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Abstract 
Presented herein is the exact solution of mechanical buckling response of FGM 

(Functionally Graded Material) bimorph circular plates, performed under uniform radial 
compression, by means of the classic theory and the non-linear Von-Karman 
assumptions, for both simply supported and clamped boundary conditions. Material 
properties are assumed to be symmetric with respect to the middle surface and are 
graded in the thickness direction according to a simple power law, in a way that the 
middle surface is pure metal and the two sides are pure ceramic. Using the energy 
method the non-linear equilibrium equations are derived and the stability equations have 
been used, so as to determine the critical buckling pressure, considering the adjacent 
equilibrium criterion, and finally a closed-form solution has been achieved for it. The 
effect of different factors, including thickness to radius variation rate of the plate, 
volumetric percentage of material index, and Poisson's ratio on the critical buckling 
compression have been investigated for two simply supported and clamped boundary 
conditions, and the results achieved are compared with each other and the results 
available in the literature. 
Keywords: Mechanical buckling analysis, circular plates, functionally graded 
materials, classic theory. 

Introduction 
In the recent years, functionally graded materials (FGMs) have been widely used 

in advanced industries especially in aerospace and nuclear engineering applications, and 
due to their importance they have always been attractive for designers, and many 
research studies have been performed on this topic. Generally, FGMs are not 
homogeneous and are composed of a mixture of ceramic and metal, or a mixture of 
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different metals. Microscopically, FGMs are non-homogenous and their structural 
properties including distribution type and the size of the phases vary continuously and 
homogenously across the thickness, and this variation results in the gradual change of 
mechanical properties for these materials [1].  

Stability analysis and studies on the buckling behavior of plates have always 
been considered as one of the most important subjects in structural analysis. The first 
solution of the stability problem for plates was presented by Brayan [2] in 1891. In this 
study, the buckling of a circular plate under uniform radial loading was performed for 
the clamped boundary conditions. 

Yamaki [3] investigated the buckling of annular plates under loadings applied on 
the inner and outer edges, and showed that buckling in this state does not necessarily 
happen in the first mode.  

Timoshenko and Gere [4] studied the buckling analysis problem of different 
engineering structures including: columns, frames, curved beams, plates and shells. 

After that Almorth and Brush [5] presented a general analysis of buckling for 
columns, plates, and shells, and also investigated different methods of formulation for 
the non-linear equilibrium and stability equations.  

Reddy and Khdeir [6] studied the buckling analysis and free vibrations of 
composite laminated rectangular plates, using the classic, the first and the third order 
shear theories, under different boundary conditions. In addition to the analytical 
solution, numerical solution was done on the basis of the finite element method in this 
paper. Results of this study indicate that the classic theory overestimates the natural 
frequencies and critical buckling load, and as the thickness to lateral length ratio 
increases, this discrepancy increases. 

Raju et al. [7, 8] investigated the post buckling of the homogenous and 
orthotropic circular plates with linear thickness variation, under mechanical and thermal 
loadings, in terms of the uniform temperature rise. Thermal buckling analysis of these 
plates was carried out, using finite element theory. 

Ozakca et al. [9] using finite element method and taking into account the shear 
effects as the first order shear theory; performed the buckling analysis and thickness 
optimization for the circular and annular plates. 

Najafizadeh and Eslami [10, 11] studied buckling analysis of the one-sided FGM 
circular plates, under different types of thermal loading, for the clamped boundary 
conditions, and also for radial mechanical compression loading, under simply supported 
and clamped boundary conditions. In these studies, the classic theory was used and the 
analytical solutions were provided. Najafizadeh and Hedayati [12] have performed the 
thermal and mechanical buckling analyses for one-sided FGM circular plates, using the 
first order shear theory and have compared the results achieved with the classic theory. 
In this study, thermal buckling analysis was performed only for the clamped boundary 
conditions, and the mechanical buckling analysis was performed for both the simply 
supported and clamped boundary conditions. Najafizadeh and Heydari [13, 14] have 
investigated the buckling analysis of one-sided FGM circular plates, under different 
thermal loadings, for the clamped boundary conditions, and also investigated it for 
uniform radial compression loading, under simply supported and clamped boundary 
conditions. In these studies, the third order shear theory has been used, and the results 
obtained are compared with the results of the classic and first order shear theories. 
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Naei et al. [15] studied the mechanical buckling of one-sided FGM circular plates 
with variable thickness, under uniform radial compression, using finite element 
technique. The boundary conditions used for the circular plate were simply supported 
and clamped. Jalali et al. [16] performed the thermal stability analysis for circular 
functionally graded sandwich plates of variable thickness and FGM face sheets, using 
pseudo-spectral method. In this study, the circular plate is under a uniform thermal 
loading, and is presented according to the first order shear theory. 

