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Abstract

Functional 2-photon microscopy is a key

technology for imaging neuronal activity.

The recorded image sequences, however,

can contain non-rigid movement artifacts

which requires high-accuracy movement

correction. Variational optical flow (OF)

estimation is a group of methods for

motion analysis with established perfor-

mance in many computer vision areas.

However, it has yet to be adapted to the

statistics of 2-photon neuroimaging data.

In this work, we present the motion compensation method Flow-Registration

that outperforms previous alignment tools and allows to align and reconstruct

even low signal-to-noise ratio 2-photon imaging data and is able to compensate

high-divergence displacements during local drug injections. The method is based

on statistics of such data and integrates previous advances in variational OF esti-

mation. Our method is available as an easy-to-use ImageJ/FIJI plugin as well as

a MATLAB toolbox with modular, object oriented file IO, native multi-channel

support and compatibility with existing 2-photon imaging suites.

KEYWORD S

confocal microscopy, image registration, ImageJ/FIJI plugin, MATLAB toolbox, movement
correction, optical flow, optical imaging, two-photon microscopy

1 | INTRODUCTION

2-photon microscopy in combination with synthetic or
genetically encoded indicators allows to image a wide
range of different aspects of neuronal activity with

Abbreviations: EPE, endpoint error; MSE, mean squared error; OF,
optical flow; PSNR, peak signal to noise ratio; ROI, region of interest;
SNR, signal to noise ratio.
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cellular or even sub-cellular resolution in anesthetized as
well as behaving animals.[1,2] Importantly, small signal
changes might carry crucial information. However, the
imaging data can be afflicted with different types of noise
and artifacts. On the one hand, due to the low number of
generated photons with 2-photon excitation, the shot noise
is typically significant. On the other hand, movement
noise can be introduced during acquisition. Motion arti-
facts can be caused by heart beat, breathing, as well as
motor behavior in awake animals. Also, some experimen-
tal paradigms inherently result in large, non-rigid and
non-elastic deformations, for example, local drug injec-
tions. While many established tools exist for the correction
of small vibrations and rigid drifts, the compensation of
large and/or non-uniform motion is still a challenge.

Furthermore, for high accuracy alignment, subpixel
registration is necessary: Small displacements can be
approximated by a linearized motion assumption.[3] This
means even small residual motion can induce large arti-
facts around image edges due to a proportional relation
of spatial image gradient and motion magnitude with
respect to induced brightness changes.

While optical flow (OF) based image registration
methods were used for 2-photon imaging data before,[4]

they do not incorporate the advances in OF estimation
developed in recent years in the context of many com-
puter vision areas.

As a consequence, they perform poorly, when com-
pared with state-of-the-art image registration methods for
2-photon imaging and are generally regarded as too
prone to noise for this application.[5]

In our previous work,[6] we developed a variational
motion compensation strategy for 1D linescans (e.g.[7]) and
could already demonstrate that metrics from variational OF
estimation can be robust enough for such low SNR
applications.

In the context of image registration, images are
aligned with different metrics and constraints on trans-
formations. To enable reproducible research, the image
registration toolbox elastix is built around an environ-
ment that enables different setting configurations[8]

which can be downloaded from a model zoo. Advanced
normalization tools (ANTs) is another toolbox for tradi-
tional image registration which allows to configure multi-
ple different metrics and dataterms.[9] ANTs has proven
high performance for brain image registration and label-
ing of brain scans.[10,11]

There has been a great deal of work on OF techniques
in the past decades with the goal of improving accuracy,
model invariants as well as robustness and computing
speed. The recent advancements in OF estimation tackle
the problem of large displacements with discontinuous
motion fields and motion layers. Chen et al.[12] still lead (as
of March 2022) the Middlebury optical flow benchmark[13]

with respect to average endpoint error (EPE) and average
angular error. They use similarity transformations for a seg-
mented flow field as initialization of large motion. In a sec-
ond step, the variational method of Sun et al.[14] is used for
subpixel refinement.

In this work, we propose a novel, OF-based image regis-
tration approach for the motion compensation of 2-Photon
neuroimaging data. We build on the well studied frame-
work for variational OF estimation[3,14,15] and adapt this
framework to 2-photon imaging data by techniques which
have recently been developed in visual computing. We
demonstrate the performance on challenging 2-photon
imaging data and can report state-of-the-art results in terms
of registration quality, competing computation speed and
easy accessibility. Our method is available as an easy-to-use
MATLAB toolbox as well as an ImageJ/FIJI plugin.

2 | MATERIALS AND METHODS

In this section, we will first briefly describe the acquisi-
tion methods for the data that is used in the benchmark
dataset and then present the theory as well as implemen-
tation details of the proposed motion compensation
method Flow-Registration.

2.1 | Animals

Experiments were approved by the OIST Institutional
Animal Care and Use Committee, and performed in and
AAALAC International accredited facility. Animals were
maintained in a 12 h/12 h light/dark cycle at 22�C, with
food and water available ad libitum.

