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We study the Casimir-Polder potential of a multilevel alkali-metal atom near an optical nanofiber. We calculate
the mean potential of the atom in a fine-structure state. We perform numerical calculations for the Casimir-Polder
potentials of the ground state and a few low-lying excited states of a rubidium atom. We show that, unlike the
potential of the ground state, which is negative and attractive, the potential of a low-lying excited state may take
positive values, oscillate around the zero value with a decaying amplitude, and become repulsive in some regions
of atom-to-surface distances. We observe that, for a nanofiber with a radius of 200 nm, the potential for the state
8S1/2 of a rubidium atom achieves a positive peak value of about 17 μK at a distance of about 150 nm from the
fiber surface and becomes strongly repulsive in the region of distances from 150 to 400 nm. We also calculate
the nanofiber-induced shifts of the transition frequencies of the atomic rubidium D2 and D1 lines. We find that
the shifts are negative in the region of short distances, become positive, and oscillate around the zero value with
a decaying amplitude in the region of large distances.

DOI: 10.1103/PhysRevA.105.042817

I. INTRODUCTION

Over the past two decades, studies on the interaction be-
tween atoms and guided light of optical nanofibers have
received a lot of interest [1–4]. Optical nanofibers are ultra-
thin tapered fibers that have a subwavelength diameter and
significantly differing core and cladding refractive indices [1].
They allow guided light, tightly confined radially, to propagate
along the fiber for a long distance (with several millimeters
being typical) and to interact efficiently with nearby quantum
or classical emitters, absorbers, and scatterers [2–4]. Optical
nanofibers have been used in various applications including
sensing [5,6], nonlinear optics [7,8], quantum optics [9], parti-
cle manipulation [10,11], and as optical couplers in photonics
[12,13]. Such nanofibers have recently become an important
tool in atomic physics and have been used for trapping cold
atoms [14–18], efficient channeling of emission from atoms
into guided modes [19–21], efficient absorption of guided
light by atoms [22,23], collective excitations of atoms [24],
collective strong coupling of atoms to a ring cavity [25],
generation of Rydberg states of atoms near a dielectric surface
[26], excitation of quadrupole transitions of atoms [27,28],
and atomic lifetime measurements [29].

The presence of a macroscopic body in the space surround-
ing an atom modifies the spontaneous emission of the atom,
shifts the energy levels of the atom, and exerts a position-
dependent force on the atom [30–32]. Such effects have been
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studied for a large number of systems [30–32]. In the par-
ticular case of an atom near a nanofiber, the modifications
of the radiative decay have been investigated in the context
of a two-level atom [33–35] as well as a realistic multilevel
alkali-metal atom [19,36–39]. The shift in the energy level
of the atom caused by the presence of the body depends on
the position of the atom and is known as the Casimir-Polder
potential. In the nonretardation regime, the body-induced po-
tential is sometimes referred to as the van der Waals potential
[31,32]. The nonretarded van der Waals potential of an atom
or a molecule in the vicinity of a dielectric or metallic cylinder
has been calculated using a complete set of eigenmodes of the
electric scalar potential and the propagator method [40,41].
Using the electrostatic approximation and the image-charge
formalism, a different study has been developed for the van
der Waals interaction between an atom and the convex surface
of a nanocylinder [42]. Based on the powerful Green tensor
technique and the exact center-of-mass equation of motion, a
systematic theory has been developed for the Casimir-Polder
force on a multilevel atom near a dispersing and absorbing
magnetodielectric body [43]. With the use of the eigenmode
function technique and the Hamiltonian formalism, the force
of light on a two-level atom near a nanofiber has been investi-
gated [44,45].

Recently, the Casimir-Polder potential of a rubidium atom
in a Rydberg state near a nanofiber has been calculated [39]
using the nonretardation approximation [46]. In the numerical
calculations of Ref. [39], the multilevel structure of atomic
rubidium has been accounted for by summing up the contri-
butions of the individual transitions between a large number of
magnetic sublevels. Several related works have been reported
[47–51]. The Casimir-Polder potential of a Rydberg-state
rubidium atom in a metallic cylindrical cavity has been
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studied [47]. The van der Waals interaction potentials between
Rydberg atoms near flat perfect mirrors [48], between two-
level atoms near magnetoelectric spheres [49], and between
two-level atoms inside a hollow cylindrical waveguide [50]
or outside a solid cylindrical waveguide [50,51] have been
calculated. The atomic physics involving 3 j and 6 j symbols
has been worked out for the Casimir-Polder potentials of
ground- and excited-state multilevel alkali-metal atoms near
a flat dielectric surface [52–54]. It has been demonstrated that
the nonretarded Casimir-Polder potential of an excited atom
near a flat surface can become repulsive due to a resonant
coupling between a virtual emission of the atom and a vir-
tual excitation of a surface polariton [32,54,55]. It has been
pointed out that the resonant part of the nonretarded potential
of an excited two-level atom in front of a flat dielectric surface
is repulsive when the permittivity of the dielectric half space
is |ε| < 1 [32]. The possibilities of oscillatory surface-induced
potentials have been shown for the excited state of a two-level
atom near a flat dielectric surface [32] or a nanofiber [45].
We also note that an oscillatory lateral Casimir-Polder force
on a two-level atom near a nanofiber has been reported [56].
However, this lateral force is associated with the nanofiber-
induced asymmetry of the spontaneous emission of an atom
with a rotating dipole, is aligned along the fiber axis, and
cannot be derived from a potential.

In this paper, we study the Casimir-Polder potential of a
multilevel alkali-metal atom near an optical nanofiber without
relying on the nonretardation approximation. We calculate the
mean Casimir-Polder potential of the atom in a fine-structure
level. We use the sum rules for 3 j and 6 j symbols to carry
out analytically the summations over the relevant sublevels in
the general expression for the Casimir-Polder potential. We
perform numerical calculations for the Casimir-Polder poten-
tials of the ground state and a few low-lying excited states of a
rubidium atom near an optical nanofiber. We show that, due to
the retardation and the interference between the emitted and
reflected waves, the Casimir-Polder potential of a low-lying
excited state may take positive values, oscillate around the
zero value with a decaying amplitude, and become repulsive
in some regions of atom-to-surface distances. Although these
effects are known for the interaction between a two-level atom
and a flat dielectric surface, we study them in the context of a
realistic multilevel alkali-metal atom near an ultrathin optical
fiber. The theoretical formulation of our treatment is based on
the powerful Green tensor technique and hence can be used
for a multilevel atom near an arbitrary dielectric body.

The paper is organized as follows. In Sec. II, we derive
an analytical expression for the Casimir-Polder potential of
a multilevel alkali-metal atom near a macroscopic body. In
Sec. III, we present the results of numerical calculations for
a rubidium atom near a nanofiber. Finally, we conclude in
Sec. IV.

