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Abstract
The intersection numbers for p spin curves of the moduli spaceMg,n are considered for Dl

type by a matrix model. The asymptotic behavior of the large genus g limit and large p limit
are derived. The remarkable features of the cases of p = 1

2 ,− 1
2 ,−2,−3 are examined in the

Laurent expansion for multiple correlation functions. The strong coupling expansions for the
negative p cases are considered.

Keywords Random matrix model · Topological field theory · Intersection numbers ·
Critical phenomena

1 Introduction

It is well known that the generating function of the intersection numbers on moduli space of
p spin stable curves becomes the τ function of the generalized KdV hierarchies (p-reduced
KP hierarchies), which are related to a two dimensional gravity [1, 2]. There are now many
studies of the intersection numbers including Gelfand–Dikii pseudo differential equation
[3, 4]. We have proposed a method of the calculation for this intersection numbers by a
generalized Kontsevich matrix model, which was derived by the duality and replica method
based on the random matrix theory [5–8]. For one point function, an expression for single
intersection numbers has been derived explicitly.

For the purpose of the extension to half integer spin p, we reformulated this integral
expressions by a new change of variables, and we have investigated the intersection numbers
of Ramond punctures for half-spin in previous articles I, II [9, 10].

This reformulation enables us to obtain easily the intersection numbers for integer p
(Neveu–Schwarz punctures) for n point functions, which should be consistent with the results
obtained by the recursive method [11, 12] due to Gelfand–Dikii equation. The evaluation of
several marked points in general p and for genus g was obtained in the recursive calculations
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[12], and we show in this article that our method of the Laurent expansion agrees with them
for the lower orders, especially for three point functions.

TheADE singularities characterized byDynkin diagrams are important topics in statistical
physics. The Dl singularity is represented by the algebraic equation yl−1 + yx2 + z2 = 0
(l ≥ 4). The Coxeter number defined by p = 2l − 2 in Dl singularity can be interpreted
as a spin p. The weight system of Dl is known as (a, b, c; h) = (2, l − 2, l − 1; 2(l − 1)).
The simply laced Lie algebra, Al , Bl ,Cl , Dl , are related to classical Lie groups SU (l +
1), SO(2l +1), SP(l), SO(2l), respectively. We have discussed Al , Bl ,Cl , Dl cases, where
HarishChandra theorem can be applied for the random matrix models with external sources
[8, 13]. These random matrix models were applied for the non-orientable surfaces or Klein
surfaces. Recently the Dl singularity has been discussed for the intersection numbers of one
point function [14].

The open intersection numbers have been discussed based on the logarithmic matrix
models [15–23], which shows the extension of the intersection theory of Riemann surface to
open Riemann surface, i.e. it has boundaries [17, 21]. The boundaries, similar to the D brane,
are represented by the logarithmic terms. The matrix model with a logarithmic potential for
the open intersection theory is written for general p (generalized Airy matrix model with a
logarithmic potential) [15],

Z =
∫

dBe− c
p+1 trB

p+1+ktrlogB+trB� (1.1)

where B is a Hermitian matrix and k is a parameter. The matrix � is an external source. This
model is called as Kontsevich–Penner model, when p = 2.

The spin p is related to l as p = 2l − 2 for Dl type singularity. We investigated before
the case of Lie algebra so(N ), sp(N ) and found that the correspondent one point function
u(s) has a logarithmic terms [13], which makes a difference from Al type. These cases were
discussed as a manifestation of the feature of non-orientable surface (Klein surface) further
in [8, 16].

In this paper, we explicitly show that the intersection numbers of Dl type can be derived
from the matrix model with a logarithmic term. By the Gaussian integral of x for yl−1 +
x2y + z2, we have 1/

√
y which turns to be a logarithmic potential by the exponentiation.

This may give simple explanation of the appearance of the logarithmic term in the matrix
model of Dl singularity. In general, an oscillating integrals of n-variables have asymptotic
expansions with logarithmic terms, related to Newton polygon [24] and it is well known that
such expansion is related to the resolution of the singularities. The Dl type is related to a real
algebraic curves and the Euler characteristics χ of a real algebraic curve is obtained in the
case of p = −1 in Dl type (p = 2l − 2) [13, 25, 26].

It is known that A5, A4, A3 (p=6,5,4) singularities correspond to Ashkin–Teller model,
3-state Potts model and Ising model respectively [27, 28]. The Ap−1 singularity has a central
charge C = 2 − 6/p. The central charge C = 1

2 and critical exponent of the energy ν are
consistent with the values of Isingmodel. The anomalous conformal dimensions are�ε = 4

p ,

�φ = p−3
p(p−2) . These dimensions and central charges agree with the well-known values of

Ising (p = 4) and 3-state Potts model (p = 5).
For Dl type singularities, the central charge is also given byC = 2− 6

p , where p is Coxeter
number p = 2l − 2. The interesting applications are found in the condensed matter physics
for the topological excitation of electron at the boundaries, as Majorana fermions [21], and
the edge excitation on the boundary as Quantum Hall effect, for instance. Furthermore, in
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D4 singularity, there are intriguing Ramond sector [29, 30], which is related to the vanishing
relation for one point function of g = 2+3m,m ∈ Z, for which we will discuss in this paper.

The spin p takes a value of positive integer according to the singularity theory. However,
as discussed for p = −1, Euler characteristic is obtained from the continuation from positive
integer to p = −1 in the expression of the intersection numbers. The cases of p = 1

2 and
p = 3

2 , which are fractional spins, have been discussed in our previous papers [9, 10]. These
cases correspond to "fermion", and the genus expansion of one point function agree with
the selection rule due to Riemann–Roch theorem. As a conformal field theory (CFT) in two
dimensions, p = 3

2 case exists as βγ system in the supersymmetric non-linear sigma model,
which also corresponds to spanning forrest model with a central charge C = −2 [31]. There
is an interesting observation that for p = 1

2 case, the tautological relations become simple
[32, 33]. In this paper, by the results of I,II [9, 10], we investigate the m point correlation
functions of p = 1

2 , and find that the punctures of Ramond type appear in a pairwise as same
as p = −2 case.

The case p = −2 corresponds to the unitary matrix model of the lattice gauge theory [34–
37]. The strong coupling region of this case has a character expansion [38, 39]. We consider
this character expansion [39] for the negative p case, p = −2,−3, ... by the n-point function
of U (s1, ..., sn) =<

∏
i tre

si M >, which can be interpreted as Wilson loops.
This article is organized as following: One point intersection numbers of p spin curves

for genus g is shown in Sect. 2 for Al . In Sect. 3, one point functions of Dl type is evaluated
up to g = 11. In Sect. 4, one point functions for non-integer p case of A type and D type are
discussed for p = 3

2 ,
1
2 ,− 1

2 ,−1,−2. In Sect. 5, the large g and large p limits are discussed.
The integrality of the intersection number is discussed in the relation to Bernoulli numbers. It
is shown that the denominators of the intersection numbers and Bernoulli numbers are same.
In the limit p → ∞, the intersection numbers reduce to Bernoulli numbers [40], which are
intriguingly connected to homotopy, differential topology and number theories [41, 42, 44,
45]. In Sect. 6, the intersection numbers for multi marked points are evaluated, which is
consistent with the results by the recursion relations. The Sect. 7 is devoted to the evaluations
of half spin p = 1

2 ,− 1
2 and the negative integers p = −2 and p = −3 cases. For the negative

integer case, the strong coupling expansion is investigated in the relation to the characters of
U (N ). In the Sect. 8, we give summary and discussions.

2 One Point Function for Al Type

Since the p spin curves of the moduli space has a correspondence to Ap−1 singularity by
mirror symmetry, we use the terminology of Al type for the l = p − 1 spin curves, which
distinguishes the case D type.

For Al case, the generating function of the intersection number for one marked point is
expressed as [6, 7]

u(s) =< tresB >= 1

s

∫
du

2iπ
e− c

p+1 [(u+ s
2 )p+1−(u− s

2 )p+1] (2.1)

The generating function for the intersection numbers of Al (p = l +1) is evaluated for small
s by the replacement u = ( t

cs )
1/p ,

u(s) = 1

spπ
· 1

(cs)1/p

∫ ∞

0
dtt

1
p −1e−t × e

− p(p−1)
3!4 s

2+ 2
p c

2
p t

1− 2
p − p(p−1)(p−2)(p−3)

5!42 s
4+ 4

p c
4
p t

1− 4
p +···

(2.2)

123
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This leads to

u(s) = 1

c
1
p s1+

1
p π

[
�(1 + 1

p
) − p − 1

24
z�(1 − 1

p
)

+ (p − 1)(2p + 1)(p − 3)

5760
z2�(1 − 3

p
) + · · ·

]
(2.3)

where z = c
2
p s2+

2
p . Writing this expansion with the intersection numbers < τn, j >g (n is

integer, and spin component j = 0, 1, 2, ..., p − 2) as

u(s) =
∑
g

< τn, j >g
1

π
�(1 − j + 1

p
)c

2g−1
p pg−1s(2g−1)(1+ 1

p )
, (2.4)

one obtain the intersection numbers as a polynomial of p. We have a relation of n and j for
non-vanishing intersection numbers,

(2g − 1)(1 + 1

p
) = n + j + 1

p
(2.5)

which comes from the Riemann–Roch relation (RR) for s̃ marked points by s̃ = 1

3g − 3 + s̃ =
s̃∑

i=1

ni + (g − 1)(1 − 2

p
) + 1

p

s̃∑
i=1

ji (2.6)

Thus the s dependence appears for one point case (s̃ = 1) as a power s(2g−1)(1+ 1
p ) =

sn+ j+1
p in (2.4). The intersection numbers ( in the case of p = 2), are given by the first Chern

class c1 or ψ , as

< τn1 · · · τns >g=
∫
M̄g,s

ψn1 · · · ψns (2.7)

where M̄g,s is a compactified moduli space with s marked points on genus g Riemann
surface. The intersection numbers of one point τAl (g) (Coxeter number p= l+1) is thus given
as [9, 10]

< τn, j >g=1 = p − 1

24

< τn, j >g=2 = (p − 1)(2p + 1)(p − 3)

p · 5! · 42 · 3
�(1 − 3

p )

�
(
1 − 1+ j

p

)

< τn, j >g=3 = (p − 1)(2p + 1)(p − 5)(8p2 − 13p − 13)

p2 · 7! · 43 · 32
�(1 − 5

p )

�(1 − 1+ j
p )

< τn, j >g=4 = (p − 1)(2p + 1)(p − 7)(72p4 − 298p3 − 17p2 + 562p + 281)

p3 · 9!44 · 15

× �(1 − 7
p )

�(1 − 1+ j
p )

< τn, j >g=5 = (p − 1)(2p + 1)(p − 3)(p − 9)(4p + 3)(32p4 − 162p3 + p2

+326p + 163)
1

p411!453
�(1 − 9

p )

�(1 − 1+ j
p )

123
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< τn, j >g=6 = (p − 1)(2p + 1)(p − 11)(530688p8 − 5830544p7 + 16589332p6

+8955300p5 − 65056373p4 − 26944928p3 + 85178190p2

+80708428p + 20177107)
1

p5 · 13!7 · 5 · 4633
�(1 − 11

p )

�(1 − 1+m
p )

(2.8)

where < τn, j >g=1=< τ1,0 >g=1 [7]. In [8], < τn, j > up to g = 9 is evalated.
When p = 2 (Kontsevich model), it leads to a simple expression,

< τ3g−2 >= 1

g!(24)g (2.9)

There appear interesting vanishing relations for < τAl >. For instance,ath p = 3 case,
< τAl > are vanishing at g = 2 + 3m (m ∈ Z). For p = 5, < τAl > are vanishing at
g = 3+5m (m ∈ Z). In general odd integer p,< τAl > are vanishing at g = (p+1)/2+ pm
(m ∈ Z). Some of these relations can be seen in the expressions of < τAl > up to genus
g = 9 in [8]. We will see later that D4 (p = 6) type has this periodicity of the vanishing
relation at g = 2 + 3m (m ∈ Z) for D4.

For the case A2 (p = 3), one point function u(s) is given by the Airy function as [7]

u(s) = 1

Ns(3Ns)1/3
Ai (ζ )

= 1

Ns(3Ns)1/3

[
Ai (0)

(
1 + 1

3!ζ
3 + 1 · 4

6! ζ 6 + 1 · 4 · 7
9! ζ 9 + · · ·

)

+A′
i (0)

(
ζ + 2

4!ζ
4 + 2 · 5

7! ζ 7 + 2 · 5 · 8
10! ζ 10 + · · ·

)]
(2.10)

where ζ = −N 2/3(4 · 31/3)−1s8/3, Ai (0) = 3−2/3/�( 23 ) and A′
i (0) = −3−1/3/�( 23 ). This

Airy function leads to the intersection numbers of

< τ 8g−5− j
3 , j >g= 1

(12)gg!
�

(
g+1
3

)

�
(
2− j
3

) (2.11)

which shows the vanishing relations for g = 2, 5, 8, ... (g = 2 + 3m, m ∈ Z), for such case
the value of spin j takes 2. The absence of g = 2, 5, 8, ... is due to Stokes phenomena.