2.2 | Recombinant viruses

The adeno-associated virus (AAV) encoding the
GAkdYmut PKA activity sensor[16] was custom made and
produced by the vector core facility of Pennsylvania Uni-
versity (AAV2/1-hSyn-GAkdYmut-hGH, titer: 4 � 1012

gc/mL), and mixed with AAV2/1-hSyn-TurboRFP-WPRE
encoding the red fluorophore RFP (titer: 4 � 1013 gc/mL,
same supplier) or with AAV1.Syn.NES-jRGECO1a.
WPRE.SV40 encoding the red calcium indicator jRGECO
(titer: 3 � 1013 gc/mL, same supplier) at a ratio 1: 3.

2.3 | Expression of GAkdYmut and
TurboRFP in cortex

Viral transfer of the indicator gene into cortical neurons
of the mouse was performed as described before.[17] C57/
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BL6 mice (2-month-old) were anesthetized with a mix-
ture of medetomidine (0.3 mg/kg), midazolam (4 mg/kg),
and butorphanol (5 mg/kg). After performing a craniot-
omy over somatosensory cortex (AP -1.5 mm, ML
1.7 mm, DV -0.6-0.7 mm from bregma), 70–140 nL of a 1:
3 mixture of AAV2/1-hSyn-GAkdYmut-hGH and AAV2/
1-hSyn-TurboRFP-WPRE or AAV1.Syn.NES-jRGECO1a.
WPRE.SV40 was injected in layer V at a rate of 10 nL/
min. A chronic cranial window with a silicon access port
(5 mm glass coverslip) was mounted as described ear-
lier.[18,19] At the end of the surgery, mice received
atipamezole (0.3 mg/kg) for recovery from anesthesia,
and buprenorphine (0.1 mg/kg) for pain relieve. Five to
eight weeks after the AAV injection, mice were head-
fixed for imaging experiments performed under anesthe-
sia with 1% isoflurane or awake.

2.4 | In vivo imaging in cortex

A combined wide-field/two-photon microscope (MOM,
Sutter Instruments) with a femtosecond-pulsed Ti:sap-
phire laser (Vision II, Coherent) was used. To increase
the point spread function of excitation the back aperture
of the 25� water immersion objective (Olympus) was
underfilled (spatial resolution 1μm � 1μm � 4μm). The
collar of the objective was adjusted to correct for the win-
dow glass thickness (170 μm). Simultaneous excitation of
GAkdYmut (GFP-based single fluorophore sensor[16])
and TurboRFP was performed at 950 nm with a typical
power of 5–11 mW. Fluorescence was detected in two
channels by GaAsP photomultipliers (Hamamatsu) in
spectral windows 490–550 nm (GAkdYmut) and 600–
700 nm (TurboRFP), separated by a 560 nm dichroic mir-
ror (all Semrock). The microscope was controlled by a
commercial software (MScan, Sutter Instruments). Sam-
pling rate was 30.9 frame/s with 512 � 512 pixel,
corresponding to a field of view of 375 μm �375 μm.
Saline (0.9% NaCl) with Alexa592 (1 μm) or with addi-
tional drug (propranolol 10 mM) was injected under anes-
thesia. Pressure injection was performed through the
silicon access port using a glass pipette beveled to a diam-
eter of 5–10 μm opening.

2.5 | Motion compensation method

2.5.1 | Statistics in 2-photon microscopy

The motion statistics for 2-photon imaging differ from
the motion we encounter in natural images in several
ways: Due to the illumination strategy, there is only a
single imaging plane and thus no different motion layers.

Also, the imaged object is usually soft, biological tissue
and, as a consequence, we expect smooth motion fields
without discontinuities. We expect the image to contain a
fixed region of interest (ROI) with small displacements
between frames and, potentially, large drift over time
which can result in large displacements with respect to
the reference. Due to the nature of the scanning method,
horizontal displacements may occur. Also, the images are
usually not represented in perceptual color spaces,
restricting the use of classical photometric invariances,
such as in,[20] but, often, there exist multiple signal and
or structural channels. Depending on the indicators used,
the different channels can contain disjoint structures and
different SNR characteristics. Due to technical limitations
of current generation imaging, high speed imaging can
often only be realized on narrow field of views (FOV).

Our image registration method builds on those
observations: Due to the absence of different motion
layers and temporally coherent recordings, we do nei-
ther need an initialization strategy with a more robust
method such as in[12] nor a regularizer that preserves
discontinuities (e.g.[14,20]). Also, the assumptions of elas-
tic regularizers which penalize the divergence of the OF
field, for example, compare,[21] are violated by record-
ings during drug injection, see Figure 1F, where the dis-
placement field has a high divergence after injection.
Additionally, we generalize our previous linescan align-
ment[6] to recordings with narrow FOV and propose a
non-uniform warping strategy where we perform more
warping steps along the larger image dimension during
optimization.