II. THEORY

In this section, we study the Casimir-Polder potential of
an atom near an arbitrary nonmagnetic dielectric or metallic
body [see Fig. 1(a) for the specific case of a nanofiber]. We use
the theory of Ref. [43], which was developed for a multilevel
atom, to calculate the mean potential of an alkali-metal atom
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FIG. 1. (a) Atom in the vicinity of an optical nanofiber.
(b) Schematic of the energy levels of a two-level atom. (c). Schematic
of the hyperfine-structure levels of the states 5P3/2 and 5S1/2 of
a rubidium-87 atom. The red arrows indicate the allowed electric
dipole transitions between the levels F ′ and F .

in a fine-structure state and use the sum rules for 3 j and 6 j
symbols to carry out analytically the summations over the
relevant sublevels.

A. Casimir-Polder potential of a two-level atom

We start by considering the model of a two-level atom near
a macroscopic body. The atom has an upper energy level |e〉
and a lower energy level |g〉 [see Fig. 1(b)], with energies h̄ωe

and h̄ωg, respectively. The atomic transition frequency is ω0 =
ωe − ωg. The electric dipole transition between the levels |e〉
and |g〉 is allowed. We use Cartesian coordinates {x, y, z}.

The Casimir-Polder potential of the atom initially prepared
in an eigenstate near a body is the body-induced part of the
Lamb shift of the energy level [31,32]. In the framework of
the perturbation theory, the Casimir-Polder potentials Ug and
Ue of the atom in the ground and excited states, respectively,
are given as [43]

Ug = ω0

πε0c2

∫ ∞

0
du

u2

ω2
0 + u2

d · G(sc)(R, R; iu) · d∗,

Ue = − ω0

πε0c2

∫ ∞

0
du

u2

ω2
0 + u2

d · G(sc)(R, R; iu) · d∗

− ω2
0

ε0c2
d · Re[G(sc)(R, R; ω0)] · d∗. (1)
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Here, d = 〈e|D|g〉 is the matrix element of the electric dipole
operator D of the atom, R is the position of the atom out-
side the body, and G(sc) is the scattering part of the Green
tensor of the medium in the presence of the body. We
note that Im[G(sc)(R, R; iu)] = 0, that is, G(sc)(R, R; iu) =
Re[G(sc)(R, R; iu)] [31,32]. Equations (1) are valid for not
only the nonretardation regime, where �R � λ0, but also the
retardation regime, where �R � λ0. Here, �R is the atom-
to-body distance and λ0 = 2πc/ω0 is the wavelength of the
atomic transition. The Casimir-Polder potentials in the non-
retardation regime are sometimes referred to as the van der
Waals potentials [31,32].

The first and second terms in the expression for Ue in
Eqs. (1) are respectively the nonresonant part U (nres)

e and the
resonant part U (res)

e of the Casimir-Polder potential of the
excited state |e〉. Thus, we can write [43]

Ue = U (nres)
e + U (res)

e , (2)

where

U (nres)
e = − ω0

πε0c2

∫ ∞

0
du

u2

ω2
0 + u2

d · G(sc)(R, R; iu) · d∗,

U (res)
e = − ω2

0

ε0c2
d · Re[G(sc)(R, R; ω0)] · d∗. (3)

The potential Ug for the ground state |g〉 does not contain
a resonant part. In other words, Ug is nonresonant. It is clear
that Ug is opposite to the nonresonant part U (nres)

e of Ue, that
is, Ug = −U (nres)

e .
For a two-level atom with an isotropically averaged dipole,

we must formally replace the factor d · G(sc) · d∗ in Eqs. (1) by
the factor |d|2Tr (G(sc) )/3. It is clear that the expressions for
the ground-state potential Ug and the excited-state potential Ue

of the isotropic two-level atom contain the same effective cou-
pling factor |d|2Tr (G(sc) )/3, unlike the case of an atom with
two energy level terms [see Eqs. (9) in the next subsection].

Equations (1)–(3) have been used to study the Casimir-
Polder potential of a two-level atom near a flat surface [43].
These equations can be formally extended for an arbitrary
multilevel atom by summing up the contributions of individ-
ual transitions. For a realistic atom, due to the complexity of
the energy level structure, the extension involves the summa-
tion over a large numbers of levels and sublevels. We will
show in the next subsection that, in the case of a multilevel
alkali-metal atom, it is possible to simplify the summation
over the magnetic sublevels of the atom.

B. Casimir-Polder potential of a multilevel alkali-metal atom

We now consider a multilevel alkali-metal atom [see
Fig. 1(c)]. We calculate the mean Casimir-Polder poten-
tial of the atom initially prepared in a hyperfine-structure
(hfs) level of a fine-structure state. The energy levels of
the atom are specified in an arbitrary Cartesian coordinate
system {xQ, yQ, zQ}, where zQ is the direction of the quan-
tization axis. We assume that the surface-induced mixing
between different hfs levels and between different fine-
structure levels is negligible. We take into account the
contributions of electric dipole transitions but neglect the
contributions of electric quadrupole transitions. We note

that this approximation is valid when the atom is not
highly excited and the atom-to-body distance is not too
small [39].

We first examine the contributions of the transitions be-
tween the sublevels of an upper fine-structure level |n′J ′〉 and
a lower fine-structure level |nJ〉, where J ′ and J are the total
electronic angular momenta, and n′ and n are the sets of
remaining relevant quantum numbers (such as the principal
quantum number, the electronic orbital angular momentum,
the electronic spin, and the nuclear spin). We temporally
neglect the contributions of other fine-structure levels to the
potentials of these two levels |n′J ′〉 and |nJ〉.

Let |e〉 ≡ |n′J ′F ′M ′〉 and |g〉 ≡ |nJFM〉 be the magnetic
sublevels of the hfs levels |n′J ′F ′〉 and |nJF 〉 of the upper
and lower fine-structure levels |n′J ′〉 and |nJ〉, respectively.
Here, F ′ and F are the total atomic internal-state angular mo-
menta and M ′ and M are the corresponding magnetic quantum
numbers. For illustration, we show in Fig. 1(c) the hfs levels
and the magnetic sublevels of the ground state 5S1/2 and the
excited state 5P3/2 of a rubidium-87 atom [57].

We denote the energies of the upper and lower levels as h̄ωe

and h̄ωg, respectively. In the absence of the magnetic field,
h̄ωe and h̄ωg do not depend on the magnetic quantum numbers
M ′ and M, respectively. We note that the hfs splitting is small
compared to the optical transition frequency. Therefore, we
neglect the hfs splitting in our calculations. In other words,
we assume that the energies h̄ωe and h̄ωg do not depend on
the quantum numbers F ′ and F , respectively; that is, we use
the approximations ωe = ωn′J ′ and ωg = ωnJ .

We introduce the notation deg = 〈e|D|g〉 for the dipole
matrix element of the transition between the states |e〉 =
|n′J ′F ′M ′〉 and |g〉 = |nJFM〉. In an arbitrary quantization
coordinate system {xQ, yQ, zQ}, the spherical tensor compo-
nents d (q)

eg of the dipole matrix element deg, with the index
q = 0,±1, are given by the expression [58]

d (q)
eg = (−1)I+J ′−M ′ 〈n′J ′‖D‖nJ〉

√
(2F + 1)(2F ′ + 1)

×
{

J ′ F ′ I
F J 1

}(
F 1 F ′
M q −M ′

)
. (4)

Here, the array in the curly braces is a 6 j symbol, the array
in the parentheses is a 3 j symbol, I is the nuclear spin, and
〈n′J ′‖D‖nJ〉 is the reduced electric dipole matrix element in
the J basis. Note that d (q)

eg is nonzero only if M ′ − M = q =
0,±1.

