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Abstract—Indoor localization has many pervasive applications, like energy management, health monitoring, and security.
Tagless localization detects directly the human body, for example via infrared sensing, and is the most amenable to
different users and use cases. We evaluate the localization and tracking performance, as well as resource and processing
requirements, of various neural network (NN) types. We use directly the data from a low resolution 16-pixel thermopile
sensor array in a 3 m x 3 m room, without pre-processing or filtering. We tested several NN architectures, including
multilayer perceptron, autoregressive, 1D convolutional neural network (1D-CNN), and long-short term memory. The latter
require more resources but can accurately locate and capture best the person movement dynamics, while the 1D-CNN is
the best compromise between localization accuracy (9.6 cm root-mean-square error), movement tracking smoothness, and
required resources. Hence it would be best suited for embedded applications.

Index Terms—Person localization, tagless localization, thermopile, infrared tracking, CNN, LSTM, autoregressive, multilayer perceptron,
embedded neural network, Design Space Exploration.

I. INTRODUCTION

Indoor localization and activity monitoring can be essential for
assisted living and domotics, e.g., to increase comfort and reduce
energy consumption of appliances, or to check for possibly pathological
deviations from daily routines of elderly people. Localization systems
that are unobtrusive, privacy-aware, and easy to retrofit can be more
easily accepted [1].

Passive infrared (PIR) sensors or thermocouples have been ex-
tensively investigated and are often used to detect indoor presence
and for localization. PIR sensors are sensitive to movement, while
thermopiles can also detect stationary heat sources [2].

Most person indoor tracking approaches with thermopile sensors use
machine learning for classification [3]–[5], mathematical modelling
[6]–[9], or low resolution image processing [10]–[13]. Classification
selects between predefined activities or locations, such as bed exit [3],
people count and motion direction [4], or person location on a grid [5].

Tao et al. used 43 narrow field-of-view pyroelectric sensors to track
daily human activity in a 15 m × 8.5 m space with 0.322 m average
error [14]. Kuki et al. used 4 pixel × 4 pixel thermopile sensors and
fuzzy logic to estimate with 0.246 m average error the walking
trajectory of a person in a small 1.58 m × 1.58 m area [15]. Chen et al.
classified a person location in 60 cm-spaced positions along a snake-
like trajectory with 0.134 m mean error, based on the angle of arrival
from two 16 pixel × 4 pixel thermopile sensors, processed with multi-
frame averaging, background subtraction, and quadratic regression
[10]. Shetty et al. used 8 pixel × 8 pixel “GridEye” thermopile sensors
interpolated to 100 pixels × 100 pixels to demonstrate person tracking
with Kalman filters, background subtraction, Gaussian filtering, and
iterative thresholds [11]. With the same sensor, interpolated to
71 pixels × 71 pixels and similar processing, Qu et al. localized a person
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with 0.07 m average error while walking on a straight line in a 4 m × 4 m
area [12]. Gu et al. used a higher resolution 24 pixels × 32 pixels
thermopile sensor, interpolated to 93 pixels × 125 pixels, to track with
0.095 m root-mean-square error (RMSE) a person walking on two
polygonal paths [13].

We explore the localization and movement tracking accuracy and
smoothness for several types of neural networks by drawing inspiration
from our earlier exploration of NNs for long-range capacitive sensors
for assisted living applications [16], [17]. We search for the architectures
and the configurations that perform best while using the least amount
of resources, and hence that are the most suitable for embedded
processing on low power sensors.

Compared with the previous works, we address the continuous
tracking using low-resolution infrared sensors of person movements on
extensive arbitrary paths, which resemble closely the walking patterns
of a person. Arbitrary trajectory tracking was previously proposed either
using tens of sensors [14], or with comparable sensors but relatively
low accuracy on small areas [15], or with higher resolution sensors
and/or restricted trajectories on comparable areas and with comparable
accuracy [10]–[13]. Hence, we provide either the same accuracy with
cheaper sensors, or better accuracy with comparable sensors with
respect to the state-of-the-art. Moreover, we discuss the resource
and performance trade-offs for efficient embedded implementation.

II. METHODOLOGY, EQUIPMENT, AND TOOLS

We use a 4 pixel × 4 pixel Omron D6T-44L-06 thermopile infrared
sensor [18] with temperature resolution 0.06 °C and accuracy ±1.5 °C
to monitor the 3 m × 3 m experiment space. It is installed centered
on the ceiling, 3.05 m above the floor, having a 2.48 m × 2.57 m field
of view (FOV) at floor level.

Similar to our previous work [17], we collected the person reference
location with an ultrasound-based tag of the Marvelmind Starter
Set HW v4.9 [19], with ±2 cm accuracy, 15 measurements per
second. We determined experimentally that the average accuracy of
the reference system in our environment is ±3.9 cm (max ±6.4 cm,
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Fig. 1: Experimental data processing uses an accurate ultrasound-
based reference (for training data labelling and inference testing), and
the thermopile sensor processing with the neural network under test.

standard deviation ±0.7 cm) by measuring the localization accuracy
acquiring four times per second for five seconds the location of a
person standing on each of 16 equidistant predefined locations inside
the 3 m × 3 m experiment room space.

