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Abstract 
Holmium orthoferrite HoFeO3 nanoparticles were synthesized by a simple co-

precipitation method via the hydrolysis of Ho (III) and Fe (III) cations in boiling water 

with 5% aqueous ammonia solution. After annealing the precipitate at 750 and 850 °C for 

1 hour, the single-phase HoFeO3 product formed with particle size < 50 nm. The 

synthesized nanopowders are paramagnetic materials with remanent magnetization Mr < 

0.01 emu·g-1, the coercive force Hc = 20÷21 Oe, and magnetization Ms ~ 2.73 emu·g-1 at 

300 K in a maximum field of 16,000 Oe. 
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Introduction 
Out of the vast class of multifunctional materials, orthoferrites of rare-earth 

elements with a perovskite structure (RFeO3), including holmium orthoferrite, have 

garnered much attention for use in modern technologies [1-8]. Rare-earth orthoferrite 

nanoparticles were obtained and used in some areas, such as photocatalysts [3, 8], 

chemical sensors [4], solid fuel cells [7], magneto-optical devices [1], and 

electromagnetic equipment [6, 9]. Holmium orthoferrite with a perovskite structure 

(HoFeO3) is a promising functional material exhibiting ferromagnetic properties and high 

catalytic activity [8, 10–13]. 

In the study [8], holmium orthoferrite nanocrystals (HoFeO3) with an average size 

of 27–40 nm (according to the XRD results) obtained by a combustion method using 

glycine were used to decompose methyl orange in visible light due to its narrow energy 

gap (Eg = 2.12–2.14 eV). HoFeO3 orthoferrite with a particle size of 149.30 nm (SEM), 

obtained by the ceramic method from the corresponding holmium and iron (III) oxides, 
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was characterized by saturation magnetization Ms = 25.5 emu.g-1, remanent 

magnetization Mr = 4.08 emu.g-1, and a very high coercive force Hc = 2659 Oe at 10 K in 

a maximum field of 60,000 Oe [10]. The HoFeO3 obtained in this study is a magnetically 

hard material (Hc >> 100 Oe) [14]; it can be used for the production of electromagnets, 

magnetic tapes, and magnetic recording materials. However, the magnetic characteristics 

of this material not only depend on the nature of the compound and its crystalline structure 

but also depend on the size of particles, their morphology, impurity content, and the 

synthesis method [10, 14-18]. 

Various methods have been developed for the formation of nanocrystalline 

holmium orthoferrite (HoFeO3). These methods included a mechanochemical method 

with a high annealing temperature (usually > 1200 °C) [10, 15], hydrothermal synthesis 

with a long heating time (usually 12–48 h) [11], sol-gel technology in compliance with 

several influencing factors [8, 12] and even the formation under the influence of gamma 

radiation with modern equipment [19–20]. 

Several studies [21–26] described the features of the formation of RFeO3 

orthoferrite nanoparticles (R = La, Y, Nd) and doped with metal cations (for example, 

Mn, Ni, Co) by a simple co-deposition method via the hydrolysis of cations in boiling 

water (t° > 90 °C), followed by the addition of the corresponding precipitators. This kind 

of strategy has been supposed to stabilize the obtained precipitate. Thus, it results in the 

controllable growth of crystals better than the co-precipitation at room temperature [21–

22]. HoFeO3 nanoparticles have not been synthesized yet by similar methods. HoFeO3 

was also prepared by co-precipitation, using ethanol [27]. However, ethanol is volatile, 

pollutant, and flammable solvent compared to water solvent. Furthermore, the water 

solvent is cheaper.  

This study aimed to synthesize holmium orthoferrite nanoparticles with narrow 

values of coercive force, remanent magnetization, and a high value of saturation 

magnetization by co-precipitation method in the water solvent and at high temperature. 

