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Abstract 
The modelling of an axisymmetric industrial quenched molybdenum steel bar AISI-SAE 
4037H quenched in sea water based on finite element method has been produced to 
investigate the impact of process history on metallurgical and material properties. 
Mathematical modelling of 1-dimensional line (radius) element axisymmetric model has 
been adopted to predict temperature history and consequently the hardness of the quenched 
steel bar at any point (node). The lowest hardness point (LHP) is determined. In this paper 
hardness in specimen points was calculated by the conversion of calculated characteristic 
cooling time for phase transformation t8/5 to hardness. The model can be employed as a 
guideline to design cooling approach to achieve desired microstructure and mechanical 
properties such as hardness. The developed mathematical model was converted to a 
computer program. This program can be used independently or incorporated into a 
temperature history calculator to continuously calculate and display temperature history of 
the industrially quenched steel bar and thereby calculate LHP. The developed program from 
the mathematical model has been verified and validated by comparing its hardness results 
with commercial finite element software results. The comparison indicates reliability of the 
proposed model. 
Key words: Heat Treatment; Quenching; Axisymmetric Molybdenum Steel Bar; Finite 
Element; Mathematical Modeling; Unsteady State Heat Transfer. 
 

Introduction 
Quenching is a heat treatment usually employed in industrial processes in order 

to control mechanical properties of steels such as hardness [1, 2]. The process consists 
of raising the steel temperature above a certain critical value, holding it at that 
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temperature for a specified time and then rapidly cooling it in a suitable medium to 
room temperature [1,3]. The resulting microstructures formed from quenching (ferrite, 
cementite, pearlite, upper bainite, lower bainite and martensite) depend on cooling rate 
and on chemical composition of the steel [1, 4]. 

Quenching of steels is a multi-physics process involving a complicated pattern of 
couplings among heat transfer. Because of the complexity, coupled (thermal-
mechanical-metallurgical) theory and non- linear nature of the problem, no analytical 
solution exists. However, numerical solution is possible by finite difference method, 
finite volume method, and the most popular one - finite element method (FEM) [1, 5].  

During the quenching process of the steel bar, the heat transfer is in an unsteady 
state as there is a variation of temperature with time [1, 6]. In this paper the heat transfer 
analysis will be carried out in 3- dimensions. The three dimensional analysis will be 
reduced into a 1-dimensional axisymmetric analysis to save cost and computer time [1, 
5, 7-10]. This is achievable because in axisymmetric conditions the temperature 
deviations is only in r-direction while there is no temperature variation in the theta θ 
and z-direction as it is clear in Figs. 1-3. The Galerkin weighted residual technique is 
used to derive the mathematical model. In this work, 1-dimensional line (radius) 
element will be developed. 

It is clear that the first point (node) will be completely cooled after quenching 
(surface node) because it is located on the surface touched by the cooling medium, then 
the other points (nodes) on the radial axis to the centre accordingly will be cooled and 
the last point will be completely cooled after quenching (centre node)[1].  

It means that the maximum hardness will be measured on the surface node 
subjected to fast cooling, then the hardness will decrease from the surface node on the 
radial axis to the centre node of the quenched steel bar, respectively. This means that the 
lowest hardness point of the quenched steel bar will be detected at the centre node [1]. 

The lowest hardness point (LHP) should be expected inside the heat treated 
quenched steel bar at the half of the length at the centre of the bar (centre node). To 
prove this statement experimentally is an almost impossible task using manual 
calculation techniques. Also the earlier methods only used hardness value calculated at 
the surface (surface node), which is higher than the lowest hardness point (centre node). 
This might have negative consequences resulting to the deformation and failure of the 
component [1]. 

It will be more important to know the LHP (centre node) when the radius of the 
quenched steel bar will increase because the lowest hardness point will be lower than 
the hardness on the surface (surface node). This means that increasing the radius of the 
bar is inversely proportional to LHP (centre node), while the hardness at the surface 
(surface node) will be the same [1]. 