FGM plates can be of two types, namely, one-sided FGMs and FGM bimorphs, 
based on their property variations across the thickness, as shown in figure 1. One-sided 
FGM plates have pure ceramic on one side and pure metal on the other side; and the 
material properties vary continuously from one side to the other. But in FGM bimorph 
plates, both sides are pure ceramic and the mid-plane is pure metal. 

 

 

Figure 1 .FGM plate: (a) one-sided, (b) bimorph. 

In this study, the classic theory and the Von Karman assumptions have been used 
to analyze the mechanical buckling of FGM bimorph circular plates, under uniform 
radial compression. In order to determine the non-linear equilibrium equations, the 
minimum potential energy has been used, and by application of the perturbation 
method, the non-linear equilibrium equations have become linear. In order to determine 
the critical buckling pressure, the stability equations have been derived, using the 
adjacent equilibrium criterion from the linear equilibrium equations, and then are 
analytically solved for simply supported and clamped boundary conditions, and a 
closed-form solution is provided for it, later on. 

The effect of different factors, including thickness to radius variation rate of the 
plate, volumetric percentage of material index, and Poisson's ratio on the critical 
buckling pressure have been investigated for two simply supported and clamped 
boundary conditions, and the results achieved are compared with the results obtained for 
homogenous and one-sided FGMs. 
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Formulation of the problem 
Properties of the FGM 

The circular plate studied, is composed of FGM bimorph materials in which the 
volumetric percentage of ceramic and as a result the properties of the material are 
symmetric with respect to the middle surface, and vary continuously through the 
thickness direction, in a way that the middle surface is pure metal and as we approach 
the outer surfaces, the ceramic percentage increases and at the upper and lower surfaces, 

i.e. at hz=-
2

 and hz=
2

 it becomes pure ceramic.  

Since FGMs are a compound of metal and ceramic, properties of these materials 
like the modulus of elasticity E, based on the classic linear rule of mixtures are 
expressed as follows: 

f m m c cE E V E V= +  (1) 

Wherein c and m show the properties of the ceramic and metal, respectively, and 
Vc and Vm indicate their respective volume fractions [16].  

Here, the variations of the material properties like the modulus of elasticity are 
expressed by the simple power law as follows [17]: 
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P shows the material properties and can be the modulus of elasticity. Variation of 
the Poisson's ratio is negligible and is supposed to be constant. n is the volume fraction 
index of the FGM, which indicates the compound of the volume fractions of the ceramic 
and metal across the thickness, which can be bigger than or equal to zero. The zero and 
infinity values for this index mean pure ceramic and pure metal, respectively. 

Stability and equilibrium equations 
A circular FGM bimorph plate with radius a and thickness h is considered. The 

displacement field according to the classic theory can be expressed in the polar 
coordinates with axisymmetry, as follows [19]: 

( ) ( )

( ) ( )

= −

= =

,
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U r z u r z
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V W r z w r

 (3) 

Where U, V, and W are displacements along r, θ, and z axes and u(r), w(r) are 
displacements of the middle surface along r and z directions.  

The buckling problem is categorized in the non-linear geometrical problems, and 
in non-liner problems, displacements are in a range that the non-linear strain-
displacement terms cannot be disregarded. The strain-displacement relations based on 
the Von-Karman assumptions, and relation (3) can be stated as [19]: 