Experimental 
As starting materials, we used Ho(NO3)3·5H2O, Fe(NO3)3·9H2O, 25% an ammonia 

solution with a density of d = 0.901 g.mL-1 (all reagents were of CP grade), and distilled 

water. Solutions of holmium (III) and iron (III) nitrate were prepared by dissolving the 

corresponding salts in distilled water at room temperature (300 K). Boiling water (400 

mL) was slowly added to the equimolar mixture (50 mL) of 0.1 M Ho(NO3)3 and 0.1 M 

Fe(NO3)3 solutions under continuously stirring with a magnetic stirrer (4000 rpm). After 

addition, the mixture of salt solutions was boiled for 10 min; then, under continuous 

stirring with a magnetic stirrer (4000 rpm), a 5% ammonia aqueous solution was dropped 

appropriately as a precipitant to complete precipitation of Ho (III) and Fe (III) cations 

(phenolphthalein test). Continuously, the mixture solution was stirred for more than 60 

min. The precipitates were collected on a vacuum filter, washed with distilled water to a 

pH value of ~ 7.0, and dried at room temperature to constant weight (for approximately 

three days). The dried precipitate was homogenized and subjected to complex thermal 

analysis (Labsys Evo TG–DSC 1600 °C) with a heating rate of 10 deg.min-1 in an 

atmosphere of dry air up to 1000 °C in order to establish the optimal annealing regime, 

providing the formation of single-phase HoFeO3. 

The following methods were used to comprehensively study the characteristics of 

the obtained nanopowders: the phase composition and crystal structure were studied by 
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X-ray diffraction (XRD; D8-ADVANCE diffractometer) with CuKα radiation (λ = 1.540 

Å) and Raman spectrometry (Horiba XploRA ONE); qualitative and quantitative 

elemental composition were studied by local X-ray microanalysis (XRM; scanning 

electron microscope FESEM S-4800), morphology and particle size were investigated by 

transmission electron microscopy (TEM; JEOL-1400); the average crystal size was 

determined according to the Debye Scherrer equation; parameters a, b, c and unit cell 

volume V of the were determined using the Rietveld method, implemented in the X’pert 

High Score Plus 2.2b software package, saturation magnetization in the maximal field, 

remanent magnetization and coercive force were determined using VSM MICROSENE 

EV11 magnetometer. 

Results and discussion 
The complex thermal analysis of the HoFeO3 sample obtained by the co-

precipitation of holmium (III) and iron (III) hydroxides showed (Fig. 1a) that the mass 

loss was ~ 36.50%, which is much higher than the one (16.73%) calculated according to 

the reaction equation (1):  

Ho(OH)3 + Fe(OH)3 → HoFeO3 + 3H2O 1 

This difference is caused by the result of co-precipitation consisting not only 

hydroxides ((Fe2O3·xH2O [28] and HoO(OH)·yH2O [28]) but also carbonates 

(Ho2(CO3)3·8H2O or Ho2O(CO3)2·1.4H2O) [29-30]. The presence of carbonates in the 

sample was probably associated with the dissolution of carbon dioxide (air) in an 

ammonia solution. A similar observation was reported in our previous paper for systems 

based on YFeO3 and LaFeO3 [21-22, 24, 26]. 

 

Fig. 1. TGA/DSC diagrams of the precipitate containing Ho (III) and Fe (III) (molar 

ratio of Ho3+ to Fe3+ is 1/1) (a), and Energy-dispersive X-ray spectroscopy (EDX) of 

HoFeO3 nanoparticles annealed at 850 °С for 1 h (b). 

The most significant mass loss (about 31.50%) observed in the range of 60–500 

°С was accompanied with two endothermic peaks at 115.82 and 297.57 °С (Fig. 1a), 

which is assigned for water evaporation, and decomposition of holmium (III), iron (III) 

hydroxides. The dehydration started at 50 oC and finished at around 100 oC. On the other 

hand, the pyrolysis of iron (III) hydroxide and holmium hydroxide terminated at around 
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330 oC, 500 oC, respectively [28, 32]. Similarly, in our previous study, the pyrolysis of 

lanthanum hydroxide was also observed at approximately 500 oC [21].  

 

Fig. 2. XRD patterns of HoFeO3 formed at 750 °С and 850 °С for 1 h. 