For p = 4, u(s) is written by the Bessel function, [8]

u(s) = 1

2
√
8
e

3
160 s

5 1

2sin( π
4 )

[
I− 1

4

(
1

32
s5

)
+ I 1

4

(
1

32
s5

)]

= 1

8

∞∑
m,n=0

1

m!n!�
(
n + 5

4

)
(

3

160

)m

(
1

64
)2n+ 1

4 s5m+10n+ 1
4 (2.12)

We have Riemann–Roch relation of (2.6) for the s-point intersection numbers <

τn1, j1τn2, j2 · · · τns , js >g . The factor (1 − 2
p ) is a central charge ĉ = p−2

p . The last term
is also charge for p spin curves. Note this central charge ĉ is also valid for Dl singularity,
since the weight system of Dl singularity W = yl−1 + yx2, qy = 1

l−1 , qa = l−2
2(l−1) . The

central charge ĉ is given by 2−2qy −2qx = 1− 1
l−1 . Since p = 2(l−1), we have ĉ = 1− 2

p
for Dl case. Thus the Riemann–Roch relation (2.6) is applied both for Al and Dl singularities.

123
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3 One Point Function forDl Type

The singularity theory of Dl type is described as a two dimensional normal singularity
by the equation of xl−1 + xy2 + z2 = 0 (l ≥ 4). The weight system is (a, b, c; h) =
(2, l − 2, l − 1; 2(l − 1)), where h is called as Coxeter . For Dl case, we use the spin p value
for Coxeter number h, which is related to l as p = 2l − 2. For D4, we have spin curve of
p = 6.

The intersection numbers are extended from (2.7) to the one includes the boundary. The
tangent bundle is trivially on the boundary of the moduli space. We need analogous term
for the first Chern class on the boundary and introduce the correspondent quantity σ for the
boundary [21].

< τn1 · · · τnsσm >=
∫
M̄

ψn1 · · · ψns (3.1)

where m punctures on the boundary are added to (2.7). This is generalization to open inter-
section numbers, and related to Dl singularity as we will see. Instead of working of the
geometrical moduli space M̄, we study the equivalent partition function of a matrix model
as same as Al case. The partition function of a matrix model is expressed by the n point
correlation function u(s1, s2, ..., sn) with a logarithmic potential [8].

We have the following one point function û(s) in the integral form for Dl ,
The generating function û(s) of the intersection numbers < τ > for Dl (p = 2l − 2) is

given by

û(s) = 1

s

∫ ∞

0
due− c

(p+1) [(u+ s
2 )p+1−(u− s

2 )p+1] 1√
1 − s2

4u2

(3.2)

where c = N
p−1

∑ 1
a p+1
α

as shown in [7]. aα is eigenvalues of the external source.

The last factor is absent for Al case. It is written as

1√
1 − s2

4u2

= 1

2

(√
u + s

2

u − s
2

+
√
u − s

2

u + s
2

)

= 1

2

(
e
1
2 log(u− s

2 )− 1
2 log(u+ 1

2 ) + e
1
2 log(u+ s

2 )− 1
2 log(u− 1

2 )

)
(3.3)

Note that if we change u → −u, above term is invariant. If we write the coefficient of the
logarithm as k instead of 1

2 , two terms are k and−k coefficient, and it leads to the polynomial
of even power of k. This characterizes the Dl type as we will discuss later.

The small s expansion of u(s) with u = t
1
p , becomes

û(s) = 1

Nπs

1

(cs)1/p

∫ ∞

0
dtt

1
p −1e−t

[
1 − p(p − 1)

24
s2(cs)2/pt1−

2
p

− p(p − 1)(p − 2)(p − 3)

5! · 16 s4(cs)4/pt1−
4
p + p2(p − 1)2

2 · (24)2
s4(cs)4/pt2−

4
p

− p3(p − 1)3

3!(24)3 s6(cs)6/pt3−
6
p + p2(p − 1)2(p − 2)(p − 3)

5! · 14 · 16 s6(cs)6/pt2−
6
p

123
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− p3(p − 1)3

3!(24)3 s6(cs)6/pt3−
6
p

− p(p − 1)(p − 2)(p − 3)(p − 4)(p − 5)

7!43 s6(cs)6/pt1−
6
p + · · ·

]

×
[
1 + 1

8
s2(cs)2/pt−

2
p + 3

128
s4(cs)4/pt−

4
p + 15

3072
s6(cs)6/pt−

6
p + · · ·

]

(3.4)

The last factor is the expansion of (3.3). The integer power of s, denoted as m, shows the
relation to genus g as 2g − 1 = m.

The small s expansion of û(s), with the normalization factors 1
pg−1 and gamma factor

1/�(1 − 1+ j
p ), gives the intersection numbers of one point case,

< τ1,0 >g=1 = p + 2

24

< τn, j >g=2 = (p + 2)(2p + 1)(p − 6)

5760p

�(1 − 3
p )

�(1 − 1+ j
p )

< τn, j >g=3 = (p + 2)(2p + 1)(8p3 − 77p2 + 196p + 188)

2903040p2

�(1 − 5
p )

�(1 − 1+ j
p )

< τn, j >g=4 = (p + 2)(2p + 1)(4p2 − 27p − 22)(18p3 − 133p2 + 308p + 332)

1393459200p3

×
�

(
1 − 7

p

)

�
(
1 − 1+ j

p

)

< τn, j >g=5 = (p + 2)(2p + 1)(4p + 3)(p − 6)

122624409600p4
(32p5 − 450p4 + 1741p3

−1642p2 − 6788p − 3288)
�

(
1 − 9

p

)

�
(
1 − 1+ j

p

)

< τn, j >g=6 = (p + 2)(2p + 1)

14!6!27 · 3p5 (530688p9 − 13260176p8 + 115768820p7

−412604468p6 + 276695515p5 + 1715374838p4 − 2129848328p3

−6843457424p2 − 4961166736p − 1156803104)
�

(
1 − 11

p

)

�
(
1 − 1+ j

p

)

< τn, j >g=7 = (p + 2)(2p + 1)

16!21033 p6 (211335p11 − 8586624p10 + 96830032p9

−488127956p8 + 889089716p7 + 1243914177p6 − 5937016268p5

−1741314004p4 + 21058826784p3 + 29690849392p2

+15502250816p + 2905782080)
�

(
1 − 13

p

)

�
(
1 − 1+ j

p

)

< τn, j >g=8 = (p + 2)(2p + 1)(p − 6)(3 + 4p)(5 + 6p)

18!2155p7 (462976p10

123
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−15295120p9 + 179456596p8 − 953948892p7 + 2115904691p6

+586034636p5 − 9624755932p4 + 5128005728p3

+31236673872p2 + 25467952320p + 6355800000)
�

(
1 − 15

p

)

�
(
1 − 1+ j

p

)

< τn, j >g=9 = (2 + p)(1 + 2p)(16502445084498176 + 122234441454621184p

+362714955007461120p2 + 525312614038452992p3

+326733211545349216p4 − 23742664329025152p5

−100306262063206224p6 + 8323562725999632p7

+24146966038644009p8 − 6773140965548282p9

−2307841939577188p10 + 1677474927489096p11

−402367617574016p12 + 48227812538240p13

−2854331624448p14 + 64684523520p15)

× 1

271211974879377138647040000p8

�
(
1 − 17

p

)

�
(
1 − 1+ j

p

) (3.5)

< τn, j >g=10 = (2 + p)(1 + 2p)(−24830402547748278784 − 209477583844413564160p

−730557543123682249216p2 − 1318998112825968482560p3

−1208129128709188488640p4 − 333863005164255047776p5

+264649746344510118240p6 + 126068631741386072496p7

−78507951575573824290p8 − 22445884710909365885p9

+21279933896679839896p10 − 1348924974460414280p11

−2661096526358202656p12 + 1087695793798917040p13

−200715490239800960p14 + 19791837888816384p15

−993551356753920p16 + 19465064349696p17)

× 1

3579998068407778230140928000000p9

�
(
1 − 19

p

)

�
(
1 − 1+ j

p

)

< τn, j >g=11 = ((−6 + p)(2 + p)(1 + 2p)(3 + 4p)(7 + 8p)

×(−467169353783096832 − 3341630372025717504p

−9468101148218970624p2 − 12751291781631800064p3

−6632138067837797184p4 + 1788770829880213088p5

+2276784479751975200p6 − 728458396311840240p7

−535146263253641670p8 + 300779490648921045p9

+17161921882855788p10 − 53942771498453544p11

+19196939796342336p12 − 3360970337005104p13

+319429042188736p14 − 15406349322752p15

+286370611200p16)

× 1

73191071620781243816214528000000p10

�
(
1 − 21

p

)

�
(
1 − 1+ j

p

) (3.6)

123
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where n and j are determined by the Riemann–Roch selection rule of (2.6).
When p = 6, which corresponds to D4 (Coxeter number p is equal to 2l − 2 for Dl ), the

intersection numbers< τ >g are vanishing for g = 2+3k, k ∈ Z . This vanishing intersection
numbers can be seen explicitly as a factor (p − 6) in above expression. It is interesting to
observe that the factor (p − 6) accompany the factor (3 + 4p) in the g = 5, 8, 11 for both
Ap−1 and Dl cases. [8]. The existing factors (3+4p) are expected to appear in higher genus
both for Ap−1 and Dl , when g = 5 + 3m, (m = 0, 1, 2, ...). The vanishing condition of
g = 2 + 3k, k ∈ Z for p = 6 will be discussed at later section in more details.

We find for p = 2 that the simple expression for one point function ( j = 0 for p = 2) is
obtained from (3.5),

< τ3g−2 >= 1

g!6g (3.7)

Above formula for p = 2 will be proved later in (4.9).
There is a relation to the open intersection numbers. The logarithmic potential with a

coefficient k has been studied so called as Kontsevich–Penner model or Airy matrix model
with a logarithmic potential [15, 16, 18]. Putting p = 2 and k = 1

2 in the expressions of (1.1)

[15, 18], the results agree with (3.5). For instance,< τ1,0 >g=1= p+2
24 becomes 1

6 for p = 2,

which agrees with < τ1 >= 1+12k2
24 = 1

6 with k = 1
2 in [15, 18]. < τn, j >g=2= 1

72 for

p = 2 agrees with < τ4 >= 1+56k2+16k4
1152 = 1

72 for k = 1
2 . For non orientable surface, taking

account of projective plane (g = 1
2 ), Klein surface (g = 1), and crosscap (g = 3

2 ), genus g is
considered as a fractional (double genus) [13]. Thus for the comparison with the expressions
of < τ 3g′−1

2
> in [16, 18], we need a relation g′ = 2g − 1 i.e. the one point function of

(3.5) corresponds to < τ 3g′−1
2

> in [16, 18], and the result completely agrees for the case

of integer 3g′−1
2 . The case p = 2 in Dl type means D2, so D2 case has a meaning of the

Kontsevich–Penner model as an open intersection theory, although l ≥ 4 case is discussed in
the singularity theory. The terms of < τ 3g′−1

2
>, which appear with half-integer 3g′−1

2 , have

expressions of odd k polynomial, and they do not appear in Dl type in (3.5).
For the open intersection numbers, there appear intersection numbers such that < τ 5

2
>=

1
12 (k + k3). These are odd power of k. As we observed in (4.9), we have sum of k and −k
for the logarithmic correction, therefore adding these two contributions, they are cancelled
for such < τ 5

2
> intersection numbers. This is a reason that we have no half integer indexed

intersection numbers in Dl type.
As noted in [15], such odd k intersection numbers with half integer indexed τ are evaluated

by the contour integral, and therefore can be regarded as Ramond sectors.
Thus the intersection numbers belong to the orientable surfaces, which do not include the

case of half integer 3g′−1
2 . For general p, if we put k = 1

2 in [15], we find also the agreement
with (3.5).

For p = 6, which corresponds to D4, the intersection numbers become τD4 =
1, 1

2 , 0,
1

40824 ,
13

122472 , 0 for g = 0, 1, 2, 3, 4, 5, respectively. These values are obtained from
(3.5) as the coefficients of Gamma function factors. They agree with [14]. It is remarkable
that τD4 is vanishing at g = 2, 5, since a factor (p − 6) appears in (3.5). This suggests τD4

(p = 6 case) is vanishing periodically at g = 2 + 3k, k ∈ Z .
This periodic vanishing reallation of the intersection numbers is due to the selection rule

for spin p. We have from Riemann–Roch formula the relation between the spin p and the
genus g,

(p + 1)(2g − 1) = pn + j + 1 (3.8)
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where j = 0, 1, 2, ..., p − 2. For the singularity theory, Dl has a relation

2g − 1 = pn′ + mα (3.9)

where mα is defined by the characteristic polynomial χ(t) for the weight system (a, b, c; h)

as

χ(t) = 1

th
(th − ta)(th − tb)(th − tc)

(ta − 1)(tb − 1)(tc − 1)
=

l∑
α=1

tmα (3.10)

with l is Milnor number. j is mα − 1, which is the spin components of spin p.
For D4, theweight system becomes (2, 2, 3; 6), andmα = 1, 3, 5 (m2 = m3 = 3, double).

