motility, for instance in response of chemotaxis and in presence of
other factors, typically of mechanical origins, influencing cell speed.

The mesoscopic model consists in the transport equation for the cell distribution

∂p

∂t
(t,x, v, v̂) + vv̂ · ∇p(t,x, v, v̂) = J [p](t,x, v, v̂) (1)

where the operator ∇ denotes the spatial gradient. The term J [p](t,x, v, v̂), named turning
operator, is an integral operator that describes the change in velocity which is not due to free-
particle transport. It may describe the classical run and tumble behaviors, contact guidance
phenomena, or cell-cell interactions. For the moment we will consider the classical run and tumble,
e.g ., random re-orientations, which, however, may be biased by external cues. Therefore, our
turning operator will be the implementation of a velocity-jump process in a kinetic transport
equation as introduced by Stroock (1974) and then by Othmer et al. (1988).

Defining Vp = [0, U ]×Sd−1, a macroscopic description for the cell population can be classically
recovered through the definition of moments of the distribution function p as follows
- the cell number density

ρ(t,x) =

∫
Vp

p(t,x, v, v̂) dv dv̂ ; (2)
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- the cell mean velocity

U(t,x) =
1

ρ(t,x)

∫
Vp

p(t,x, v, v̂)v dv dv̂ ; (3)

- the cell variance-covariance matrix

P(t,x) =

∫
Vp

p(t,x, v, v̂)[v −U(t,x)]⊗ [v −U(t,x)] dv dv̂ ; (4)

- the cell speed variance

E(t,x) =

∫
Vp

p(t,x, v, v̂)
|v −U(t,x)|2

2
dv dv̂ . (5)

We remark that, because of the definition of Vp, the integrals over the velocity space are a
simple double integral. In particular, let f = f(t,x, v, v̂) be an integrand function: we have that∫

Vp

f(t,x, v, v̂) dv̂ dv =

∫ U

0

∫
Sd−1

f(t,x, v, v̂) dv̂ dv, (6)

where the integral over the boundary of the unit sphere Sd−1 is not a surface integral, but has to
be interpreted as ∫

Sd−1

f(t,x, v, v̂) dv̂ =

∫ 2π

0

f(t,x, v, cos θ, sin θ) dθ

in 2D and similarly in 3D.
The general form of the turning operator which implements a velocity jump processes is

J [p](t,x, v, v̂) =

∫
Vp

µ(x,′v,′v̂)T (x, v, v̂|′v,′v̂)p(t,x,′v,′v̂) d′v d′̂v

−
∫
Vp

µ(x, v, v̂)T (x, v′, v̂′|v, v̂)p(t,x, v, v̂) dv′dv̂′,

(7)

where ′v = ′v ′̂v is the pre-turning velocity of the gain term and v′ = v′v̂′ is the post-turning
velocity of the loss term. The so-called turning kernel T (x, v, v̂|′v,′v̂) is the probability for a cell
at x of re-orienting along v̂ and moving with speed v given the pre-turning polarization direction
′̂v and speed ′v. Being a transition probability, it satisfies∫

Vp

T (x, v′, v̂′|v, v̂) dv′dv̂′ = 1 , ∀x ∈ Ω, ∀(v, v̂) ∈ Vp, (8)

which allows to simplify (7) to

J [p](t,x, v, v̂) =

∫
Vp

µ(x,′v,′̂v)T (x, v, v̂|′v,′̂v)p(t,x,′v,′̂v) d′v d′̂v − µ(x, v, v̂)p(t,x, v, v̂) . (9)

As done by Stroock (1974); Hillen (2006); Chauviere et al. (2007a,b), in the following we will
assume that cells retain no memory of their velocity prior to the re-orientation, i .e., T = T (x, v, v̂).
The independence from the pre-tumbling velocity lies in the fact that the choice of the new velocity
is linked to the slow interaction process also related to cell ruffling and sensing which is responsible
for the biased re-orientation. However, the assumption might be restrictive in some cases, as it
excludes, for instance, cases in which the re-orientation direction depends on the pre-tumbling
polarization of the cell and the case in which the sensing region depends on the incoming velocity
through a polarization-dependent expression of transmembrane receptors. Nevertheless, we will
show that our model allows for a nonvanishing index of directional persistence, as defined by
(Othmer et al., 1988).
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Assuming also that the frequency µ does not depend on the microscopic velocity allows to
simplify considerably (9) in

J [p](t,x, v, v̂) = µ(x)
(
ρ(t,x)T (x, v, v̂)− p(t,x, v, v̂)

)
. (10)

Following Loy and Preziosi (2019), we consider here the fact that in taxis processes cells are
capable of detecting and measuring external signals through membrane receptors located along
cell protrusions that can extend over a finite radius. Information are then transduced and act as
control factors for the dynamics of cells. Therefore, in the turning operator of the kinetic model
we will include the evaluation of mean fields in a neighbourhood of the re-orientation position.
In particular, we will consider a control factor S determining cell polarization (and therefore
orientation) and a control factor S ′ determining cell speed in that specific orientation direction.
Hence, we will have a transition probability that depends on both S and S ′ that can be written
as

T [S,S ′](x, v, v̂) = c(x)

∫
R+

γS(λ)T v̂
λ [S](x)dλ

∫
R+

γS′(λ
′)ψ(x, v|S ′(x + λ′v̂)) dλ′, (11)

where c(x) is a normalization constant, so that according to (8) the integral of T over the velocity
space is one. In this way, T is a mass preserving transition probability that takes into account
two different external fields S and S ′ in order to choose the post-tumbling velocity. Specifically,
the quantity T v̂

λ [S](x) is a functional which acts on S and describes the way the cell measures
the quantity S around x along the direction v̂ and, therefore, the bias intensity in the direction v̂
weighted by the sensing kernel γS(λ) where λ measures the distance from x. In particular, γS has
a compact support in [0, RmaxS ] where RmaxS is the maximum extension of cell protrusions, i .e. the
furthest point cells can reach to measure the external signals. In all the applications considered
here we take

T v̂
λ [S](x) = b

(
S(x + λv̂)

)
, (12)

but other functionals could be considered as discussed by Loy and Preziosi (2019).
The density distribution of the modulus ψ = ψ(x, v|S ′(x + λ′v̂)) describes the choice of the

speed v ∈ [0, U ] for cells located in x if oriented along v̂ according to the value of another external
field S ′ measured along this direction and weighted by another function γS′ with compact support
in [0, RmaxS′ ]. In fact, the notation |S ′ reads as ”given S ′ in a point x+λ′v̂ in the neighbourhood of

the cell”. In the following the mean of ψ, that is normalized to 1 i .e.,
∫ U
0
ψdv = 1 will be denoted

by v̄(x|S ′(x + λ′v̂)) and its variance by D(x|S ′(x + λ′v̂)).

Figure 1: Cell extending protrusions toward the top left corner but unable to move because
the nucleus (yellow region on the bottom right corner) can not pass through the pores of the
extracellular matrix (by courtesy of P. Friedl and K. Wolf, under permission).
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3 Modelling Physical Limits of Migration

The main novelty of this paper with respect to Loy and Preziosi (2019) is to consider the existence
of physical limits of migration that hamper the cell from sensing or moving beyond a physical
barrier. To be specific, for instance, we want to deal with volume filling effects, that occur when
cells ahead are too packed for the coming cell to overcome the crowd, or the presence of regions
with high density of extracellular matrix (ECM), or better, pores so small that the cell nucleus
can not pass through them (see, for instance, the work by Wolf et al. (2013)). This means that
RmaxS and RmaxS′ can not be reached, or even if they are, the decision is taken on the basis of
information collected in the space preceding the overcrowded region. Hence, the sensing support
of the weight functions γS and γS′ can be reduced. We mean, for instance, that a cell that is
encountering on its way a physical barrier, e.g ., a basal membrane, might be unable to squeeze
through the fine net, but it can still extend cytoplasmic protrusions beyond the dense area (see
Figure 2). Even if the cell is getting information, generally denoted by M, that there would be
space to move beyond the barrier, then this does not influence the possibility to pass through it,
because the barrier constitutes an impediment to go further. However, we observe that in order
to test the physical limit of migration we allow the cell to poke a bit in it up to a small depth ∆.
For instance, the nucleus in contact with a very small pore in the ECM, still tries to squeeze a bit
in, or at least leaning on the entrance of the pore, part of the nucleus will still be in the pore. This
also corresponds to the limited, but not absent, freedom cells have also in constrained situations,
like in the case presented in Video 1 of Wolf et al. (2013).

In principle, the limitation on the sensing radius can apply to both the polarization signal S
and the speed signal S ′, though it is easier to find examples of the latter case. In mathematical
terms we then assume that there might be a cueM(t,x) related to the sensing of S ′ characterized
by a threshold value Mth representing the physical limit of migration. We will sometimes call
it a mechanical signal, though it might be more general than that, like, for instance, the lack
of adhesion sites in a certain region to allow cell traction and then migration in a certain area.
Other examples regard volume filling when S ′ andM are equal to the density of cells ρ and ECM
hindrance effects where they are related to the matrix density M , or, better, to its characteristic
pore cross section.

