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Intrinsic bursts facilitate learning 
of Lévy flight movements 
in recurrent neural network models
Morihiro Ohta1,2, Toshitake Asabuki1,2 & Tomoki Fukai1*

Isolated spikes and bursts of spikes are thought to provide the two major modes of information 
coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, 
such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications 
in neurodegenerative diseases and mental disorders. Despite these findings on the roles of bursts, 
whether and how bursts have an advantage over isolated spikes in the network-level computation 
remains elusive. Here, we demonstrate in a computational model that not isolated spikes, but intrinsic 
bursts can greatly facilitate learning of Lévy flight random walk trajectories by synchronizing burst 
onsets across a neural population. Lévy flight is a hallmark of optimal search strategies and appears in 
cognitive behaviors such as saccadic eye movements and memory retrieval. Our results suggest that 
bursting is crucial for sequence learning by recurrent neural networks when sequences comprise long-
tailed distributed discrete jumps.

Neurons in the brain display a variety of temporal discharging patterns, among which bursting represents the 
generation of multiple spikes with brief inter-spike intervals (typically several milliseconds) in a short period of 
time (typically, several tens to hundreds of milliseconds). Bursting neurons are found ubiquitously in the brain 
and are thought to play active roles in transferring and routing  information1–5, inducing synaptic  plasticity6,7, 
and supporting and/or altering cognitive  functions2,7–14. Altered neuronal bursting has been implicated in neuro-
degenerative  disorders15 and  depression16. While our understanding of the roles of bursting has been advanced, 
the computational advantages of spike bursts over isolated spikes remain elusive.

Here, we show the benefits of bursting activity in learning sequences generated by a special class of random 
walks observed in various animal behaviors. We investigate whether and how bursting neurons improve the 
ability of neural network models to learn the dynamical trajectories of Lévy flight, which is a random walk with 
step sizes obeying a heavy-tailed  distribution17–19. As a consequence, Lévy flight consists of many short steps 
and rare long-distance jumps. A well-known characteristic of Lévy flight is that it makes search more efficient 
than Brownian walks which only consist of relatively short  steps20,21. Many processes observed in  biology22–24 
and  physics25,26 can be described as Lévy flight. In neuroscience, an interesting example of Lévy flight is the 
stochastic trajectories of saccadic eye  movement27 on which the visual exploration of the objects of interest 
significantly relies. Several cortical and subcortical regions including the frontal eye field, superior colliculus, 
and cerebellar cortex participate in controlling and executing  saccades28 and various neurons show spike bursts 
in these  regions8,9,29,30. Propagation of gamma-frequency ( ∼ 40 Hz) bursts of the local field potentials also obeys 
Lévy flight in the middle temporal cortex of marmosets, which is engaged in visual motion  processing31. Other 
examples of Lévy flight are found in memory processing of animals. In the spatial exploration of rodents, the 
animal spends the majority of time for exploring small local areas but occasionally travels to distant places at 
greater  speeds32.  Hippocampal10 and  subicular33 neurons can learn spatial receptive fields and are known to 
exhibit burst firing. In human subjects, memory recall can be viewed as foraging behavior obeying Lévy  flight34–36. 
The appearance of Lévy flight in various types of foraging behavior and the participation of bursting neurons 
in the relevant brain regions motivate us to explore what benefits neuronal bursting brings to the learning and 
execution of such behavior.

For this purpose, we employ reservoir computing (RC) that uses a recurrent network model and FORCE 
learning of information-readout neurons for efficient learning of time-varying external signals (i.e., teaching 
signals)37. Originally, RC and FORCE learning were formulated for rate-coding neurons, and FORCE learn-
ing of continuous dynamical trajectories is generally fast. The RC system was also quite successful in mod-
eling neural activities recorded from various cortical  areas38–41. Later, RC was extended to networks of spiking 
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 neurons42,43, and variants of FORCE learning or some other learning  method44 for spiking neurons have also 
been  proposed45–47. Results of the previous studies have indicated that isolated spikes are sufficient for learning 
smooth trajectories. However, whether and how isolated spikes and bursts contribute differently to learning a 
more general class of sequences has not been explored. In this study, we clarify this by using a spiking-neuron 
version of FORCE learning for training an RC system of bursting neurons.