The relation of (3.8) is written by n′ = n + 1, j = mα − 1 in (3.9). For p = 6 in D4, g = 1
corresponds to mα = 1 (j=0,n=1). g = 2 corresponds to mα = 3 ( j = 2, n = 3). g = 5,
g = 8 correspond to mα = 3. Thus for g = 2 + 3k (k ∈ Z), the exponent becomes mα = 3,
which is doubled. This correspondence is related to the vanishing relation of the intersection
numbers of D4 for g = 2 + 3k.

From (3.5) and (3.6), It is easily recognized ; (i) large p behavior is same as A-type (2.8),
(ii) the intersection numbers of p = −1/2 are vanishing for g > 1 for all order of g (same
as A-type), (iii) the intersection numbers of p = −2 for D-type are vanishing for all genus
g > 0. These remarkable properties will be proved in the following sections.

Sincewe have derived exact one point function of Dl type, it may be interesting to consider
the negative values of p and half-integer p as discussed in Al type [8–10]. In the next section,
we examine the negative integer values of p and half-integer p. Interesting applications of
such non-positive integer cases were discussed in [10] for Al type.

4 One Point Function ofDl Type for the Non-positive Integer Cases

We have discussed the non-positive integer spin p for one marked point of the Ap−1 type in
the previous articles [9, 10]. Here we extend these results of A type to D type for one marked
point.

For Dl singularity, the relation of p = 2l − 2 gives the constraint that spin p should be
even integer. Since the intersection numbers are expressed by the polynomial of p as (3.5),
the analytic continuation of p to the general values including the non-integer case is possible.
Our formulation of a matrix model allows the non-positive integer value of p.

In this section, we will find the remarkable coincidence of the intersection number of Dl

type with that of Ap−1 model with a logarithmic term, so called generalized Kontsevich–
Penner model.

4.1 Change of Variable

As discussed in [9, 30], although there is no Ramond contribution for Ap−1 case in the
positive integer p, there appear Ramond punctures in Dl type (p = 2l − 2) [10, 30]. The
Ramond contribution may be obtained by the residue of y = 0 in the following integral
representation by a change of variable from u to y, following the discussion of [9, 10] as

u = i

2

(
y2 − 1

y2

)
(4.1)
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The factor of Dl logarithmic potential becomes after the change of variable of (4.1),

u√
u2 − 1

=
y − 1

y3

y + 1
y3

(4.2)

The measure for Ap−1 type is now changed simply to i(y + 1/y3)dy due to (4.2), which
reads that the measure is y ± 1

y3
, (+) sign for A-type and (−) sign for D-type.

4.2 Equivalence to Generalized Kontsevich–Penner Model of Open Intersection
Numbers

Extension of Airy with logarithmic potential (Kontsevich–Penner model) to general p spin
case has been investigated with the logarithmic potential with coefficient k in [15, 16]. We
will show that the intersection numbers of generalizedKontsevih-Pennermodel with k = ± 1

2
are identical to that of Dl (p = 2l − 2) intersection numbers.

For genus g = 1, the intersection number is

< τ >g=1= p − 1 + 12k2

24
(4.3)

With k = ± 1
2 , it becomes

< τ >= p + 2

24
(4.4)

which agrees with τDl in (3.5) . For genus g = 2, the generalized Kontsevich–Penner model
gives (Eq.(5.28) of [16]),

< τ >g=2= 1

p(12)2

[ (p − 1)(p − 3)(2p + 1)

40
− (3p + 1)k2 − 2k4

]
(4.5)

By putting k = ± 1
2 , we find exactly < τ >g=2= 1

5760p (p + 2)(2p + 1)(p − 6) for D-type
in (3.5).

Thus we find that the one point intersection number of Dl type (p = 2l−2) is same as the
intersection numbers of generalized Kontsevich–Penner matrix model with k = 1

2 . One can
checkmore higher g case are consistent with this identification.When p = 2, the generalized
open intersection numbers are evaluated in higher orders [18], in which a parameter N is
same as our k. The odd power terms of k are cancelled by adding ±k contributions, and the
results agree with Dl type intersection numbers with k = 1

2 . Note that the open intersection
number is described by the logarithmic potential with k = 1 [7, 15–17, 22, 23].

4.3 p = 1 Case

We now discuss and prove the remarkable features for specific values of p.
The first example is p = 1 case of Al . The intersection number< τ > becomes vanishing

in all order of g due to a factor(p − 1) in (2.8).

u(s) = 1

s

∫
due− c

2 ((u+ s
2 )2−(u− s

2 )2)

= i

s

∮
dy

2iπ

(
y + 1

y3

)
e
− ics

2 (y2− 1
y2

)
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= i

s

∮
dy

2iπ

( 1

−ics

) d

dy
e
− ics

2

(
y2− 1

y2

)
(4.6)

which becomes vanishing due to the total derivative. This is consistent with a factor (p − 1)
in all order in (2.8).

For Dl case, the measure is a factor (y − 1
y3

) instead of (y + 1
y3

),

u(s) = i

s

∮
dy

2iπ

[
2y −

(
y + 1

y3

)]
e
− ics

2 (y2− 1
y2

)

= −
∞∑

m=0

1

22mm!(m + 1)! s
2mc2m+1 (4.7)

This is consistent with the expression of (3.5) for p = 1. The genus g is equal to m.

4.4 p = 2 Case

For p = 2, using the representation of y, one point function u(s) is expressed as

u(s) = i

2
e− 5c

24 s
3
∮

dy

2iπ

(
y ± 1

y3

)
e
cs3
16

(
y4+ 1

y4

)
(4.8)

where ± means A type and D type, respectively. With the change of variable y = t
1
4 , this is

written by the modified Bessel function Iν(z),

u(s) = i

8
e− 5c

24 s
3
∮

dt

2iπ
(t−

1
2 ± t−

3
2 )e

cs3
16 (t+ 1

t )

= i

8
e− 5c

24 s
3
[
I− 1

2

(cs3
8

)
± I 1

2

(cs3
8

)]

= i

2
e− 5c

24 s
3

√
1

π(cs3)
e± cs3

8 (4.9)

By taking c = − 1
2 , we find the close form of for A type (2.9); < τ3g−2 >= 1

g!(24)g , and the

result of D-type (3.7); < τ3g−2 >= 1
g!6g . This gives a proof of (3.7).

4.5 p = −1

When p = −1, one point function u(s) provides Euler characteristic χ(M̄g,1) for Al type
singularity [7] as

u(s) = 1

N

∫
du

2iπ

(
u − 1

2

u + 1
2

)N

= − 1

N

∫ ∞

0

dz

2π

e−z

(1 − e−z)2
e−Nz

=
∫ ∞

0

dz

2π

(∑
B2n

zn−1

n!
)
e−Nz (4.10)
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where a change of variable (u − 1
2 )/(u + 1

2 ) = e−z is used and a factor 1/N 2 represent the
genus g expansion.Thisu(s)givesEuler characteristicχ(M̄g,1) = ζ(1−2g) = (−1)g 1

2g B2g ,

where Bn is a Bernoulli number (B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , ...).

For Dl type, if we put p = −1 in (3.5) with j = 0 (gamma function of the denominator
becomes one for p = −1, j = 0, and numerator gamma function gives (2g − 1)!), , we
find that < τ >g as 1

24 ,− 7
960 ,

31
8064 , ... for g = 1, 2, 3, .... These numbers are equal to Euler

characteristics χ

χ = (1 − 21−2g)
B2g

2g
. (4.11)

In the limit p → −1, (3.2) becomes

û(s) = 1

2

∫
due−clog( u+1

u−1 ) u√
u2 − 1

= 1

2

∫
du(

u − 1

u + 1
)c

u√
u2 − 1

(4.12)

By the change of variable (u−1)/(u+1) = e−z , du = −2e−z/(1−e−z)2dz = (−2)(ez/2−
e−z/2)−2dz, u/

√
u2 − 1 = 1

2 (e
z/2 + e−z/2), it becomes after partial integration,

û(s) =
∫

dz
1

ez/2 − e−z/2 e
−Nz (4.13)

where c is replaced by N to make clear of genus dependence, as 1
N2g series. Above integral

reduces to (4.11), with 1/24, 7/960,... for g = 1, 2, .... This χ is same as virtual Euler
characteristics, obtained for o(2N )matrixmodel as a non-orientable surface [8]. For p = −1,
there is no ψ class, and only Euler class (Witten class) exists. Since Dl type is related to
o(2N ) Lie algebra, it is reasonable to obtain the result of (4.11), which is same as a virtual
Euler characteristics of real algebraic curves [26]. Indeed, we have obtained this virtual Euler
characteristic of real algebraic curves for so(2n + 1), so(2n), sp(n) cases as antisymmetric
matrix models [8, 13].

4.6 p =− 1
2

It is remarkable that the intersection number has a factor of (2p + 1) for Dl type, which
is same as Al case (2.8). The reason of this factor (2p + 1) exists for all genus (g > 1) is
explained by the change of variable of (4.1). The exponential factor in (3.2) becomes simply

as e−c s1/2
y for p = −1/2. Therefore we have for Dl case with p = − 1

2 from (4.2),

û(s) =
∮
c

dy

2iπ

(
y − 1

y3

)
e−c s1/2

y (4.14)

where the integral is evaluated by a contour around y = 0. This gives non-vanishing term
of order s, which means g = 1, but the remaining terms of all higher genus (g > 1) should
vanish due to Cauchy theorem.
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4.7 p = −2

In Ap−1 matrix model, the case p = −2 becomes equivalent to the unitary matrix model
(BGW)model [34, 35], and the intersection numbers agreewithBGWmatrixmodel as shown
in [39].

For Dl (p = 2l − 2) case, there is a factor (p+ 2) for all genus case as in (3.5). This may
be explained as follows [39]. We have in the p = −2 case l = (p+2)/2 = 0 for Dl , namely
D0 case,

û(s) = 1

s

∮
du

2iπ
e− 1

u+s + 1
u

(
u + s

u

)k

= − 1

4π
√
s

∫
dx

1

x2
e
− 4x2

1+sx2
(1 − i x

√
s

1 + i x
√
s

)k

= − 1

2
√

πs

(
− s

1

8
(4k2 − 1) + s2

1

3!27 (4k2 − 1)(4k2 − 9)

−s3
1

5!29 (4k2 − 1)(4k2 − 9)(4k2 − 25) + · · ·
)

(4.15)

The second line is derived by the change of variable u = 1
2 (−1+ i

x
√
s
). Since the coefficient

of the logarithmic factor of Dl is k = 1
2 , we find the vanishing results of û(s) from above

equation. This gives a proof for a factor p + 2 for the intersection numbers in all orders of
D-type (3.5).

BGW model is considered for the unitary matrix, and its extension to O(N) group was
studied in [37]. There appears a phase transition between weak coupling (small s) and a
strong coupling regions (large s).

4.8 Large s Expansion for p = −2

The large s expansion was investigated in [39] based on (4.15) for p = −2 of Al type. Due
to two terms of (1.1), the extension of the large s expansion for p = −2 case of Dl type is
straightforward. We obtain by the shift u → (u − 1)/2 following [39],

û(s) = 1

2

∮
du

2iπ
e

4
2(u2−1)

[(u + 1

u − 1

)k +
(u + 1

u − 1

)−k]

= 1

2

∞∑
1

4m

m!sm
∮

du

2iπ

1

(u2 − 1)m

[(u + 1

u − 1

)k +
(u + 1

u − 1

)−k]
(4.16)

with k = 1
2 . Noting that

∮
du

2iπ

1

(u2 − 1)m

(u + 1

u − 1

)k = − 2

π
sinπk

∫ ∞

1
dx

(x + 1)k−m

(x − 1)k+m

= − 2

π
(sinπk)21−2m(2m − 2)!�(−k − m + 1)

�(−k + m)
(4.17)

we obtain û(s) in the large s expansion. In the unitary matrix model, we put k = −N and
the result agree with the strong coupling expansion (character expansion) [39].
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4.9 Half-Integer p = 1
2 and

3
2

For Dl type, with the change of variables u → y in (4.1), one point function û(s) is

û(s) = 1

s

∮
dy

2iπ

(
y − 1

y3

)
g(y) (4.18)

Note that the difference between Al and Dl is a factor of (y ± 1
y3

), where (+) is for Al and
(−) is for Dl . The factor g(y) is same as Al case. We have for Al ,

u(s) = 1

s

∫
du

2iπ
e− 1

(p+1) [(u+ s
2 )p+1−(u− s

2 )p+1] (4.19)

By the change of variable of u = i
2 (y

2 − y−2), it becomes after the replace u → su/2, we
have for Al case (+) and Dl case (−)

u(s) = i

2

∫
dy

2iπ

(
y ± 1

y3

)
e
− s p+1

(p+1) (
i
4 )p+1 1

y2(p+1) [(y2−i)2p+2−(y2+i)2p+2]
(4.20)

where the exponential factor g(y) is expressed as

g(y) = e
c′s3/2

(
3y− 1

y3

)
(p = 1

2
, c′ = −1

6
i1/2) (4.21)

The half-integer p case is related to Ramond sector [9, 10]. We assume Riemann–Roch
relation for p = 1

2 is valid as

3g − 3 + 1 = n + (g − 1)(1 − 2

p
) + j

p
(4.22)

with p = 1
2 and j = −1. j = −1 means Ramond puncture [10]. This selection rule indeed

valid for the small s expansion of u(s). We have from (4.22)

n = 6g − 3 (4.23)

which means that u(s) is a power series of s6g−3 and the intersection number is given by the
coefficient, < τn, j >g=< τ6g−3,−1 >g .