The 3 j and 6 j symbols have the following orthogonal
properties [59]:

∑
m1m2

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j′3

m1 m2 m′
3

)

= 1

2 j3 + 1
δ j3 j′3δm3m′

3
{ j1 j2 j3} (5)

and
∑

j3

(2 j3 + 1)

{
j1 j2 j3
j4 j5 j6

}{
j1 j2 j3
j4 j5 j′6

}

= δ j6 j′6

2 j6 + 1
{ j1 j5 j6}{ j4 j2 j6}. (6)
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Here, the triangular delta { j1 j2 j3} is equal to 1 when the
triad ( j1, j2, j3) satisfies the triangle conditions, and is zero
otherwise. With the help of Eqs. (5) and (6), we find

1

2F + 1

∑
MF ′M ′

deg · T · d∗
eg = |〈n′J ′‖D‖nJ〉|2

3(2J + 1)
Tr(T),

1

2F ′ + 1

∑
M ′FM

deg · T · d∗
eg = |〈n′J ′‖D‖nJ〉|2

3(2J ′ + 1)
Tr(T), (7)

where T is an arbitrary dyadic tensor. In deriving Eqs. (7),
we have used the relations deg · T · d∗

eg = ∑
q1q2

(−1)q1+q2

d (−q1 )
eg d (−q2 )

ge Tq1q2 , d (q)
ge = (−1)qd (−q)∗

eg , and Tr(T) =∑
q(−1)qTq,−q for q1, q2, q = 0,±1. Here, Tq1q2 are the

matrix elements of the dyadic tensor T in the spherical tensor
basis. Equations (7) allow us to carry out analytically the
summation over the relevant sublevels.

Let Ug and Ue be the Casimir-Polder potentials of the lower
state |g〉 = |nJFM〉 and the upper state |e〉 = |n′J ′F ′M ′〉, re-
spectively, induced by the transitions |g〉 ↔ |e〉 between these
two states. The total potential of the lower state |nJFM〉 or the
upper state |n′J ′F ′M ′〉, caused by the transitions to the set of
the sublevels of the upper term |n′J ′〉 or the lower term |nJ〉,
respectively, is given as UnJFM = ∑

F ′M ′ Ug or Un′J ′F ′M ′ =∑
FM Ue. The average Ūḡ of the potentials UnJFM with respect

to the magnetic quantum number M and the average Ūē of the
potentials Un′J ′F ′M ′ with respect to the corresponding magnetic
quantum number M ′ are given as

Ūḡ = 1

2F + 1

∑
MF ′M ′

Ug, Ūē = 1

2F ′ + 1

∑
M ′FM

Ue. (8)

Thus, Ūḡ and Ūē are the mean Casimir-Polder potentials of
the magnetic sublevels of the hyperfine-structure levels |ḡ〉 =
|nJF 〉 and |ē〉 = |n′J ′F ′〉, having a flat statistical distribution
over the magnetic sublevels. According to Ref. [39], the de-
pendence of the potential of an individual magnetic sublevel
|nJFM〉 or |n′J ′F ′M ′〉 on M or M ′ is weak in the region of
distances r − a � 60 nm. Hence, the differences between Ūḡ

and UnJFM and between Ūē and Un′J ′F ′M ′ are small when the
atom-to-surface distance is not too short.

When we neglect the dependencies of the transition fre-
quency ωeg on F and F ′ and use Eqs. (7) to carry out
analytically the summation over the relevant sublevels, we
find

Ūḡ = ωeg

3πε0c2

|〈n′J ′‖D‖nJ〉|2
2J + 1

∫ ∞

0
du

u2

ω2
eg + u2

× Tr[G(sc)(R, R; iu)],

Ūē = − ωeg

3πε0c2

|〈n′J ′‖D‖nJ〉|2
2J ′ + 1

∫ ∞

0
du

u2

ω2
eg + u2

× Tr[G(sc)(R, R; iu)]

− ω2
eg

3ε0c2

|〈n′J ′‖D‖nJ〉|2
2J ′ + 1

Re{Tr[G(sc)(R, R; ωeg)]}. (9)

It is clear that expressions Eq. (9) for the mean potentials
Ūḡ and Ūē do not contain the summation over the magnetic
sublevels. Due to the symmetry of the atomic wave functions
and the averaging procedure, these expressions contain the

reduced electric dipole matrix element 〈n′J ′‖D‖nJ〉 instead
of the electric dipole vector d. Furthermore, we see that the
mean potentials Ūḡ and Ūē do not depend on the orientation
of the quantization axis. Consequently, the diagonalization of
the full Hamiltonian in the relevant Hilbert subspace is not
necessary for the calculations of these mean potentials.

It is interesting to note that the mean Casimir-Polder po-
tentials Ūḡ and Ūē do not depend on the quantum numbers
F and F ′, respectively. Due to this property, Ūḡ or Ūē can be
considered as the mean Casimir-Polder potential of the atom
in the lower term | ¯̄g〉 = |nJ〉 or the upper term | ¯̄e〉 = |n′J ′〉 in
the framework of the two-term atom model.

Comparison between Eqs. (1) and (9) shows that the mean
potential Ūḡ or Ūē can be formally considered as the poten-
tial of the ground or excited state of a two-level atom with
an isotropically averaged dipole moment of magnitude |d| =
|〈n′J ′‖D‖nJ〉|/√2J + 1 or |d| = |〈n′J ′‖D‖nJ〉|/√2J ′ + 1,
respectively. This effective dipole moment of the two-term
atom depends on the reduced dipole matrix element of the
transitions and the degeneracy of the initial-state term. It is
clear that, when J �= J ′, the effective dipoles for the potentials
of the lower term | ¯̄g〉 = |nJ〉 and the upper term | ¯̄e〉 = |n′J ′〉
have different magnitudes, unlike the case of two-level atoms
[see Eqs. (1)]. This feature occurs because, when the numbers
of the sublevels of the lower and upper terms are not the same,
the mean dipole coupling strength for the sublevels of a term
is different from that of the other term.

We now consider the full set of fine-structure energy lev-
els of the multilevel alkali-metal atom. It is clear that the
Casimir-Polder potential U of the atom in an arbitrary level
|a〉 = |naJa〉 is the sum of the contributions from the transi-
tions between this level and other levels |b〉 = |nbJb〉, that is,

U = −
∑

b

ωab

3πε0c2

|〈naJa‖D‖nbJb〉|2
2Ja + 1

∫ ∞

0
du

u2

ω2
ab + u2

× Tr[G(sc)(R, R; iu)]

−
∑

b

�(ωab)
ω2

ab

3ε0c2

|〈naJa‖D‖nbJb〉|2
2Ja + 1

× Re{Tr[G(sc)(R, R; ωab)]}. (10)

Here, ωab = ωa − ωb = −ωba is the transition frequency and
�(ωab) is the Heaviside step function of ωab. Expression
Eq. (10) allows us to calculate the Casimir-Polder potential
of the atom using the transition frequencies ωab, the reduced
dipole matrix elements 〈naJa‖D‖nbJb〉, and the scattering
Green tensor G(sc).