We then define

RM(t,x, v̂) =

R
max
S′ if M(t,x + λv̂) ≤Mth, ∀λ ∈ [0, RmaxS′ ) ,

inf{λ ∈ [0, RmaxS′ ) :M(t,x + λv̂) >Mth}, otherwise,

(13)

and
RMS′ (t,x, v̂) = min{RM(t,x, v̂) + ∆, RmaxS′ } . (14)

Figure 2 highlights the values of RM (gray circles) and RMS′ (black squares) related to several
possible landscapes of M. For instance, the landscape corresponding to the top full line, the cell
is already in a region withM >Mth and so it can hardly move, RM = 0 and RMS′ = ∆. The same
occurs for the second full line from the top. In this case the cell is very close to the border of the
barrier, but still inside it. Conversely, the third full line from the top corresponds to a cell at the
border of the physical barrier, but that can look freely ahead. In this case, RM = RMS′ = RmaxS .
Similarly for the bottom full line. However, looking instead at the top dotted line (line 1), the
cell encounters a physical barrier again at λ = R0, so that RM = R0 and RMS′ = R0 + ∆. For the
other two dotted lines (numbered as 2 and 3) the cell is barely touching or not encountering yet
the barrier, so that RMS′ = RmaxS′ .

The dependence ofM on time is due to the fact that the mechanical cue may change in time,
for instance because of ECM degradation due to metalloproteinases or redistribution of cell mass in
the volume filling case. However, in the following, to simplify a little the notation the dependence
on time is usually dropped.

In particular, we remark that
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Figure 2: Example of sensing ranges limited by a physical limit of migration corresponding to a
level Mth of M. Gray circles denote RM and black squares RMS′ .
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• when the cell center is in a point where M < Mth, it means that it has not reached the
physical barrier yet and RM > 0;

• when the cell center is in a point where M > Mth, then it means that it is stuck in an
overcrowded region and RM = 0;

• when the cell center is in a point where M =Mth, unless for very peculiar cases, it means
that it is at the border of the barrier. In this case RM vanishes if the cell is polarized towards
the barrier and strictly positive if it wants to move away from it.

We also observe that when the presence of a physical barrier limiting RmaxS′ to RMS′ (t,x, v̂)
might also limit RmaxS to RMS (t,x, v̂).

Summarizing, in order to polarize along the most likely direction v̂, the cell with sensing radius
RmaxS averages the signal S over a region that is described by a weight function γS up to RmaxS ,
or possibly up to a lower value RMS (t,x, v̂) if an obstacle is encountered along its sensing activity.
Then, the cell polarized along v̂ determines its speed averaging another signal S ′ through a weight
function γS′ over the sensing radius RmaxS′ or, as above, up to RM

′

S′ (t,x, v̂).
Coming back to Eq. (11), as in the work by Loy and Preziosi (2019), it is useful to denote the

two factors in it as

B[S](x, v̂) =

∫ RMS (x,v̂)

0

γS(λ)T v̂
λ [S](x) dλ , (15)

and

Ψ[S ′](x, v|v̂) =

∫ RM
′

S′ (x,v̂)

0

γS′(λ
′)ψ(x, v|S ′(x + λ′v̂)) dλ′ , (16)

in order to highlight the directional and the speed sensing and how they affect the choice of the
direction and of the speed independently. The turning probability in (10) then reads

T [S,S ′](x, v,v) = c(x)B[S](x, v̂)Ψ[S ′](x, v|v̂), (17)

where the normalizing constant is

c(x) =
1∫

Sd−1

B[S](x, v̂)ΓS′(x, v̂) dv̂

, (18)

with

ΓS′(x, v̂) =

∫ RM
′

S′ (x,v̂)

0

γS′(λ
′) dλ′. (19)

If RM
′

S′ is independent of v̂, then also ΓS′ is independent of v̂ and c(x) can be factorized as
c(x) = c1(x)/ΓS′(x) with

c1(x) =
1∫

Sd−1

∫ RMS (x,v̂)

0

γS(λ)T v̂
λ [S](x) dλ dv̂

,

that only depends on the directional sensing.
However, in general, with the definitions (15) and (16), the turning operator (10) writes

J [p](x, v,v) = µ(x)
(
ρ(t,x)c(x)B[S](x, v̂)Ψ[S ′](x, v|v̂)− p(t,x, v,v)

)
, (20)

and the distribution function which nullifies it is

p(t,x, v,v) = ρ(t,x)c(x)B[S](x, v̂)Ψ[S ′](x, v|v̂). (21)

As stated by Loy and Preziosi (2019), provided that the probability distribution has initially a
finite mass and energy and non-absorbing boundary conditions hold, the function (21) is a local
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stable asymptotic equilibrium state (Bisi et al., 2008; Pettersson, 2004). The related mean velocity
is defined by

US,S′(x) = c(x)

∫
Vp

B[S](x, v̂)Ψ[S ′](x, v|v̂)v dv dv̂ , (22)

and may be rewritten as

US,S′(x) = c(x)

∫
Sd−1

ΓS′(x, v̂)B[S](x, v̂) ŪS′(x|v̂)v̂ dv̂ , (23)

where

ŪS′(x|v̂) =
1

ΓS′(x, v̂)

∫ RM
′

S′ (x,v̂)

0

γS′(λ
′)v̄(x|S ′(x + λ′v̂)) dλ′. (24)

As the quantity (24) is in general not even as a function of the conditioning variable v̂, we have
that (23) does not vanish and therefore the index of directional persistence (Othmer et al., 1988)

ψd[S(x),S ′(x)](v′p) =
US,S′(x) · v′

|US,S′(x)|v′

is in general nonvanishing and we have persistence on a long time scale. Similarly, the variance-
covariance tensor of the transition probability

DS,S′(x) = c(x)

∫
Vp

B[S](x, v̂) Ψ[S ′](x, v|v̂)(v −US,S′(x))⊗ (v −US,S′(x)) dv dv̂ , (25)

can be written as

DS,S′(x) = c(x)

∫
Sd−1

ΓS′(x, v̂)B[S](x, v̂) D̄S′(x|v̂)v̂ ⊗ v̂ dv̂ −US,S′(x)⊗US,S′(x) , (26)

where

D̄S′(x|v̂) =
1

ΓS′(x, v̂)

∫ RM
′

S′ (x,v̂)

0

γS′(λ
′)D(x|S ′(x + λ′v̂)) dλ′. (27)

In order to understand the meaning of ŪS′ in the presence of physical limits of migration, let
us consider the following case: assume that ahead of a cell there is a space free of obstacles up to
a distance R0, e.g ., the ECM has a density yielding a mean speed v̄0, while after R0 the ECM
density is so large to represent a physical limit of migration with a much lower mean speed, say
ε̄ or even vanishing with v̄ = 0 and ψ = δ(v). For sake of simplicity, let us assume that γS′ is a
Heaviside function. The following interesting cases are possible

• If R0 > RmaxS′ , then the critical value forM is located beyond the sensing radius (as for the
dashed line 1 in Fig. 2), so that RMS′ = RM = RmaxS′ , and finally ŪS′ = v̄0;

• If RmaxS′ −∆ < R0 < RmaxS′ (as for the dashed line 2 in Fig. 2), then the critical value for
M is barely sensed with the cell poking a bit in the region with M > Mth. In this case

RM = R0 but RMS′ = RmaxS′ , so that ŪS′ =
v̄0R0 + ε̄(RmaxS′ −R0)

RmaxS′
;

• If R0 < RmaxS′ − ∆ (as for the dashed line 3 in Fig. 2), then the cell pokes for a depth
∆ into the region with M > Mth. In this case RM = R0 and RMS′ = R0 + ∆, so that

ŪS′ =
v̄0R0 + ε̄∆

R0 + ∆
;

• In particular, if R0 = 0, the cell has arrived at the barrier, then RM = 0 and RMS′ = ∆, so
that ŪS′ = ε̄. Hence, in the limit ∆→ 0 when the cell is approaching the physical limit, its
speed decreases fast to ε̄, which can also be taken to be zero, as in the simulations to follow;
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Figure 3: Speed of a cell polarized to move to the right according to its position in presence
of a speed limit region in the gray zone (a, b), for instance due to too dense ECM to allow cell
migration.

• Conversely, if the cell is so close to the border of the dense ECM, say at a distance Rexit ∈
[0,∆], that it can sense outside the physical barrier, then R0 = 0 and RMS′ = ∆, so that

ŪS′ = v̄0 − (v̄0 − ε̄)
Rexit

∆
Hence, in the limit ∆→ 0 its speed increases fast to v̄0.

Figure 3 gives an example of the measured ŪS′ as a function of the cell position (with the cell
polarized to move to the right) when the region with M > Mth is the interval (a, b). The cell
moves at a velocity v̄0 till it reaches a distance RmaxS′ from the barrier. Then it decreases its speed
at first only sligthly and then faster when getting closer to the barrier to reach a very small or
vanishing value. If on the other hand the cell is at the right border of the barrier it can move
freely with velocity v̄0.

In the simulations to follow, in order to test the physical limit of migration, we shall always
consider ∆ = ε̄ = 0, i .e., the case in which the cell can not poke in the limited area. We leave to
a future work the investigation of the effect of considering a non-vanishing ∆.
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4 Macroscopic limits

One of the main issues about transport equations consists in recovering the appropriate macro-
scopic limit allowing to highlight the driving macroscopic phenomenon. Typically these are ob-
tained by identifying a small parameter ε� 1 that allows to suitably rescale the transport equation
with a parabolic or a hyperbolic scaling. These correspond, respectively, to

τ = ε2t, ξ = εx,

τ = εt, ξ = εx.