During the actual location tracking experiment, a person walked for
30 min along an arbitrary and fairly irregular path in the space, with
variable speed, and we collected synchronous readings at 5 Hz from
both the IR sensor and the reference system, as shown in Fig. 1. We
collected 9000 tuples, each made of 16 thermal sensor readings and
2 co-ordinates from the reference system relative to the room space.

III. DESIGN SPACE EXPLORATION RESULTS

We test three feedforward NN types: MLP, autoregressive, and 1D-
CNN, and one recurrent, LSTM. The neurons use the ReLU activation
function, except some LSTM gates that use the default activations
[20]. We split the experimental data in 60 % sequential tuples for
training, 20 % sequential tuples for validation, 20 % sequential tuples
for testing. We used 50 % dropout layers where appropriate to avoid
training data overfitting. We train 50 times for each hyperparameter
combination with the Keras library and TensorFlow v2.2 back-end,
and Adamax first order gradient-based optimization with default
parameters. We also tried the Adam optimizer which had an essentially
identical RMSE, within ±8 %, or ±0.006 m, of Adamax.

We evaluate (1) the inference quality by the accuracy RMSE,
(2) the smoothness of the inferred trajectory by the average of the
second derivative [21, p. 62], and (3) the NN computation and
memory resource requirements by the total number of operations and
parameters. The results are summarized in Table 1 and discussed next.

A. Multilayer Perceptron Neural Networks

Similar to [17], the NN receives one sensor tuple, 16 temperature
readings on 16 input neurons, and infers the X and Y co-ordinates of the
person in the room on two output neurons. For design space exploration
(DSE), we vary the network depth from one to five hidden layers and
the number of neurons per hidden layer from 4 to 512, in powers of two.

The best network has three hidden layers with 128 neurons each,
inference accuracy RMSE 0.103 m, and smoothness 1.329 m/s2, which
is much higher than the ground truth smoothness (see Table 1).

Table 1: Required parameters (memory), floating-point operations
(FLOPs), inference accuracy root mean square error (RMSE) and
smoothness for the best configuration of each neural network type

Neural network type Param. FLOPs RMSE Smooth
(m) (m/s2)

Multilayer perceptron
128 neurons, 3 layers 35 458 70 149 0.103 1.329

Autoregressive
1 s win., 64 neur./layer, 3 layers 13 634 26 885 0.117 0.990

1 s win., 256 neur./layer, 3 layers 152 834 304 133 0.098 0.638
1D CNN
3 s win., 16 filt., 1 conv. lay., ker. 5 4562 8964 0.108 0.305
1 s win., 32 filt., 1 conv. lay., ker. 3 3810 7428 0.096 0.515
LSTM

3 s window, 2 layers, 64 units 53 890 172 300 0.105 0.163
1 s window, 2 layers, 64 units 53 890 172 300 0.109 0.765

Ground truth
smoothed over 1 s window 0.443
smoothed over 3 s window 0.292

B. Autoregressive Feedforward Neural Networks

Similar to [17], the NN receives a sliding window of inputs
containing multiple sequential 16-sensor reading tuples and infers
the X and Y co-ordinates of the middle tuple on two output neurons.
The NN accesses both past and future samples, which can help it to
learn the movement dynamics. The DSE varies the NN depth from
one to five hidden layers, from 4 to 512 neurons per hidden layer in
powers of two, and window widths of 1 s and 3 s (covering 5 and
15 tuples respectively, thus changing the input layer size from 80
neurons for the 1 s window to 240 neurons for the 3 s window).

An autoregressive NN with three hidden layers, 256 neurons per
layer, and 1 s input window has among the lowest inference RMSE,
0.098 m (see Table 1). But smaller networks, e.g., with 64 neurons
per hidden layer, have also small RMSEs, of 0.117 m. Compared to
MLP, the autoregressive NN significantly improves the smoothness
of the inferred trajectory, to 0.638 m/s2 from 1.329 m/s2, thus better
capturing the movement dynamics.

C. 1D Convolutional Neural Networks

Convolutional NNs can efficiently extract relevant data patterns and
are widely used in image and data time series processing. Efficient
pattern recognition helps significantly reduce the computation effort
compared to fully connected NNs. Similar to [17], the 1D-CNN
receives a sliding window of inputs containing multiple sequential
16-sensor tuples and infers the X and Y co-ordinates of the middle
tuple on two output neurons. The NN accesses both past and future
samples, which can help it to learn the movement dynamics. The
DSE varies the number of kernels from 2 to 64, in powers of two,
the kernel size (3, 5, and 7 tuples), the number of convolution layers
(1, 2, and 4), and the window width (1 s and 3 s). The hidden layers
have convolution layers, an average pooling layer of size five, and a
fully connected layer with 64 neurons.