Expression Eq. (10) is the key result of this section. In
deriving this expression, the summation over the magnetic
sublevels of the atom has been carried out analytically. In
addition, it is valid for both nonretardation and retardation
regimes.

In general, the potential U can be decomposed as U =
Unres + Ures, with the nonresonant part

Unres = −
∑

b

ωab

3πε0c2

|〈naJa‖D‖nbJb〉|2
2Ja + 1

∫ ∞

0
du

u2

ω2
ab + u2

× Tr[G(sc)(R, R; iu)] (11)
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and the resonant part

Ures = −
∑

b

�(ωab)
ω2

ab

3ε0c2

|〈naJa‖D‖nbJb〉|2
2Ja + 1

× Re{Tr[G(sc)(R, R; ωab)]}. (12)

The presence of the Heaviside step function �(ωab) in ex-
pression Eq. (12) indicates that only downward transitions
(with ωab > 0) can contribute to the resonant part Ures of the
Casimir-Polder potential U .

In the particular case where the state |a〉 of the multilevel
atom is the ground fine-structure state |ngJg〉, the resonant part
Ures of the potential U is vanishing. In this case, we have U =
Unres, that is,

U =
∑

e

ωeg

3πε0c2

|〈neJe‖D‖ngJg〉|2
2Jg + 1

∫ ∞

0
du

u2

ω2
eg + u2

× Tr[G(sc)(R, R; iu)], (13)

where |neJe〉 is an arbitrary excited fine-structure state and
ωeg = ωneJe − ωngJg is the transition frequency. We can rewrite
the above expression for the Casimir-Polder potential of a
ground-state atom in the form [31,32]

U = h̄

2πε0c2

∫ ∞

0
du u2α(iu)Tr[G(sc)(R, R; iu)], (14)

where

α(ω) = 2

3(2Jg + 1)h̄

∑
e

|〈neJe‖D‖ngJg〉|2 ωeg

ω2
eg − ω2

(15)

is the scalar polarizability of the ground-state alkali-metal
atom [60,61].

We emphasize that, in terms of the general scattering
Green tensor G(sc), Eqs. (10)–(14) are valid for a multilevel
alkali-metal atom in the presence of an arbitrary nonmagnetic
dielectric or metallic body [31,32]. In the particular case of
a dielectric or metallic cylinder, an explicit expression for
Tr[G(sc)(R, R; iu)] is given in Appendix A. Equation (14)
with Tr[G(sc)(R, R; iu)] given by Eq. (A10) is similar to but
more rigorous than the results of Refs. [40–42] for the nonre-
tarded van der Waals potential of a ground-state atom near a
dielectric or metallic cylinder. We note that, in the context of
the surface-induced transition frequency shift of a multilevel
alkali-metal atom, the atomic physics involving 3 j and 6 j
symbols has been worked out for the case where the atom is
in front of a flat dielectric surface [52–54].

III. NUMERICAL CALCULATIONS

We perform numerical calculations for the Casimir-Polder
potential of a multilevel alkali-metal atom near a vacuum-clad
silica nanofiber [see Fig. 1(a)]. The nanofiber is an ultrathin
fiber of radius a and refractive index n1 and is surrounded by
an infinite background vacuum or air medium of refractive
index n2 = 1. The nanofiber diameters are a few hundreds
of nanometers. We use Cartesian coordinates {x, y, z}, where
z is the coordinate along the fiber axis, and also cylindrical
coordinates {r, ϕ, z}, where r and ϕ are the polar coordinates
in the fiber transverse plane xy.

To be concrete, we study a rubidium atom. The transition
frequencies and reduced dipole matrix elements of atomic

r-a (nm)

U
 (

K
) 

5S
1/2

FIG. 2. Casimir-Polder potential U of a rubidium atom in the
ground state 5S1/2 vs the atom-to-surface distance r − a. The radius
of the nanofiber is a = 200 nm. The quantities plotted in the inset
and their units are the same as those in the main plot.

rubidium are taken from Ref. [62]. Since these parameters
are the same for rubidium-87 and rubidium-85, our numerical
results are valid for both isotopes. We note that, according to
Ref. [39], the contributions of the quadrupole transitions of
the atom are not important for the potentials of the excited
states with the principal quantum number n � 20. Therefore,
we limit our numerical calculations to the cases where the
principal quantum number of the initial atomic state is n � 10.

The Green tensor of an infinitely long dielectric or metallic
cylinder surrounded by a bulk dielectric medium is given in
Refs. [39,63–66]. The relevant expressions for the scattering
part of the Green tensor are summarized in Appendix A.

The Green tensor depends on the permittivity of the
nanofiber. The material of the nanofiber is fused silica. To cal-
culate the permittivity of silica, we use the four-term Sellmeier
formula, which is good for the spectral range from 200 nm
to 7 μm [67,68], and the Dawson-function model, which is
good for the spectral range between 7 and 50 μm [69,70] (see
also Appendix B). Since the poles of the Green tensor, which
characterize the resonances of the field, lie close to the real
frequency axis, a special treatment of the integral path to avoid
them is necessary in the calculations of Ures [47,71,72].

We present the results of our numerical calculations below.
These results are new as they stand for a realistic multilevel
alkali-metal atom near a nanofiber. They are obtained without
using the nonretardation approximation.

A. Potential for the ground state

We calculate the Casimir-Polder potential U of the rubid-
ium atom in the ground state 5S1/2. In the calculations, we take
into account the dominant dipole transitions from 5S1/2 to the
neighboring levels nP3/2 and nP1/2 with n = 5, 6, . . ., 8. Our
additional calculations, which are not shown here, confirm
that the contributions of the levels with n � 9 to the potential
of the ground state are negligible. Since the wavelengths of
the dominant transitions from 5S1/2 are significantly smaller
than 7 μm, we use the Sellmeier formula [67,68] to calculate
the permittivity of silica.

We plot in Fig. 2 the Casimir-Polder potential U of the
rubidium atom in the ground state 5S1/2 as a function of
the distance r − a from the atom to the fiber surface. We
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FIG. 3. Comparison between the Casimir-Polder potentials U of
a rubidium atom in the ground state 5S1/2 for the fiber radii a = 150,
250, and 350 nm.

observe from Fig. 2 that the Casimir-Polder potential U of
5S1/2 is negative and monotonically reduces (increases) with
decreasing (increasing) distance r − a. It is clear that the
Casimir-Polder force F = −∂U/∂r is negative, that is,
the potential is attractive. This behavior is in agreement with
the results of the previous studies for the van der Waals po-
tential of a ground-state alkali-metal atom in the vicinity of a
nanofiber [15,42] or a general dielectric surface [31,32].