No published informations are available till date on this aspect. This paper 
represents a contribution towards understanding of steel behaviour at elevated 
temperature during quenching at the LHP (centre node) of the steel bar. We believe that 
the results of this paper might be very useful to obtain the hardness of the lowest point 
of the steel bar in order to reach the maximum benefit against the deformation and 
failure of the component [1]. 
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Mathematical model 
The temperature history of the quenched cylindrical molybdenum steel bar at 

any point will be calculated. Three dimensional heat transfers can be analyzed using 
one dimensional axisymmetric element as shown in Figs. 1-3. [34-39]. 

 

Methodology of building the Finite Element (FE) Model in details 
The temperature distribution inside the cylindrical steel bar when reached 

thermal equilibrium will be calculated.  There are special classes of three-dimensional 
heat transfer problem: 

i. geometrically axisymmetric. 
ii. each thermal load is symmetrical about an axis. 

This 3-dimensional heat transfer problem may be analyzed using one-
dimensional axisymmetric elements as shown in Figs. 1-3. [34-39]. 

The FE is applied to the 1-dimensional cylindrical coordinates heat transfer 
problem. The FE formulation is developed with the Garlekin Weighted-residual 
method. The appropriate working expressions of the conductance matrix, capacitance 
matrix and thermal load matrix are derived in details. The time dependent solution is 
obtained by applying the Backward Difference Schem. 

 
Meshing the engineering problem of the domain 

Let us consider a cylindrical molybdenum steel bar as shown in Fig. 1 which had 
been heated and then submerged in a cool quenching medium (sea water). 

 
Fig. 1 The axisymmetric one dimensional line (radius) element from the domain, on the 

cylindrical molybdenum steel bar which had been heated and then quenched in sea 
water. 

 
1-dimensional axisymmetric line (radius) element has been selected on this 

mathematical model. A 1-dimensional element in this work is defined by 5 nodes. 
Therefore, we can represent the variation of the dependent variable, such as the 
temperature history consequently the hardness at any point (node) even inside the heat 
treated quenched molybdenum steel bar. 
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Fig. 2 The axisymmetric one dimensional line (radius) element from the domain on the 

axisymmetric rectangular cross-section. 

 
Fig. 3 The axisymmetric 1-dimensional line (radius) element from the domain shows the 

selected 4 elements with 5 nodes and the boundary at node j [5] for an element 4. 
 

The linear temperature distribution for an element (radius) line, T is given by:  
T(R) = a1 + a2 R (1) 

where: T(R) = nodal temperature as the function of R; a1 and a2 are constants, R is 
any point on the (radius) line element  

 
Shape function of 1- dimensional axisymmetric element 

The shape functions were to represent the variation of the field variable over the 
element. The shape function of axisymmetric 1-dimensional line (radius) element 
expressed in terms of the r coordinate and its coordinate are shown in Fig. 4; [34-39]. 
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Global coordinate system being used to get the constants a1 and a2 thereby we 
can obtain the required shape function according to the below equations, which will be 
required for the Galerkin finite element solution. 

 

Si =
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

ij

j

RR
RR

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
L

RR j

 (2a)  

Sj =
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

ij

i

RR
RR

=
⎟
⎠
⎞

⎜
⎝
⎛ −

L
RR i

 (2b) 
Thus the temperature distribution of 1-dimensional radius for an element in terms 

of the shape function can be written as: 
T(R) = SiTi + SjTj = S(r) {T} (3) 

Where [S(r)] = [Si      Sj] is a row vector matrix and  

{T} = 
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  is a column vector of nodal temperature of the element. 

 
Eq. (3) can also be expressed in matrix form as: 

T(R) = [Si      Sj]    
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Thus for 1-dimensional element we can write in general:  

Ψ(e) = [Si      Sj]     
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Ψ
Ψ

j

i  (5) 

Where Ψi and Ψj represent the nodal values of the unknown variable which in our 
case is temperature. The unknown parameters can be deflection, velocity etc.  

 
Fig. 4. 1-dimensional linear temperature distributions for an element (radius) line in 

Global Coordinate system. 
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Natural area coordinate 
Using the natural length coordinates and their relationship with the shape 

function by simplification of the integral of Galerkin solution: 
The two length natural coordinates L1 and L2 at any point p inside the element are 

shown in Fig. 5 from which we can write: 

L
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Fig. 5. Two-node line element showing interior point p and the two naturals 

coordinates L1 and L2. 
 