The second mass loss observed in the range of 500–800 °С was related to the 

decomposition of holmium carbonates (Ho2(CO3)3·8H2O or Ho2O(CO3)2·1.4H2O). We 

haven’t observed any endothermic peak related to this phenomenon. Simultaneously, the 

crystallization of holmium orthoferrite nanoparticles (HoFeO3) occurred at the 

temperature range of 750 oC – 800 oC, resulting in an obviously exothermic peak on the 

DSC diagram at 757 oC. Probably, the absence of an endothermic peak on the DSC 

thermogram in the temperature range of 500 - 800 oC corresponding to the decomposition 

of holmium carbonates is due to the more significant crystallization of holmium 

orthoferrite nanoparticles. The crystallization was confirmed by the diffraction pattern of 

the sample after annealing at 750 °С, which was a single-phase product, HoFeO3 (Fig. 2).  

Briefly, the formation of single-phase of orthoferrite holmium (HoFeO3) can be 

described as below equations [28-30, 32].   
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330 C3

2 2 3 2 2 3 22Fe 6OH xH O Fe O (x 3)H O Fe O (x 3)H O + −+ + →  + ⎯⎯⎯→ + +
 2 

3

2 2 2 3 3 3 24Ho 12OH 3CO xH O Ho (CO ) 2Ho(OH) (x 3)H O+ −+ + + →   +
 3 

100 C

2 3 3 3 2 2 3 3 3Ho (CO ) 2Ho(OH) (x 3)H O Ho (CO ) 2Ho(OH)  + ⎯⎯⎯→ 
 4 

500 C

2 3 3 3 2 3 3 2 3 2Ho (CO ) 2Ho(OH) Ho (CO ) Ho O 3H O  ⎯⎯⎯→ + +
 5 

500 800 C

2 3 3 2 3 2Ho (CO ) Ho O 3CO− ⎯⎯⎯⎯→ +
 6 

750 850 C

2 3 2 3 3Ho O Fe O HoFeO− + ⎯⎯⎯⎯→
 7 

XRD diagram indicated that synthesized samples were a single-phase product with 

the structure of holmium orthoferrite HoFeO3 (JCPDS no. 00-046-0115, space group 

Pbnm (62); a = 5.282 Å, b = 5.592 Å, c = 7.608 Å) (Fig. 2). The increase in the annealing 

temperature led to an increase in the degree of crystallization, size of crystal particles, 

unit cell parameters, and a slight decrease in unit cell volume (Table 1). These results are 

consistent with the reported paper [27].   

Table 1. Characteristics of crystalline HoFeO3 nanoparticles annealed at 750, and  

850 °С.for 1 h. 

HoFeO3 I, (a.u.)  FWHM, (°) D, (nm) 
Lattice constants, (Å) 

V, (Å3) 
a b c 

750 °C 218.68 0.408 20.09 5.267 5.616 7.616 225.277 

850 °C 238.70 0.480 23.97 5.271 5.605 7.583 224.032 

 

Raman spectra showed 3 strong peaks at 146.8, 514.1, and 598.4 cm-1 (Fig. 3a). 

The Raman active modes of the HoFeO3 were assigned based on the method recently 

proposed by Gupta et al. [31] for RFeO3 (R = Tb, Dy, Ho, Er, Tm) compounds. The 

strongest peak at 146.8 cm-1 was attributed to the Ho-O vibration modes. The Raman 

bands above 200 cm-1 correspond to oxygen ions. The high-frequency mode in the RFeO3 

crystal may be assigned to the internal vibration related to the mutual Fe-O motion within 

the oxygen octahedron [20, 31], which is present in this study at wavenumbers of 514.1 

and 598.4 cm-1.  

TEM images indicated that HoFeO3 nanoparticles were uniform (if considering 

individual particles). The mean sizes of particles after annealing at 750 and 850 oC were 

20-30 nm and 20-40 nm, respectively (Fig. 3b, 3c, and Fig. 4). The particles are strongly 

aggregated at higher temperatures. According to the results of local X-ray microanalysis, 

the HoFeO3 sample contained only three elements: Ho, Fe, and O (Fig. 1b). The 
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calculation of the quantitative composition demonstrated that the actual content of each 

element was quite close to the nominal composition (Table 2).  