The monotonic falling-off behavior of the potential U of
the ground state is well known [31,73] and is a consequence of
the fact that this potential contains only the nonresonant terms
[see Eq. (13)] [31]. The distance dependencies of the nonres-
onant terms appear through the Green tensor G(sc)(R, R; iu)
at imaginary frequency. For the imaginary frequency iu,
the tensor G(sc)(R, R; iu) contains the monotonically varying
modified Bessel functions of the second kind Kn(q2r), where
q2 =

√
u2/c2 + β2 is a real parameter with β varying from

−∞ to +∞ [see Eq. (A10)]. It has been rigorously proven
that the Casimir force between two dielectric bodies that are
mirror images of each other is always attractive, independent
of the exact form of the bodies or dielectric properties [73].

In Fig. 3, we compare the Casimir-Polder potentials U of
the ground state 5S1/2 for different values of the fiber radius
a. The figure shows that, in the range of the parameters used
for calculations, a moderate variation of the fiber radius does
not affect much the monotonic falling-off behavior of the
potential U of the ground state. It is clear from the figure that
an increase of the fiber radius leads to an increase of the
absolute value of the potential.

We emphasize that the numerical results presented in
Figs. 2 and 3 for the Casimir-Polder potential of a ground-state
rubidium atom near a nanofiber have been obtained by using
the most accurate available formalism and without relying on
the nonretardation approximation.

B. Potentials for the excited states of the D2 and D1 lines

The first two excited states of the rubidium atom are the
states 5P3/2 and 5P1/2. The only downward electric dipole
transitions from these excited states are the transitions to
the ground state 5S1/2. The transitions 5P3/2 ↔ 5S1/2 and
5P1/2 ↔ 5S1/2 are called the D2 and D1 lines, respectively.

U
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FIG. 4. (a) Casimir-Polder potential U of a rubidium atom in the
excited state 5P3/2 of the D2 line vs the atom-to-surface distance
r − a. The inset shows the details of the oscillations of the potential.
The quantities plotted in the inset and their units are the same as
those in the main plot. (b) Nonresonant part Unres (dash-dotted green
line) and resonant part Ures (dashed blue line) of the potential U
(solid red line). In parts (a) and (b), the radius of the nanofiber
is a = 200 nm.

They play an important role in laser cooling and atom-light
interaction experiments [57]. Below, we present the numerical
results for the Casimir-Polder potentials of the atom in these
excited states.

In the calculations for the potentials of 5P3/2 and 5P1/2,
we take into account the dominant dipole transitions to the
states nS1/2 with n = 5, 6, . . ., 8 and the states nD3/2 with
n = 4, 5, . . ., 8. For the potential of the state 5P3/2, we also
include the dominant dipole transitions to the states nD5/2

with n = 4, 5, . . ., 8. The contributions of the levels with
n � 9 to the potentials of 5P3/2 and 5P1/2 are negligible. Since
the wavelengths of the dominant transitions from 5P3/2 and
5P1/2 are significantly smaller than 7 μm, the permittivity of
silica is calculated using the Sellmeier formula [67,68].

We plot in Fig. 4(a) the Casimir-Polder potential U for
the rubidium atom in the excited state 5P3/2 of the D2 line
as a function of the distance r − a from the atom to the fiber
surface. We display in Fig. 4(b) the nonresonant part Unres and
the resonant part Ures of the potential U .

We observe from Fig. 4(a) that, in the region of short dis-
tances, the Casimir-Polder potential U of the rubidium atom in
the excited state 5P3/2 is negative, monotonic, and attractive.
However, in the region of moderate and large distances, the
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potential U becomes positive in some spatial intervals and
oscillates around the zero value. The wavelength of the spatial
oscillations of U is about half of the wavelength of 780 nm of
the D2 line of atomic rubidium [57]. Due to the spatial oscil-
lations, the Casimir-Polder potential U can become repulsive,
that is, the corresponding force F = −∂U/∂r can become
positive, depending on the distance. It is clear that this effect
occurs in the retardation regime. The maximal amplitude of
oscillations of the potential is about 2.3 μK. The maximal
depth of the wells created by the spatial oscillations of the
potential is about 2.8 μK. This depth is about 15 times larger
than the recoil energy Er/kB

∼= 181 nK for the D2 line of
atomic rubidium [57].

Note that similar repulsive Casimir forces between surfaces
in a liquid were obtained for suitable choices of surfaces
[74]. The possibilities of oscillatory surface-induced poten-
tials were shown for the excited state of a two-level atom near
a flat dielectric surface [32] or a nanofiber [45]. According
to Ref. [32], the resonant part of the nonretarded potential of
an excited two-level atom in front of a flat dielectric surface
is repulsive when |ε| < 1, where ε is the permittivity of the
dielectric half space. It has been demonstrated that the non-
retarded potential of an excited atom near a flat surface can
become repulsive due to a resonant coupling between a virtual
emission of the atom and a virtual excitation of a surface
polariton [32,54,55,75]. We emphasize that the repulsion and
spatial oscillations of the nanofiber-induced Casimir-Polder
potential of a rubidium atom in the excited state 5P3/2 of the
D2 line are not related to the excitation of a surface polariton.

Comparison between Figs. 2 and 4(a) for the potentials of
the ground state 5S1/2 and the excited state 5P3/2 shows that,
in the region of short distances, both potentials are attractive
but the magnitude of the potential for 5P3/2 is larger than that
for 5S1/2.

The oscillations in the spatial dependence of the Casimir-
Polder potential U of the excited state 5P3/2 originate from
the resonant part Ures [see the dashed blue curve in Fig. 4(b)]
and appear through the spatial dependence of the Green ten-
sor G(sc)(R, R; ωab) at the resonant transition frequency ωab

[see Eq. (12)]. This tensor contains oscillating Hankel func-
tions of the first kind H (1)

n (η2r), where η2 =
√

ω2/c2 − β2

is a real parameter for the radiation modes with the longi-
tudinal propagation constant |β| � ω/c [see Eq. (A9)]. The
spatial oscillations of the potential U can be ascribed to
the constructive-destructive interference between the quantum
light waves emitted from the atom and reflected from the
fiber surface. The wavelength of the spatial oscillations of
the potential is close to half the wavelengths of the dominant
downward resonant transitions of the atom.

We observe from Fig. 4(b) that, for increasing distance
r − a, the magnitude of the nonresonant component Unres of
the Casimir-Polder potential U reduces quickly and monoton-
ically approaches zero. Meanwhile, the magnitude of the reso-
nant component Ures first reduces quickly but then starts oscil-
lating around the zero value with a decaying amplitude. In the
region r − a > 180 nm in the case of the figure, Ures is domi-
nant over Unres and, hence, the total potential U is determined
mainly by Ures. However, in the region r − a < 180 nm in the
case of the figure, the magnitude of the resonant component

U
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FIG. 5. (a) Casimir-Polder potentials U and (b) the correspond-
ing forces F = −∂U/∂r for a rubidium atom in the excited state
5P1/2 of the D1 line (solid red line) and the excited state 5P3/2 of the
D2 line (dashed blue line) vs the atom-to-surface distance r − a. The
radius of the nanofiber is a = 200 nm. The quantities plotted in the
insets and their units are the same as those in the main plots.

of the potential is smaller than that of the nonresonant compo-
nent. This feature is a consequence of the multilevel structure
of the atom, where all higher levels can contribute to the
nonresonant component of the Casimir-Polder potential [43].