Since it is a 1-dimensional element, there should be only one independent 

coordinate to define any point P. This is true even with natural coordinates as the two 
natural coordinates L1 and L2 are not independent, but are related as: 
L1+L2 = 1   or  1

L
l

L
l

LL 21
21 =+=+  (7) 

The natural coordinates L1 and L2 are also the shape functions for the line 
element, thus: 
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Develop Equation for all Elements of the Domain 
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Derivation of equation of heat transfer in axisymmetric 1-dimensional line 
(radius) elements by applying the conservation of energy to a differential volume 
cylindrical segment has been done as shown in Fig. 6; 

 
Fig. 6. Axisymmetric element from an axisymmetric body. 

 
Ein – Eout + Egenerated = Estored (12) 

The transient heat transfer within the component during quenching can 
mathematically be described by simplifying the differential volume term [4, 11]; the 
heat conduction equation is derived and given by:  
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where: 

kr = heat conductivity coefficient in r-direction, W/m·°C.  
kθ = heat conductivity coefficient in θ-direction, W/m·°C.  
kz = heat conductivity coefficient in z-direction, W/m·°C. 
T = temperature, °C. 
q = heat generation, W/m3. 
ρ = mass density, kg/m3. 
c = specific heat of the medium, J/kg·K. 
t = time, s. 
 

The Necessary Assumptions Made to Solve the Problem 
i. For axisymmetric situations 1-dimensional line (radius) element, there is no variation 

of temperature in the Z-direction as shown in Figs. 1-3. This is because we have 
already assumed that in steel quenching and cooling process of the steel bar is 
insulated from convection at the cross section of the front and back.  
It means that we have convection and radiation at one node only which is on the 
surface [node 5]. In our research we focus to calculate LHP which is at [node 1], i.e. 
the last point that will be cooled. This gives the maximum advantage to make our 
assumption safer, because it is the last point that will be affected by convection and 
radiation from the front and back cross section of the steel bar. Therefore we can write,  

⎟
⎠
⎞

⎜
⎝
⎛ =
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z
T
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For axisymmetric situations, there is no variation of temperature in the θ-direction, 
because it is clear from Figs. 1-3 that the temperature distribution along the radius will 
be the same if the radius move with angle θ, 360o. Therefore; 

⎟
⎠
⎞

⎜
⎝
⎛ =
∂
∂ 0
θ
T

 
ii. The thermal energy generation rate q& represents the rate of the conversion of energy 

from electrical, chemical, nuclear, or electromagnetic forms to thermal energy within 
the volume of the system. The conversion of the electric field will be studied in details 
in the second part of our research. Since in this manuscript no heat generation has been 
taken into account, therefore:  
q& = 0 

After simplifying, the Eq. (13) becomes;- 
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And also known as residual or partial differential equation: 
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Galerkin Weighted Residual Method Formulation 

To suit the formulation into finite element analysis, Galerkin’s weighted 
residual method is applied. The Galerkin residual in our case for 1-dimensional line 
(radius) element of unsteady state heat transfer can be obtained by integration the 
transpose of the shape functions times the residual which minimize the residual to 
zero becomes; 
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Where, [S]T = the transpose of the shape function matrix 

{ }ℜ (e) = the residual contributed by element (e) to the final system of equations. 
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Chain rule 
The term 1 and 2 of Eq. (17) can be re-arranged using the chain rule which 

states that: 
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Term 1 of Eq. 17 is rearranged, thus: 
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By substitute Eq. (18) into Eq. (17): 
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Term A is the heat convection term and contributes to the conductance and 

thermal load matrix. Term B is the heat conduction term and contributes to the 
conductance matrix. Term C is the transient equation and contributes to the 
capacitance matrix.  

Where:     [ ]
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Note that terms A1 and term A3 contributed to the conductance matrix since they 
contains the unknown temperature {T}. Terms A2 and A4 contributed to the thermal 
load matrix as Tf is the known fluid temperature. Terms A3 and term A4 refer to heat 
radiation and are very important if our heat treatment is Annealing [cooling in the 
furnace] or Normalizing [cooling in air or jet air], but they can be ignored if cooling is 
quenching in sea water as in our work. 