The one point function u(s) for p = 1
2 for Al is evaluated with the integral by part,

u(s) = i

2

∮
dy

2iπ

(
y + 1

y3

)
e
c′s3/2

(
3y− 1

y3

)
= i

6c′s3/2

∮
dy

2iπ
y
d

dy
e
c′s3/2

(
3y− 1

y3

)

= − i

6c′s3/2

∮
dy

2iπ
e
c′s3/2

(
3y− 1

y3

)

= 2
∞∑
g=1

(−1)g

g!(3g − 1)! (
1

48
)gs6g−3 (4.24)

with c′ = −i1/2/6. The summation is over genus g due to (4.23).
This generating function of the intersection numbers shows the precise agreement with

(2.8). Note that �(1 − 2g−1
p ) in (2.8) is changed to �(−1) by multiplication factor, and this

�(−1) is interpreted as a normalization factor for the case of p = 1
2 . Then we find the precise

agreement for p = 1
2 case between (4.24) and (2.8). The case of p = 1

2 is interpreted as
a manifestation of Ramond puncture since spin component is j = −1 (The denominator
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�(1− 1+ j
p ) in (2.8) becomes one). This fascinating result of p = 1

2 will be further discussed
in the next section related to the denominator of Bernoulli numbers. The intersection numbers
are rational numbers and the denominator is common denominator of Bernoulli numbers. In
p = 1

2 case, there appears cancellation of this numbers of (5.10).
For Dl type (p = 1/2, l = 5/4), it becomes from (4.2)

û(s) = i

2

∮
dy

2iπ

(
y − 1

y3

)
e
cs3/2(3y− 1

y3
)

= i

2s

∮
dy

2iπ

(
y − s2

y3

)
e
cs(3y− s2

y3
)

(4.25)

This integral is written as the derivative of the exponent by s. Using the same integral as
(4.24), we obtain

û(s) = i

6cs

d

ds

(∮
dy

2iπ
e
3csy− cs3

y3

)

= 2
∞∑
g=1

(−1)g(6g − 1)

g!(3g − 1)!
( 1

48

)g
s6g−3 (4.26)

where c = − 1
6 i

1
2 . This result is consistent for p = 1

2 in (3.5) as < τ >g=1= p+2
24 = 5

48 .
The expression of p = 1

2 for Dl (l = 1
2 (p + 2) = 5

2 ) is obtained solely from the residue
calculation, which means that this case is Ramond puncture with j = −1 [10].

For p = 3
2 of Al type, it corresponds to βγ system as discussed in [9]. There are two

different punctures belongs to Neveu–Schwarz and Ramond sectors. From (4.20), Dl case is
expressed as

g(y) = e
cs3/2(5y3− 10

y + 1
y5

)
(
p = 3

2
, c = 4i

5

( i

4

)5/2)
(4.27)

u(s) =
∮

dy

2iπ

(
y − 1

y3

)
e
cs

3
2 [5y3− 10

y + 1
y5

]
(4.28)

The small s expansion gives < τn, j >g sn+ 2
3 ( j+1), where j = −1,− 1

2 , 0. The spin j = −1
corresponds to Ramond sector, and Neveu–Schwarz sector is j = − 1

2 , 0. The Ramond sector
(R) is evaluated by the contour integral for Al of p = 3

2 in [9],

uR(s) = 5

25
c2s5 − 7

3
· 54

216
c6s15 + 79 · 11

10! · 3
257

224
c10s25 + · · · (4.29)

where s(2g−1)(1+ 1
p ) = sn+ 1

p ( j+1). If we take p = 3
2 and j = −1, then we have s

10
3 g− 5

3 . The
first term of above equation is for g = 2, and the second term is for g = 5. For Dl , p = 3

2 ,
the contribution of Ramond sector becomes

uR(s) = 105

25
c2s5 − 19 · 17 · 54

219
c6s15 + 29 · 1663 · 55

32232
c10s25 + · · · (4.30)

5 Large p, Large g Limits and Integrality

In a recent paper [14], the asymptotic behaviors of the intersection numbers for Ap−1, Dl and
E6 types for the large g are discussed based on the ordinary differential equations (ODE).

123



Punctures and p-Spin Curves from Matrix Models III... Page 17 of 39    20 

In this section, we consider the large g limit of Ap−1 and Dl types based upon the integral
representation of the intersection numbers u(s), which may be simpler than the analysis of
ODE.

The exponential parts of u(s) of Ap−1 and Dl are same. We write the exponent as a
function f (u), which becomes

f (u) = c
((

u + s

2

)p+1 −
(
u − s

2

)p+1)
(5.1)

This function f is a polynomial of u, hence this is an algebraic relation [14]. The one point

function u(s) is a series of s(1+ 1
p )(2g−1). Thus, large g limit is equivalent to the large s limit,

and this limit is obtained by a saddle point method for the exponent f (u). By the scaling
u → s

2u, f (u) becomes

f (
su

2
) = c

( s
2

)p+1
((u + 1)p+1 − (u − 1)p+1) (5.2)

We denote this exponent as g(u). By the saddle point method, the first derivative of g is
vanishing,

dg

du
= c(p + 1)

( s
2

)p+1
((u + 1)p − (u − 1)p) = 0 (5.3)

which reads to (u + 1

u − 1

)p = 1 (5.4)

The solution of this equation is u+1
u−1 = e2π i/p, i.e. u = (eπ i/p + e−π i/p)(eπ i/p − e−π i/p).

Thus, f (us/2) = −cs p+1(2isin π
p )−p . The intersection number < τ >g is written by a

contour integral of t (t = s2+2/p) in the large g limit apart from Gamma function of the
definition in (2.4),

< τ >g=
∮

dt

2π i

1

t g+1 t
−1/2e−ct p/2(2isin(π/p))−p

(5.5)

where t−1/2 factor comes from 1/s1+
1
p in the front of the integral of u(s), which corresponds

to genus zero contribution. We expand the exponential term as
∑ 1

m! ( f (su/2))m , with pm
2 −

1
2 = g. We have an asymptotic behavior in the large g limit as

< τ >g∼
2(p + 1)

1
p sin π

p

(
2g−1
p )!

⎛
⎜⎝ 1

4p(p + 1)
2
p

(
sin π

p

)2
⎞
⎟⎠

g

(5.6)

where c = 1
p+1 and the normalization factor 1

pg−1 is included. Thus the term of power (−g)

becomes [(p + 1)
2
p 4p(sin π

p )2]−g , which agrees with known 1
(24)g for p = 2 case.

For Dl (p = 2l − 2) type, the exponential term is same as Ap−1. For the large g behavior,
the power g part ag becomes same.

Note that for p = 1
2 , there is no finite saddle point solution of (5.4), except u = ∞. The

asymptotic term of (5.6) diverges for p = 1
2k , (k ∈ Z ). For p = 1

2 , we have used the change
of variable from u to y, and have obtained the explicit form of (4.24) for the large g limit.
It is remarkable that the polynomial of p of order pg in the intersection numbers of genus g
has all real roots. Namely the (2g − 1) zeros z of the polynomial of (2.8) are on the real axis
in the region of −1 < z ≤ 2g − 1.
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The values of this polynomials at p = 1
2 are − 1

2 , 5, (−32 · 5 · 7), (3 · 4 · 5 · 7 · 13) for
g = 1, 2, 3, 4, respectively. These numerators cancel with the denominator of Bernoulli
numbers in (5.10), and the intersection numbers of p = 1

2 is expressed simply as (4.24).
This fascinating feature of p = 1

2 case may show that there is a characteristic topological
meaning of the curves of Riemann surface for the fermionic spins as Ramond punctures.

The intersection numbers < τ >g are rational numbers since they involve the inverse
of automorphism from the orbifold. As remarked by Zagier [44], there is a property of
the integrality by multiply certain factors of two Pochhammer symbols to the intersection
numbers < τ >g . The denominators of the expression of < τ >g are same for Ap−1 type
and Dl type as (2.8) and (3.5). Thus the integrality can be obtained by the application of the
same Pochhammer symbols for both cases.

As an example of integrality, with the multiplication of Pochhammer symbol (x)n =
x(x + 1) · · · (x + n − 1) to < τ >g=5n , the following quantities become [14, 18, 44].

an = (2103552)n(
3

5
)n(

4

5
)n < τ >g=5n

bn = (2123554)n(
2

5
)n(− 1

10
)n < τ >g=5n (5.7)

which are integers (apart from the normalization of 1
pg−1 ), where < τ >g=5=

161/777600000 for A4 (p = 5) in (2.8). The generating function
∑

bntn is algebraic,
while an grows exponentially [44].

As evaluated in [8, 40], the higher spin p limit (p → ∞) of each intersection numbers of
a fixed genus g shows interesting features, which are expressed by Bernoulli numbers B2g .
From (2.8) and (3.5), it is easily noticed that the values of the coefficients of highest order of
p become same for Ap−1 and Dl case for a fixed genus g.

lim
p→∞ < τ >g |Ap−1 = lim

p→∞ < τ >g |Dl = (−1)g+1B2g

(2g)!(2g) pg + O(pg−1) (5.8)

The denominators of the expression of < τ >g are same, and then integrality should be
same for Ap−1 and Dl . The result of (5.8), which reduces to Bernoulli number Bn , has been
obtained in [40], and the relation to the partition function of black hole is discussed. With
σ = s

p , u
p+1 = x2, u(s) is written in the large p,

u(s) = 2

σ

∫
dx

2iπ
x−1+ 2

p e− 2c
p+1 x

2sh σ
2

= 2

σ
�

( 2

p

)( 2c

p + 1

)− 1
2
(σ

2

)− 1
p
exp

(
− 1

p
log

sh σ
2

σ
2

)
(5.9)

Noting that log
sh σ

2
σ
2

= ∑
(−1)n−1 B2nσ 2n

(2n)!2n , the Bernoulli number B2n is obtained for the

intersection number in the large p limit.
The notation of Bernoulli numbers are B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 , B8 = − 1
30 , B10 =

5
66 , B12 = − 691

2730 , B14 = 7
6 , B16 = − 3617

510 . The denominator of < τ >g is common in the
denominator of B2g/((2g)!(2g)) for arbitrary p, since the intersection number is described
by the multiplication of polynomial of p to B2g/((2g)!(2g)) for Al and Dl cases.

The denominator of B2g/(2g) is given by [41, 42]

denominator
( B2g

2g

)
=

∏
p>2,(p−1)|2g

p1+vp(2g) (5.10)
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The condition of the prime p is (p − 1)|(2g), which means the (p − 1) divides (2g), and
vp(N ) is the largest exponent e such that pe|N . For instance, the denominator of B1000/1000
is 24 · 3 · 54 · 41 · 101 · 251. Thus the integrality of < τ >g is obtained by the multiplication
of the factor of the (5.10) with a factor (2g)!.

The denominator of B2k/k counts the numbers of distinct J-class map: Sm+4k−1 → Sm

as shown in (5.13) [42]. The numerator of B2k/2k is related to differential topology such as
characteristics. Indeed we have for p = −1, Euler characteristics ζ(1−2g) = (−1)g B2g/2g

for Ap−1, and (1 − 22g−1)
(−1)g B2g

2g for Dl [8].
The asymptotic behavior for large g of B2g is easily obtained by the formula,

ζ(2g) = (2π)2g

2(2g)! |B2g| (5.11)

Since ζ(2g) = ∑ 1
n2g

∼ 1 (for g → ∞), |B2g| ∼ 2(2g)!
(2π)2g

.
The next leading term for p → ∞ in (5.8) may be evaluated similar to the derivation of

(5.9). . From the lower order of g in (2.8) and (3.5), the intersection numbers are expressed
for p → ∞ and a fixed g,

< τ >g= |B2g|pg
(2g)!(2g)

[
1 + a1(g)

p
+ a2(g)

p2
+ · · ·

]
(5.12)

where an(g) is a number independent of p, which are obtained from (2.8).
Since the denominator of< τ >g is given by the denominator of B2g/2g as shown above,

it is interesting to note this implies the existence of a factor in the numerator of < τ >g . In
the case of p = 5 (A4 type), the denominator of B10/10 is 22 · 3 · 11, from the integrality of
a1 in (5.7) (g=5), the factor 11 should be in the numerator of < τ >g=5. Indeed the factor
2p + 1 gives 11 for p = 5. The factor (2p + 1) i.e. 11 exists in all < τ >g and it cancels
with all denominator of < τ >g=5n , since B5g/(5g) has 11 in the denominator due to the
formula of (5.10). The factor (2103552)n( 35 )n(

4
5 )n in (5.7) gives the cancellation in part of

the denominator of < τ >5g through the expression of Bernoulli number B2g .
The another number of series c5n = ( 45 )n(

1
5 )n < τ >5n , which is found to be integrality

in [14] gives a factor 31, 41, 51, 61, ... due to ( 15 )n . Such prime numbers 31,41,61,.. appear in
the denominator of< τ >5g in higher genus g, and these prime numbers should be cancelled
with Pochhammer symbol of ( 15 )n . Thus the integral numbers an, bn, cn are consistent with
the integrality of < τ >5g .