2.5.2 | Optical flow method

Let f : 0,Wð Þ� 0,Hð Þ!Rc be a moving and f ref :
0,Wð Þ� 0,Hð Þ!Rc be a fixed image with width W,
height H and c channels. We then depict the displacement
field that points from the reference to the moving image as
w : 0,Wð Þ� 0,Hð Þ!R2. In the following, we use a com-
pact notation and omit the function arguments if not
needed. We use coordinates x¼ x1,x2ð Þ> and depict the
components of the displacement field with
w xð Þ¼ uðxÞ,vðxÞð Þ>. The goal of variational OF is to esti-
mate w such that f ref xð Þ depicts the same scene point as
f xþwð Þ by minimizing an energy functional that consists
of a dataterm D(w), a smoothness term S(w) and usually
a smoothness weight α. The dataterm penalizes devia-
tions from constancy assumptions and the smoothness
term imposes smoothness on the results in image areas
that do not contain enough information (aperture prob-
lem[20]). The energy functional for variational OF usually
has the form
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E wð Þ¼
Z

D wð ÞþαS wð Þdx ð1Þ

We model our observations as a variational OF method
with gradient constancy, robust, separate channel penali-
zation of the dataterm and first-order regularizer that we
set to homogeneous diffusion. We normalize the dataterm
according to Zimmer et al[20] The regularizer and dataterm
are penalized with a generalized Charbonnier penalty
function which for ϵ >0 is given by Ψa xð Þ¼ x2þ ϵ2ð Þa, for
a >0.[14] We use asmooth to depict the parameter for the
smoothness and adata to depict the parameter for the
dataterm. Gradient constancy assumes that the gradients
of the imaged structures do not change with respect to

the reference. For a moving image f and a fixed image
f ref, a data term that quadratically penalizes constancy of
the image gradients is given by

d w,xð Þ¼ f x1 xþwð Þ� f refx1 xð Þ
� �2

þ f x2 xþwð Þ� f refx2 xð Þ
� �2

ð2Þ

In the variational framework, we can minimize the
joint energy of the structural and the functional channels.
This has the advantage that, in theory, we get a better
SNR, if the same structures are visible in both channels
and, additionally, considering the aperture proplem, we

FIGURE 1 Comparison of registration performance on a very challenging two-channel 2-photon recording during drug injection in

vivo. The challenges of the sequence are a very low signal-to-noise ratio together with brightness changes (orange) and non-elastic

deformations due to the injection. Average of (A) raw images, (B) after rigid registration, (C) after registration with NoRMCorre, and (D)

after Flow-Registration. The tissue expands from the injection point (E) resulting in large displacements as well as in a high divergence

(F) in the displacement field. Flow-Registration can recover fine structures with much more detail, allowing region-of-interest selection

along fine structures, while the blur and double images in (A-C) indicate residual motion. This is well visible for the fine structures and

grains in D.1 which are smeared by motion blur in A.1-C.1 and become more difficult to observe. The channels in the false color

representation have all been normalized with respect to the min and max intensity values of the averaged raw recording. Neurons express

the PKA sensor GAkdYmut (green channel, mapped to blue) and the red chromophor TurboRFP (red channel, mapped to orange); the

injection contained the fluorescent dye Alexa 594 (red channel, orange). See Appendix for additional red-green and checkerboard

visualizations of the dataset as well as a description of the color mapping
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have potentially more information on the motion when-
ever disjunct structures are visible in the different image
channels, such as in the data in Figure S2A-D. Addition-
ally, the energy functional can naturally incorporate a
manual weighting term per channel, such as ROIs, to
enforce a low value of the dataterm around important
image structures. Because of potentially different SNR
properties of the two channels and the likelihood of dis-
joint structures, we evaluate the subquadratic penalizer on
each channel separately which is known as separate
robustification.[20] With a weight function p, a moving
image f ið Þci¼1 and a fixed image f refi

� �c
i¼1 with c channels,

the final dataterm with separate robustification is given by

Dadata wð Þ¼
Xc�1

i¼0

p x, ið ÞΨadata f ix1 xþwð Þ� f refix1
xð Þ

� �2
�

þ f ix2 xþwð Þ� f refix2
xð Þ

� �2
� ð3Þ

and the smoothness term as

Sasmooth wð Þ¼Ψasmooth ruj j2þ rvj j2� � ð4Þ

For the numerical approximation, we follow the
framework of Bruhn et al.,[22] Brox et al.[15] and Papenberg
et al.[23] and discretize the Euler Lagrange equations in the
compact motion tensor notation to solve them with an iter-
ative multiscale solver (downsampling factor η ∈ [0,1])
with lagged non-linearities with an update in every 5 itera-
tions. We apply the recommended good practices proposed
by Sun et al.,[14] namely, we use bicubic interpolation for
the warping steps and 5 � 5 median-filtering (mirror
boundary) of the flow increments for each level to increase
accuracy (see Appendix for algorithm details).

2.5.3 | Pre-processing and registration

Low-pass filtering is an important pre-processing step for
local and global methods.[24] It makes the images derivable
and integrates over temporal changes, while removing

TABLE 1 Average endpoint errors of the estimated displacements (the lower the better). The value indicates the average distance in pixels

of the estimated displacements with respect to the ground truth. The best performance per column is put in bold and the best performance per

dataset is underlined. Channel ch1 simulates the functional channel with positive multiplicative (drug injection) and ch2 the structural with

negative multiplicative changes (z-shift). 35 dB is comparable to the 6 Hz and 30 dB to the raw 30 Hz videos. Methods where we applied

Gaussian convolution with σ = 1.5 are indicated by *. NoRMCorre required Gaussian filtering with at least σ = 0.5 or would throw an error.