Results
Our model follows the conventional framework of reservoir computing except that neurons constituting a recur-
rent network called reservoir have regular-spiking (RS) and bursting modes. Neurons in the reservoir project to 
two readout neurons to describe the two-dimensional coordinates (x1, x2) of Lévy flight, and the outputs of these 
neurons are fed back to all neurons in the reservoir (Fig. 1a). The weights of readout connections are modified 
based on the FORCE learning extended to spiking  neurons47. In the RS mode, the neurons tend to generate 
isolated spikes (Fig. 1b) whereas they are strongly bursty in the bursting mode (Fig. 1c). See “Methods” for the 
details of the network model and construction of Lévy flight.

During learning, the model was repeatedly exposed to a periodic target signal representing the repetition of 
a finite portion of Lévy flight trajectories. The model can learn these trajectories in either RS or bursting mode. 
Stochastic jumps in the trajectory are thought to be difficult for the model to accurately learn. As we will show 
later, the accuracy and speed of learning significantly depend on the mode of firing. Figure 1d displays an example 
of the time-varying output of the two readout neurons after the model learned a target signal in the bursting 
mode. As expected, the output of the model tends to deviate largely from the target trajectory when it shows 
relatively large jumps. Nonetheless, overall the model well replicates the target trajectory in the burst mode even 
after the learning process is turned off. The agreement between the target trajectory and the model’s output is 
more clearly visible in the time evolution of the variables x1 and x2 (Fig. 1e).

We quantitatively compare the performance of the model in learning between the bursting and RS modes. 
The strength of synaptic connections that gives an optimal performance may differ in the individual modes. To 
make a fair comparison, we first search an optimal coupling strength that minimizes the error in each mode. 
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Figure 1.  The architecture and basic performance of the model. (a) The present RC system consists of a 
reservoir and two readout neurons. (b, c) Before learning, neurons in the reservoir tend to show isolated spikes 
in the RS mode (b) or intrinsic bursts in the bursting mode (c). Here, the firing patterns were simulated at 
G = 50 . (d) A typical example of the target trajectories representing a finite portion of two-dimensional Lévy 
flight (orange) and the learned responses of the readout neurons (blue). (e) The time evolution of the two 
readout neurons are shown as functions of time. The target signal was lifted after the time point indicated by the 
vertical dashed line. Large discontinuous jumps in (d) and (e) indicate the start and end points of the repeated 
target signal. These jumps were not included in the target signal and hence not learned by the model.
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We calculate the average errors between a target trajectory and an actual output in the bursting mode and the 
RS mode as a function of the connection strength G. Figure 2a,b show the average errors of the trajectories 
obtained in trial-25 and trial-50 of learning, respectively, when the target length is 400 ms. The errors during 
trial-25 or trial-50 were first temporally averaged, and then the average and standard deviation of the resultant 
temporal averages were calculated over 20 simulation runs with different initial settings of neural states and 
synaptic weights. For each value of G, the standard deviations of the average error are calculated over these 20 
simulations. As we can see from the figures, the error is minimized for relatively weak connections ( G ∼ 50) in 
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Figure 2.  Learning in the burst vs. RS modes. (a) Errors in the bursting and RS modes are plotted against the 
strength of recurrent connections after 25 learning trials. Error bars show the standard deviations. (b) Similar 
errors are plotted after 50 learning trials. (c) The time courses of errors during learning are shown for the 
optimal coupling strengths of the individual modes. (d, e) Similar time courses are shown in the bursting (d) 
and RS (e) modes for target signals of lengths 400, 800, and 1200 ms. The plots for 400 ms are copied from (c). 
(f) Error time courses are shown in the bursting mode when the target length is 1200 ms and the reservoir size is 
1000 or 2000.
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the bursting mode. In contrast, the model achieves the least error at much stronger connections ( G ∼ 170) in 
the RS mode. The minimum average error is slightly smaller in the bursting mode than in the RS mode although 
the error sizes are not greatly different between the two modes after 50 cycles of training (Fig. 2b). Lyapunov 
exponents indicate that the initial network state was weakly non-chaotic in the RS mode and weakly chaotic 
in the (optimal) bursting mode (Supplementary Fig. 1). Similar differences in learning behavior are observed 
between the RS mode and bursting mode for another choice of the parameters of Lévy flight (Supplementary 
Fig. 2). Given these results, one might conclude that spike bursts have little advantage over isolated spikes in the 
present sequence learning task.