We plot in Fig. 5(a) the potential of the excited state
5P1/2 of the D1 line. For comparison, we also plot in this
figure the potential of the excited state 5P3/2 of the D2 line.
We observe from the figure that the potentials for 5P1/2 and
5P3/2 are very similar to each other. Both are attractive for
the short distances and are oscillatory for the distances in the
range r − a � 400 nm. One of the reason for the similarity
between the two potentials is that the wavelength of the D1

line (795 nm), which is responsible for the spatial oscillations
of the potential of 5P1/2, is just slightly different from the
wavelength of the D2 line (780 nm), which is responsible
for the spatial oscillations of the potential of 5P3/2. Another
reason is that the normalized reduced dipole matrix elements
|〈a‖D‖b〉|/√2Ja + 1 for the downward transitions from the
excited states |a〉 = 5P1/2 and 5P3/2 to the ground state |b〉 =
5S1/2 have the same value (� 2.98 a.u.) [62]. The reduced
dipole matrix elements and wavelengths of the D1 and D2

lines determine the resonant parts Ures [see Eq. (12)] of the
potentials U for 5P1/2 and 5P3/2. Similar to the case of the
excited state 5P3/2, the repulsion and spatial oscillations of the
nanofiber-induced Casimir-Polder potential of the rubidium
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FIG. 6. Nanofiber-induced shifts δω of the transition frequencies
of the D1 (solid red curve) and D2 (dashed blue curve) lines of atomic
rubidium vs the atom-to-surface distance r − a. The radius of the
nanofiber is a = 200 nm. The quantities plotted in the inset and their
units are the same as those in the main plot.

atom in the excited state 5P1/2 are not related to the excitation
of a surface polariton.

The radial dependence of the Casimir-Polder potential U
leads to a radial Casimir-Polder force F = −∂U/∂r acting on
the center-of-mass motion of the atom. We plot in Fig. 5(b) the
radial dependencies of the forces F on the atom in the excited
states 5P1/2 and 5P3/2. The figure shows that the forces can
take positive values, depending on the region of space, and
oscillate around the zero value with a decaying amplitude. The
maximal positive value of the forces is on the order of 0.4
zN. This value is about 40 times smaller than the maximal
value F (max)

sp = h̄kγ /2 ∼= 15 or 16 zN of the force resulting
from absorption followed by spontaneous emission for the D1

or D2 line, respectively, of atomic rubidium in free space [57].
Here, k is the wave number of the resonant light and γ is the
linewidth of the atom.

The difference between the Casimir-Polder potentials Ua =
U (|a〉) and Ub = U (|b〉) of the levels |a〉 and |b〉 determines
the shift δω = (Ua − Ub)/h̄ of the atomic transition frequency
ωab = ωa − ωb. We plot in Fig. 6 the nanofiber-induced shifts
δω of the transition frequencies of the D1 and D2 lines of
atomic rubidium. The figure shows that the frequency shifts of
these lines are almost the same. The shifts are negative in the
region of short distances and oscillate around the zero value
with a decaying amplitude for the distances in the range from
400 to 1200 nm. The shifts can become positive depending on
the distance. The oscillatory behavior of the frequency shifts
δω shown in Fig. 6 occurs as a consequence of the oscillatory
behavior of the Casimir-Polder potentials of the excited states
5P1/2 and 5P3/2, and is a signature of the retardation and
interference effects.

We compare in Fig. 7 the Casimir-Polder potentials U of
the excited state 5P3/2 for different values of the fiber radius a.
The figure shows that the oscillatory behavior of U is sensitive
to the variation of a. Indeed, a minor or moderate variation
of a may cause a significant variation of oscillations of U .
In particular, an increase of a may lead to an increase or a
decrease of the amplitude of oscillations of U , depending on
the range of a. Among the curves of Fig. 7, the curves for
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250 nm
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FIG. 7. Comparison between the Casimir-Polder potentials U of
a rubidium atom in the excited state 5P3/2 for the fiber radii a = 150,
200, 250, 300, and 350 nm.

a = 250 and 350 nm have the largest oscillation amplitudes
(the peak values are on the order of 4 μK).

C. Potentials for a few low-lying excited states nS1/2

We plot in Fig. 8 the Casimir-Polder potentials of sev-
eral low-lying excited states nS1/2 with n = 6, 7, . . ., 10. In
the calculations of these potentials, we take into account the

FIG. 8. (a) Casimir-Polder potentials U for the states nS1/2 with
n = 6, 7, . . ., 10 vs the atom-to-surface distance r − a in the range
from 100 to 1200 nm. The radius of the nanofiber is a = 200 nm. The
quantities plotted in the inset and their units are the same as those in
the main plot. The logarithm scale of the vertical axis of the inset
shows the rapid decrease of the magnitudes of the potentials in the
range of short distances from 50 to 100 nm. (b) Same as panel (a) but
for large distances in the range from 6 to 10 μm.

042817-8



REPULSIVE CASIMIR-POLDER POTENTIALS OF … PHYSICAL REVIEW A 105, 042817 (2022)

dominant dipole transitions to the neighboring levels nP3/2

and nP1/2 with n = 5, 6, . . ., 20. Our additional calculations,
which are not shown here, confirm that the contributions of
the levels nP3/2 and nP1/2 with n � 15 to the potentials are
negligible. Since the wavelengths of the dominant transitions
from the states nS1/2 with n = 6, 7, . . ., 10 are larger than
1 μm, the permittivity of silica is calculated by using the
Dawson-function model [69,70].

The logarithmic scale of the vertical axis of the inset of
Fig. 8(a) shows that, in the range of short distances (from
50 to 100 nm), the magnitudes of the potentials for all of
the aforementioned states rapidly decrease with increasing
distance. We also observe from the inset that, in the region
of short distances, the potential for the state 8S1/2 shows a
slightly different behavior than the rest: The curve for the state
8S1/2 (the dotted red line) is higher than the curve for the state
7S1/2 (the dashed green line) and crosses the curve for the
state 6S1/2 (the solid blue line). Except for the state 8S1/2, the
states nS1/2 with n � 10 demonstrate the general tendency:
The higher state nS1/2 has the deeper potential in the region of
short distances.

We observe from Fig. 8(a) that, in the region of moderate
distances from 100 to 1200 nm, the curves for the potentials
behave in a very different manner. Namely, the potentials
for some of these states demonstrate a nonmonotonic behav-
ior. Specifically, the potential for the state 8S1/2 undergoes a
change in sign, achieves a positive peak value Umax

∼= 17 μK
at a distance r − a ∼= 150 nm, and becomes rather strongly
repulsive in the region of distances from 150 to 400 nm.
Furthermore, the potentials for the states nS1/2 with n = 6,
7, and 8 demonstrate a pronounced oscillatory behavior at
the distances r − a � 400 nm [see Fig. 8(a)], and these os-
cillations persist even when the atom is several micrometers
away from the fiber surface, with an amplitude on the order of
10 nK [see Fig. 8(b)]. The potentials for the states 9S1/2 and
10S1/2 are monotonic for the distances r − a � 1200 nm [see
Fig. 8(a)] but have small oscillations with a small amplitude
on the order of 1 nK for the distances from 6 to 10 μm [see
Fig. 8(b)].