The proper choice of the time scale comes from a nondimensionalization of the turning operator
(10). Referring to the functions introduced in (15) and (16), we suppose that, up to a nondimen-
sionalization, B[S] and Ψ[S ′] may be written as

B[S] = B[S]0 + εB[S]1 +O(ε2),

Ψ[S ′] = Ψ[S ′]0 + εΨ[S ′]1 +O(ε2),

which describe different orders of bias. Then, the turning kernel T [S,S ′] can be written as

T [S,S ′](ξ, v, v̂) = T [S,S ′]0(ξ, v, v̂) + εT [S,S ′]1(ξ, v, v̂) +O(ε2), (28)

where
T [S,S ′]0(v, v̂) = c(x)B[S]0(v̂)Ψ[S ′]0(v|v̂), (29)

and
T [S,S ′]1(v, v̂) = c(x)B[S]0(v̂)Ψ[S ′]1(v|v̂) + c(x)B[S]1(v̂)Ψ[S ′]0(v|v̂) . (30)

Coherently, the means and variances of Ψ[S ′]0 and Ψ[S ′]1 will be, respectively, denoted by Ū0
S′ ,

Ū1
S′ , D̄

0
S′ , D̄

1
S′ . Similarly, the distribution function p is expanded as

p = p0 + εp1 +O(ε2). (31)

As there is conservation of mass we have that (Othmer and Hillen, 2000) all the mass is in p0,
i .e.,

ρ0 = ρ, ρi = 0 ∀i ≥ 1 , (32)

where ρi =

∫
Vp

pi dv dv̂. Furthermore, for performing the diffusive limit we shall suppose that∫
Vp

pivv̂ dv dv̂ = 0 ∀i ≥ 2.

If we suppose that∫ U

0

Ψ[S ′]0(v|v̂) dv =

∫ U

0

Ψ[S ′](v|v̂) dv ,

∫ U

0

Ψ[S ′]i(v|v̂) dv = 0 ∀i ≥ 1,

and ∫
Sd−1

B[S]0(v̂) dv̂ =

∫
Sd−1

B[S](v̂) dv̂ ,

∫
Sd−1

B[S]i(v̂) dv̂ = 0 ∀i ≥ 1,

then ∫
Vp

T [S,S ′]0(ξ, v, v̂) dv dv̂ = 1, (33a)

and ∫
Vp

T [S,S ′]i(ξ, v, v̂) dv dv̂ = 0 ∀i ≥ 1, (33b)

that are needed for performing a macroscopic limit (Othmer and Hillen, 2000).
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Denoting by J i the turning operators defined by T [S,S ′]i, it turns out for instance that

J 0[p0](v, v̂) = µ(ρ0T [S,S ′]0(v, v̂)− p0(v, v̂)) = 0 , (34)

and therefore the function p0 is the equilibrium function given by

p0(vp) = ρ0T [S,S ′]0(v, v̂). (35)

The mean of the transition probability then naturally writes as

US,S′ = U0
S,S′ + εU1

S,S′ +O(ε2) , (36)

where

Ui
S,S′ =

∫
Vp

T [S,S ′]iv dv dv̂ .

The same thing holds for the tensor of the second moments of T

DS,S′ = D0
S,S′ + εD1

S,S′ +O(ε2) , (37)

where the only tensor that appears in the macroscopic limits is the one of order zero (the equilib-
rium diffusion tensor) that reads

D0
S,S′ =

∫
Vp

T [S,S ′]0(v −U0
S,S′)⊗ (v −U0

S,S′) dv dv̂ ,

Then, using (29) and (30), the macroscopic velocity of order 0 is

U0
S,S′(ξ) = c(ξ)

∫
Sd−1

ΓS′(ξ, v̂)B[S]0(v̂) Ū0
S′(ξ|v̂)v̂ dv̂ , (38)

that of order 1 is

U1
S,S′(ξ) = c(ξ)

∫
Sd−1

ΓS′(ξ, v̂)
(
B[S]0(v̂)Ū1

S′(ξ|v̂) +B[S]1(v̂)Ū0
S′(ξ|v̂)

)
v̂ dv̂ (39)

and the equilibrium diffusion tensor is

DS,S′(ξ) = c(ξ)

∫
Sd−1

ΓS′(ξ, v̂)B[S]0(ξ, v̂) D̄0
S′(ξ|v̂)v̂ ⊗ v̂ dv̂ −U0

S,S′(ξ)⊗U0
S,S′(ξ) , (40)

where

D̄0
S′(ξ|v̂) =

1

ΓS′(ξ, v̂)

∫ RM
′

S′ (ξ,v̂)

0

γS′(λ
′)D0(ξ|S ′(ξ + λ′v̂)) dλ′.

The diffusion tensor is in general anisotropic, as D̄0
S′ may be non isotropic in v̂.

The discriminating factor on which scaling can be performed is whether T is such that

U0
S,S′ = 0 (41)

i .e., the leading order macroscopic velocity vanishes, or not. This is the necessary functional
condition for performing a diffusive limit, and it is actually what we expect in a diffusive regime.
Referring to Eq. (38), we observe that, even in the case in which B[S] is constant, corresponding
for instance to no directional bias and RM

′

S′ , and therefore ΓS′ not depending on v̂, Eq. (41) is
satisfied if the mean velocity Ū0

S′(ξ|v̂) is even as a function of v̂ for a.e. ξ ∈ Ω. Moreover, if

RM
′

S′ depends on v̂, condition (41) can not be satisfied, unless for trivial cases that do not include
physical limits of migration, as we will illustrate in the next sections through some examples.
Therefore, in general one can only perform a hyperbolic limit which reads

∂ρ

∂τ
+∇ ·

(
ρU0

S,S′
)

= 0 . (42)
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For a higher level of details, we may consider the first order correction that is given by

∂ρ

∂τ
+∇ ·

(
ρU0

S,S′
)

= ε∇ · 1

µ
∇ · (D0ρ) . (43)

In order to see which regimes are diffusive or hyperbolic, it is instructive to see what happens
if RS′(x, v̂) is much smaller then the characteristic length of variation of S ′ as done by Loy and
Preziosi (2019) for the directional bias. In this case, we can expand S ′ as

S ′(x + λ′v̂) = S ′(x) + λ′v̂ · ∇S ′(x) +O(λ′2) ∀λ′ ≤ RS′(x, v̂) (44)

and we have that that the quantity S ′(x) + λ′v̂ · ∇S ′(x) stays positive. The density function
ψ(v|S ′(y)), y ∈ Ω may be seen as a function of two variables

ψ̃ : (v,y) ∈ [0, U ]× Ω 7−→ ψ̃(v,y) = ψ(v|S ′(y))

composed with the function S ′ defined on Ω. If we suppose that ψ̃ ∈ L1([0, U ])× C2(Ω) with∫ U

0

ψ̃(v,y)dv =

∫ U

0

ψ(v|S ′(y))dv = 1, (45)

then, in virtue of (44) we may write

ψ̃(v,S ′(x + λ′v̂)) = ψ̃(v,S ′(x) + λ′v̂ · ∇S ′(x) +O(λ′2))

= ψ̃(v,S ′(x)) +
∂

∂S ′
[ψ̃(v,S ′(x))]λ′v̂ · ∇S ′(x) +O(λ′2) ∀λ′ ≤ RS′(x, v̂).

Therefore, recalling Eqs.(17) and (18) the transition probability writes

T (x, v, v̂) =
B[S](v̂)∫

Sd−1

B[S](v̂)ΓS′(x, v̂) dv̂

∫ RS′ (x,v̂)

0

γS′(λ
′)ψ(v|S ′(x + λ′v̂)) dλ′

≈ B[S](v̂)ΓS′(x, v̂)∫
Sd−1

B[S](v̂)ΓS′(x, v̂) dv̂

[
ψ(v|S ′(x)) + Λ′(x, v̂)

∂

∂S ′
[ψ(v|S ′(x))]∇S ′(x) · v̂

]

where

Λ′(x, v̂) =
1

ΓS′(x, v̂)

∫ RS′ (x,v̂)

0

γS′(λ
′)λ′ dλ′.

Considering the rescaling ξ = εx, one has that

T [S,S ′]0 =
B[S](v̂)ΓS′(ξ, v̂)∫

Sd−1

B[S](v̂)ΓS′(ξ, v̂) dv̂

ψ(v|S ′(ξ))

and

T [S,S ′]1 =
B[S](v̂)ΓS′(ξ, v̂)Λ′(ξ, v̂)∫
Sd−1

B[S](v̂)ΓS′(ξ, v̂) dv̂

∂

∂S ′
[ψ̃(v,S ′(ξ))]∇S ′(ξ) · v̂ .

Integrating over the velocity space Vp it can be readily checked that T0 satisfies condition (33a)
and T1 satisfies condition (33b) observing that∫ U

0

∂

∂S ′
ψ(v|S ′(ξ)) dv =

∂

∂S ′

∫ U

0

ψ(v|S ′(ξ)) dv = 0.
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Moreover, we observe that the quantity

∂

∂S ′
v̄(x|S ′(x)) =

∂

∂S ′

∫ U

0

ψ(v|S ′(ξ))v dv =

∫ U

0

∂

∂S ′
ψ(v|S ′(ξ))v dv

is the derivative of the master curve relating v̄ to the signal S ′. One then has that

U0
S′ = v̄(ξ|S ′(ξ))NS′ , where NS′ =

∫
Sd−1

B[S](v̂)ΓS′(v̂)v̂ dv̂∫
Sd−1

B[S](v̂)ΓS′(v̂) dv̂

, (46)

and

U1
S′ =

∂

∂S ′
[v̄(ξ|S ′(ξ))]TS′∇S ′ , where TS′ =

∫
Sd−1

B[S](v̂)ΓS′(v̂)v̂ ⊗ v̂ dv̂∫
Sd−1

B[S](v̂)ΓS′(v̂) dv̂

.