θ θ θε ε γ ε⎛ ⎞= + = = =⎜ ⎟
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And, the strains of the middle surface are given by: 
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The curvatures are defined as: 
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Regarding the fact that the materials are isotropic, by disregarding the stresses in 
the thickness direction and taking the Poisson's ratio to be constant, the strain-
displacement relations are achieved as follows [15]: 
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In the above relations, E is the modulus of elasticity for the FGM. σθ and σr are 
normal stresses and rθτ  is the shear stress in each point of the plate thickness, with a 
distance equal to z from the middle surface. By integration of the stress components 
over the thickness of the plate, one can find the resultant forces and moments in terms 
of the stress components as follows: 
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Substituting equation (8) into equation (9), the relationship between the forces 
and the moments in terms of the strain components, can be calculated as: 
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Also, by substation of equations (6) and (7) into equations (10), the relationship 
between the forces and the moments in terms of the displacement components, is given 
by: 
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The coefficients A and B are achieved by integrating the properties through the 
thickness of the plate as: 
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Equilibrium equations for the circular plates can be derived by minimizing the 
total potential energy, or directly writing the equilibrium equations for one element. Due 
to axisymmetry, there are no variations along the circumference, and only the 
derivatives with respect to the radial direction are present in the differential equations 
set. 
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In order to find the stability equations from the non-linear equilibrium equations, 
usually the adjacent equilibrium criterion is used [5]. This criterion is used to 
investigate the stability and analyze the buckling behavior of the structures, based on the 
definition of the first and second equilibrium paths and the bifurcation point. By making 
use of this method one can obtain the bifurcation point, through solving the linear 
differential equations. It is in this manner that for an equilibrium state on the first 
equilibrium path, the possibility of the existence of an adjacent equilibrium form, under 
the same loading is investigated. Such an equilibrium form at the adjacency of the first 
equilibrium is the sign of the existence of a bifurcation point on the equilibrium path. 
The intersection point of these paths is called the bifurcation point, and at such points 
the equilibrium equations have two solutions, each of which corresponds to one of the 
two branches.  

The equations necessary for this method are derived from the non-linear 
equilibrium equations of the structure, using the perturbation method, wherein the 
displacement fields ( , )u w are replaced by + +0 1 0 1( , )u u w w , in which 0 0( , )u w shows 
the first equilibrium state, i.e. the prebuckling state, and also indicates an equilibrium 



Jam et al. - An exact solution of mechanical buckling for functionally graded material ... 51 

state on the first path, and 1 1( , )u w are the infinitesimal displacements in the 
displacement field. But, attention should be paid to the fact that in the prebuckling state, 
the plate is not buckled and, or there is no lateral deflection and 0w  is equal to zero.  

Substituting these new fields into the equations (13), all the terms which exclude 
the infinitesimal displacements are dropped out from the resulted equations. Also, if the 
increase in the displacement is adequately small, only the first order terms of the 
displacement 1 1( , )u w remain in the equations, and the higher order terms are dropped 
out. Therefore, the resulting stability equations are linear and homogenous equations in 
terms of the supposed small displacements. This recipe is recognized to be used in the 
determination of the stability, which is called the adjacent equilibrium criterion. 
Therefore, the stability equations are expressed as follows: 
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Where, in the above equations: 
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Substitution of equations (15) and into equations (14) furnishes the stability 
equations in terms of the displacement components: 

2
1 1 1

2 2

4 1
1 0

1( ) 0

1 ( ) 0r

d u du uA
r drdr r

dwdB w rN
r dr dr

+ − =

∇ − =

 (17) 



52 Metall. Mater. Eng. Vol 19 (1) 2013 p. 45-63 

It is seen that the stability equations derived are independent from each other. 
Therefore, in order to determine the critical buckling pressure, the second equation has 
been used. In the stability equations, 0rN  is the radial prebuckling force, which is 
determined from the solution of the non-linear equilibrium equations. So as to this, by 
substitution of equations (16) into the first relation of equation (13) we have: 

+ − =
2

0 0 0
2 2

1
0

d u du u

r drdr r
 (18) 

Equation (18) is called the membrane equation of plate. This equation is an 
ordinary linear differential equation, using whose solution one can determine the 
displacements and the in-plane prebuckling loads. The independent variable of this 
equation is 0u , which by knowing whose value, the in-plane loads area calculated. The 
solution of equation (18) is as follows: 

2
0 1

cu c r
r

= +  (19) 

The mechanical loading is provided by means of the application of a uniform 
radial load of P  in Newton per meter on the edge of the plate, and in this state the edge 
has the ability to move freely along the radius direction. Also, due to the symmetry, the 
displacement at the center must be limited. As a result, the boundary conditions for the 
equation (19) are stated as follows: 

(At center)        Finite 0 (0)u =  
 (20) 

0 ( )rN a P= −               (At edge) 
 

By applying the first boundary condition of (20) into relation (19), we have 

2 0c = , and by applying the second boundary condition, we have 1 (1 )
Pc

A ν
−

=
+

. 