One can notice that, for the state 6S1/2, the oscillatory
behavior of the potential is caused by the contributions from
the downward transitions 6S1/2 → 5P1/2 and 6S1/2 → 5P3/2,
which have similar transition frequencies (with the wave-
lengths of 1324 and 1367 nm). However, for the higher states
7S1/2, 8S1/2, 9S1/2, and 10S1/2, the oscillatory behavior of the
potential is a result of the beating between the contributions
from several downward transitions with significantly differ-
ent transition wavelengths. When the atom is excited highly
enough (the principal quantum number is n � 9 in the case
of rubidium), due to the beating between a large number of
downward transitions and the increase to the wavelengths of
the dominant downward transitions, the oscillatory behavior
of the Casimir-Polder potential becomes less prominent and
may even practically disappear. We note that the potentials of
highly excited Rydberg states, calculated in Ref. [39], are not
oscillatory.

The reason why the potential U for the state 8S1/2 is so
different from the potentials for the other states [see Fig. 8(a)
and the inset] is that 8S1/2 is the only state for which the
resonant part Ures is positive for r − a < 1200 nm. This leads

FIG. 9. Individual contributions Uab of the groups of transitions
8S1/2 → nP1/2,3/2 with n = 5, 6, 7, 8, and 9 to the Casimir-Polder
potential U of the excited state 8S1/2 vs the atom-to-surface distance
r − a. The radius of the nanofiber is a = 200 nm.

to a slightly different behavior of the potential at the positions
that are very close to the surface (see the inset), and to the
presence of a well distinct “bump” at the distance r − a ∼= 150
nm [see Fig. 8(a)]. A deeper inspection of the properties of
8S1/2 reveals that the strongest downward transitions from this
state are the transitions to the lower states 7P1/2 and 7P3/2,
with the wavelengths of λ1 = 8.249 μm and λ2 = 8.495 μm,
respectively [62]. For these wavelengths, the real part of
the permittivity ε of silica is negative (Re[ε(λ1)] ∼= −0.31
and Re[ε(λ2)] ∼= −0.64) and the associated imaginary part is
significant (Im[ε(λ1)] ∼= 0.61 and Im[ε(λ2)] ∼= 0.85), that is,
silica is a lossy metal. It is clear that λ1 and λ2 are close to a
surface plasmon resonance, which is determined by the con-
dition ε(λ) = −1 in the case of a flat surface. In addition, we
have |ε(λ1)| ∼= 0.69 < 1 and |ε(λ2)| ∼= 1.07 > 1. Meanwhile,
it follows from Eq. (153) of Ref. [43] that, for an atom situated
above a semi-infinite half space containing a homogeneous
medium, the resonant part of the Casimir-Polder potential is
positive for short distances under the condition |ε| < 1. This
condition is satisfied for λ1 but is slightly violated for λ2.
Nevertheless, due to the curvature and the finite size of the
cylindrical surface, the resonant component of the nanofiber-
induced potential is positive for both wavelengths λ1 and λ2 in
the region of short distances. The effect is enhanced because
the transition wavelengths are close to a surface plasmon
resonance [32,54,55].

In order to show more clearly the origin of the distinct
bump of the Casimir-Polder potential U of the excited state
8S1/2, we plot in Fig. 9 the individual contributions Uab of
the groups of transitions 8S1/2 → nP1/2,3/2 with n = 5, 6, 7,
8, and 9. The figure shows that the contribution of the group
of the downward transitions 8S1/2 → 7P1/2,3/2 (see the dotted
red line) is positive even at short distances, while the con-
tributions of the other transitions are negative. The different
transitions of the atom have different transition frequencies
and hence correspond to different values of the permittivity of
the nanofiber. The presence of the bump of the Casimir-Polder
potential of the excited state 8S1/2 at short distances is due
to the optical properties of silica at the wavelengths of the
downward transitions 8S1/2 → 7P1/2,3/2, which are close to a
surface plasmon resonance.
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FIG. 10. Casimir-Polder potential U (a) and corresponding force
F (b) for a rubidium atom in the excited state 8S1/2 as functions of
the atom-to-surface distance r − a for different fiber radii a = 150,
200, 250, 300, and 350 nm.

In order to see the effect of the fiber radius a on the behav-
ior of the bump of the potential in the region of short distances,
we plot in Fig. 10 the potential and the corresponding force
for the excited state 8S1/2 as functions of the atom-to-surface
distance r − a for different values of a. The figure shows that
the height and position of the bump are sensitive to the vari-
ation of a. For increasing a in the range from 150 to 350 nm,
the height of the bump decreases and its position moves
away from the fiber surface. It is interesting to note that,
for the parameters in the range considered, the smaller fiber
radius leads to the stronger repulsion in the region of short
distances. The reason is that the repulsion of the potential
originates from the resonant part, which may increase more
quickly than the nonresonant part decreases when the fiber
radius reduces.

IV. SUMMARY

In this paper, we have studied the Casimir-Polder potential
of a multilevel alkali-metal atom near an optical nanofiber.
We have calculated the mean Casimir-Polder potential of the
atom in a fine-structure level. We have used the sum rules for
3 j and 6 j symbols to carry out analytically the summations
over the relevant sublevels in the general expression for the
Casimir-Polder potential.

We have performed numerical calculations for the Casimir-
Polder potentials of the ground state and a few low-lying
excited states of rubidium. We have observed that the
Casimir-Polder potential of the ground state 5S1/2 is negative

and its absolute value monotonically reduces to zero with
increasing atom-to-surface distance. We have shown that the
Casimir-Polder potential of a low-lying excited state (5P1/2,
5P3/2, or nS1/2 with n = 6, 7, or 8) may take positive values,
oscillate around the zero value with a decaying amplitude,
and become repulsive in some regions of atom-to-surface dis-
tances. The spatial oscillations of the potential of a low-lying
excited state occur as a consequence of the retardation and
the interference between the emitted and reflected waves. The
characteristic wavelengths of the spatial oscillations of the
potential are determined by the wavelengths of the dominant
downward resonant transitions of the atom. The maximal
amplitude of oscillations of the potential is on the order of a
few microkelvins.

We have observed that, for a nanofiber with a radius of
200 nm, the potential for the state 8S1/2 of a rubidium atom
achieves a positive peak value of about 17 μK at a distance
of about 150 nm from the fiber surface and becomes rather
strongly repulsive for distances from 150 to 400 nm. When
the atom is initially in an excited state with a principal quan-
tum number n � 9 in the case of rubidium, the oscillatory
behavior of the Casimir-Polder potential is no longer promi-
nent and may even disappear. This arises from the beating
between the large number of downward transitions and the
increase to the wavelengths of the most significant downward
transitions.