The relation of the numerator of Bernoulli number B2k to differential topology �4k−1 is
known as Milnor exotic 7 sphere. The order of �4k−1, card(�4k−1) is given by the stable
homotopy �4k−1 as [41, 42]

card(�4k−1) = 22k−3(22k−1 − 1) · card(�4k−1) · B2k

2k
(5.13)

For 4k = 2, it becomes 28 = 2(23 − 1) · 240 · ( 1
30 )/4. The numerator of < τ >g has

therefore a relation to differential topology and homotopy theory. Exotic 7-sphere is related
E8 singularity (x5 + y3 + z2 = 0) [42] and 28 different differential structures are described
by algebraic equation such that x2k−1

1 + x32 + x23 + x24 + x25 = 0(�(2k − 1, 3, 2, 2, 2))
(k=1,2,...,28) [45].

For E6 singularity, the intersection numbers are evaluated by the ODE [14], and the
denominators of τE6 are not directly expressed by Bernoulli numbers , although it is closely
related. The relation ofBernoulli number tomapping class group�g and characteristic classes
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has been discussed in [43]. The intersection numbers of half-integer p spin curve may have
interesting further applications for topology and mapping class group.

6 n-Point Functions of Al Types

The change of variable from u to y in (4.1) is useful for the evaluation of higher point
correlation functions u(s1, ..., sn). We have checked to obtain the known results for the
integer values of p = 3, 4, 5 of [11, 12] by the Laurent expansion of y.

6.1 Two Point Functions for Integer p

The two point function u(s1, s2) is written as, (for p = 1
2 , see (7.11)),

u(s1, s2) = −4
( s1
s2

) 1
p

∮
dy1dy2
(2iπ)2

(
y1 + s

2+ 2
p

1

y31

)(
y2 + s

2+ 2
p

2

y32

)

× 1

y41

exp[∑2
i=1(−c)(y2pi − p(2p+1)

3 s
2+ 2

p
i y2p−4

i + (2p+1)p(2p−1)(p−1)
30 s

4+ 4
p

i y2p−8
i + · · · )]

[1 − s
2+ 2

p
1
y41

−
(
s1
s2

) 1
p 1

y21

(
y22 − s

2+ 2
p

2
y22

)
]2 + 4s

2
p
1
y41

(s1 + s2)2

(6.1)

For p = 1
2 , it becomes as (7.11) with a slight difference of notation of c (a factor 3

difference).
The selection rule of (2.6) is

2(g − 1)(1 + 1

p
) + 2 = n1 + n2 + 1

p
( j1 + j2) (6.2)

The two point function is expressed as

u(s1, s2) = C
∑
ni , ji

< τn1, j1τn2, j2 > s
n1+ 1

p (1+ j1)

1 s
n2+ 1

p (1+ j2)

2 (6.3)

where C is a constant., which involves factors of gamma-function. This two point function
and the intersection numbers< τn1, j1τn2, j2 > for Neveu–Schwarz punctures are evaluated in
general p in [40]. Here we reconsider two point functions under the formula by the integral
y in (6.1), which may be easily obtained in more systematic ways for both Neveu-Schawrz
and Ramond punctures. The numerator and denominator of (6.1) are expanded in the small
s1 and s2.

As an example, the case < τ2,1τ2,1 > of p = 4, we find

(ii.5)u(s1, s2) = s
5
2
1 s

5
2
2

∫ ∞

0
dy1dy2e

−c(y81+y82 )(
1

y131
(−2816y32 + 7680y112 )

+ 1

y211
(−28728y112 + 27888y192 − 2880y272 )) = 11

240
s
5
2
1 s

5
2
2 [�(

1

2
)]2

(6.4)

By multiplying a factor 1
p = 1

4 , it leads to < τ2,1τ2,1 >= 11
960 , which agrees with [11].

We have checked < τ1,1τ3,1 >g=2= 11
4320 for p = 3, < τ1,1τ3,1 >g=2= 17

1200 for p = 5,
which are genus g = 2 cases.
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6.2 Three Point Functions for Integer p

Three point function u(s1, s2, s3) is given for A type by

u(s1, s2, s3) = −8
( s1
s3

) 1
p
∫

1

(2iπ)3

3∏
i=1

dyi

3∏
i=1

⎛
⎝yi + s

2+ 2
p

i

y3i

⎞
⎠ e−c

∑
(y2pi +··· )

× 1

y41

1

1 − s
2+ 2

p
1
y41

−
(
s1
s2

) 1
p 1
y21

(
y22 − s

2+ 2
p

2
y22

)
− 2is

1
p
1

y21
(s1 + s2)

× 1

y22

1

1 − s
2+ 2

p
2
y42

−
(
s2
s3

) 1
p 1
y22

(
y23 − s

2+ 2
p

3
y23

)
− 2is

1
p
2

y22
(s2 + s3)

× 1

1 − s
2+ 2

p
1
y41

−
(
s1
s3

) 1
p 1
y21

(
y23 − s

2+ 2
p

3
y23

)
+ 2is

1
p
1

y21
(s1 + s3)

(6.5)

The exponential term is expressed after the scaling of s as (6.1),

e−y2pi + p(2p+1)
3 s

2+ 2
p

i y2p−2
i − (2p+1)p(2p−1)(p−1)

30 s
4+ 4

p
i y2p−8

i +··· (6.6)

where the factor c is absorbed in yi , which follows the scaling to si as cs p+1.
There are results of the intersection numbers of three-point for p = 3 up to g = 2 for

different 6 intersection numbers[11]. We evaluated these 6 cases to verify the validity the
integral representation of (6.5) based on the random matrix theory.

For instance, the case of < τ1,1τ1,1τ3,0 >g=2 is evaluated as,

(iii.5)u(s1, s2, s3) = −8c
5
3 s

5
3
1 s

5
3
2 s

10
3
3

∫ ∏
dyi e

−∑
y6i

(
−560

y2y
3
3

y111
− 80

y2
y111 y33

+ 1

y111 y52

(
2860y33 − 7700y93 + 1470y153

)
+ 1

y111 y112

(
8520y93 − 8400y153

+1225y213

))
= 29

1440
s
5
3
1 s

5
3
2 s

10
3
3

(
�

(1
3

))2
�

(2
3

)
(6.7)

This leads to < τ1,1τ1,1τ3,0 >g=2= 29
2160 for p = 3 by the normalization of 2

3 .
We have correctly derived the 6 intersection numbers of three punctures of p = 3 in genus

g = 2 with a normalization constant 2
3 , which agrees the values of [11].

Thus the method of Laurent expansion of y works for the evaluation of the higher point
correlation function, which is a generating function of the intersection number, and it provides
a practical method for higher correlation functions.

7 n-Point Functions of p = 1
2,−1

2,−2, and−3

In this section, we consider the half integer p = 1
2 ,− 1

2 ,− 3
2 and the negative integer p =

−2,−3 cases. Some of these one point functions have been discussd in the previous articles
[9, 10].
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7.1 n-Point Function for p = 1
2

Since 1
p

∑
ji is integer in this case, we are able to include them in the integral part of

∑
ni .

Then the spin component ji can be chosen as arbitrary value as mod p. Here we take the spin
component ji as−1. Other choice may be j = 0 or j = − 1

2 . All these cases provide the shift
of the integer n. From the continuation of Ramond spin component j = p− 1, the choice of
j = − 1

2 may be naturally considered. However, the difference between j = −1 and j = − 1
2

leads the shift of the integer n, this choice may do not cause a serious conclusion. For the
integer p, the algebraic geometry has been studied [4].

One point function u(s) is given by (4.24), which becomes by an integral of part,

u(s) = − i

6c′s3/2

∮
dy

2iπ
e
c′s3/2

(
3y− 1

y3

)
(7.1)

and it becomes a series of
∑

g ags
6g−3.

• String Equation for p = 1
2

We discuss the string equation for p = 1
2 . Although the usual string equation may be

not applied for this case, analogous equation about a forgetting of a marked point can be
considered.

The selection rule for p = 1
2 (2.6) for s marked points is,

6g − 6 + s =
s∑

i=1

ni + 2
s∑

i=1

ji (7.2)

Possible values of ji may be 0,− 1
2 ,−1, for which the last term becomes integers. The

term s
ni+ 1+mi

p
i becomes sni+2

i , sni+1
i and sni1 , respectively.

By taking ji = −1, it becomes

6g − 6 + 3s =
s∑

i=1

ni (7.3)

The term of order s21s
6g−2
2 are derived from (6.1), which is considered as a string equation,

since s
1
p = s2 for p = 1

2 .

u(s1, s2) = −4s21
s22

∮
dy1dy2
(2iπ)2

1

y31

(
y2 ± s62

y32

)
e
c1(3y1)+c2

(
3y2− s62

y32

)

=
∑
g

ags
2
1s

6g−2
2 c21c

4g−2
2 (7.4)

The coefficient ag is denoted by the intersection numbers as < τ2,−1τ6g−2,−1 >, where we

defined n of τn,−1 as the power of sn+ 1+ j
p . < τn,−1 > is a coefficient of sn . This term of

order s6g−2
2 is one point function in (4.24). Thus we have a string equation,

< τ2,−1τ6g−2,−1 >=< τ6g−3,−1 > (7.5)

in which τ2,−1 operates on τ6g−2,−1 for the change to τ6g−3,−1. Note that the usual notation
of τn, j is different from above as a shift n → n − 2, since we took ji = −1.
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Three points function of p = 1
2 is studied for Al case in [10]. From the selection rule of

ji = −1 (i = 1, 2, 3), we have from (7.3) ; 6g+3 = n1+n2+n3 for< τn1,−1τn2,−1τn3,−1 >.
The term of order s21 is obtained from three point function as

u(s1, s2, s3) = − s21
(s2s3)2

∮
dy1
2iπ

1

y31
e3c1y1

∮
dy2dy3
(2iπ)2

(
y2 ± s62

y32

)(
y3 + ± s63

y33

)

e
c2(3y2− s62

y32
)+c3(3y3− s63

y33
) 1

2i(s2 + s3) + y22
s22

− s42
y22

− y23
s23

+ s43
y23

(7.6)

Since two point function u(s2, s3) is written as

u(s2, s3) = i

s22s
2
3 (s2 + s3)

∮
dy2dy3
(2iπ)2

(
y2 ± s62

y32

)(
y3 ± s63

y33

)
e
c2(3y2− s62

y32
)+c3(3y3− s63

y33
)

×
⎛
⎜⎝ 1

y22
s22

− s42
y22

− y23
s23

+ s43
y23

− 2i(s2 + s3)
− c.c.

⎞
⎟⎠ (7.7)

Thus we have a string equation

< τ2,−1τn2,−1τn3,−1 >g=< τn2−1,−1τn3,−1 >g + < τn2,−1τn3−1,−1 >g (7.8)

The difference between Al and Dl is due to the sign (±1) in the representation of y variable
in (4.20), and the string equation of three points function for Al ia valid also for Dl case.

• Two Point Function and Absence of Dilaton Equation for p = 1
2

For integer spin p, a dilaton field corresponds to τ1,0, which corresponds to s
1+ 1

p . When
p = 1

2 is inserted into this term, it becomes s3 term.
We have found that there is no dilaton equation for p = 1

2 [10]. The one marked point
intersection number < τ1,0 >g=1 corresponds to < τ3,−1 >g=1 in our notation. However,
we do not find two point function

< τ3τ6g−3 >g= 0× < τ6g−3 >g (7.9)

which means a vanishing coefficient. Above equation plays a role of a dilaton equation, but
the coefficient becomes zero.