A 1 s window CNN with 32 filters and kernel size of 3 tuples has
the best RMSE of 0.096 m and a smoothness of 0.515 m/s2, both
better than the autoregressive NN and requiring only about a quarter
of the resources (see Table 1). With a larger 3 s window, the RMSE
increases slightly and the smoothness improves markedly, at the
expense of more resource requirements.
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Fig. 2: Inference localization accuracy root mean square error (RMSE)
and trajectory smoothness (second derivative) as a function of (a)
memory (parameters) and (b) processing (FLOPS) requirements for
multilayer perceptron, autoregressive feedforward, 1D convolutional,
and long-short term memory (LSTM) neural networks.

D. Long-Short Term Memory Neural Networks

LSTMs are recurrent networks used mostly where history and context
awareness can improve the inference, e.g., for handwriting and speech
recognition, or translation. Similar to previous work [17], the LSTM
receives a sliding window of inputs containing multiple sequential 16-
sensor tuples and infers the X and Y co-ordinates of the middle tuple.
In the DSE we vary the LSTM layers (1, 2, and 3), LSTM units from
2 to 64, in powers of two, and the input window width (1 s and 3 s).

The LSTM achieves by far the best smoothness, 0.163 m/s2, with
a good RMSE of 0.105 m using a 3 s input window (see Table 1),
but requires 15 to 20× more resources than the 1D-CNN. With a
smaller window of 1 s, the RMSE changes only slightly to 0.109 m,
but the smoothness lowers significantly to 0.765 m/s2 for virtually the
same resource requirements (being a recurrent network, the resource
requirements are largely independent on the input window size).

IV. RESULT DISCUSSION AND OPTIMIZATIONS

We summarize in Fig. 2 (further zoomed around the origin in
Fig. 3) the dependence of a) memory requirements (parameters) and b)
processing requirements (FLOPs) on the localization inference RMSE
and the inference smoothness (2nd derivative) for all the NNs. Each
NN allows a distinct performance-resource trade-off (note that memory
and processing are closely correlated). The MLP NNs can have low
RMSEs, but mostly poor smoothness and high resource requirements.

(a)

(b)

Fig. 3: Detail of inference localization accuracy root mean square
error (RMSE) and trajectory smoothness (second derivative) as a
function of (a) memory (parameters) and (b) processing (FLOPS)
requirements for multilayer perceptron, autoregressive feedforward, 1D
convolutional, and long-short term memory (LSTM) neural networks.

The autoregressive NNs have better inference smoothness, especially
with 3 s windows, but still high resource requirements (see Fig. 3).
The 1D-CNN and LSTM NNs perform best. The former generally
have better performance-resource trade-offs with 3 s windows.

Fig. 4 comparatively shows the inference of the X and Y co-ordinates
of the person while moving within the space. The MLP and the
autoregressive NNs seem to be the most “noisy.” The LSTM looks the
smoothest, but leaves some extremes uncovered, while the 1D-CNN
seems a good compromise between trajectory coverage and smoothness.

Considering the above, the 1D-CNN with 3 s input window seems
the best trade-off between inference performance and resource
requirements for embedded implementation (see Table 1). Moreover,
our most accurate tracking inference over an area of 3 m × 3 m using
one 4 pixel × 4 pixel sensor has 0.096 m RMSE (see Table 1), which
is sufficient for most assisted living or home automation applications.

Comparatively, the reports in the state-of-the-art can use tens of
sensors to monitor a space 15 times larger with a much higher average
error of 0.322 m [14], or use two higher-resolution sensors to classify
the location in predefined 60 cm-spaced positions with higher mean
error of 0.134 m [10], or a sensor with comparable resolution over
a quarter of our monitored space, with much higher average error
of 0.246 m [15], or more expensive sensors with four times higher
resolution, further enhanced with interpolation, achieving comparable
localization accuracy over comparable areas, but for predefined (not
arbitrary) trajectories [11], [12].
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Fig. 4: Ground truth, trajectory tracking inference and its error for
the (a) X axis and (b) Y axis for the best NN configurations

V. CONCLUSION

Low resolution infrared camera sensors can be used for low cost
privacy-aware indoor person localization and movement tracking using
neural networks. Network architecture and hyperparameter values
greatly influence the sensor performance. This paper explores trade-
offs between location accuracy, trajectory smoothness, computing
cost and memory resources, in order to find the best compromise for
embedded implementations with limited resources.

The networks that consider a sequence of sensor readings, such
as the autoregressive, 1D-CNN, or LSTM, have smoother inferences
that better follow the actual dynamics of the movements of a person.
Among these, the recurrent networks, such as LSTMs, can consider a
longer movement history and achieve the best inference smoothness,
0.163 m/s2, and 0.105 m localization accuracy RMSE. However, the

1D-CNN with a 1 s input window has the best localization accuracy, of
0.096 m RMSE, needs much fewer computing resources (7428 FLOPs
compared to 172 300 FLOPs for LSTMs) and memory resources
(3810 parameters compared to 53 890 parameters for LSTMs), thus
being better suited for embedded implementation.

In future work, movement tracking can be extended to multiple
persons using NNs such as Yolo for detection, and machine learning
algorithms such as Support Vector Machines for movement tracking.
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