From earlier explanations derivation and after simplification we can formulate 
the conductance matrix in the r-direction for term B. Finally we get: 

 
Term B (the conduction term) contributes to the Conductance Matrix 

( )
4444 34444 21

4444 84444 76

cK

j

i
ij T

TRR
L
k

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

11
11  (20) 

Similarly, term C, the unsteady state (transient) which contributes to the 
Capacitance Matrix, becomes: 

 
Term C (heat stored) contributes to the Capacitance Matrix 
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Term A (Heat Convection)  
  

→ Term A1 -Contributes to Conductance Matrix  
Term A1 (the convection term) contributes to the conductance matrix 
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→ Term A2 -Contributes to Thermal Load Matrix  
Term A2 (the convection term) contributes to thermal load matrix 
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Construct the element Matrices to the Global Matrix 
The global, conductance, capacitance and thermal load matrices and the 

global of the unknown temperature matrix for all the elements in the domain are 
assembled i.e. the element's conductance; capacitance and thermal load matrices 
have been derived. Assembling these elements is necessary in all FE analysis.  

Constructing these elements will result into the following FE equation: 

[ ]( ){ }( ) [ ]( ){ }( ) { }( )GGGGG FTCTK =+ &   (24) 
where: 

[K]=[Kc]+[Kh]: is conductance matrix due to Conduction (Elements 1 to 4) and heat 
loss through convection at the element’s boundary (element 4 
node 5) as shown in Figs. 1-3. 

{T}: is temperature value at each node, °C. 

[C]: is capacitance matrix, due to transient equation (heat stored) 

{T& }: is temperature rate for each node, °C/s. 

{ } { } { }qh FFF &+= : is heat load due to heat loss through convection at the element’s 
boundary (element 4 node 5) and internal heat generation (element 4 node 
5). 

 

Euler’s method 
Two point recurrence formulas will allow us to compute the nodal 
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temperatures as a function of time. In this paper, Euler’s method which is known as 
the backward difference scheme (FDS) will be used to determine the rate of change 
in temperature, the temperature history at any point (node) of the steel bar [4, 11-
14]. 

If the derivative of T with respect to time t is written in the backward 
direction and if the time step is not equal to zero (∆t ≠ 0), then we have: 

( ) ( )
⎭
⎬
⎫

⎩
⎨
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Δ
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⎬
⎫
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⎨
⎧ •

t
ttTtTT  (25) 

 

With; 

{T& }= temperature rate (°C/s); T (t)= temperature at (t) s (°C); T (t - ∆t) = 
temperature at (t - ∆t) s, (°C) 

∆t = selected time step (s) and t = time (s) (at starting time, t = 0) 

By substituting the value of {T& } into the finite element global equation, we 
obtain: 
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Finally, the matrices become; 

[ ]( ) [ ]( )[ ]{ }( ) [ ]( ){ }( ) { }( ) tFTCTCtK G
i

G
i

GG
i

GG Δ+=+Δ ++ 11  (27) 
From Eq. (27) all the right hand side is completely known at time t, including 

t = 0 for which the initial condition apply. 

Therefore, the nodal temperature can be obtained for a subsequent time given 
the temperature for the preceding time.  

Once the temperature history is known the important mechanical properties 
such as hardness and strength of the molybdenum steel bar can be obtained.  
 

Application  
Calculation the temperature history  

The present developed mathematical model is programmed using MATLAB 
to simulate the results of the temperature distribution with respect to time in 
transient state heat transfer of the industrial quenched molybdenum steel bar.  