Therefore, relation (19) will be as follows: 

0 (1 )
rPu

A ν
−

=
+
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Substitution of equation (21) into equations (16) the prebuckling forces are 
derived as: 

0 0rN N Pq= = -  (22) 

Substitution of equation (22) into the second stability equation yields: 
4 1

1
1

( )∇ = −
dwd

B w rP
r dr dr

 (23) 

By one time integration of the above relation with respect to r we have: 
2 2 2( 1) 0α α α β′′ ′+ + − =r r r  (24) 
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Where in the above: 
21 ,α β= − =

dw P

dr B
 (25) 

Now, a new variable is defined: 
.β=s r  (26) 

Using which, the equation (24) becomes so: 
α α α+ + − =

2
2 2

2
( 1) 0

d d
s s s

dsds
 (27) 

The general answer of this equation is as follows: 
α = +5 1 6 1( ) ( )c J s c Y s  (28) 

Where 1J  and 1Y  are the Bessel type one and two functions, and 5c and 6c  are 
the integration constants. At the center of the plate there is 0r s= = , and α  must go to 
zero, so as to satisfy the symmetry conditions. Because s goes to zero, the 

1( )Y s function becomes infinity, and the above condition makes it necessary 

that 6 0c = . In order to satisfy the clamped boundary conditions for the edges of the 
plate, there should be: 

α = =( ) 0r a  (29) 

And, therefore: 
β =1( ) 0J a  (30) 

The smallest root of equation (30) is: 
3.8317β =a  (31) 

By substitution of this value into equation (25), the critical buckling pressure 
becomes: 

2
2

14.6819β= =cr
B

P B
a

 (32) 

The answer of relation (28) can also be used for the buckling state of a circular 
plate, under simply supported boundary conditions. Like the clamped boundary 
conditions, in order to satisfy the condition existing at the center of the plate, we must 
have 6c set to zero. The second condition for the simply supported boundary conditions 

at r a=  is α ν α⎡ ⎤= + =⎢ ⎥⎣ ⎦
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Or  
1

1
( ) ( ) 0

s a

dJ ss J s
ds α

ν
=

⎡ ⎤+ =⎢ ⎥⎣ ⎦
 (34) 

On the other hand, using the differentiation formulation for the Bessel functions: 

= −1 1
0

dJ J
J

ds s
 (35) 

Where 0J  is the type one Bessel function and is of order zero. Therefore: 

0 1( ) (1 ) ( ) 0λ β ν β− − =aJ a J a  (36) 

Equation (36) has different answers for different values of the Poisson's ratio, 
which in table (1) the smallest root has been stated for different values of ν. For 
example, if the Poisson's ratio isν = 0.3 , according to table (1) the smallest value of 
βa  which satisfies equation (37), is 2.0489β =a . Substituting this value into equation 
(25), the critical buckling pressure for the simply supported state is as follows: 

2
4.1978=cr

B
P

a
 (36) 

Table1. Smallest root of equation (36) for different values of Poisson's ratio. 

Poisson's ratio  0.5 0.4 0.3 0.2 0.1 0 
2.1659 2.1092 2.0489 1.9844 1.9154 1.4812 min( )aβ  

Discussion and numerical results 
In this section, the results of the exact solution of the mechanical buckling of 

FGM bimorph circular plates has been compared with the results of the simply 
supported and clamped boundary conditions, under uniform radial compression. The 
FGM is considered to be a compound of Aluminum as metal and Alumina as ceramic. 
The mechanical properties for Aluminum and Alumina have been included in table (2). 

Table 2. .Properties of Aluminum and Alumina, as compound elements of the FGM. 

Material Young's   (GPa)modulus 
Aluminum 70 
Alumina 380 

 
In tables (3) and (4) the relations used for determining the critical buckling 

pressure for the FGM bimorph, under clamped and simply supported boundary 
conditions have been stated. 

 
 
 
 



Jam et al. - An exact solution of mechanical buckling for functionally graded material ... 55 

Table 3. Relations for determination of the critical buckling pressure for the FGM 
bimorph under clamped boundary conditions. 

Clamped Type of loading 

214.6819cr
BP
a

=Uniform radial compression 

Table 4. Relations for determination of the critical buckling pressure for the FGM 
bimorph, under simply supported boundary conditions. 