However, the results presented in Fig. 2a,b reveal two intriguing differences in learning between the RS mode 
and the bursting mode. First, while the two modes yield approximately the same minimum values of average 
errors (see “Methods”), the bursting mode yields a much smaller variance at the minimum error than the RS 
mode. In particular, Fig. 2a demonstrates that the variance almost vanishes for the optimal range of G values after 
25 training cycles in the bursting mode. This is not the case for the optimal range of G values in the RS mode. 
Second and more importantly, the average error decreases much faster during learning in the bursting mode 
than in the RS mode, showing impressively different learning speeds between the two modes (Fig. 2c). Gener-
ally, the FORCE learning enables rapid learning of a smooth target trajectory even if the trajectory is  chaotic37. 
However, our results show that the FORCE learning with isolated spikes requires several tens of trials for learn-
ing a target trajectory representing random walks of Lévy flight. In strong contrast, spike bursts enable the same 
rule to learn such a target trajectory at a similar accuracy within only ten trials. The merits of bursting are also 
suggested by the common observation that the individual neurons tend to generate spike bursts after learning 
at the corresponding optimal coupling strength irrespective of the mode (Supplementary Fig. 3).

As the length of target trajectories is increased, performance in sequence learning is degraded in both modes. 
However, the superiority of the bursting mode over the RS mode in rapid sequence learning remains (Fig. 2d,e). 
We note that the absolute values of the error are not really meaningful. These values become smaller as we include 
more neurons in the reservoir (Fig. 2f).

Now, we investigate why and how spike bursts improve the performance of the network model in learning 
trajectories of Lévy flight. We show that synchronized bursting of neurons plays an active role in the present 
sequence learning. Figure 3a shows the time evolution of a portion of the learned trajectory x1(t) and x2(t) with 
vertical dashed lines indicating the times of long-distance flights. Here, a long-distance flight refers to a step 
(�x1,�x2) of which the length 

√

�x1(t)2 +�x2(t)2 is greater than 0.16, which approximately corresponds to 
the top 5% of long-distance jumps. In Fig. 3b,c, we show spike raster of 100 bursting neurons chosen randomly 
from the reservoir during the corresponding period of time before and after learning, respectively. While there 
are many neurons that rarely fire, some neurons intermittently generate brief ( ∼ 30 ms) to prolonged ( ∼ 150 
ms) high-frequency bursts. The individual neurons change their firing patterns before and after learning, but 
the distributions of inter-spike intervals at the population level remain almost unchanged during learning (Sup-
plementary Fig. 4a,b).

However, visual inspection of the spike raster suggests that many neurons start or stop generating spike bursts 
around the times of large flights after learning and that such a tendency is weak before learning. Therefore, assum-
ing that spikes with their inter-spike intervals shorter than 6 ms belonged to a burst, we identified the onsets 
and end times of bursts of individual neurons and calculated the distributions of the onset/end times of bursts 
relative to the times of the nearest large jumps (i.e., the times of burst onsets/ends minus the times of the nearest 
neighbor large flights) before (Fig. 3d) and after learning (Fig. 3e). The threshold of 6 ms was determined from a 
gap in the inter-spike interval distribution (Supplementary Fig. 3b2). Intriguingly, the post-learning distributions 
exhibited sharp peaks around the origin of the axis for the relative time. The relative times of burst onsets show 
a particularly prominent peak. These results reveal that the RC system operating in the bursting mode learns 
the target trajectory of Lévy flight by shifting the times of bursts close to the occurrence times of large jumps. In 
other words, the RC system synchronizes bursting of the individual neurons around the times of large jumps. 
This synchronization of bursts is thought to advantage recurrent networks of bursting neurons in learning of 
sequences that involve abrupt changes in the trajectories.

The above results shown for the bursting mode and the bursting of many neurons after learning (Supple-
mentary Fig. 3) suggest that bursting also plays a similar role for learning in the RS mode. We examined this 
possibility by investigating learning performance in the RS mode for different coupling strengths: G = 50, 100 
and 150. Before learning, the majority of neurons showed regular spiking for G = 50 whereas a larger portion 
of neurons had bursting patterns for G = 100 and 150 (Fig. 4a, top). In all three cases, the number of bursting 
neurons was increased and the error was decreased after learning (Fig. 4a, bottom). Interestingly, learning with 
a larger value of G reduced the error more efficiently (Fig. 4b). In addition, the number of synchronous bursting 
near the onset of large jumps increased more prominently as the value of G was increased (Fig. 4c). These results 
show that the network set in the RS mode also develops bursting states to improve the accuracy of learning.