Flow-Registration outperforms all other methods in terms of EPE with an improvement between one to two orders of magnitude

Method
Synthetic clean Synthetic noisy 35 dB Synthetic noisy 30 dB

ch1 + ch2 ch1 ch2 ch1 + ch2 ch1 ch2 ch1 + ch2 ch1 ch2

Flow-Reg. 0.05 0.10 0.07 0.52 0.56 1.04 0.90 0.99 1.64

Flow-Reg. fast 0.14 0.22 0.16 0.59 0.66 1.17 1.06 1.10 1.73

NoRMCorre — 1.93 2.62 — 1.98 3.09 — 2.34 4.27

NoRMCorre* — 2.26 3.06 — 2.28 3.23 — 2.43 3.89

elastix GC* 0.23 0.59 0.17 1.71 1.18 2.59 2.93 2.00 3.86

elastix MSE 12.32 45.27 6.55 13.64 11.75 7.04 16.64 14.13 35.79

elastix MSE* 1.41 42.84 3.27 2.87 18.86 3.42 4.89 27.48 4.18

elastix CC 7.25 8.65 6.46 6.53 8.17 6.29 6.41 8.21 6.16

elastix CC* 1.20 6.23 2.57 2.65 6.12 3.57 3.70 6.68 4.09

elastix CC + GC* 0.28 0.53 0.21 1.43 1.25 2.67 2.34 1.99 3.76

elastix MI 6.28 5.59 6.91 5.98 5.62 7.16 5.92 6.29 7.28

elastix MI* 1.42 4.06 3.02 2.75 4.66 4.83 4.07 4.90 5.55

elastix MI + GC* 0.36 0.67 0.34 1.42 1.16 2.66 2.03 1.95 3.66

ANTs ElasticSyN — 1.38 1.54 — 1.68 2.72 — 1.93 3.15

ANTs ElasticSyN* — 1.44 1.57 — 1.74 2.63 — 1.96 3.30

ANTs SyN — 1.51 1.42 — 1.60 2.78 — 2.21 3.27

ANTs SyN* — 1.50 1.51 — 1.61 2.60 — 2.06 3.34

ANTs SyNCC — 0.13 0.14 — 2.12 3.22 — 3.26 4.41

ANTs SyNCC* — 0.19 0.17 — 2.23 3.41 — 3.39 4.52
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image noise. We found convolution with a 3D Gaussian
kernel together with subquadratic penalization, to be
robust enough to deal with the noise in the benchmark
data, for example, compare the layer 5 data (see
Figure S2).

In the context of optical microscopy recordings, the
recorded image region is usually fixed in the paradigm
which means that only little relative movement of the
object and camera is expected and the scene content
should not change. Therefore, we use a fixed reference
frame f ref and estimate the flow field wt ¼ ut,vtð Þ> at time
t such that f xþut,yþ vt, tð Þ depicts the same scene points
as f ref x,yð Þ. For the final motion compensation step, we
apply backward warping with bilinear interpolation to
calculate the motion compensated frame bf at time t such
that bf x,y, tð Þ¼ f xþut,yþ vt, tð Þ.

2.5.4 | Parameter selection

The main parameters of our method are the regulariza-
tion parameter α, the penalizer powers adata and asmooth,
the warping depth, the downsampling factor η and for
each channel the Gaussian kernel size σ = (σ1, σ2, σ3) for
pre-processing. For the regularizer, larger values of
asmooth reduce discontinuities in the flow field
(staircasing artifacts) and for the dataterm, smaller values
of adata reduce the influence of outliers and render the
method more robust under noise. For 2-Photon record-
ings, we set asmooth = 1, which results in a homogeneous
diffusion regularizer. Note that for a = 0.5 we get a regu-
larized ℓ1 norm, while the function becomes non-convex
for values of a < 0.5. However, Sun et al. encourage a
choice of adata = 0.45 on the Middlebury benchmark,
which we apply here. The choice of α presents the com-
promise of correctly registering smaller structures that
deviate from the global motion direction and a globally
smooth solution. Using a different value of α in each of
the image dimensions renders the smoothness term
anisotropic. This might improve the estimation of motion
artifacts induced by horizontal scanning.

2.5.5 | Toolbox design and implementation

The ImageJ/FIJI plugin makes use of the ImageJ file for-
mats and therefore can resort to all supported file types.
Our software design for the MATLAB toolbox consists of
modular file readers and writer classes that can be auto-
matically instantiated or supplied as parameters to an
options object that defines registration jobs. By default,
MDF, tiff image stacks, MATLAB mat files or hierarchi-
cal dataformat (HDF5) files are supported. Additionally,

the output formats support HDF5 files that are readable
by the 2-Photon imaging suites Begonia[25] and CaI-
mAn.[26] The file IO is designed for multi-channel
processing and supplies 4D matrices in the format
height � width � channel � time independently of the
actual data representation on disk. To compensate a
recording, the file reader supplies n subsequent frames
(batches of size n) with on-the-fly binning to the Flow-
Registration engine until the end of the video is reached.
The frames in each batch are concurrently compensated
and the average displacement of the last frames is used to
initialize the lowest pyramid level of the displacement
estimation in the following batch.