Simply supported Poisson's ratio 

23.39cr
BP
a

=0 

23.6687cr
BP
a

=0.1 

23.9379cr
BP
a

=0.2 

24.1978cr
BP
a

=0.3 

24.4487cr
BP
a

=0.4 

24.6911cr
BP
a

=0.5 

 
In order to determine the accuracy of the results achieved from solution of the 

stability equations for the circular plate, under clamped and simply supported boundary 
conditions, first the constant of the power law is set to zero, so that the FGM is turned 
into a homogenous material, and the dimensionless mechanical parameter λ  is 
calculated, and the results obtained are compared with those of the other references. 

By comparison with the results of the previous researches, it is observed that in 
the mechanical loading the dimensionless parameter of buckling λ  is determined from 
the relation (38). In this regard, ν , D , cE , and crP  are Poisson's ratio, bending 
stiffness, modulus of elasticity of the ceramic, and critical radial compression loading 
applied on the edge in terms of Newton per meter. 

2

λ = crP a

D
 (38) 

( )
3

212 1 ν
=

−
cE h

D  (39) 

In table (5), the dimensionless parameter of mechanical buckling for the 
homogenous circular plate (n=0) with clamped and simply supported boundary 
conditions, and the Poisson's ratio of 0.3 has been achieved for uniform radial 
compression, and the results have been compared with those of the other references. 
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Table 5. Dimensionless Parameter of buckling for homogenous circular plate (n=0), 
under clamped and simply supported boundary conditions, with the Poisson's ratio of 

0.3 
h/a Reference  0.2 0.1 0.05 0.01 0.001 

14.6819 14.681
9 

14.681
9 14.6819 14.681

9 Present 

C.a 14.68 14.68 14.68 14.68 14.68 [11] 

14.6842 14.684
2 

14.684
2 14.6842 14.684

2 [4] 

       
4.1978 4.1978 4.1978 4.1978 4.1978 Present S.S.

b 4.2 4.2 4.2 4.2 4.2 [11] 
4.2025 4.2025 4.2025 4.2025 4.2025 [4] 

a C. refers to clamped edge. 
b S.S. refers to simply supported edge. 

 
In table (6), the dimensionless parameter of mechanical buckling for the 

homogenous circular plate with clamped and simply supported boundary conditions, 
under uniform radial compression and different values of Poisson's ratio has been 
achieved, and the results have been compared with those of the other references. In the 
results, it is seen that the increase of the Poisson's ratio increases the buckling 
parameter. 

Table 6. Dimensionless parameter of mechanical buckling for homogenous circular 
plate, under simply supported boundary conditions, and different Poisson's ratios. 

Poisson's ratio References 0.5 0.4 0.3 0.2 0.1 0 
4.6911 4.4487 4.1978 3.9379 3.6687 3.39 Present 
4.6911 4.4487 4.1978 3.9379 3.6687 3.39 ]20[  

- 4.448 4.199 3.937 3.668 3.389 [15] 
 
After verification of the results of stability equations, the investigation of the 

effects of different factors on the critical buckling pressure for the FGM bimorph is 
performed. 

Figures (2) and (3) show variations of the critical buckling pressure crP  of the 
FGM bimorph in terms of the thickness to radius ratio of the plate, for different values 
of the volume fraction index, under clamped and simply supported boundary conditions, 
with the Poisson's ratio of 0.3. Considering the results, it is seen that the increase of 

/h a  increases the buckling parameter for the FGM bimorphs, and the reason is that as 
the plate gets thicker, its stiffness increases and as a result its critical buckling 
compression increases, too. 
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Figure 2.Variations of critical buckling pressure with respect to /h a  ratio, for 
different values of n under clamped boundary conditions, withν = 0.3 . 
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Figure 3.Variations of critical buckling pressure with respect to /h a , for different 

values of n under simply supported boundary conditions, withν = 0.3 . 