We further examined how synchronous neuronal bursting evolves during the progress of learning in the 
optimal model for the RS mode ( G = 170 ). As shown previously, this model has a tendency of bursting even 
before learning (Supplementary Fig. 4a). Synchronous bursting was not prominent at the trial-10 of learning but 
became prominent sometime between trial 10 and trial 20 (Fig. 5). Intriguingly, during this period the error was 
decreased to a similar magnitude to the minimum error of the optimal model for the bursting mode (c.f. Fig. 2c). 
The results indicate the pivotal role of burst synchronization in the present sequence learning task.
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Discussion
We have trained an RC system of spiking neurons on a difficult sequence learning task where the target sequence 
represents random walks. FORCE learning can project the neural population activity of the reservoir quickly 
onto a target trajectory for a wide range of continuous trajectories including chaotic ones. This fast convergence 
of learning is a merit of RC, making RC useful for various practical applications. However, when a target trajec-
tory consists of abrupt steps including long-distance jumps, as was the case in Lévy flight, FORCE learning with 
isolated spikes requires a large number of trials for minimizing the error signal. In contrast, the same learning 
rule can rapidly minimize the error by aligning the onsets as well as the end times of bursts in the neighborhoods 
of the times of long-distance jumps. This implies that the system synchronizes bursts of the individual neurons 
around these times. Such time-locked synchronization also emerges in the RS mode during learning. Moreover, 
the growth of synchronous bursting improves the performance of the trained model. This result suggests that the 
initial absence of synchronous bursts is the primary course of slow learning in the RS mode. Since the optimal 
model for the RS mode has a tendency of bursting before learning, a transition from the RS neuron to a burst-
ing type is unlikely to be the primary course. Thus, the RC system can learn the Lévy flight trajectories more 
efficiently with bursts than with isolated spikes. Our model suggests that bursts contribute crucially to learning 
foraging-like cognitive behaviors.

Our results show an interesting qualitative agreement with some experimental observations. It has been 
known that the onsets of bursts in the saccade-related burst neurons are tightly linked to saccade onsets in the 

Figure 3.  Temporal coordination of bursts by learning. (a) A two-dimensional target trajectory shows big 
jumps at the times indicated by vertical dashed lines. (b) Spike raster of 100 neurons sampled randomly from 
the reservoir before learning. (c) Spike raster is shown for the same neurons after learning. (d,e) Distributions of 
the onset and end times of bursts around the times of big jumps are calculated before (d) and after (e) learning.
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superior  colliculus8,9. These neurons tend to discharge prior to a saccade if the movement is in their preferred 
direction, and their discharges follow rather than precede saccades for movements deviating from their preferred 
directions. Altough our model is far simpler compared to the actual neural circuits that control saccadic eye 
 movements48, the sharp peak of burst onsets around the times of long-distance steps in Fig. 3e seems to be con-
sistent with the characteristic behavioral correlates of the saccade-related burst neurons in the superior colliculus.

During spatial navigation, hippocampal place cells exhibit both bursts and isolated  spikes3, and the different 
discharging patterns are thought to play distinct functional roles in the hippocampal memory  processing3,11,49. 
The hippocampal area CA3, which has prominent recurrent excitatory connections, resembles a reservoir in 
this model. Furthermore, an abstract model of the entorhinal-hippocampal memory system accounted for the 
different statistical structures of hippocampal sequence generation, such as diffusive vs. Lévy flight-like random 
 walks32. Therefore, the hippocampal circuits are of potential relevance to this study. However, the relationships 
between spatial information coding and the cells’ discharging patterns are not simple, depending on specific 
cell types and brain  regions33,49. To our knowledge, whether CA3 neural population synchronizes their burst 
discharges around the times of long-distance runs of animals has not been known. On the other hand, it is 
known that bursts of CA3 neurons mostly occur in an inbound travel towards their receptive field  centers10. 
Clarifying the distinct computational roles of isolated spikes and bursts to the hippocampal memory processing 
is an intriguing open question.

In summary, this study showed the advantages of bursting neuronal activity in rapid learning of dynamical 
trajectories obeying Lévy flight. Bursting is ubiquitously found in various regions of the brain, and previous 
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studies suggest the active roles of bursts in robust spike propagation and induction of synaptic plasticity. Our 
results give a further insight into the unique role of bursts at the network-level learning and computation.