Reference frames can either be supplied directly or
are computed from a specified set of frames, where the
set of frames is pre-aligned with respect to the temporal
average and then temporally averaged again. For this
pre-alignment, the parameters α and σ are increased in
size to make the result more robust under noise and
reduce overfitting. Given that each batch can have vary-
ing average values, we normalize the data with respect to
the minimum and maximum values of the reference
frame after applying the Gaussian filter. Joint normaliza-
tion is performed by default but channel-wise normaliza-
tion is supported as well

The displacements of each frame with respect to the
reference on the lowpass filtered sequences are computed
and the raw frames are then registered via backwards
warping with bicubic interpolation, where out-of-bounds
values are replaced with the values from the reference.
To reduce quantization due to the interpolation, the
results are stored with double precision as default but
can also be stored with the precision of the input file.

To increase computational speed, the finest pyramid
level for the OF calculation can be reduced in the
options and the resulting low-resolution displacement
field will be upsampled to the input image resolution in
the final computation step. The Flow-Registration plu-
gin implements this in the Registration quality setting,
where only the highest quality setting calculates the
solution on all levels. With settings η = 0.8 and mini-
mum level of 6, we get almost tenfold faster computa-
tion time on the injection sequence with almost the
same accuracy (PSNR 42.523 vs 42.519). With those
parameters, the highest resolution at which the dis-
placements are estimated are given by 512 � 0.86 = 134.
Batch processing of multiple input files is possible via a
batch processor class where a list of filenames is sup-
plied that will be compensated either with individual
references or the same reference.

To run the ImageJ/FIJI plugin, it needs to be installed
via Plugins ! Install Plugin which adds a Flow-Registra-
tion entry under Plugins. In its current version, the ImageJ/
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FIJI plugin can only be used for the compensation of
shorter sequences depending on host system memory, the
extension for virtual stacks is planned for the future. The
MATLAB toolbox does not have such restrictions and can
be used for the batch compensation of big data. For the
MATLAB toolbox, a C++ compiler is required and the code
has been tested for MATLAB R2018a onwards. The folder
demos in the MATLAB toolbox contains scripts to repro-
duce the video results and quantitative results presented
here as well as examples on how to use the code for differ-
ent application scenarios. The jupiter demo compensates an
amateur jupiter recording and demonstrates different
aspects of multi-channel tiff and ROI processing as well as a
potential application beyond the scope of neuroimaging.

3 | RESULTS

In this section, we first describe the benchmark dataset
as well as the metrics we use for quantitative registration
performance assessment. We then present the perfor-
mance of our method in terms of registration quality and
computational speed.

3.1 | Benchmark datasets and metrics
for evaluation

We used multiple datasets that have been recorded with
the described setup previously. The dataset names indi-
cate the imaging depth (see Figures 2 and 4), where

deeper layers (e.g. 5) correspond to lower SNR. For the
layer 1–5 recordings, timepoints during movement onset
which where contaminated with movement artifacts
were selected from continuous recordings. For the
datasets during drug and saline injections, we selected
the time points around the injection events (e.g. compare
Figure 1E). From each dataset, we selected 2500 frames
(80.9 s). A common approach for the evaluation of 30 Hz
2-photon microscopy data is temporal binning to increase
the SNR. Therefore, our final benchmark dataset con-
tains the data with binning over five frames (6.2 Hz, 500
frames total), as well as on a subset of the raw recordings,
indicated by the suffix 30 Hz. For the dataset saline injec-
tion, in total 5 frames from the beginning and end of the
experiment were excluded due to artifacts.

Those data are real-world, low SNR datasets with-
out ground truth displacements, therefore, metrics such
as AEE or AAE are not applicable. The same holds
true for perception-based metrics due to the overall
small movements and high image noise in the data.
For the evaluation, we calculate reference-based PSNR
(see Table 2) and performance factors based on MSE as
well as temporal STD (see Figure 4). To calculate the
metrics, we first applied 2D Gaussian convolution with
(σ = [3,3]>). As reference, we used the temporal aver-
age over the reference frames from the motion com-
pensation. The MSE and STD performance factors are
then calculated as the fold change of the average MSE
and STD values MSE rawð Þ �MSE compensatedð Þ�1 and
STD rawð Þ �STD compensatedð Þ�1. They indicate the fac-
tor by which the MSE or STD value is higher on the raw

FIGURE 2 The benchmark datasets from layer 1 (A), layer 2/3 (B), layer 5 (C) and the Ca/PKA (layer 2/3) (D) dataset. Temporal

average of raw recordings (A.1-D.1) and after application of Flow-Registration (A.2-D.2), both during the motion contaminated frames.

Neurons express GAkdYmut (orange) and TurboRFP (blue) (A), GAkdYmut (blue) and TurboRFP (orange) (B-C) and GAkdYmut (orange)

and jRGECO (blue) (D)
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FIGURE 4 Application of Flow-Registration to 15 different datasets.We use 2-Photon recordings from layer 5, layer 2/3, layer 1 and three

sequences during in vivo drug or saline injection at 6.2 Hz and 30.9Hz. In all appliedmetrics, Flow-Registration performs consistently better than rigid

registration andNoRMCorre. Themetrics are averagedMSE (A) and STD (B) performance factors (see section 3.1) with respect to the raw recording.