Figures (4) and (5) show the variations of the critical buckling pressure crP  of the 
FGM bimorph with respect to the volume fraction index, for different values of the 
thickness to radius ratio of the plate, under clamped and simply supported boundary 
conditions, with the Poisson's ratio of 0.3, respectively. By the increase of the volume 
fraction index, the critical buckling pressure is continuously decreases, and in 

0n = (pure ceramic) will have its maximum value. The reason for this is that the 
increase of the volume fraction causes the increase of the metal volume fraction in the 
plate, and as the stiffness of ceramic is more than that of metal, the total stiffness of the 
plate is reduced, and therefore the buckling strength of the plate is reduced. 
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Figure 4.Variations of the critical buckling pressure with respect to n for different 

values of /h a  under clamped boundary conditions, with ν = 0.3  
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Figure 5.Variations of critical buckling temperature with respect to n, for different 

values of /h a , under simply supported boundary conditions, withν = 0.3  

Figures (6) and (7) show variations of the critical buckling pressure with respect 
to the thickness to radius ratio of the plate, for different values of volume fraction index, 
under clamped and simply supported boundary conditions, with the Poisson's ratio of 
0.3, for the two materials of one-sided FGM (reference 11) and FGM bimorph (present 
model). It is observed in the results that the mechanical buckling strength of the FGMs 
bimorphs is more than one-sided FGMs, and this difference becomes more evident in 
thicker plates.  
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Figure 6.Variations of the critical buckling pressure with respect to /h a  for different 

values of n under clamped boundary conditions, with ν = 0.3  for two FGMs. 
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Figure 7.Variations of the critical buckling pressure with respect to  /h a  for different 
values of n under simply supported boundary conditions, with ν = 0.3 for two FGMs. 

 
Figures (8) and (9) show variations of the critical buckling pressure with respect 

to the volume fraction index, for different values of thickness to radius ratio of the plate, 
under clamped and simply supported boundary conditions, with the Poisson's ratio of 
0.3, for the two materials of one-sided FGMs (reference 11) and FGM bimorphs. In the 
one-sided FGMs and FGM bimorphs, under clamped and simply supported boundary 
conditions, the critical buckling pressure continuously decreases by the increase of the 
volume fraction index.  
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Figure 8.Variations of the critical buckling pressure with respect to n for different 
values of /h a  under clamped boundary conditions, with ν = 0.3 for two FGMs. 
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Figure 9.Variations of the critical buckling pressure with respect to n for different 
values of /h a  under simply supported boundary conditions, with ν = 0.3 for two 

FGMs. 

Figures (10) and (11) show variations of the critical buckling pressure with 
respect to the thickness to radius ratio of 1, for different values of the volume fraction 
index and Poisson's ratio, under clamped and simply supported boundary conditions for 
the FGM bimorphs. It is observed in the results that in FGM bimorph circular plates, 
under simply supported and clamped boundary conditions, as the Poisson's ratio 
increases, the critical buckling strength increases. Figures (12) and (13) present the 
variations of the critical buckling pressure for / 0.1h a = , and different values of the 
volume fraction index and Poisson's ratio, under clamped and simply supported 
boundary conditions for the FGM bimorphs. It is observed in the results that in FGM 
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bimorphs, the critical buckling strength, under clamped boundary conditions is more 
than three times that of simply supported boundary conditions. The above result is also 
observed for homogenous materials [4]. 
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Figure 10.Variations of the critical buckling pressure for different values of /h a  , and ν 
and n=1 under clamped boundary conditions. 
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Figure 11.Variations of the critical buckling pressure for different values of /h a  , and ν 
and n=1 under simply supported boundary conditions. 
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Figure 12.Variations of the critical buckling pressure for different values of n, and ν 
and / 0.1h a = under clamped boundary conditions. 
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Figure 13.Variations of the critical buckling pressure for different values of n and ν, 
and / 0.1h a = under simply supported boundary conditions. 
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Conclusion 
In the current study, the equilibrium equations have been analytically solved, and 

a closed-form solution is presented for the determination of the critical buckling 
pressure in the FGM bimorph circular plates, and the results achieved are stated as 
follows: 

Critical buckling pressure in FGM bimorph circular plates, under simply 
supported and clamped boundary conditions, increases by the increase of the thickness 
to radius ratio of the plate. 

Critical buckling pressure in FGM bimorph circular plates, under simply 
supported and clamped boundary conditions, decreases continuously by the increase of 
the volume fraction index of the plate.  

Critical buckling pressure in FGM bimorph circular plates, under simply 
supported and clamped boundary conditions, increases by the increase of the Poisson's 
ratio of the plate. 

Mechanical buckling strength in FGM bimorphs is higher than one-sided FGMs. 
Mechanical buckling strength of the FGM bimorphs, under clamped boundary 

conditions is more than three times that of the simply supported boundary conditions. 
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