 

Fig. 3. Raman spectra of the HoFeO3 nanoparticles annealed at 850 °C (a) and TEM 

images of the HoFeO3 nanoparticles annealed at 750 (b) and 850 °С (c) for 1h. 

 

Fig. 4. Particle size distribution histogram of HoFeO3 powders annealed at 750 and 

850 °С for 1h. 

Table 2. The theoretical and experimental weight percentage of Ho, Fe, and O of 

HoFeO3 sample annealed at 850 °С as obtained by EDX. 

Elements Theoretical value (wt %) Experimental value (wt %) 

Ho 61.36 59.75 

Fe  20.78   20.07  

O  17.86   20.18  

 

The study of the HoFeO3 samples (annealing at 750 and 850 °С for 1 h) on a 

vibration magnetometer at 100 K and 300 K showed that in a maximum field of 16,000 

Oe, according to the shape of the hysteresis loop, the nanopowders of HoFeO3 are 

paramagnets (Fig. 5). The magnetic hysteresis curves of HoFeO3 annealed at 750 are 
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similar to that of HoFeO3 annealed at 850 °C. This observation is due to the same 

morphology (see Fig.3b-c) and insignificant changes in the crystalline size (see Table 1). 

Interestingly, the synthesized HoFeO3 nanoparticles presented lower Hc, and Mr values 

Hc ~ 20 Oe, Mr < 0.01 emu/g), but higher Ms compared to the orthoferrite nanoparticles 

of other rare-earth elements, such as LaFeO3, YFeO3, and NdFeO3 in similar conditions 

[22, 26, 32] and compared to the data of other authors for similar objects [1, 17, 33] (Table 

3). Typically, the Ms value of obtained HoFeO3 was much higher than that of HoFeO3 

prepared by the co-precipitation method using ethanol [27] (see Table 3). At 5 kOe, the 

magnetization of the HoFeO3 sample annealed at 850 °C increases when the temperature 

of the measurement decreases (Fig. 5a). The HoFeO3 orthoferrite samples with low 

coercive force, excessive magnetization, and high magnetization were investigated in this 

study. This material is paramagnetic and applicable in physics and biomedical, regarding 

quick responses to the external magnetic field [34]. 

 

Fig. 4. Magnetization verses applied field plots of HoFeO3 nanoparticles at 100 K and 

300 K. 

 

Table 3. Magnetic characteristics of HoFeO3 nanoparticles in this work and those of 

similar nanoparticles in the published literatures, at 300 K. 

RFeO3 Mr, emu/g Hc, Oe Ms, emu/g 

HoFeO3 in this work < 0.01 20.05÷21.20 ~ 2.73 

YFeO3, [22] 0.19·10-3 53.36 0.39 

LaFeO3, [26] 2.00·10-2 42.53 0.24 

NdFeO3, [32] 68.0·10-2 136.76 0.80 

HoFeO3, [27] 0.02÷0.04 13.95÷22.70 0.73÷0.79 

LaFeO3, [17] 5.43·10-4 1217.6 6.49·10-3 

LaFeO3, [1] - 25-125 ~ 0.10 

NdFeO3, [33] 1.5 ~850 1.5 
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Fig. 5. Temperature dependence of zero-field-cold (ZFC) magnetization plot of HoFeO3 

nanoparticles annealed at 850 °C for 1h (in the presence of 5 kOe magnetic field). 

Conclusions 
In this study, HoFeO3 nanoparticles were synthesized by the simple co-

precipitation method via a simple process. The first stage is the hydrolysis of Ho (III) and 

Fe (III) cations in boiling water with an aqueous ammonia solution. The second stage is 

the annealing at 750 and 850 °С for 1 h. The synthesized HoFeO3 orthoferrite 

nanopowders exhibited a narrow hysteresis loop, small values of remanent magnetization 

and coercive force, but high magnetization, which is potential use as paramagnetic 

material in physics and biomedical. 
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