We then observe that the mean direction NS′ defined in Eq. (46) of the cell population may hardly
be zero, except in the case in which B and ΓS′ are even in every direction, i .e.

B[S](ξ, v̂) = B[S](ξ,−v̂) and ΓS′(ξ, v̂) = ΓS′(ξ,−v̂) a.e. in Ω. (47)

This may happen only if RS′ is even as a function of the direction v̂, e.g ., if it is constant which
means that there is no physical limit of migration. As soon as a physical barrier appears, in points
close to it an asymmetry appears in the evaluation of the sensing radius which make (47) not
valid.

In the simulations to follow, we shall illustrate that because of these reasons, even if RmaxS is
small as well or in the case of isotropic polarization B = const, the mean velocity hardly vanishes
close to physical barriers and, then, Eq. (41) is not satisfied, leading to the necessity of performing
a hyperbolic scaling with a parabolic scaling only possible away from the barriers.

For sake of completeness, we recall that in these cases the diffusive limit, that can be performed
only if (41) holds true, would lead to

∂ρ

∂τ
+∇ ·

(
ρU1

S,S′

)
= ∇ ·

(
1

µ
∇ ·
(
D0
S,S′ρ

))
. (48)

In particular, Eq. (48) describes without loss of details only the cases in which the signals are
such that (47) holds true, i .e. when the signals are equal in every direction at every position. For
the derivation of Eq. (48) we address the reader to the pioneering works concerning the diffusive
limits of velocity jump processes by Othmer and Hillen (2000), Othmer and Hillen (2002) and
also to the work by Loy and Preziosi (2019) for macroscopic limits in presence of a double bias
transition probability..

4.1 Boundary conditions

We shall consider the case in which there is conservation of mass in the domain of integration.
Therefore, we will apply biological no-flux condition (Plaza, 2019)∫

Vp

p(τ, ξ, v, v̂)v̂ · n(ξ) dv dv̂ = 0, ∀ξ ∈ ∂Ω, τ > 0 (49)

being n(ξ) the outer normal to the boundary ∂Ω in the point ξ. This class of boundary conditions
is part of the wider class of non-absorbing boundary conditions. At the macroscopic level (49)
gives (Plaza, 2019) (

DS,S′∇ρ− ρU1
S,S′

)
· n = 0, on ∂Ω,
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for the diffusive limit, whilst for the hyperbolic limit the corresponding boundary condition is

U0 · n = 0, on ∂Ω.

There are two important classes of kinetic boundary conditions which satisfy (49): the regular
reflection boundary operators and the non-local (in velocity) boundary operators of diffusive type.
We address the reader to the works by Palcewski (1992) and by Lods (2005) for the definition
of these boundary operators. In the present work, we shall consider Maxwell-type boundary
conditions which are prescribed in the form

p(τ, ξ, v′, v̂′) = α(ξ)p(τ, ξ, v,V(v̂)) + (1− α(ξ))M(ξ, v, v̂)

∫
v̂∗·n≥0

p(τ, ξ, v∗, v̂∗)|v̂∗ · n| dv̂∗, (50)

where V(v̂) = −v̂ for the bounce back reflection condition and V(v̂) = v̂ − 2(v̂ · n)n for the
specular reflection. M(ξ, v, v̂) is the Maxwellian function at the wall of Ω.

4.2 Numerical aspects

The numerical scheme is the same used by Loy and Preziosi (2019). We consider a computational
domain in the form Ω×Vp where in the one dimensional case Ω = [xmin, xmax] and Vp symmetrized

considering the two only possible directions along x and −x in Ṽp = [−U,U ] and in the two
dimensional case Ω = [xmin, xmax] × [ymin, ymax] and Vp = [0, U ] × [0, 2π]. The computational
domain is discretized with a Cartesian mesh Xh×Vph , where Xh and Vph are defined by (in two
dimensions)

Xh = {xij = (xi, yj) = (xmin + i∆x, ymin + j∆y), i = 0, . . . , nx, j = 0, . . . , ny}

Vph = {vl,k = vk(cos θl, sin θl), θl = (j + 1/2)∆θ, l = 0, . . . , nang − 1, vk = v0 + k∆v, k = 0, . . . , nv}

where ∆x =
xmax − xmin

ny
, ∆y =

ymax − ymin
ny

, ∆v =
U

nv
, ∆θ =

2π

nang
. Denoting by pni,j,l,k an

approximation of the distribution function p(tn,xi,j ,vpl,k), where vpl,k = (vk, v̂l). We introduce
the first order splitting

p
n+1/2
i,j,l,k − pni,j,l,k

∆t
+ v · ∇x,hp

n
i,j,l,k = 0 (transport step)

pn+1
i,j,l,k − p

n+1/2
i,j,l,k

∆t
= µ

(
ρn+1
i,j T [S,S ′]i,j,l,k − pn+1

i,j,l,k

)
(relaxation step)

where h = (∆t,∆x,∆y), v · ∇x,hp
n
i,j,l,k is an approximation of the transport operator v · ∇p

computed with a Van Leer scheme. It is a high resolution monotone, conservative scheme which
is second order if the solution is smooth and first order near the shocks. T [S,S ′]i,j,k is the
discretization of the transition probability T . We observe that as the turning operator preserves
mass and the turning probability is known and does not depend on p, the relaxation step may be
implicit and we may consider the density at time n+ 1. In particular the density is computed by
using a trapezoidal rule

ρni,j = ∆v∆θ

nv∑
k=0

nang∑
j=0

pni,j,l,k.

Concerning boundary conditions, in the one-dimensional case we consider regular reflecting
conditions. In one dimension, the bounce-back and the specular reflection boundary conditions
coincide, that is p(t, x = xmin, v) = p(t, x = xmin,−v) and p(t, x = xmax,−v) = p(t, x = xmax, v).
We do not consider Maxwell type conditions as only the outgoing speed would be affected. In the

15



two-dimensional case, the regular reflection is biologically unrealistic, as cells do not bounce back
nor they collide with the wall as hard spheres. Therefore, Maxwell type boundary conditions are
more realistic, and we shall consider for the Maxwellian to the wall

M(x, v, v̂) = T [S,S ′](x, v, v̂),

being T the asymptotic equilibrium of the system with this class (no-flux) of boundary conditions.
Concerning the relaxation step, we remark that T [S,S ′] is defined as in Eq. (17) where Ψ is

a probability density with a minimal variance, as numerically we can not represent a Dirac delta,
even because this would require a weak formulation of all the equations. We then used

Ψ[S ′](x, v|v̂) = C exp

[
− k cos

(
2π(v − ŪS′)

U

)]
, v ∈ [0, U ]

that is a Von Mises distribution translated on the speed interval [0, U ] with C a normalization
constant. Its average is exactly ŪS′ that we compute using the definition (24). In order to
approximate a Dirac delta we shall consider small variances of Ψ and, then, large values of k.
Numerically, though, the variance of Ψ will be larger then ∆v being ∆v the minimum distance
between two possible values of the speed, because if it is smaller it causes numerical spurious
errors.

5 Random polarization

The environmental cues which may represent physical limits of migration in general affect cell
speed. Therefore, we here first focus on the particular case in which there is no bias in the decision
of the direction of motion, corresponding to a random polarization, given by B[S](x, v̂) = const.
As said by Loy and Preziosi (2019), this does not imply isotropy, because the speed can have
different density distributions on every direction v̂, as the distribution of S ′ sensed ahead along
the direction v̂ may be different. Furthermore, in this article, such differences of S ′ may also lead
to different sensing radii in different directions v̂.

In this section we will specify the model in the random polarization case and, eventually, we will
introduce some practical examples characterized by anisotropy on the sensing radius depending
on the direction, as well as on space and time.

If in Eq.(15) T v̂
λ [S] is independent of v̂, then the transition probability (17) simplifies to

T [S,S ′](x, v, v̂) =
1∫

Sd−1

ΓS′(x, v̂)dv̂

∫ RM
′

S′ (x,v̂)

0

γS′(λ
′)ψ(x, v|S ′(x + λ′v̂)) dλ′ , (51)

where we recall that ψ = ψ(x, v|S ′(x+λ′v̂)) is the probability density distribution of the modulus
that describes the choice of the speed v ∈ [0, U ] for cells located in x if oriented along v̂ according
to the value of another external field S ′ and

ΓS′(x, v̂) =

∫ RM
′

S′ (x,v̂)

0

γS′(λ
′) dλ′.

The macroscopic velocity of the transition probability simplifies to

US′(x) =
1∫

Sd−1

ΓS′(x, v̂)dv̂

∫
Sd−1

ΓS′(x, v̂)ŪS′(x|v̂)v̂ dv̂, (52)

and the variance-covariance tensor to

DS′(x) =
1∫

Sd−1

ΓS′(x, v̂)dv̂

∫
Sd−1

ΓS′(x, v̂)D̄S′(x|v̂)v̂ ⊗ v̂ dv̂ −US′(x)⊗US′(x) ,
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where ŪS′ and D̄S′ are respectively given by Eqs.(24) and (27).
The fact that RM

′

S′ and therefore ΓS′ may depend on v̂, in general leads to different speeds
in different directions. This means that, unless for very special cases, the 0th-order of Eq.(52)
does not vanish identically and therefore the proper scaling is hyperbolic. So, even if there is no
directional sensing, in presence of a barrier there may be anisotropy due to a non-homogeneous
sensing possibility of the cell in the different directions.