(C) displays the frame-wiseMSE performance factor of Flow-registration with respect to NoRMCorre over all 6.2 Hz datasets with 500 frames (layer1 -

layer 5, injection, injection saline 2; values >1 indicate better performance of Flow-Registration). The frame-wise performance is significantly better for

Flow-Registrationwhen comparedwithNoRMCorre (C) and elastix (D) (p< 0.00001, paired, two-sidedWilcoxon signed rank test)
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sequence than the MSE or STD of each method (see Fig-
ure 4 (A) and (B)) or the factor by which the MSE value
is higher for NoRMCorre when compared to Flow-Reg-
istration on a frame-wise basis (see Figure 4 [C]). We
excluded all frames that contributed to the reference, as
well as a boundary of 25 pixels. This boundary ensures
that only valid regions are considered in the evaluation
even with the large displacements of the injection
sequences. Lowpass filtering reduced the influence of
image noise on the results. For the compensation of all
sequences, the first 100 frames (6.2 Hz) and 500 frames
(30.9 Hz) were used as reference and supplied to the
respective method.

We construct a pair of synthetic frames from the real
world recording that match their statistics with synthetic
ground truth displacements and noise. On this synthetic
data, we compare the average endpoint error (EPE) for
Flow-Registration, NoRMCorre as well as elastix and
ANTs with different configurations.

For this purpose, we use the injection sequence and
add simulated injection, xyz-shifts as well as noise to the
clean image we obtain after temporal averaging of the
motion compensated recording. We compose the syn-
thetic motion field of a component for line jitter from the
scanning as well as high divergence displacements to
simulate injection. The injection displacements are
modeled as (in pixel coordinates with 512 � 512
resolution)

winj x,yð Þ¼� 256,280ð Þ> þ0:05 � x,yð Þ>, ify≥ 280

x,0:2 � yð Þ>, otherwise

(

For the jitter, we apply wjit x,yð Þ¼ sin 0:001xπÞ,0ð Þ>
�

which results in the final displacement w¼winjþ2wjit

(see Figure 3B, left). We adapt the noise model and
implementation of Poisson image noise for 2-photon
microscopy from Zhang et al.[27] and apply noise with
target PSNR of 30 dB and 35 dB. To simulate changes in
the intensity of the visible structures for example due to
the injected indicators or due to z-shifts, we apply posi-
tive and negative multiplicative intensity changes with a
scaled, 2D Gaussian kernel. See Figure 3A for a compari-
son of the benchmark frames and the original video.

3.2 | Experiments with synthetic data

We compare our method with the 2-Photon motion com-
pensation suite NoRMCorre and with the traditional
image registration toolboxes ANTs and elastix. For ANTs
and elastix, we use the respective Python (version 3.9.7)
implementations, namely, antspy (version 0.3.1) and itk-
elastix (itk version 5.2.1, itk-elastix version 0.13.0) and for
NoRMCorre we use the official MATLAB implementa-
tion. Evaluations are performed with a python interpreter
on the Windows subsystem for linux (WSL) 2 (hardware
acceleration). ANTs and elastix allow for similar choices

TABLE 2 Average PSNR values (the higher the better) on each dataset for the different methods. To reduce the influence of shot noise

and isolate changes due to residual movement, the recordings have been filtered with a 2D Gaussian with σ = 3 before estimating the PSNR.

PSNR has been calculated with respect to the maximum value 216. The highest PSNR value in each row is put in bold. Flow-Registration

consistently outperforms the other methods

Dataset Raw Rigid NoRMCorre elastix GC* Flow-Registration

Ca/PKA 86.16 87.57 87.56 84.90 87.75

Ca/PKA 30 Hz 82.09 80.64 80.79 82.60 83.01

injection 38.98 39.60 41.46 39.14 42.52

injection 30 Hz 38.40 38.84 40.25 38.66 41.09

injection saline 78.21 80.30 80.85 77.99 81.34

injection saline 2 78.63 78.61 79.18 78.77 80.16

layer1 91.66 91.87 91.96 92.36 92.37

layer1 2 87.53 88.13 88.31 88.56 88.69

layer1 30 Hz 85.13 84.26 84.44 85.69 85.76

layer23 77.14 79.47 79.81 77.82 80.79

layer23 2 89.24 90.24 90.60 90.30 91.87

layer23 30 Hz 73.25 74.30 74.79 74.89 75.45

layer5 90.11 90.34 90.32 90.70 90.83

layer5 2 88.73 89.16 89.29 90.01 90.6

layer5 30 Hz 83.76 83.45 83.38 84.24 84.39
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of dataterms and transformations. While elastix supports
extensive registration configurations in config files that
are backed by a model zoo, ANTs has multiple presets
and allows easy adaptation of the registration method.
For elastix, we report the results with different metrics
and simulated gradient constancy. For ANTs, we report
the performance of the default SyN presets with cross-cor-
relation (CC) and mutual information (MI) metric. We
report the results on the individual channels for all
methods and on multichannel configurations for our
method as well as for elastix. For elastix, we simulated
gradient constancy as a multichannel input on the up to
four gradient channels (directional gradients in x and
y direction on both channels) with
AdvancedMeanSquares metric. The results indicate, that
gradient constancy is superior over other dataterms. With
lower PSNR, subquadratic penalization becomes vital,

such that Flow-registration outperforms all other
methods — for some methods more than an order mag-
nitude. Our results also indicate that for users of elastix,
it could make sense to use MI and CC on the gradients of
the images in certain situations.