The two point function of p = 1
2 is obtained by the expansions of small s1 and s2 in a

genus expansion. For this purpose, we write the integral representation of (6.1) as

u(s1, s2) = − 4

s21s
2
2

∮
dy1dy2
(2iπ)2

(
y1 + s61

y31

)(
y2 + s62

y32

)
e
c
∑

(yi− s6i
3y3i

)

× 1(
1
s21

(
y21 − s61

y21

)
− 1

s22

(
y22 − s62

y22
)
)2 + 4(s1 + s2)2

(7.10)
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If we expand in the inverse of y1, we obtain

u(s1, s2) = −4
s21
s22

∮
dy1dy2
(2iπ)2

(
y1 + s61

y31

)(
y2 + s62

y32

)
e
c(y1− s61

3y31
)+c(y2− s62

3y32
)

× 1

y41
[1 + g + g2 + g3 + · · · ] (7.11)

where

g = 2
( s61
y41

+ s21 y
2
2

s22 y
2
1

− s21s
4
2

y21 y
2
2

)
−

( s61
y41

+ s21 y
2
2

s22 y
2
1

− s21s
4
2

y21 y
2
2

)2

−4s41 (s1 + s2)2

y41
(7.12)

By the contour integral at y1 = 0, y2 = 0, we have expanding the exponential term
proportional to c,

u(s1, s2) = −
[1
3
c4s21s

4
2

+c8
( 1

360
s81s

4
2 + 1

135
s71s

5
2 + 1

180
s61s

6
2 + 1

216
s41s

8
2 + 1

1080
s21 s

10
2

)
+ O(c12)

]

+[s1 ↔ s2] (7.13)

The expression should be symmetric by adding the terms of s1 ↔ s2. The terms of order
g = 2 becomes by this symmetrization,

c8
1

33 · 5
(

(s81s
4
2 + s41s

8
2 + s71s

5
2 + s51s

7
2 ) + 3

2
s61s

6
2 + 1

8
(s21s

10
2 + s101 s22 )

)
(7.14)

The first term shows the string equation; s21s
4
2 → s32 . Note that there is no s3 term in two

point function, which is supposed to be present for the term for a dilaton equation.
From (2.6) for p = 1

2 , we have 6g = n1 + n2 for s
n1
1 sn22 . The first etrm of (7.13) is genus

one, and the term of c8 is genus two, since n1 + n2 = 12. It is interesting to note that n1 and
n2 are both even, or both odd, since 6g is an even number. The terms of s21 s

10
2 is consistent

with a string equation of (7.4).
It may be easy to obtain the higher order terms. The parameter c is c = i

4 . Each term

of two point function is order of c4gsn11 s6g−n1
2 for genus g, which agrees with the selection

rule of (2.6). The scaling relation between c and s can be seen in (2.4). After the rescaling

of u → s
2u, the exponent becomes cs p+1. This leads to the scaling cs

3
2 , and u(s1, s2) ∼∑

n=2
∑∞

g=1 c
4gsn1 s

6g−n
2 . (7.13) is consistent with this behavior.

There may be another way for the evaluation of the contour integral. For genus one case,
the last factor of (7.10) is approximated by

1(
y21
s21

− y22
s22

)2 = 1

(
y1
s1

− y2
s2

)2(
y1
s1

+ y2
s2

)2
(7.15)

We take residues at y1 = s1
s2
y2 and at y1 = − s1

s2
y2. Expanding the exponent in order c4, we

find the residue of y1 = s1
s2
y2 and y2 = 0 as

U (s1, s2) = c4

6s32

(
s91 + 2s81s2 + s71s

2
2 − s31s

6
2 − 2s21 s

7
2 − s1s

8
2

)
(7.16)
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and from the pole at y1 = − s1
s2
y2 and y2 = 0 as

u(s1, s2) = c4

6s32

( − s91 + 2s81s2 − s71s
2
2 + s31s

6
2 − 2s21s

7
2 + s1s

8
2

)
(7.17)

Adding these two contributions, by noting the cancellation of terms, we have

u(s1, s2) = 2c4s81
3s22

− 2

3
c4s21s

4
2 (7.18)

The term of s21s
4
2 agrees with (7.13) in genus one.

One may evaluate the residue of (7.10) by taking 8 poles of y1. There are 8 poles, except
a pole of numerator y1 = 0,

y1 = ± is1s22
2y2

± s1y2
2s2

±
s1

√
−s62 ± 4is1s22 y

2
2 ± 2is32 y

2
2 + y42

2s2y2
(7.19)

These residues for 8 poles are simply expressed as

∮
dy1
2iπ

(
y1 + s61

y31

)(
y2 + s62

y32

)
(

1
s21

(
y21 − s61

y21

)
− 1

s22

(
y22 − s62

y22

))2 + 4(s1 + s2)2

= ±i
s21 (s

6
2 + y42 )

8(s1 + s2)y32
(7.20)

Adding the contribution of 8 poles, there is a cancellation. Thus the contribution comes only
from the pole of y1 = y2 = 0.

• Three-Point Function for p = 1
2

We have three point function of p = 1
2 by putting p = 1

2 in (6.5),

u(s1, s2, s3) = −8
s21
s23

∮ 3∏
i=1

dyi
2iπ

3∏
i=1

(
yi + s6i

y3i

)
e
c
∑

(3yi− s6i
y3i

)

×
( 1

y41 y
2
2

) 1

1 − s61
y41

− s21
s22 y

2
1

(
y22 − s62

y22

)
− 2is21

y21
(s1 + s2)

× 1

1 − s62
y42

− s22
s23 y

2
2

(
y23 − s63

y23

)
− 2is22

y22
(s2 + s3)

× 1

1 − s61
y41

− s21
s23 y

2
1

(
y23 − s63

y23

)
+ 2is21

y21
(s1 + s3)

(7.21)

where c = − 1
6 i

1/2. Expanding the denominators in the power series of si , we obtain by the
evaluation of residues,

u(s1, s2, s3) = −8
s21
s23

(
27

4
c4s63 + i

81

4
c6(s21s2s

6
3 + 3s32s

6
3 + 3s22s

7
3 ) + O(c8)

)

(7.22)
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These terms are order of c4g+2s6g+3 according to the scaling relation between c and s as
cs3/2. After the contour integration of y1, the remaining term is odd for the exchange of
(s2, y2) ↔ (s3, y3). For this order of c4, the contour integral of y1 is factorized as

U (s1, s2, s3) = −8s21

∮
dy1
2iπ

y1
y41

e
c(3y1− s61

y31
)
∮

dy2dy3
(2iπ)2

(
y2 + s62

y32

)(
y3 + s63

y33

)

× e
c(3y2− s62

y32
)+c(3y3− s63

y33
)

s23 y
2
2 − s62 s

2
3

y22
− s22 y

2
3 + s22 s

6
3

y23
− 2is22s

2
3 (s2 + s3)

(7.23)

The denominator becomes (s23 y
2
2 − s22 y

2
3 )

−1 in this order, and it is odd for the exchange
(s2, y2) ↔ (s3, y3). Therefore the first term of order c4 is vanishing by adding the symmetric
terms of s2 ↔ s3. Absence of order c4 term agrees with (2.6), which implies the order of
c4g+2s6g+3 for a genus g term.

The term of order c6 in (7.22) contains i = (−1)1/2, which comes from the term of
i(si +s j ) in the denominator of (7.21). Note that c = − 1

6 i
3/2, ic6 is real number. The term of

order c6 is also vanishing by the following reason.We have expanded the large y1 > y2 > y3.
We have to consider also the case of y3 > y2. For this case, we exchange y2 ↔ y3 as well as
s2 ↔ s3 with the complex conjugate of the term −2i(s2 + s3), and this leads to the opposite
sign of the term of c6 with the exchange s2 ↔ s3. Thus after adding this symmetric term, we
obtain the cancellation of (7.22) and vanishing result of c6 term. The fact that there is no three
point function suggests the punctures are pairwise, and the vanishing three point function
gives the simple structure of the spin p = 1

2 case, which may be related to the simplification
for Faber conjecture [33] as discussed in [10].

• Four-Point Function for p = 1
2

The selection rule for four point function is 6g + 6 = ∑4
i=1 ni . The connected four

point function u(s1, s2, s3, s4) is expressed as in [10] with the same change of variables
ui → i

2 (y
2
i − 1

y2i
), by assuming order of smallness s1 < s2 < s3 < s4,

u(s1, s2, s3, s4) = −16
s21
s24

∮ 4∏
i=1

(
yi + s6i

y3i

)
e
c
∑4

i=1

(
3yi−

s6i
y3i

)

× 1

y21 − s61
y21

− s21
s22

(
y22 − s62

y22

)
− 2is21 (s1 + s2)

1

y22 − s62
y22

− s22
s23

(
y23 − s63

y23

)
− 2is22 (s2 + s3)

× 1

y23 − s63
y23

− s23
s24

(
y24 − s64

y24

)
− 2is23 (s3 + s4)

1

y21 − s61
y21

− s21
s24

(
y24 − s64

y24

)
+ 2is21 (s1 + s4)

(7.24)

Since the four point function is cyclic about yi (i = 1, ..., 4), we take y1 and y3 are large,
and expansion of 1/y1 and 1/y3 in (7.24). Similar to the three point function, we find that
the contour integrals of (7.24) are vanishing for the terms of order ci (i = 1, ..., 7). The
non-vanishing term appears at the order c8 with a result of

u(s1, s2, s3, s4) = −729c8s21s
2
3 s

4
2s

4
4 + O(c12s18) (7.25)

where c = − 1
6 i

1/2. This is consistent with the selection rule of 6g + 6 = ∑4
i=1 ni , where

ni is a power of si . In this order, the genus g is one, and it is consistent with the scaling of
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c4g+4s6g+6 = c8s12. The result of (7.25) is obtained for y1 > {y2, y4} and y3 > {y2, y4}.
The total expression is obtained by the permutation of the variables{s1, ..., s4}.

In this four point function, the numbers of punctures are even numbers (i.e. it is four). The
punctures have the spin indices j = −1 as a Ramond puncture, and according to this spin
indices, the selection rule 6g + 6 = ∑4

i=1 ni is obtained. Thus our explicit result of the four
point function is consistent with the conjecture that Ramond punctures are pairwise.

The term of (7.25) is consistent with the successive string equations, which give the
reduction of s21s

2
3s

4
2s

4
4 → s21s

3
2s

4
4 → s23s

4
4 → s34 . Note that < τ3 > is non-vanishing one

point intersection number.
For n-point function (n > 1), this Ramond puncture pairing conjecture states that if n

is odd, the n-point function is vanishing, and if n is even, it is non-vanishing. For n-point
function (n ≥ 6), the contour integral becomes similar to n = 4. Assuming y j ( j is odd)
is large, and expand in the inverse power of y j , we obtain the n-point function u(s1, ..., sn)
from the evaluation of the residues of yi at yi = 0. Through these residual calculations, we
find the selection rule of (2.6) for p = 1

2 is valid with the Ramond values of spin component
j = −1, and Ramond punctures ( j = −1) appear as pair-wise form.

• Continuation from Integer p to p = 1
2

For the continuation to p = 1
2 , the spin component j is assumed to be (-1) [9, 10]. From

the selection rule of (2.6) , we have for p = 1
2

6g − 6 + 3 =
3∑

i=1

ni + 2
3∑

i=1

ji (7.26)

For general p, the three point function < τ0,0τ0,0τ0,p−2 > t0,0t0,0t0,p−2 is genus zero

term, which corresponds to s
1
p
1 s

1
p
2 s

p−1
p

3 term. Putting p = 1
2 , this term becomes s21s

2
2s

−1
3 . This

term is obtained from the contour integral in (7.21) by expanding the second denominator
about 2is22s3/y

2
2 as

u(s1, s2, s3)g=0 = −8s21s
2
2s

−1
3

∮ 3∏
i=1

dyi
2iπ

y33
y31 y

3
2

ec
∑

yi (7.27)

However the contour integral of y3 gives zero around y3 = 0. Thus we have no 3-point
function of p = 1

2 at genus zero. This result is consistent with the conjecture of the punctures
of Ramond type, which should be paired.

The string equation of p = 1
2 has been found in [10]. It is transform from t0,0 → t2,

(t2 = s2).
For u(s) is given by (4.24).

u(s) = c2

48
s3 − 1

5!
( 1

48

)2
c6s9 + · · · (7.28)

This expression is continuation of u(s) for the integer p, with p = 1
2 , since for general p, it

is given by [7] as

u(s) = 1

s1+
1
p

[
�

(
1+ 1

p

)
− p − 1

24
y�

(
1− 1

p

)
+ (p − 1)(p − 3)(1 + 2p)

5!423 y2�
(
1− 3

p

)
+· · ·

]

(7.29)
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with y = s2+
2
p . There appears a divergence in the limit of p = 1

2 for �-function, and with
the normalization of this factor, (7.29) becomes equivalent to (7.28) as noted in Eq.(18) of
[10].

From the results of (7.13), u(s1, s2) is expressed as

u(s1, s2) = −1

3
c4s21s

4
2 + c8

( 1

1080
s21s

10
2 + 1

216
s41s

8
2 + 1

180
s61s

6
2 + 1

135
s71s

5
2

+ 1

360
s81s

4
2

)

−c12
( s21s

16
2

3265920
+ s41s

14
2

204120
+ 7s61s

12
2

291600
+ s71s

11
2

48600
+ 313s81s

10
2

8164800
+ s91s

9
2

22680

+ 443s101 s82
16329600

+ 11s111 s72
510300

+ 169s121 s62
8164800

+ 19s131 s52
2041200

+ s141 s42
583200

)
+ O(c16)

(7.30)

This expression is interpreted as a continuation of p → 1
2 . s

4
2 corresponds to s

2
p
2 with p = 1

2 .

Since s
2
p
2 is t0,1, s4 corresponds to t0,1. The term s5 corresponds to t1,1.