5.1 Volume filling

In classical volume filling models the speed substituted in the mass balance equation or in the
advection-diffusion equation is a decreasing function of the density, eventually vanishing for den-
sities above a critical value ρth. To handle a similar case in the kinetic framework, we consider
S ′ = M′ = ρ and Mth = ρth. For example, volume filling effects can be described by a ψ with
mean

v̄(x|ρ) = v̄M

(
1− ρ

ρth

)
+

, (53)

where (·)+ = max(·, 0) represents the positive part operator and v̄M is the maximal speed. For
sake of simplicity, we will call Rρ the quantity RM

′

S′ defined in Eq.(14) and in the following equation
we explicitly stress that in presence of volume filling effects the sensing radius Rρ depends on time
because the density of cells depends on the evolution of the distribution function p itself.

In order to understand the application of the model, let us consider a density distribution like
the one in the top of Fig. 4 and for sake of simplicity with respect to the general discussion on the
maximum sensing radius done at the end of Section 3, let us take ε̄ = ∆ = 0. In the discussion we
initially take γρ(λ

′) = H(Rρ − λ′), where H is the Heaviside function, meaning that the speed is
determined by uniformly averaging the response to the signal ρ in the direction v̂ looking ahead
up to a distance Rρ defined by (14). We will finally assume that all cells want to move to the
right.

Referring to Figure 4, we can qualitatively observe that cell A has all the available space to
move and will do it with the maximum allowed speed, up to when it reaches the location x0
because then it is feeling an overcrowded environment ahead. Because of that, it will then slow
down stopping upon reaching the point x2. We observe that cell C has a sensing radius limited
by the presence of the overcrowded region ahead x2. Cells D and E can not move because they
are in the middle of the jammed area (Rρ = 0). Actually, cell E can sense that there would be
available space beyond the point x3, but even is it is close to the border of the jammed area it is
still. On the other hand, cell F can move to the right because it perceives available space ahead.
Conversely, if it were polarized to go to the left, then it would not move because it is at the border
of an overcrowded region ahead. This clearly points out that the speed of cell F depends on its
polarization, an information that in the model is introduced starting from the dependence of Rρ
from v̂. From a qualitative point of view, the resulting speed of a cell moving to the right in the
landscape given on the top of Fig. 4 is given at the bottom of the same figure.

If, instead, γ′ρ(λ
′) = δ(λ′ −Rρ) cells will only look at a distance Rρ ahead without considering

the information within or beyond that distance. So, in the landscape on the top of Figure 4 cell A
will move at the maximum speed, cell B at a lower speed (even lower than in the case of a Heaviside
function, because it is not averaging over the sensing region) and will stop upon reaching the point
x2−Rmaxρ . Cells C, D and E will not move, while cell F will start moving. The behaviour of cells
B and C could be in principle justified by a will of stopping at a distance from the overcrowded
region. As we shall see, because of this effect choosing a Dirac delta as sensing weight will give
rise to patterns often characterized by a typical wavelength of the order of Rmaxρ .

In this case the transition probability (51) writes

T [ρ](t,x, v, v̂) =
1∫

Sd−1

Γρ(t,x, v̂) dv̂

∫ Rρ(t,x,v̂)

0

γρ(λ
′)ψ(x, v|ρ(t,x + λ′v̂)) dλ′. (54)
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Figure 4: Qualitative behaviour of cell speed (bottom) in a landscape with a density that might
overcome the volume filling threshold (top). The length of the arrow close to the cells indicates
the magnitude of mean speed, while the blockhead arrow the sensing radius Rρ depending on the
presence of the overcrowded area.
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In particular, we recall that because of the definition (14), if ∆ = 0, Rρ(t,x, v̂) is such that

[0, Rρ(t,x, v̂)] =

{
λ′ ∈ [0, Rmaxρ ]

∣∣∣∣ρ(t,x + λ′v̂) ≤ ρth
}
. (55)

Therefore, in the integration interval [0, Rρ(t,x, v̂)]

v̄(t,x|ρ(t,x + λ′v̂)) = v̄M

(
1− ρ(t,x + λ′v̂)

ρth

)
.

The mean speed will then be

Ūρ(t,x|v̂) = v̄M

(
1− ρ̄(t,x, v̂)

ρth

)
, (56)

where

ρ̄(t,x, v̂) =

∫ Rρ(t,x,v̂)

0

γρ(λ
′)ρ(t,x + λ′v̂) dλ′

Γρ(t,x, v̂)
, (57)

measures the average density in the direction v̂ until the threshold value is reached.
Looking at the macroscopic speed, we have that

Uρ(t,x) =
v̄M∫

Sd−1

Γρ(t,x, v̂) dv̂

(∫
Sd−1

Γρ(t,x, v̂)v̂ dv̂ − 1

ρth

∫
Sd−1

Γρ(t,x, v̂)ρ̄(t,x, v̂) v̂ dv̂

)
,

(58)
and it vanishes in points where the density is above the threshold value.

It is instructive to examine the limit case of small Rmaxρ , which implies that λ′ ≤ Rmaxρ is
small as well. Like in Section 4 we can perform a Taylor expansion of ρ(x + λ′v̂) in a small
neighbourhood of x with size Rρ

ρ(t,x + λ′v̂) ≈ ρ(t,x) + λ′∇ρ(t,x) · v̂ . (59)

Therefore, up to re-scaling,

Ūρ(τ, ξ|v̂) = v̄M

(
1− ρ(τ, ξ)

ρth
− ε Λ′

ρth
v̂ · ∇ρ(τ, ξ)

)
,

where

Λ′(τ, ξ, v̂) =
1

Γρ(τ, ξ, v̂)

∫ Rρ(τ,ξ,v̂)

0

γρ(λ
′)λ′ dλ′

represents a mean sensing distance. Hence

Ū0
ρ = v̄M

(
1− ρ

ρth

)
, Ū1

ρ =
Λ′

ρth
v̂ · ∇ρ. (60)

Therefore the macroscopic velocities of 0th- and 1st-order away from overcrowded areas are, re-
spectively,

U0
ρ = v̄M

∫
Sd−1

Γρ(τ, ξ, v̂) v̂ dv̂∫
Sd−1

Γρ(τ, ξ, v̂) dv̂

(
1− ρ

ρth

)
, (61)

and

U1
ρ = − v̄M

ρth
T∇ρ , with T(τ, ξ) =

1∫
Sd−1

Γρ(τ, ξ, v̂) dv̂

∫
Sd−1

Γρ(τ, ξ, v̂)Λ′(τ, ξ, v̂)v̂ ⊗ v̂ dv̂ ,

(62)
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which is anisotropic if Γρ is not isotropic.
In this limit, we can perform a parabolic scaling only where Rρ is even or it does not depend

on v̂, so that the numerator in (61) vanish. If so, then the parabolic limit reads

∂ρ

∂τ
−∇ · (ρT∇ρ) = ∇ ·

[
1

µ
∇ ·
(
D0
ρρ
)]

,

with

D0
ρ =

∫
Sd−1

D̄0
ρ(ξ|v̂)v̂ ⊗ v̂ dv̂.

Of course, this is barely the case in presence of physical limits of migration (see for example Fig.
7), and we should perform a hyperbolic limit leading to Eq. (42).

We can also discuss the proper choice of scaling by considering a nondimensionalization and
show that because of the dependence of the sensing radius on the direction, a diffusive time scale
can be hardly chosen uniformly in Ω. Therefore, a hydrodynamic limit will be the appropriate

one. Let us now introduce lρ = max
ρ

|∇ρ|
as the characteristic length of variation of ρ, and the

parameter

η =
R̄ρ

lρ
, (63)

where R̄ρ is a reference sensing radius. We have seen that if η � 1, then we may write Eqs. (59),
(60), (61), and Eq. (62). This is not possible if η � 1. We shall rescale the variables as

ξ =
x

lρ
, ṽ =

v

Uref
, τ =

t

σt
,

We observe that the choice Uref = Ūρ would make the nondimensionalization depend on the
direction. Therefore, we shall choose as in (Loy and Preziosi, 2019)

Uref = R̄ρµ̄

being µ̄ a reference frequency. The same holds true for R̄ρ that can not be chosen equal to Rρ as the
latter depends on the direction. On the other hand, in the present case, we can not even consider
R̄ρ = Rmaxρ in the choice of Uref like in (Loy and Preziosi, 2019), because it varies considerably in
time and space and it may also be different at a fixed point in space as it depends on the direction.
In conclusion, the relation (64) cannot be considered everywhere in Ω and, therefore, the choice
of a diffusive time scale is not the proper one. The time scale σt can be chosen as a diffusion time
TDiff scale or a drift time scale TDrift. In general we may write (Othmer and Hillen, 2000)

TDiff =
l2ρ
D
, D =

U2
ref

µ̄
, TDrift =

lρ
Uref

The regime is diffusive - and we will choose σt = TDiff - if the frequency µ̄ is very large with

respect to the reference time scale σt, i .e. if we can find a small parameter ε such that Uref ∼
ε−1

σt
and

µ̄ =
ε−2

σt

The latter is equivalent to

lρ = O
(
Uref
ε

)
(64)

which implies the hierarchy
TDrift � TDiff . (65)
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In the present case this is equivalent to

η =
R̄ρ

lρ
< 1.