The evaluations confirm our assumption, that the
combination of two channels can improve the perfor-
mance on noisy data: Our method performs consistently
better with both channels as compared to evaluations on
the individual channels. The same is not true for elastix
and ANTs, indicating that there are parameters such as
metric weights that could be further optimized for an
overall better performance. While some of the traditional
image registration methods implemented in elastix out-
perform NoRMCorre in terms of EPE, NoRMCorre's per-
formance seems to be relatively robust under noise and
does not benefit from Gaussian pre-smoothing which

FIGURE 3 The two frames from the synthetic benchmark (A, left) with 35 dB PSNR in comparison with raw frames from the 6 Hz

injection data (A, right). The small images show the clean frames without motion and with the synthetic displacement field (A, left) and the

estimated displacement field (A, right). The clean frames of the real recording have been calculated by averaging frames from the motion

compensated injection sequence. (B) shows the color-coded displacement fields as estimated by each method alongside the ground truth

displacement. We report the channel configuration that performed best (see Table 1). Reported run times might be better for native ANTs

and elastix implementations. NoRMCorre and Flow-Registration have been evaluated with the same system and software configuration
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confirms the results from their paper.[5] However, their
performance cannot match Flow-Registration, which is
up to a factor 38 better on the clean recording and still by
a factor of 2.6 on the noisy 30 dB recording.

In terms of running time, we cannot directly compare
our method with elastix and ANTs due to the fact that
the evaluations have been done on an emulated environ-
ment. Qualitatively, all evaluations of the other methods
where significantly slower than Flow-Reg. fast which
took around 0.5 s for the complete estimation without
parallelization.

3.3 | Experiments on real recordings

For the real world evaluation, we include our method,
NoRMCorre as well as elastix with gradient constancy and
MSE metric. For NoRMCorre, we calculate the displace-
ments for each channel individually and for elastix, we use
the joint estimation because the EPE on both channels was
lower than the average EPE of the separate channels.

Flow-Registration consistently outperforms elastix,[8]

NoRMCorre[5] and rigid image registration on the bench-
mark datasets in terms of the reduced temporal STD and
MSE ratios (see Section 3.1) as well as peak signal to noise
ratio (PSNR), see Figure 4 and Table 2. Frame-wise com-
parisons of frames registered with Flow-Registration and
NoRMCorre as well as with elastix show a significantly
higher (p < 0.00001, paired, two-sided Wilcoxon signed
rank test) performance of Flow-Registration, see
Figure 4C,D. The graph indicates the factor, by which the
NoRMCorre MSE is higher than the Flow-Registration
MSE (i.e. >1 indicates better performance of our
method). While NoRMCorre has a better frame-wise
MSE performance on the 6 Hz recordings than elastix on
average, the difference was not found to be significant
(p > 0.05, paired, two-sided Wilcoxon signed rank test).
Qualitatively, our method produces much crisper average
frames compared to other methods during challenging
motion events such as local drug injections with large
intensity changes in the different channels, see Figure 1
and supplementary figures.

For a fast approximation of the solution, the mini-
mum warping depth can be used to define the maximum
resolution at which the solution is computed. We found
around 10x speedup to be possible without reducing com-
pensation quality (avg PSNR 42.523 with the precise and
42.519 with the approximated solution, min level = 6).

In terms of computation time, the MATLAB toolbox
is similar to existing methods and even faster with the
approximated solution. On a single channel version of
the 500 frame injection sequence (consumer workstation,
12 cores @ 3.8 GHz, 64GB of memory), our method (50

iterations, no pre-processing/IO, min level 0) takes 115 s
and only 15 s with min level 6, while NoRMCorre (grid
size 32, one iteration) takes 160 s and with grid size 16
even 763 s (setting used for the benchmark solution).

Flow-Registration was run for all datasets with
default parameters and α = 1.5, for the 6.2 Hz datasets
with σ = (1,1,0.1)> and on the 30.9 Hz datasets with
σ = (1.5,1.5,0.5)>. For the injection sequence, addition-
ally the channel weight was set to (1.15,0.85)>. The batch
size was set to the size of the datasets.

4 | DISCUSSION

We have presented the new motion compensation
method Flow-Registration and can report state-of-the-art
registration results. The MATLAB implementation out-
performs NoRMCorre ANTs and elastix in terms of regis-
tration quality as well as computation speed with
comparable parameters. NoRMCorre is an established 2-
photon neuroimaging motion compensation method and
the default method in recent 2-Photon and calcium imag-
ing suites such as CaImAn (2019),[26] EZcalcium
(2020)[28] or Begonia (2021)[25] and can be considered the
state of the art for the alignment of 2-photon videos. Our
toolbox can produce output files that are compatible with
CaImAn as well as with Begonia and can be easily
extended for other frameworks and workflows via object
oriented IO file readers and writers. ANTs and elastix are
intensity based image registration methods which imple-
ment different dataterms and metrics for mono- and mul-
timodal image registration.[8–11] Our method outperforms
ANTs and elastix by at least factor 2 in terms of EPE on
the synthetic data. Flow-Registration also shows a consis-
tently higher performance on the real world recordings
than elastix. The best performing elastix configurations
were simulated gradient constancy with Gaussian
smoothing which is close to the Optimization target in
Flow-Registration but without a subquadratic penalizer.
Elastix seems to be less robust under changes in high fre-
quent jitter or motion blur resulting in conflicting perfor-
mance on the real world datasets before and after
binning. On some of the real world recordings, elastix
shows a better performance than NoRMCorre; however,
the frame-wise performance difference for NoRMCorre
and elastix was not found to be significant on the 6 Hz
recordings. Pnevmatikakis et al. found that registration
on structural channels does not necessarily result in bet-
ter registration performance when compared to registra-
tion on the functional channel.[5] While we also could
not identify a clear trend on the synthetic data, our evalu-
ations show that the joint optimization of a structural
and functional channel consistently outperformed the
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single channel configurations for Flow-registration. A
potential explanation could be an effective reduction in
the SNR for joint structures as well as a higher amount of
structural information in the presence of disjoint struc-
tures in the different channels. Those effects could be
even more relevant for multispectral images with a
higher number of channels.