The intersection number for s
2
p
1 s

4+ 2
p

2 is given

< τ0,1τ4,1 >g=2= (p − 1)(p + 2)(p − 2)

2880p
→ 1

768
(7.31)

This expressesion agrees for the value of [11, 12], 1
320 and 7

1200 for p = 4 and p = 5. (7.31)

corresponds to s
2
p
1 s

4+ 2
p

2 → s41s
8
2 for p = 1

2 . The term, which gives s41s
8
2 in the limit p → 1

2 ,

may exists also from another term < τ2,0τ2,2 > with s
2+ 1

p
1 s

2+ 3
p

2 . Therefore, s41s
8
2 is obtained

from the limit of different terms of general p. The term s
2+ 1

p
1 s

2+ 3
p

2 is as

u(s1, s2) = − 1

576
(p + 1)(p − 1)�

(
1 − 1

p

)
�

(
1 − 3

p

)
s
2+ 2

p
1 s

2+ 1
p

2 (7.32)

which by the change s1 ↔ s2, it becomes s41s
8
2 for p → 1

2 .
For s61s

6
2 term in (7.30), we have

< τ0,2τ4,0 >g=2= (p − 1)(p − 3)(2p + 11)

5760p
→ 1

192
(7.33)

which corresponds to s
3
p
1 s

4+ 1
p

2 → s61s
6
2 for p = 1

2 . The values of these intersection numbers
agree with the intersection numbers from (7.30).

For < τ2,1τ2,1 >g=2 corresponds to s
2+ 2

p
1 s

2+ 2
p

2 → s61s
6
2 , which degenerates to (7.33).

Thus the continuation to p = 1
2 is not unique.

The term s
2
p and s2+

1
p become same s4 in the limit p → 1

2 . The terms s
2
p , s2+

2
p and

s4+
1
p become s6 in the limit of p → 1

2 .
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7.2 n-Point Function of p = − 1
2

For p = − 1
2 , the selection rule becomes for k-marked points

2g − 2 + k = −
k∑

i=1

ni (7.34)

where we take ji = −1. This requires the negative power ni of s for higher genus g, which
leads to the inverse power of si inm-point function u(s1, ..., sm). As discussed in [9, 10], one
point function u(s) is a contour integral,

u(s) = s
∮

dy

2iπ

(
y + 1

s2y3

)
e− c

y

= 1

2
c2s (7.35)

This term belongs to genus g = 0 order, which leads to n1 = 1 from (7.34) as sn1 . The
coefficient c2 is given by the scaling (cs p+1)2 = c2s. From the expansion of the intersection
numbers in (2.8), the higher order terms are vanishing for p = − 1

2 by the existent factor

(2p + 1) for g > 1. In the genus g = 1 order, the intersection number < τ1,0 >= p−1
24 in

(2.3) for the integer p suggests the nonvanishing value for p = − 1
2 . This order is given by

the second term of the integrand. By the change of y → 1
t , (7.35) is written as

u(s) = s
∫

dt

2iπ

(
− 1

t2

)(1
t

+ t3

s2

)
e−ct (7.36)

The second term of the integrand becomes by the integration as− 1
c2s

(c = ( 14 )
p = 2), which

is a continuation of p−1
24 = − 1

16 . There is a factor �(3) = 2 in (2.3). Thus genus g = 1 term
is consistent with (2.3).

Two point function of (6.1) is written for p = − 1
2 as

u(s1, s2) = −4
( s2
s1

)2 ∮
dy1dy2
(2iπ)2

2∏
i=1

(
yi + 1

s2i y
3
i

)
e
−c

∑ 1
yi

1

y41

1(
1 − 1

s21 y
4
1

−
(
s2
s1

)2 1
y21

(
y22 − 1

s22 y
2
2

))2 + 4
s41 y

4
1
(s1 + s2)2

(7.37)

The contour integral is evaluated for the poles of y1 = y2 = 0. By the expansion of the
exponential term as

∑
(−c( 1

y1
+ 1

y2
))k/k!, we obtain

u(s1, s2) = −4s22
(1
4
c4 − c8

2 · 6!
(
s21 + 8s1s2 + 12s22

)

+ c12

2 · 10!
(
s41 + 24s31s2 + 161s21s

2
2 + 384s1s

3
2 + 288s42

)

− c16

2 · 14!
(
s61 + 48s51s2 + 715s41s

2
2 + 4528s31s

3
2 + 13441s21s

4
2 + 18304s1s

5
2

+9152s62
)

+ O(c20)
)

+ (s1 ↔ s2) (7.38)
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Each term is written as c4gs|n1|
1 s|n2|

2 , n1 + n2 = 2g. For p = − 1
2 , the selection rule becomes

for two point function as (mi = −1)

− 2g = n1 + n2 (7.39)

Thus n1, n2 are negative integers for s
−n1
1 s−n2

2 . The expansion of (7.38) is similar to the weak
coupling expansion of p = −2 case.

By the change of variable yi = 1
ti
, (i = 1, 2), it becomes by ti → ti/c,

u(s1, s2) = −4
( s2
s1

)2 ∮
dt1dt2
(2iπ)2

(
t1 + t51

c4s21

)
e−t1

( 1

t32
+ t2

c4s22

)
e−t2

1(
1 − t41

c4s21
−

(
s2
s1

)2
t21

(
1
t22

− t22
c4s22

))2 + 4t41
c4s41

(s1 + s2)2
(7.40)

From the selection rule of (7.34), in the case two point function n = 2, we have

2g = −(n1 + n2) (7.41)

for u(s1, s2) = ∑
cn1,n2s

n1
1 sn22 . The values of n1 and n2 can be both positive and negative

integers. The expansion of (7.40) is

u(s1, s2) = −4
( s2
s1

)2 ∮
dt1dt2
(2iπ)2

e−t1−t2 t1t2(
t22 − s22

s21
t21

)2
(
1 + t41

c4s21
+ t42

c4s22

+2
t21
c4s21

t21 − t22

1 − s22
s21

t21
t22

− 4
(s1 + s2)2

c4s41

t41(
1 − s22

s21

t21
t22

)2 + O
( 1

c8

))
(7.42)

where the dependence of c is obtained from the scaling to s as a combination of c2s.

7.3 Strong Coupling of p = −2

• p = −2 and Unitary Matrix Model
It was pointed out that for p = −2 corresponds to unitary matrix model [36, 39]. The

unitary matrix model has two phases of the weak coupling and string coupling phases [34,
35].

For one point function, we have for large s,

u(s) = i

2

∮
dy

2iπ

(
y + 1

y3

)
e
c
s

y4

(y4+1)2

= 2

s
+ 2

s2
+ 2

s3
+ 5

3s4
+ 7

6s5
+ 7

10s6
+ 11

30s7
+ 11 · 13

840s8
+ 11 · 13

2016s9

+ 11 · 13 · 17
25345 · 7s10 + 13 · 17 · 19

253452 · 7s11 + 13 · 17 · 19
263452 · 11s12 + 17 · 19 · 23

273552 · 11s13 + · · ·
(7.43)

where c = ( 14 )
p = 24. The contour integral reduces to the calculation of the residue at

y = (−1)1/4. This expansion is written by the modified Bessel function as
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u(s) = 1

s

∞∑
k=0

22k+1�(k + 1
2 )

�( 12 )�(k + 2)k!
1

sk

= 2

s
F

(1
2
, 2; 4

s

)
= 2

s
e
2
s

[
I0

(2
s

)
− I1

(2
s

)]
(7.44)

where F(α, γ ; z) is a confluent hypergeometric function, and I0(z) is a modified Bessel
function. The crossover to the weak coupling of small s is at s = 2, which corresponds to
s = 1

�
= 2. The external source is �. The small s expansion is given by (2.8) through the

intersection numbers of p = −2 [39]. We have

u(s) = 1

s

∮
du

2iπ
e− 1

u+s + 1
u

= − 1

4π
√
s

∫
dx

x2
e
− 4x2

1+x2s

= − 1

4π
√
s

∞∑
n=0

(2n − 1)!!
2nn! �

(
n − 1

2

)( s
4

)n
(7.45)

By noting that (2n − 1)!! = 2n�(n + 1
2 )/

√
π , the last sum is written as

u(s) = − 1

4π
3
2
√
s

∞∑
n=0

�(n + 1
2 )�(n − 1

2 )

n!
( s
4

)n
(7.46)

This weak coupling expansion of one point function has been derived and the comparison
with the unitary matrix model has been discussed in [39].

The model p = −2 has naturally a logarithmic potential, which becomes equivalent to
unitary U (N ) matrix model. The strong coupling expansion in (7.44) is evaluated by the
character expansion of U (N ) group, which character χ satisfies

∫
dUχr (AU )χr ′(U †A†) = δrr ′

χr (AA†)

dr
(7.47)

The character of U (N ) is expressed by

χn1,n2,... = det[tn j+N− j
i ]

det[t N− j
i ]

(7.48)

where ti is eigenvalue of U . The dimension dr is equal to dr = χr (1). For the eigenvalue 1,
(ti = 1),

d[2,0] = χ[2,0](1) = 1

2
(N 2 + N ), d[1,1] = χ[1,1](1) = 1

2
(N 2 − N ) (7.49)

The integration of unitary matrix U is written as∫
dU tr(AU )tr(BU †) = C1tr(AB) (7.50)

where A and B are arbitrary matrices,∫
DU tr(A1U )tr(A2U )tr(B1U

†)tr(B2U
†) = C12 [tr(A1B1)tr(A2B2)

+tr(A1B2)tr(A2B1)] + C2[tr(A1B1A2B2) + tr(A1B2A2B1)] (7.51)

123



   20 Page 32 of 39 S. Hikami

Generalization of this equation for n-times trace is described by Cl1,...,ln .
The coefficient of the single trace is Cn = Cn,0,...0, which are

C1 = 1, C2 = − 1

N 2 − 1
, C3 = 4

(N 2 − 1)(N 2 − 4)
,

C4 = − 30

(N 2 − 1)(N 2 − 4)(N 2 − 9)
,

C5 = 336

(N 2 − 1)(N 2 − 4)(N 2 − 9)(N 2 − 16)
(7.52)

The general formula of Cn is [38]

Cn = (−1)n
[(n − 1)!]3

n

1

(N 2 − 1)(N 2 − 4)(N 2 − 9) · · · (N 2 − (n − 1)2)

×
n−1∑
q=0

1

q!q!(n − q − 1)!(n − q − 1)! (7.53)

The coefficient of 1/sn in (7.43) is 2Cn , and agrees with N = 0 [38, 39].
It is interesting to note that when we change the measure (y+ 1

y3
) to (y− 1

y3
), i.e. D-type,

one point function is vanishing i.e. u(s) = 0. The replacement of this measure y + 1/y3 by
y, the values of u(s) becomes half of (7.43).

For the derivation of the N dependence, we make a change of variable u to z as

u − 1

u + 1
= e−z, u = 1 + e−z

1 − e−z
(7.54)

and

du = −2
e−z

(1 − e−z)2
(7.55)

Thus we obtain

U (s) = N

2

∫
due

4c
s(u2−1)

(u − 1

u + 1

)N

= −N
∫ ∞

0
dz

∞∑
n=0

1

n!e
−Nz

[c
s
ez(1 − e−z)2

]n e−z

(1 − e−z)2
(7.56)

The leading term (c = 0) gives the Euler characteristics ζ(1 − 2g) [7], the next order is c
s ,

and the second order becomes

N
c2

2s2

∫ ∞

0
dzez(1 − e−z)2e−Nz = c2

s2
1

N 2 − 1
(7.57)

The next order is

−N

6
(
c

s
)3

∫
dze2z(1 − e−z)4e−Nz

= −N

6

(c
s

)3[ 1

N − 2
− 4

N − 1
+ 6

N
− 4

N + 1
+ 1

N + 2

]

= −4N
(c
s

)3 1

N (N 2 − 1)(N 2 − 4)
(7.58)
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Extending these evaluations, we find from (7.56)

U (s) =
∞∑
n=1

(2n − 2)!
n!sn

1∏n−1
l=1 (N 2 − l2)

(7.59)

where c = 1. The number (2n − 2)!/n! coincides with the numerator of Cn in (7.52). Thus
we find that one point functionU (s), which is a single trace operator, is a generating function
of the coefficient Cn in (7.53).