On the other hand, the macroscopic regime is hyperbolic, and we choose a faster time scale, if

Uref ∼
ε−1

σt
and

µ̄ =
ε−1

σ
.

This implies that In this case the appropriate choice will be

σt = TDrift

as the hierarchy (5.1) does not hold anymore. Moreover in this case we have that η = O(1).
Referring to Section 4.2 for details concerning the numerical integration of the kinetic model,
we will now present some simulations focusing on how the model deals with the volume filling
effect. In particular, aiming at checking the effect of limiting the sensing radius Rρ because of
overcrowding, we will perform simulation with Rρ = Rmaxρ regardless of the presence of thresholds
and limiting it because of the threshold. For sake of simplicity, we will refer to the former case as
the unlimited R model. Of course, as expected, the effect becomes visible when cell density gets
closer to the threshold value ρth. A second aim is to put in evidence the difference between using
a Dirac delta and a Heaviside function as weight function to evaluate the cell density.

In Fig. 5 the initial macroscopic density is a small perturbation of the constant distribution, so
that it is always below the threshold value ρth. This implies that initially Rρ = Rmaxρ everywhere.
However, the non-homogeneous distribution of speed leads to the formation of overcrowded areas
and therefore to the limitation of Rmaxρ in Fig. 5(a). We observe that the model hampers the
cell density from going above ρth. On the contrary, the unlimited R model does not succeed in
imposing such a limit (Fig. 5(b)) and cells go over the threshold value (Fig. 5(c)).

(a) (b) Rρ = Rmaxρ (c) Rρ = Rmaxρ

Figure 5: Pattern formation when γρ is a Dirac delta starting from a density distribution ρ0(x) =
0.2 + 0.02 sin π

5x below the threshold value ρth = 0.25 and µ = 10. In (b) the sensing radius is
always Rmaxρ = 2 while in (a) it is limited by ρth. Figure (c) is the same as (b), but the density
over the threshold value ρth = 0.25 is highlighted in white.

In Fig. 6(a), the sensing function is a Heaviside function. Averaging the cell density over the
interval [x, x+Rρ], it leads to smoother solutions compared to using a delta function that implies
using only the information in x + Rρ in order to determine the new speed (see Fig. 6(b),(c)).
The initial condition barely touches the threshold value ρth = 0.5. So, the cell in the center are
slower than those away from the center, forming a wave of crowded cells. A second peak forms at
a distance Rmaxρ because cells there sense the advancing front ahead and slow down. This leads to
the formation of a pattern of characteristic size comparable with Rmaxρ . The fact that cell density
in Fig. 6(a) never reaches the threshold value implies that Rρ is always equal to the the maximum
possible value Rmaxρ .

21



(a) γρ = H (b) γρ = δ (c) γρ = δ, Rρ = Rmaxρ

Figure 6: Pattern formation starting from a density distribution ρ0(x) = 0.5 exp
[
− (x−2.5)2

0.9

]
that

just reaches the threshold value ρth = 0.5. In addition µ = 200. In (a) the sensing kernel is a
Heaviside function, while in (b) it is a Dirac delta. In addition, in (c) the sensing radius is not
limited by ρth and is always Rmaxρ = 0.6.

On the other hand, when the sensing function is a δ, the pattern is stronger and is characterized
by maxima that reach ρth = 0.5. We also observe a zig-zag behaviour which is a characteristic of
other alignment-repulsion-attraction models like in the works by Carrillo et al. (2015) and Eftimie
(2012). This is due to the following dynamics: referring to Fig. 6(b) at t ≈ 80, in a certain
point cells start clustering, reaching their maximal local density ρth. So, cell sensing this excessive
crowding prefer to move in the opposite direction of motion clustering in turn to values close to
ρth. As in the previous figure using an unlimited R model leads to higher peaks beyond ρth and
sharper fronts.

In Fig. 7 the initial condition is not symmetric with respect to the midpoint of Ω, it is smaller
than ρth for x < 2.5 and larger for x > 2.5 (see the bottom of Fig. 7(a)). In this case we observe
that Rρ is initially zero in the overcrowded region x > 2.5 both for the cells polarized to the right
and those polarized to the left (see the bottom of Fig. 7(c),(d)) and cells stay still (see Fig. 7
(e), (f)). For x < 2.5, Rρ is close to Rmaxρ = 0.6 but for a region close to the overcrowded region
for the cells polarized to the right (Fig. 7(d)) and for the region close to the left boundary for
the cells polarized toward it (Fig. 7(c)). So, cells close to the interface of the overcrowded region
start to move to the left (note the negative mean speed in Fig. 7(b)) and the region to the right
gradually empties up to reach a homogeneous configuration. We also observe that the fact that
Uρ does not vanish implies that (41) is not satisfied and a diffusive limit can not be performed.

In Fig. 8 the initial distribution is a Gaussian with maximum above ρth = 0.5, so that there is
overcrowding in the central region, specifically nearly between 1.8 and 3.2. In the region where the
density is below the threshold, the solution diffuses fast. In fact, cells initially located in x > 3.2
that want to move to the right will readily do so (see Fig. 8(a) at time t=100). Then those closer
to the border of the above interval move faster than those more in the center, because of the
measured nonlocal density, leaving back a steeper function (Fig. 8(a) at time t=100) that then
slowly diffuses away. If one always takes Rρ = Rmaxρ = 0.2 diffusion is faster (Fig. 8(d))

The evolutions using a Heaviside sensing kernel (Fig. 8(a,b,d)) are smoother than those with a
Dirac delta (Fig. 8(c,e)) because the information of the density in the desired direction is averaged,
giving rise to smoother velocities, rather than measured at a single point ahead. In Fig. 8(c,e) the
fact that cells are only considering the cell density at a distance Rmaxρ = 0.2 regardless of whether
there are denser regions for lower distances generate a pattern with a characteristic length of the
order of Rmaxρ = 0.2 . However, since the density is not very high compared to the threshold the
patterns fade away. The structure of the simulation presented in Fig. 8(d,e) is similar but faster
than in Fig. 8(b,c) because more cells measure a density (always at Rmaxρ ) allowing motion. The
Supplementary movie VF.mp4 shows the time evolution of the density distribution p that starts
from a distribution that is uniformly distributed in the velocity space and reaches the spatial
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Evolution from the initial condition ρ0(x) = 0.8
π tanh(30(x− 2.5)) + 0.4, so that ρ(x) <

ρth = 0.4 if and only if x < 2.5. The sensing kernel is a Heaviside function. The other parameters
are Rmaxρ = 0.6 and µ = 200. In the top row the spatio-temporal evolution of the macroscopic
variables ρ and Uρ are plotted. In the second row that of the sensing radii in both directions. In
the third row the mean speed in the two directions and the macroscopic velocity. Finally, in the
bottom row, the distribution densities p at time 5 and 10. Positive and negative v’s stand for the
speed distributions of cells oriented along x and −x.
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uniform distribution.

(a) γρ = H

(b) γρ = H (c) γρ = δ

(d) γρ = H, Rρ = Rmaxρ (e) γρ = δ, Rρ = Rmaxρ

Figure 8: Spatio-temporal evolution from the initial condition ρ0(x) = 1.5 exp
[
− (x−2.5)2

0.9

]
that

has a central region above ρth = 0.5. Other parameters are Rmaxρ = 0.2 and µ = 2. In (a,b,d)
density for a Heaviside sensing kernel and in (c,e) for a Dirac delta. In particular, in (d,e) Rρ is
no limited and is always given by Rmaxρ .
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5.2 Cell-ECM Interactions

In order to move in a three-dimensional environment, cells interact with the ECM. This is network
of fibres that on one hand are used by cells to adhere and exert traction forces and on the other
hand can constitute an obstacle when the characteristic pore size drops below a threshold value.
The combination of these interactions leads to a bimodal dependence of cell speed on the stiffness
and density of the ECM (Harley et al., 2008; Peyton and Putnam, 2005; Zaman et al., 2006). In
particular, there is a threshold value Mth above which cell can not move in the ECM (Wolf et al.,
2007; Friedl et al., 2011). In some migration experiments, mainly on artificial scaffolds, it is also
clear that when there is little or no possibility of building focal adhesion with the substratum then
again cells can not exert active traction forces and are unable to move (Goodman et al., 1989;
Nam et al., 2016). In terms of ECM we can then infer that there might also be a minimal density
M0 of ECM necessary to crawl in it. There is however a difference between the two thresholds
because in this last case cells can extend their protrusions beyond the region lacking of adhesion
points to possibly reach a farther region where they can adhere and exert traction.

Denoting by RM the quantity RM
′

S′ defined in Eq.(14) for the ECM case and referring to the
ECM landscape in Fig. 9, we can identify a cell response similar to overcrowding where there is
an ECM density above Mth. Namely, for cell A the sensing radius RM = RmaxM , while for cell D
it is RM < RmaxM because cell speed is set according to the ECM density up to x4. Cell E can
not move because it is in the middle of the dense ECM region, while cell F can move to the right
because it will encounter a microstructure allowing cell motion, but not to the left because in that
direction the pore size is too small.