The evaluations on synthetic data have shown that
the current state of the art can be outperformed with
metrics and regularizers common in variational OF
estimation. Particularly, the experiments presented
here could demonstrate the benefit of a sub-quadratic
penalizer of the image gradients for low SNR 2-Photon
imaging data which can perform better than metrics
with more invariances under gray value transforma-
tions such as mutual information or cross-correlation
based metrics. This also suggests that the implementa-
tion of subquadratic penalizers and gradient or higher
order based constancies could be a useful extension to
other image registration toolboxes such as elastix
and ANTs.

Flow-Registration reliably corrects movement arti-
facts even when mixed with intensity changes, as local
calcium signals, spreading calcium waves, or calcium
responses triggered by local drug injections. The method
will record all movements also those of physiological ori-
gin, for example, the constriction or dilation of blood ves-
sels. While this implies that those changes cannot be
analyzed in the compensated recording, the complete
motion information is contained in the estimated dis-
placement fields. Decomposition of the displacements
into movements with different transforms or fixed with
respect to certain points could enable the selective visual-
ization of movement components of interest for example
with Lagrangian motion magnification[29] as well as
quantification of those changes.

Motion compensation methods often incorporate
many regularization parameters that require difficult
fine tuning for different motion statistics. For example,
NoRMCorre has a total of 7 regularization and 2 sub-
pixel refinement parameters.[5] A limitation of Flow-
Registration as well as of the compared methods is the
influence of the parameters on the results making the
parameter choice a crucial step in the pipeline. How-
ever, our method needs only a single regularization
parameter and one parameter for pre-smoothing, while
the results have native subpixel precision because of the
continuous modeling. We have extended the concept
for line scan alignment from our previous work[6] to the
compensation of recordings with narrow FOV by
implementing non-uniform warping that allows more
pyramid steps along the larger dimension of the
recording.

Generally, a drawback of 2D motion compensation
approaches for 2-photon imaging is the lack of z-shift cor-
rection. While there exist methods for high-speed, online
3D compensation,[30] they require complicated setups and
the current generation is limited to rigid 3D motion com-
pensation — which might therefore benefit from refine-
ment with a method such as Flow-Registration as well.

While our method does not aim for online processing,
deep learning-based approaches could unlock real time
applications of our method. Even state-of-the-art self-
supervised methods often require annotated data as ini-
tialization.[31] Flow-Registration has already been applied
to many state-of-the-art 2-photon imaging recordings.
The explicit, high-accuracy estimation of displacements
with our method can be used for the generation of
datasets for the training of efficient, deep learning-based
motion compensation methods in the future.

5 | CONCLUSION

The solutions presented in this paper solve the pre-
processing problem of motion contamination in 2-photon
microscopy and multichannel video recordings with diffi-
cult, non-linear motion. Our evaluations show that sub-
quadratic metrics with gradient constancy and homoge-
neous smoothness can outperform methods with more
advanced data invariances such as given by CC or MI
constancies and deformations on this data, while, at the
same time, it is easier to optimize as demonstrated in the
OF literature. We implemented this method into an
accessible MATLAB toolbox and ImageJ plugin.

The core software design paradigm of our toolbox
was the easy yet versatile integration into different
workflows and toolboxes for 2-Photon imaging. We have
developed a MATLAB toolbox that supports common
file formats such as MDF, tiff image stacks, MATLAB
mat files or HDF5 files in single file or multichannel
configurations. The image IO is designed in a modular,
object oriented way, such that the toolbox can easily be
extended with new data formats and embedded pre-
processing. The code is memory efficient and allows to
compensate bigdata recordings with specified pre-
processing methods and on-the-fly binning. The compu-
tationally heavy code is written in C++ which allows
the implementation of Python wrappers in the future.
The ImageJ/FIJI plugin builds on Imglib2[32] library
which supports most common image formats through
the bio-formats plugin. The implementations support
weighted, multichannel input with weight masks to
enforce higher weight on the dataterm inside of ROIs.
The ImageJ/FIJI plugin is integrated with the MATLAB
toolbox, such that the plugin can export parameters and
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reference frame configurations, that can be loaded as
MATLAB bulk registration jobs.

Documentation, the MATLAB code for Flow-Regis-
tration and the ImageJ Plugin can be found on the
GitHub repository https://github.com/phflot/flow_
registration. The version used for the evaluations in this
paper is supplied as supplemental code. It contains
MATLAB scripts to reproduce the results reported here
as well as the precompiled ImageJ/FIJI plugin.
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