The cylindrical molybdenum steel bar has been heated to 850°C. Then being 
quenched in sea water with Tsea-water = 32°C and convection heat transfer coefficient, 
hsea-water = 1250 W/m2·°C [15].  The temperature history for the selected nodes of the 
cylindrical molybdenum steel bar after quenching is being identified in Figs. 7 and 
8. The cylindrical bar was made from molybdenum steel, with properties as 
mentioned below. 
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Thermal capacity, ρc (J/m3·°C): 
6500 ≤≤ T °C,  ( ) 6103.3004.0 ×+= Tcρ , 725650 ≤< T °C, 

( ) 6103.38068.0 ×−= Tcρ  
800725 ≤< T °C, ( ) 61055.73086.0 ×+−= Tcρ , 800>T °C, 

61055.9 ×=cρ  
Thermal conductivity, k (W/m·°C): 

9000 ≤≤ T °C, 48022.0 +−= Tk , 900>T °C, 4.28=k  
In our case Eq. (27) becomes:  
[ ]( ){ }( ) [ ]( ){ }( ) { }( )GGGGG FTCTK =+ &

 
And their respective equations: 
[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )44321

hcccc
G KKKKKK ++++=    (28) 

[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )4321 CCCCC G +++=      (29) 

{ }( ) { }( )4
h

G FF =       (30) 

With the input data and boundary conditions provided, a sensitivity analysis 
is carried out with the developed program to obtain the temperature distribution at 
any point (node) of the quenched steel bar. As an example, is the transient state 
temperature distribution results of the selected five nodes from the center [W1] to 
the surface [W5] of the quenched steel bar which were computed as shown in Figs. 7 
and 8. 

 

Fig. 7 The axisymmetric 1-dimensional line (radius) element from the domain when 
the radius equals 12.5mm, the selected 4 elements with 5 nodes and the boundary at 

node j [5] for an element 4. 
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Fig. 8 Graph of temperature history along WW cross-section from MATLAB 

program. 

LHP Calculation 
 
Calculating the cooling time required 

In this study, we choose to calculate the cooling time between 800oC and 500oC 
[11, 20-26]. Where, the characteristic cooling time, relevant for phase transformation in 
most structural steels is the time of cooling from 800 to 500°C (time t8/5) [7-10, 27-34]. 

tc = t800 - t500 
From Fig. 8 we can determine the time taken for node W1 to reach 800oC,  
t800 = 9.7 s.  
By the same way the time taken for node W1 to reach 500oC is  
t500 = 36.3 s. 
So the Cooling time tc for node W1; 
tc = t500 – t800 = 36.3 – 9.7 = 26.60 s. 
For nodes W2 to W5, the cooling time tc was calculated by the same way, the final 

results are shown in Table 1. 
 
 

Calculating the Jominy distance from Standard Jominy distance versus cooling time 
curve 

Obtained cooling time, tc, will now be substituted into the Jominy distance versus 
cooling time curve in order to obtain the correspondent Jominy distance. Jominy 
distance can also be calculated by using polynomial expressions via polynomial 
regression via Microsoft Excel. 

In this paper the standard Table [Cooling rate at each Jominy distance (Chandler, 
H., 1998)] will be used [33]. Then Jominy distance of nodes W1 to W5 will be 
calculated by using the data from [Cooling rate at each Jominy distance (Chandler, H., 
1998)], the final results are shown in Table 1, where the rate of cooling (ROC) was 
defined by: 
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C800C500

C500-C800C500-C800ROC
°° −
°°=°°=

tttc

 (°C/s) 

 
Predict the hardness of the quenched steel bar 

The Rockwell hardness C (HRC) of molybdenum steel AISI-SAE 4037H can 
be calculated by using the relation between the Jominy distance and the HRC from 
the Practical date Handbook, the Timken Company 1835 Duebex Avenue SW 
Canton, Ohio 44706-2798 1-800-223. The final results are shown in Fig. 9 and 
Table 1. 

 
Table 1 Cooling time, cooling rate, Jominy distance and HRC for the nodes W1 to W5, 

sea water cooled. 
Node tc (s) ROC (°C /s) Jominy-distance (mm) Hardness (HRC) 
W1 26.61 11.273957 16.735 23.909 
W2 26.571 11.290504 16.717 23.919 
W3 26.183 11.457816 16.479 24.066 
W4 24.546 12.221950 15.639 24.652 
W5 20.466 14.658457 14.159 25.624 

 

 
Fig. 9. Hardness distribution along WW cross-section for the nodes W1 to W5 from the 
centre to the surface, respectively, at half the length at the centre of the quenched steel 

bar. 
 