However, as already stated, here a new phenomena occurs that is related to the existence of
regions with scarse presence of ECM. In Fig. 9 it occurs for x1 < x < x3 and x > x6. In these
situations a cell has no limitation of the sensing radius RmaxM , but when it extends its protrusions
it is not able to build focal adhesion and exert traction forces in these interval, so the related
contribution to cell speed vanishes. As a consequence, typically the speed decreases, as for cell B.
Now two situations may occur when a cell reaches this problematic area. If it is able to extend
its protrusions to find a place to anchor and adhere, like cell C, it can exert traction forces and
jump beyond the interval [x1, x3]. On the other hand, if it is not able to do so, like the red cell
C’ that is characterized by a smaller RmaxM , then it is stuck in x1. Finally, a red cell located at a
distance RmaxM from x3, like cell D’, barely touches the border in x3. So, the interval [x1, x2] is
characterized by a vanishing speed as [x4, x5] but for different dynamics, that will be shown in the
simulations to follow. For a similar reason the region beyond x6 can not be reached by both the
yellow cell H and a red cell in the same location.

In order to take into account of all the effects mentioned above, in the simulations to follow
we will use the following specific form of

v̄ = v̄0 +
4(v̄M − v̄0)

(Mth −M0)2
[(M −M0)(Mth −M)]+,

representing (if v̄0 = 0) the positive part of a parabola with zeros in M0 and Mth with maximum
speed v̄M achieved for M = 1

2 (Mth+M0) denoted by Mmax in the following, for sake of simplicity.
The discussion of the macroscopic limit closely follows what presented for the volume filling case.
For this reason it will not be repeated here.

With the aim of showing the importance of considering a sensing radius defined as in (13), in
Fig. 10 we present a simulation where the value Mth = 0.4 is smaller than that of the matrix
density where cells are initially located. However, half of the cell population is at a distance that is
smaller than RmaxM from the border of the dense area (that is in x = 3). So, if RM is not limited as
defined in (13), they sense beyond the physical barrier and manage to come out of the dense zone
of ECM because they have a positive speed in the direction going out of the ECM. Conversely, if
(13) is used cells are blocked in the dense area on the left.

In Fig. 11 we show the effect of the presence of an area with very low density of ECM, a
sort of hole in the ECM. In fact, here M0 = 0.1, but the ECM profile (represented by the green
line) presents a central region [P,Q] with density smaller then 0.1. In Fig. 11(a), RmaxM = 0.2
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Figure 9: Qualitative behaviour of cell speed (bottom) in a landscape with an ECM density shown
above. The grey regions denote problematic regions either because of too dense ECM (the central
one) or because of lack of ECM (the lateral ones). The length of the arrow close to the cells
indicates the magnitude of mean speed, while the blockhead arrow indicates the sensing radius
RM depending on the presence of an area with prohibitively small pore sizes.. The dashed lines
close to the cell denote intervals that do not contribute to cell speed. In the bottom graph the black
dotted line refers to the mean speed to the yellow (lighter) cell that can extend longer protrusions,
while the full red line the one of the red (darker) cell, that has vanishing speed in the interval
[x1, x2]. Both cell types have vanishing speed for x > x6.
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Figure 10: Behaviour of a cell distribution initially within a dense ECM area when RM is not
limited as defined by (13), but is always equal to RmaxM = 1.5. The sensing kernel is a Dirac delta.
Other parameters are M0 = 0, Mth = 0.4, v̄M = 0.7.

and so cells can not go over the point P because, like the red cell in Fig. 9, they can not reach
with their protrusions the point Q where the ECM assumes again values larger then M0. On the
other hand, in Fig. 11(b), RmaxM = 2 and, so, cells manage to reach the point Q and go over the
hole. In fact, referring to Fig. 11(c),(d) for the cells that have short protrusions there is a point
where the speed (24) vanishes, whilst cells with longer protrusions move with a slower velocity
when approaching the ECM depression but always keep a positive speed (Fig. 11(d)), so that
they manage to overcome the problematic area. In Fig. 11(e) the density distribution p shows the

distribution of the microscopic velocities in the physical space while in Fig. 11 (f)
p

ρ
represents

the equilibrium probability measure.
In Fig. 12 we present a set of two-dimensional simulations mimicking the experimental set-up

in which a Petri dish is coated with thick stripes of different ECM components. For instance, in
(Goodman et al., 1989) they show the different locomotion on laminin (or E8) and on fibronectin.
The stripes made of fibronectin do not encourage locomotion, irrespective of the level of coating
concentration used, whilst laminin and E8 encourage locomotion. In particular the locomotory
response is peaked around a certain range of values of laminin (20 − 50fmol · cm−2) whilst it
decreases for larger and smaller values of coating concentrations. Similar experiments are also
performed by Nam et al. (2016). Specifically, as shown in Fig. 12(a), the density of the laminin
coating is 1 where it is present (red stripes) and zero elsewhere (blue stripes). In this case
M0 = 0.01 and so the cells are not able to adhere in the blue stripes, whilst Mmax = 1, and
so the cells have a maximal speed on the stripes of laminin. Cells start from an initial uniform
distribution in y < 0.5. Cells on the ECM laminin stripes rapidly move along them and avoid
going on the stripes lacking of laminin. Cells in the region where there is no laminin cannot move
along the blue stripes. However, the sensing radius is sufficiently high to allow all of them to grab
some adhesion sites and pull themselves onto the laminin stripes. Initially, (see Fig. 12(b)) cells
closer to the laminin stripes are faster and soon jump onto them to then steer and move along
them. This is the reason why there is a minimum of cell density on the blue stripes close to the
interface and a faster progression on the red stripes. On the other hand, cells in the center are
slower and take longer to move more or less perpendicularly to the stripes. In fact, cells not in the
middle of the blue stripe can reach the laminin stripes also if not oriented perpendicularly to them.
Eventually, the entire population evolves along the stripes (Fig. 12(d)). (See Supplementary movie
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(a) RmaxM = 0.2 (b) RmaxM = 2

(c) RmaxM = 0.2 (d) RmaxM = 2

(e) RmaxM = 0.2, p (f) RmaxM = 0.2,
p

ρ

Figure 11: Spatio-temporal evolution of the cell density (a,b) in presence of a region with extremely
low density of ECM. The sensing kernel is always a Heaviside function and in (c,d) the mean speed
is given with M0 = 0.1, Mth = 0.3, v̄M = 0.7, µ = 20. In (a), (c), (d) and (e) RmaxM = 0.2, while
in (b) and (d) RmaxM = 2. In (e)-(f) we present the density distribution p and the probability

measure
p

ρ
.
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Stripes.mp4).

(a) Matrix density (b) t = 1

(c) t = 10 (d) t = 35

Figure 12: Spatial evolution of cell density in an environment with ECM stripes distributed as in
(a). Cells are initially uniformly distributed below the dashed line. As M0 = 0.01 and Mmax = 1,
cells prefer to move along the stripes and as Rmax

M = 0.25 those located in the middle of the blue
stripe initially have some difficulties in reaching them. The sensing kernel is a Heaviside function
and v̄M = 1. Here the boundary conditions are those defined in (50) with α = 0.5.

6 Double bias

We shall now consider the case of cell migration under the action of both a field S affecting the
choice of the direction of motion (specifically either an external chemoattractant or an internal
effect due to cell-cell adhesion) and a field S ′ affecting the speed (specifically related either to
volume filling effects or to the presence of ECM). In this case both sensing radii may depend on
time, position and direction. We then consider the operator

J [p](t,x, v, v̂) = µ(x)

(
ρ(t,x)c(x)

∫ RS(t,x,v̂)

0

γS(λ)b(S(x + λv̂)) dλΨ[S ′]− p(t,x, v, v̂)

)
, (66)

where Ψ is given by (16).

6.1 Adhesion and volume filling

Let us consider the case in which cell-cell adhesion represents a mechanism of cell polarization
biasing the otherwise random motion of cells but taking into account that cells can not come too
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close because of volume filling, i .e., S = S ′ = ρ. We shall denote RS = Rρ,adh and RS′ = Rρ,vf .
In particular, as the two cues are the same it is natural to take Rρ,adh = Rρ,vf and we will denote
it by Rρ. Figure 13 highlights the differences between when Rρ is defined as in Section 5.1 (see
(a) and (c)) and when it is equal to the maximum possible extension of protrusions Rmaxρ . In
particular, in Fig. 13(a,b), we observe that if the sensing function for the volume filling is a Dirac
delta the difference is not so remarkable, with the formation of patterns of size close to Rmaxρ .
We also highlight the formation of a cell-free zone close to the boundary because of the action
of adhesion forces that pull the aggregate together. On the other hand, if the sensing kernel for
volume filling is a Heaviside function, the two different choices of sensing radius determine the
formation of a plateau as in Fig. 13 (c), or two aggregates as in Fig. 13 (d). Moreover in the latter
case, the cell density goes over the threshold ρth. In all the other cases the cell density remains
under the threshold value ρth.

(a) γρ,vf = δ,Rρ,adh = Rρ,vf (b) γρ,vf = δ, Rρ,adh = Rmaxρ,adh

(c) γρ,vf = H,Rρ,adh = Rρ,vf (d) γρ,vf = H,Rρ,adh = Rmaxρ,adh

Figure 13: Evolution in presence of cell-cell adhesion and volume filling with ρth = 0.25 starting
from the initial distribution ρ0(x) = 0.2+0.02 sin π

5x with µ = 2. The sensing kernel for adhesion is
always a Heaviside function, while that for volume filling is a Dirac delta (top row) or a Heaviside
function (bottom row). In the left column a limited Rρ is used while in the right column the
maximum protrusion length Rmaxρ = 0.2. In all figure, densities above the threshold value ρth =
0.25 are coloured in white.