Methods
Neuron model. We describe neurons in the reservoir with the Izhikevich model, which is able to mimic the 
temporal discharging patterns of various  neurons50:

where a = 0.02 and b = 0.2 , i is a neuron index, and the number of neurons N = 1000 . The values of vi and ui are 
reset to c and ui + d when vi reaches the threshold of 30 mV. We set c = −65 mV and d = 8 in the RS mode and 
c = −50 mV and d = 2 in the bursting mode. We use this model without taking refractory periods into account 
for simplicity of numerical simulations though some neurons may exhibit unrealistically high frequency bursting.

Synaptic current is given as Ii = si(t)+ Ib , where Ib is a constant bias and recurrent synaptic inputs are

(1)

dvi

dt
=0.04v2i + 5ui + 140− ui + Ii ,
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in terms of the instantaneous firing rate ri(t) of neuron i at time t. Throughout this study, we set Ib = 10 . The 
synaptic weight matrix wij has non-modifiable components w0

ij and modifiable components φ(k)
j  , with G and Q 

being constant parameters. The non-modifiable components have the connection probability p = 0.1 and their 
values are drawn from a normal distribution with mean 0 and variance 1/

√

Np2 . While Q = 100 throughout 
this paper, the value of G is mode-dependent, as shown later. The encoding parameter η(k)i  ( k = 1, 2) is randomly 
drawn from the uniform distribution [−1,+1] . The linear decoder φ(k)

i (t) determines activities of the readout 
units x(k)(t):

which should approximate a given target trajectory.

FORCE learning. We used a straight-forward extension of the FORCE learning to spiking  neurons47. A 
double exponential filter was used to low-pass filter the individual spikes of the i-th neuron in the reservoir:

where τr and τd are the synaptic rise time and synaptic decay time, respectively. Values of these parameters were 
set as τr = 2 ms and τd = 20 ms.

Using the error signals e(k)(t) = f (k)(t)− x(k)(t) , we update the decoders as follows:

The initial conditions are given as φ(k)
j (0) = 0 and P(0) = IN/� , where IN is an N-dimensional identity matrix 

and � = 10 for both regular and bursting modes. The performance of the model is evaluated by the average 
squared error between a target trajectory and the corresponding network output:

where < · >t means averaging over time within the corresponding learning step.

Lévy flight. Trajectories obeying Lévy flight were generated by using the function, scipy.stats.levy_stable.
rvs(), in the Scipy library of Python for scientific calculations. This function generates a series of random num-
bers that obey the Lévy  distribution17,18. In short, a stable distribution has the characteristic function of the form,

where α , β , c, and µ are the characteristic exponent, skewness parameter, scale parameter, and location param-
eter, respectively, and

The probability density function for a stable distribution is given as

where −∞ < x < ∞ . If we set c = 1 and µ = 0 , we obtain a class of long-tailed distributions in which Lévy 
distribution of a narrow sense is obtained for α = 0.5 and β = 1 . However, to obtain sufficiently significant long 
tails, unless otherwise stated, we used the values α = 1.5 and β = 0 throughout this study. The distribution of 
jump distances is shown for the choice of parameter values together with another example also used in this study 
(Supplementary Fig. 2a).

Now, step sizes of a two-dimensional Lévy flight can be written as

(4)x(k)(t) =

N
∑

j=1

φ
(k)
j (t)rj(t), (k = 1, 2)

(5)ṙi =−
ri

τd
+ hi ,
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1
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δ(t − tik),
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1+ r(t)TP(t −�t)r(t)
.

(9)Error =

√

�e(1)(t)2 + e(2)(t)2�t ,

(10)ϕ(t;α,β , c,µ) = eitµ−|ct|α(1−iβ sign(t)�(α,t)),

(11)� =







tan(
πα

2
) α �= 1

−
2

π
log |t| α = 1.

(12)f (x;α,β , c,µ) =
1

2π

∫

∞

−∞

ϕ(t;α,β , c,µ)e−ixtdt,

(13)�x1(t) = R(t) cos θ(t),

(14)�x2(t) = R(t) sin θ(t),
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where the angle of each step θ(t) is drawn randomly from the uniform distribution 0 ≤ θ ≤ 2π , and the step 
amplitude R(t) was determined as R = F−1(r;α,β , c,µ) , where

and 0 < r ≤ 1 is a uniform random number.
We limited the target trajectories with in a square area |x1| ≤ 2 , |x2| ≤ 2 by normalizing the coordinates of 

Lévy flight as

where �xk,min and �xk,max ( k = 1, 2 ) stand for the minimum and maximum values of the step sizes, respectively, 
constituting the target trajectory.
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