Mathematical verification  
The same data input for the steel properties and boundary condition used in the 

mathematical model was applied to the ANSYS software to verify the temperature 
simulation results. The temperature distribution from the ANSYS analysis is depicted 
figuratively as shown in Figs. 10.1a and 10.1b. 

Fig. 10.1a shows the temperature distribution just before the steel bar 
becomes completely cooled whereas Fig. 10.1b shows the temperature distribution 
at the moment when the entire steel bar becomes completely cooled after 1498s. 
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Fig. 10.1a                                                       Fig.10.1b 

 
The temperature time graph from the ANSYS analysis is depicted as shown 

in Fig. 11. 

 
Fig. 11 Temperature-time graph from ANSYS 

 
From the graphs shown in Fig. 8 (applied mathematical model) and Fig. 11 

(applied ANSYS), it can be clearly seen that the temperature history of the 
quenched steel bar has the same pattern.  The heat transfer across the steel bar is 
uniform. From Fig. 11 the cooling time, Jominy-distance and consequently the 
hardness of the quenched molybdenum steel 4037H at any point (node), even the 
(LHP) are also determined by ANSYS. The final results are shown in Table 2 and 
Fig. 12. 

 
Table 2 Cooling time, cooling rate, Jominy distance and HRC for the nodes A1 to A5, 

determined by ANSYS. 
Node Cooling time, Cooling rate J-distance (mm) HRC 

A1 32.112284 9.34222 18.788 22.668 
A2 32.030048 9.36621 18.763 22.684 
A3 31.466551 9.53393 18.590 22.795 
A4 28.484752 10.53195 17.677 23.380 
A5 24.074572 12.46128 15.468 24.759 
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Fig. 12 Hardness distribution by ANSYS along AA cross section for the nodes A1 to A5 

from the centre to the surface respectively at half the length at the centre of the 
quenched molybdenum steel bar. 

 
From our results we found that in the mathematical model for the first node with 

W1 in the center, we found that HRC = 23.909. While in ANSYS for the same node A1, 
we found that HRC = 22.668.  

And for the nodes on the surfaces W5 and A5, it was found that HRC = 25.624 
and 24.759 for the mathematical model and ANSYS respectively. From the above, it 
can be seen that there is a strong agreement between both results. The difference 
between all the results of the mathematical model and the ANSYS simulations can be 
accounted due to the fact that the ANSYS software is for the commercial purpose, and 
thereby has some automated input data. But the developed mathematical model is 
precisely for a circular steel bar axisymmetric cross section.  However, there is strong 
agreement between both results and thereby the result is validated where, the 
comparison indicated reliability of the proposed model. Also the results showed that the 
node on the surface will be the first which was completely cooled after quenching 
because it was in the contact with the cooling medium. The other nodes on the radial 
axis to the centre were successively cooled. The last point that would be completely 
cooled will be located at half the length of the centre. Hence, LHP will be at half the 
length of the centre of the quenched industrial molybdenum steel bar.  It will be more 
important to know LHP once the radius of the quenched steel bar is large because LHP 
will be low. In other words, it will be lower than the hardness at the surface. This means 
that increasing the radius of the bar is inversely proportional with LHP. LHP calculation 
experimentally is an almost impossible task using manual calculation techniques also 
the earlier methods only used hardness calculated at the surface, which is higher than 
LHP, but this might have negative consequences resulting to deformation and failure of 
the component. 
 
Conclusion 

A mathematical model of steel quenching has been developed to compute LHP of 
the quenched molybdenum steel 4037H at any point (node) in a specimen with 
cylindrical geometry. The model is based on the finite element Galerkin residual 
method. The numerical simulation of quenching consisted of numerical simulation of 
temperature transient field of cooling process. This mathematical model was verified 
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and validated by comparing the hardness results with ANSYS software simulations. 
From the mathematical model and ANSYS results, it is clear that the nodes at the 
surface [W5 and A5], respectively, cool faster than the nodes at the center [W1 and A1], 
respectively, because tCW5 is less than tCW1 and tCA5 is less than tCA1. This means that the 
mechanical properties such as hardness will be different, i.e. the hardness at the surface 
nodes [W5 and A5] will be higher than the hardness at the center nodes [W1 and A1]. 
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