6.2 Chemotaxis and volume filling

In this case we assume that cells are sensitive to a chemoattractant with b(S) = S and take
into account of volume filling effects with Rρ(t,x, v̂) given by (55) and mean speed Ūρ(ξ|v̂) by
(56). In general the appropriate macroscopic limit will be a hyperbolic one, which, dropping the
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dependence from space and time for sake of implicity, reads

∂ρ

∂τ
+∇ ·

v̄Mρ
∫

Sd−1

ΓS(v̂)Γρ(v̂)S̄(v̂)

(
1− ρ̄(v̂)

ρM

)
v̂ dv̂∫

Sd−1

ΓS(v̂)Γρ(v̂)S̄(v̂) dv̂

 = 0 (67)

where ρ̄ is given by (57) and, analogously,

S̄(v̂) =
1

ΓS(v̂)

∫ Rρ(v̂)

0

γS(λ)S(ξ + λv̂) dλ

is the weighted average of the signal S.
In Fig. 14, we consider the same volume filling effect as in Fig. 8 under the action of a normally

distributed chemoattractant centered in x = 2.5. The sensing radius for the chemoattractant is
the same as the one for the volume filling effect defined as in (55) which is affected by the threshold
value ρth. Due to the presence of the chemoattractant, the cell density does not converge to the
constant solution, but it remains above the threshold value as the chemoattractant and the volume
filling effect are balanced.

Figure 14: Spatio-temporal evolution from the initial condition ρ0(x) = 1.5 exp
[
− (x−2.5)2

0.45

]
as in

Fig. 8 but in presence of a chemoattractant distributed as S(x) = 0.3 exp
[
(x−2.5)2

0.02

]
. The sensing

kernel is a Heaviside function. Other parameters are RmaxS = Rmaxρ = 0.2, ρth = 0.5, µ = 2.

6.3 Chemotaxis and steric hindrance

In this section we shall consider the motion of a cell cluster toward a chemoattractant in a strongly
heterogeneous environment. Specifically, the initial distribution of cells is

ρ0(x) = 0.5 exp

[
−|x− x0|2

0.2

]
with x0 = (1.5, 1.5),

as in Fig. 15(a), that of the chemoattractant is

C(x) = 50 exp

[
−|x− xc|2

0.6

]
with xc = (3, 3),
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as in Fig. 15(b), and that of the ECM is

M(x) = Mb + (Mm −Mb) exp

[
−|x− xM |2

0.4

]
with xM = (2, 2),

as in Fig. 15(c). So, in a homogeneous environment cells would tend to move more or less along
the diagonal of the square domain toward the maximum concentration of chemoattractant, while
in the heterogeneous case they would tend to avoid the region with too dense ECM.

In the first simulation reported in the second row of Fig. 15 the ECM density is distributed in
a way that it does not represent physical limits of migration. In fact, its maximum concentration
Mm = 1.2 is below the threshold value Mth = 1.39 and its minimum concentration Mb = 0.2
is above the minimum value of ECM density M0 = 0.01 for crawling. So, cells are not blocked,
but they are however slowed down as the maximum speed is achieved where M = Mmax = 0.7.
This means that they tend to move faster around the peak of concentration of ECM, with some
trapping for a longer period of those cells that move diagonally. Having passed the denser ECM
region, cells cluster again and move towards the chemoattractant (see also Supplementary Movie
ECM1.mp4).

In the second simulation reported in the third row of Fig. 15 the maximum concentration
of ECM Mm = 1.2 is above the threshold value Mth = 0.8. So, cells can not enter the region
that is identified by the white dashed circle in Fig. 15(g)-(i), moving around it to join again at
the north-east pole of the denser region. Then, the clusters merge again and move toward the
maximum of chemoattractant. (see also Supplementary Movie ECM2.mp4).

In the third simulation reported in the bottom row of Fig. 15 as for the simulation reported in
the second row, ECM density is not a prohibitive obstacle, being the maximum concentration of
the ECM Mm = 0.7 that is lower than the threshold value Mth = 0.8. On the other hand, the value
M0 = 0.1 is such that outside the dashed circle cells do not have not enough ECM to anchor.
In this situation, initially cells oriented along the diagonal are able to grab the denser region
of ECM because of a sensing radius Rmax

M = 0.3, while motion in other directions is hampered
if not completely inhibited. Cells then cluster in the region with a comfortable density of ECM
towards the north-east side of the circle, because they are attracted towards the maximum chemical
concentration. However, ahead they sense the region lacking ECM for adhesion and remain stuck.
(see also Supplementary Movie ECM3.mp4).

7 Discussion

The kinetic model developed in this article is based on the observation that

i) cells sense their environment collecting chemical and mechanical cues by extending protru-
sions that can be much longer than the cell diameter;

ii) the information acquired determine cell polarization and speed;

iii) the mechanisms governing cell polarization and speed depend on different intracellular mech-
anisms;

iv) the valuable information can be limited by the presence of physical limits of migration, such
as cell overcrowding, cell layers, like mesothelial or endothelial linings, basal membranes, or
in general ECM with pores too small to be penetrated by the cell nucleus or even by its
protrusions.

From the modelling point of view, these points respectively imply that the kinetic model is char-
acterized by (i) non-local turning operators (i .e., the integrals over λ and λ′), (ii) a probability
distribution that depends on a speed v and an orientation unit vector v̂, (iii) with a turning op-
erator split in a part influencing v and a part influencing v̂ depending on different sensing kernels
(γS and γS′) and cues (S and S ′) (iv) operating on domains (identified by RMS and RM

′

S′ ) that can
depend on the presence of physical limits of migration, such as those mentioned above.
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(a) Inital condition (b) Chemoattractant (c) Matrix density

(d) t = 5 (e) t = 10 (f) t = 50

(g) t = 5 (h) t = 10 (i) t = 50

(j) t = 5 (k) t = 10 (l) t = 50

Figure 15: Motion of a cell cluster initially distributed as in (a) toward a chemoattractant with
distribution as in (b) passing through a dense ECM region as in (c) (In the plotted case Mb = 0.2
and Mm = 1.2). The sensing kernels are Heaviside functions and the sensing radii are RmaxS =
Rmax
M = 0.3. The turning frequency is µ = 10. (d-f) Mm = 1.2 is below Mth = 1.39, Mb = 0.2

above M0 = 0.01, and Mmax = 0.7. (g-i) Mm = 1.2 is above Mth = 0.8, Mb = 0.5 above
M0 = 0.2, and Mmax = 0.5. The region within the white dashed circle is then too dense because
M > Mth = 0.8. (j-l) Mm = 0.7 is below Mth = 1.5, Mb = 0 is below M0 = 0.1, and Mmax = 0.8.
In figure (l), the region outside the white dashed circle has poor ECM with M < M0 = 0.1.
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The article shows in particular how important it is to handle and model properly situations
that might look extreme but actually characterize many physiological and pathological situations
leading to cell aggregation and collective migration, to cell compartmentalization by basal mem-
branes, to cell invasion when the membranes rupture or cells acquire a phenotype that allows them
to pass through their narrow pores, leading to intravasation and extravasation of metastasis.

The model is very flexible and was applied to situations taking into account of volume filling
effects and cell-cell adhesion. Cell-matrix interaction was also considered both in the case of thick
ECM and when a lack of ECM might hamper the formation of focal adhesions that are essential
for cell crawling. In the latter case it was shown that if the cell is able to extend its protrusion
beyond the problematic area to reach a region where focal adhesions can be formed again, then,
due to the non-local character of the model, it is able to cross over the region with poor ECM.
Otherwise, it is segregated close to the border of the area lacking ECM. The qualitative behavior
of the speed as a function of the pore size (and therefore of the ECM density) is modelled in order
to replicate the experiments shown for example by Wolf et al. (2013). More over the model quite
succesfully reproduces physical limits of migration as for example in the Video 2 in Wolf et al.
(2013) (see Fig. 2). A virtual experiment of motion along stripes of laminin is also performed.
It qualitatively reproduces oone of the experiments reported in (Nam et al., 2016), in the case of
stripes of ECM that alternatively encourage or hamper cell motion because of the lack of ECM
itself.

Simulations show how patterns may form spontaneously from nearly homogeneous configura-
tions, especially when the sensing kernel is a Dirac delta. The characteristic size of the pattern is
related to the sensing radius. The presence of this effect calls for a stability analysis that will be
performed in a future article.

Another important topic to be addressed that is not included in the present model is how to
handle multiple cues governing either sensing or speed, for example how to include in the model
a directional sensing and both volume filling and ECM constraints at the same time, or a double
directional cue. The former aspect refers, for instance, to cases in which cells adhere to each
other while under the action of chemotaxis and/or haptotaxis. Being able to deal contemporarily
with the two phenomena, together with volume filling, is fundamental to deal with collective
chemotaxis. The latter aspect refers, for instance, to overcrowding due to strongly heterogeneous
distributions of ECM and, in particular, volume filling in presence of basal membranes. Another
field of interest would be a direct coupling between the present model and evolution equations for
the cues S and S ′.
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