For two point function U (s1, s2) with a logarithmic term is written as

U (s1, s2) =
∫

du1du2e
4c

s1(u21−1)
+ 4c

s2(u22−1)
(u1 + 1

u1 − 1

)N(u2 + 1

u2 − 1

)N

× 1

(s2u2 − s1u1 + (s1 + s2))(s2u2 − s1u1 − (s1 + s2))
(7.60)

Using the change of variables in (7.54), one obtain

U (s1, s2) = s1s2

∫
dz1dz2e

−Nz1−Nz2 e−z1

(1 − e−z1)2

e−z2

(1 − e−z2)2

× 1

s2(1 + 2e−z2

1−e−z2
) − s1(1 + 2e−z1

1−e−z1
) + (s1 + s2)

× 1

s2(1 + 2e−z2

1−e−z2
) − s1(1 + 2e−z1

1−e−z1
) − (s1 + s2)

×e
c
s1
ez1 (1−e−z1 )2+ c

s2
ez2 (1−e−z2 )2

(7.61)

Expanding the two denominators for s2 > s1,

1

4s22

∞∑
m=0

∞∑
l=0

(1 − e−z2

1 − e−z1
e−z1

)m(1 − e−z2

1 − e−z1
ez2

)l( s1
s2

)m+l
ez2(1 − e−z2)2 (7.62)

with a measure of dui = e−zi /(1 − e−zi )2dzi , we obtain the strong coupling expansion of
1/sn11 sn22 ,

U (s1, s2) = (s1s2)
∫

dz1dz2e
−Nz1−Nz2 e−z1

(1 − e−z1)2

e−z2

(1 − e−z2)2

× 1

4s22

∞∑
m=0

∞∑
l=0

(1 − e−z2

1 − e−z1
e−z1

)m(1 − e−z2

1 − e−z1
ez2

)l( s1
s2

)m+l
ez2(1 − e−z2)2

×e
c
s1
ez1 (1−e−z1 )2+ c

s2
ez2 (1−e−z2 )2

(7.63)

The leading term is given by Euler characteristics ζ(1 − 2g),

U (s1, s2) = 1

4s22

∫
dz1dz2e

−Nz1−Nz2 e−z1

(1 − e−z1)2

= 1

4s22N
2

∑
n=0

1

N 2n (−1)n−1 Bn

2n

= 1

4s22N
2

∑
n

1

N 2n ζ(1 − 2n) (7.64)
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where we have to count s1 ↔ s2, and Bn is Bernoulli number B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , ....

Note this term has no s1 dependence.
The next term in the strong coupling is the term of order 1/s1s2 as we will see later for

N = 0 in (7.68). In the strong coupling region, U (s1, s2) is expanded in the inverse power
of s1 and s2. The pole of (1 − e−z1) in (7.63) should be cancelled with the expansion of the
exponent in the last term. Then, similar to one point function U (s), two point function is
evaluated in the form of characters ofU (N ) as shown in [39], which used a different method
as shown here.

We have from (7.63) two point function for p = −2,

U (s1, s2) = c

4s2N 2 + c2

4s1s2

1

N 2(N 2 − 1)
+ c3

s21s2

1

N 2(N 2 − 1)(N 2 − 4)

+ 30c4

4s31s2

1

N 2(N 2 − 1)(N 2 − 4)(N 2 − 9)
+ O(

1

sn1 s
2
2

) (7.65)

The coefficient C1,n is [39]

C1,1 = 1

N 2 − 1
, C1,2 = − 12

(N 2 − 1)(N 2 − 4)

C1,3 = 120

(N 2 − 1)(N 2 − 4)(N 2 − 9)

C1,4 = − 1680

(N 2 − 1)(N 2 − 4)(N 2 − 9)(N 2 − 16)
(7.66)

The expression of U (s1, s2) of (7.63) in a strong coupling agrees with the coefficients of
Cn1,n2 .

This shows that the n point function U (s1, ..., sn) of p = −2 case in the inverse s
expansion is a generating function of the coefficient Cl1,...,ln of unitary integral of the multi-
trace products.

We now turn to the change of variable y. We here use the expression of (6.1) for p = −2.
It becomes for two point function,

u(s1, s2) = −4s1s2

∮
dy1dy2
(2iπ)2

(1 + y41
y31

)(1 + y42
y32

)
e
− c

s1

y41
(1+y41 )2

− c
s2

y42
(1+y42 )2

× 1

(s1(y21 − 1
y21

) − s2(y22 − 1
y2

))2 + 4(s1 + s2)2
(7.67)

For the large s expansion, the expansion parameter is coupled to c as c
s by a scaling. The

exponent of the integrand has a pole at 1 + y4i = 0, which leads to yi = ±(−1)
1
4 , yi =

±(−1)
3
4 . This pole appears for p ≤ − 3

2 , since the term of exponent is (y2+ 1
y2

)2p+2. Taking

the pair of poles y1 = ±(−1)
1
4 , y2 = ±(−1)

1
4 or y1 = ±(−1)

3
4 , y2 = ±(−1)

3
4 , two point

function in the large s is evaluated with a contour integral as,

u(s1, s2) = c2

26
1

s1s2
− c3

210

( 1

s1s22
+ 1

s21 s2

)
+ c4

3 · 215
( 5

s1s32
+ 7

s21 s
2
2

+ 5

s31s2

)

− c5

220 · 3
( 7

s1s42
+ 13

s21s
3
2

+ 13

s31s
2
2

+ 7

s41s2

)
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+ c6

224 · 15
( 21

s1s52
+ 49

s21s
4
2

+ 66

s31s
3
2

+ 49

s41s
2
2

+ 21

s51s2

)

− c7

228 · 15
( 11

s1s62
+ 31

s21 s
5
2

+ 53

s31s
4
2

+ 53

s41s
3
2

+ 31

s51s
2
2

+ 11

s61s2

)
+ O(c8)(7.68)

where c = ( 14 )
p = 24. This result is consistent with [39], where there is a factor N , which

comes from the logarithmic potential. Above expansion coincides with the result of N = 0 in
[39], since we do not take the logarithmic potential in (7.67). From this derivation, it can be
found that the large s region is related to the pole at the solution of y4+1 = 0. This pole exists
for p = −2, while this pole does not exists for the positive integer p. It may be interesting
to discuss p = −3/2 and p = −3 cases, which seem to be related to the interesting phase
of the gravity. The relation to the black hole for p → −∞ has been discussed in [8].

For two point function in the weak coupling region, we use the expression of (6.1) with
the value of p = −2. Since the leading term in the exponent is −c 1

y4i
, we make a change

of variable 1
y4i

= ti . Then the exponent becomes −cti/(1 + si ti )2. The two point function

u(s1, s2) is written as

u(s1, s2) = −1

4

( s2
s1

) 1
2
∮

dt1dt2
(2iπ)2

t
− 1

2
1 t

− 3
2

2 (1 + s1t1)(1 + s2t2)e
−c

∑ ti
(1+si ti )

2

× 1

1 − g
(7.69)

where g is

g = 2s1t1 + 2
( s2t1
s1t2

) 1
2
(1 − s2t2) −

[
s1t1 +

( s2t1
s1t2

) 1
2
(1 − s2t2)

]2 − 4t1
s1

(s1 + s2)
2 (7.70)

By the expansion of 1/(1− g) = ∑
gn , we evaluate the terms of order sn22 sn11 . The selection

rulein (2.6) becomes for two marked points of p = −2,

g + 1 + 1

2
( j1 + j2) = n1 + n2 (7.71)

From (7.69), we find the terms in the lower orders similar to (2.1)–(2.5) in the previous

section. For g = 1, j1 = j2 = 0, we obtain the term s
1
2
1 s

1
2
2 as

u(s1, s2) = c−1s
1
2
1 s

1
2
2

∫
dt1st2
(2iπ)2

1

2t
3
2
2

(t
1
2
1 − t

3
2
1 )e−t1−t2

= − 1

16π
s
1
2
1 s

1
2
2 (7.72)

For the term of order s1s2, which is g = 2, j1 = j2 = −1,

u(s1, s2) = c−2s1s2

∫
dt1dt2
(2iπ)2

e−t1−t2 1

t22
(−7t21 + 13t31 − t41 )

= − 5

64π
s1s2 (7.73)

where the integral of t2 is a residue evaluation, and the integral t1 is the exponential integral
for 0 < t1 < ∞. The coefficient c is c = 4−p = 42.
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The terms sn11 sn22 (n1, n2: integers) belong to Ramond sector ( j1 = j2 = −1), and they

appear in a pair. The terms of s
n1+ 1

2
1 s

n2+ 1
2

2 belong to Neveu–Schwarz sectors with the spin

components j1 = j2 = 0 in u(s1, s2) ∼ s
n1− 1+ j1

2
1 s

n2− 1+ j2
2

2 .

7.4 Strong Coupling of p = −3

For p = −3 case, the strong coupling expansion of the inverse of s is

u(s) = i

2

∮
dy

2iπ

(
y + 1

y3

)
e

c
s2

y6(y4−1)
(y4+1)4 (7.74)

This large s expansion is given by the residue at y = (−1)1/4,

u(s) = 1

s4
+ 3

8s8
+ 13

26 · 3s12 + 17 · 19
210 · 32 · 5s16 + 23

214 · 3s20
+ 29 · 31
217 · 32 · 5 · 7s24 + 29 · 31 · 37

220 · 35 · 52 · 7s28 + 37 · 41 · 43
225 · 34 · 52 · 72s32

+ 37 · 41 · 43 · 47
230 · 36 · 53 · 7 · 11s36 + 41 · 43 · 47 · 53

2333853 · 7 · 13s40 + 47 · 53 · 59 · 61
2363754 · 7 · 11 · 13s44

+ · · · (7.75)

with c = 26. These terms of order of 1
s2k

is expressed as

u(s) =
∞∑
n=1

(6n − 5)!!
(4n − 1)!!(2n − 3)!!(n − 1)!(n − 1)!

3

n22n−2

1

s4n

=
∞∑
n=0

(6n + 1)!(2n + 1)

(4n + 4)!(3n)!n!
8

4ns4n+4 (7.76)

With a logarithmic potential, p = −3 one point function U (s) becomes

U (s) =
∮

du

2iπ
e

c
s2

( 1
(u+1)2

− 1
(u−1)2

)(u + 1

u − 1

)N (7.77)

Similar to p = −2 case, we make a change of variables of (7.54). Then we have

U (s) = −2
∫

dze−Nz e−z

(1 − e−z)2
e
− c

4s2
e2z(1−e−z)3(1+e−z)

= −2
∫

dz
e−z

(1 − e−z)2
e

c
4s2

[−2e−z+e−2z−e2z+2ez ]
e−Nz (7.78)

This gives a strong coupling expansion. The term of order c
s2

is

−( c

s2
) 1

N 2 − 1

The term of order c2

s4
is

−( c

4s2
)2 ∫

dze−Nze3z(1 − e−z)4(1 + e−z)2

= −( c

4s2
)2 48(2N 2 − 3)

N (N 2 − 1)(N 2 − 4)(N 2 − 9)
(7.79)

123



Punctures and p-Spin Curves from Matrix Models III... Page 37 of 39    20 

The order of c3

s6
in U (s) for p = −3 becomes

8965

4

(c3
s6

) N 2 − 7

(N 2 − 1)(N 2 − 4)(N 2 − 9)(N 2 − 16)(N 2 − 25)

The order of c4

s8
becomes

−9450
c4

s8
2N 4 − 38N 2 + 63

N (N 2 − 1)(N 2 − 4)(N 2 − 9)(N 2 − 16)(N 2 − 25)(N 2 − 36)(N 2 − 49)

The denominator is same as p = −2 case, but the numerator is different from p = −2 case.
There is no term of order 1

s2n+1 . The terms of order 1
s4n

have a factor 1
N and there is no such

factor for other terms. When N → 0, U (s) becomes in the power series of 1
s4n

. Indeed the
expansion of (7.75) agrees with the expansion of (7.78), and the coefficient is consistent with
c = 2.

8 Summary and Discussions

In this article, we have extended the results of previous articles I and II [9, 10] to Dl type and
to the multiple correlation functions of p spin curve, specially for the non-positive integer
values of p.

The agreement with the values, evaluated by the Gelfand Dikii equations [11, 12], has
been shown in the Laurent expansions of y variable.

The intersection number of onemarked point was examined for the large p and large genus
g. The analysis reveals interesting relations between the intersection numbers and the number
theory through Bernoulli numbers. The intersection numbers are shown to be expressed as
Bernoulli numbers ( for p → ∞) multiplied a polynomial of p. Therefore, the denominator
of the intersection numbers have common values of the denominator of Bernoulli numbers.
For p = 1

2 spin case (fermionic), this denominator is cancelled by the numerator, and the
intersection numbers are simply expressed as (4.24).

This integral representation enables us to continue the integer p to the non-positive integer
p, like p = 1

2 , p = − 1
2 and p = −2 for which we evaluated n point functions explicitly as

discussed in I and II [9, 10].
Since the central charge is given by C = 2− 6

p , the case p = − 1
2 corresponds to C = 14

for instance. Such extension of the central charge C (C > 1) is interesting from the view
point of conformal field theory, since it goes over a barrier at C = 1. The CFT for C > 1 has
attracted interest for the case 1 < C < 26, which is related to 2d gravity coupled to matter
field of the central charge C [46], and in this region, the behavior like a branched polymer is
expected. The behavior of quantum Liouville theory is discussed recently in the probabilistic
approach [47]. The conformal field theory of p spin curves in the area of 1 < C , p < 0
is interesting with respect to gauge theory and quantum gravity in higher dimensions and
further studies are desirable.

The Dl type singularity has been investigated, under the new representation of the contour
integrals in the variables of yi for m-point correlation functions. The difference between Al

and Dl types is characterized by the factor, which appears as the different measure of the
contour integrals. We have shown that Dl type is obtained by the logarithmic term, which is
expected from the supersymmetric random matrices [20].
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