We have also calculated the nanofiber-induced shifts of the
transition frequencies of the D2 and D1 lines of atomic rubid-
ium. We have found that the shifts are negative in the region
of short distances, become positive, and oscillate around the
zero value with a decaying amplitude in the region of large
distances.

Our results give insight into the Casimir-Polder potential
of a multilevel alkali-metal atom near an optical nanofiber.
The repulsive character and spatially oscillatory behavior of
the potential of a low-lying excited state may cause significant
effects on the center-of-mass motion of cold atoms with a tem-
perature comparable to or less than the oscillation amplitude,
that is, on the order of or less than 1 μK. Such tempera-
tures can be achieved for atoms using the Raman cooling
technique [57].
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APPENDIX A: GREEN TENSOR FOR A DIELECTRIC
OR METALLIC CYLINDER

We consider an infinitely long, nonmagnetic, dielectric or
metallic cylinder of radius a and dielectric permittivity ε1

in a nonmagnetic dielectric medium of dielectric permittivity
ε2. We use the Cartesian coordinates {x, y, z}, where z is the
coordinate along the cylinder axis. We also use the cylindrical
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coordinates {r, ϕ, z}, where r and ϕ are the polar coordinates in the transverse plane xy. When the field point R and the source
point R′ are outside the cylinder (r > a and r′ > a), we can decompose the Green tensor (the dyadic Green function) G(R, R′, ω)
as [30–32,63,64]

G(R, R′, ω) = G(0)(R, R′, ω) + G(sc)(R, R′, ω). (A1)

Here, G(0)(R, R′, ω) is the homogeneous-medium Green tensor and G(sc)(R, R′, ω) is the scattering Green tensor.
The homogeneous-medium Green tensor G(0) can be represented in the form [30–32]

G(0)(Ri, R j, ω) = − 1

3k2
2

δ(Ri − R j )I + exp(ik2Ri j )

4πRi j

[(
1 + ik2Ri j − 1

k2
2R2

i j

)
I + 3 − 3ik2Ri j − k2

2R2
i j

k2
2R2

i j

R̂i jR̂i j

]
, (A2)

where k2 = √
ε2 ω/c. In Eq. (A2), the notations Ri j = |Ri j | and R̂i j = Ri j/Ri j with Ri j = Ri − R j have been used.

Meanwhile, the scattering Green tensor G(sc) can be given as [39,63–66]

G(sc)(R, R′, ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞

dβ

η2
2

{[
ARM(1)

nη2
(β, R) + BRN(1)

nη2
(β, R)

]
M

(1)
nη2

(β, R′)

+ [
CRN(1)

nη2
(β, R) + DRM(1)

nη2
(β, R)

]
N

(1)
nη2

(β, R′)
}
. (A3)

Here we have introduced the notations η j =
√

k2
j − β2 = √

ε jω2/c2 − β2 with k j = √
ε j ω/c for j = 1, 2. We have also used

the vector wave functions

M(1)
nη (β, R) =

[ in

r
H (1)

n (ηr)r̂ − ηH (1)′
n (ηr)ϕ̂

]
einϕ+iβz,

N(1)
nη (β, R) = 1√

η2 + β2

[
iβηH (1)′

n (ηr)r̂ − nβ

r
H (1)

n (ηr)ϕ̂ + η2H (1)
n (ηr)ẑ

]
einϕ+iβz, (A4)

M
(1)
nη (β, R) =

[
− in

r
H (1)

n (ηr)r̂ − ηH (1)′
n (ηr)ϕ̂

]
e−inϕ−iβz,

N
(1)
nη (β, R) = 1√

η2 + β2

[
−iβηH (1)′

n (ηr)r̂ − nβ

r
H (1)

n (ηr)ϕ̂ + η2H (1)
n (ηr)ẑ

]
e−inϕ−iβz, (A5)

where H (1)
n is the Hankel function of the first kind. The coefficients AR, BR, CR, and DR are given as [39,63–66]

AR = 1

WR

Jn(η2a)

H (1)
n (η2a)

[
n2β2

a2

(
1

η2
2

− 1

η2
1

)2

−
(

J ′
n(η1a)

η1Jn(η1a)
− J ′

n(η2a)

η2Jn(η2a)

)(
k2

1J ′
n(η1a)

η1Jn(η1a)
− k2

2H (1)′
n (η2a)

η2H (1)
n (η2a)

)]
,

CR = 1

WR

Jn(η2a)

H (1)
n (η2a)

[
n2β2

a2

(
1

η2
2

− 1

η2
1

)2

−
(

J ′
n(η1a)

η1Jn(η1a)
− H (1)′

n (η2a)

η2H (1)
n (η2a)

)(
k2

1J ′
n(η1a)

η1Jn(η1a)
− k2

2J ′
n(η2a)

η2Jn(η2a)

)]
,

BR = DR = 1

WR

Jn(η2a)

H (1)
n (η2a)

k2

η2

nβ

a

(
1

η2
2

− 1

η2
1

)(
J ′

n(η2a)

Jn(η2a)
− H (1)′

n (η2a)

H (1)
n (η2a)

)
, (A6)

where

WR = −n2β2

a2

(
1

η2
2

− 1

η2
1

)2

+
(

J ′
n(η1a)

η1Jn(η1a)
− H (1)′

n (η2a)

η2H (1)
n (η2a)

)(
k2

1J ′
n(η1a)

η1Jn(η1a)
− k2

2H (1)′
n (η2a)

η2H (1)
n (η2a)

)
. (A7)

Note that AR and CR are even functions of β and n, while BR and DR are odd functions of these variables.
In the particular case where R = R′, Eq. (A3) reduces to

G(sc)(R, R, ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞
dβ

{
AR

[
n2

η2
2r2

H (1) 2
n (η2r)r̂r̂ + H (1)′ 2

n (η2r)ϕ̂ϕ̂

]

+CR
β2

k2
2

[
H (1)′ 2

n (η2r)r̂r̂ + n2

η2
2r2

H (1) 2
n (η2r)ϕ̂ϕ̂ + η2

2

β2
H (1) 2

n (η2r)ẑẑ
]

+ (BR + DR)
nβ

η2k2r
H (1)

n (η2r)H (1)′
n (η2r)(r̂r̂ + ϕ̂ϕ̂)

}
. (A8)

042817-11



FAM LE KIEN et al. PHYSICAL REVIEW A 105, 042817 (2022)

It is clear from Eq. (A8) that the tensor G(sc)(R, R, ω) is diagonal in the cylindrical coordinate basis. Note that expression
Eq. (A8) contains not only the terms associated with the coefficients AR and CR but also the terms associated with the coefficients
BR and DR. This feature is different from the corresponding result of Ref. [47] for a cylindrical cavity.

From Eq. (A8), we find

Tr[G(sc)(R, R, ω)] = i

8π

∞∑
n=−∞

∫ ∞

−∞
dβ

{(
AR + CR

β2

k2
2

)[
n2

η2
2r2

H (1) 2
n (η2r) + H (1)′ 2

n (η2r)

]
+ CR

η2
2

k2
2

H (1) 2
n (η2r)

+ 2(BR + DR)
nβ

η2k2r
H (1)

n (η2r)H (1)′
n (η2r)

}
. (A9)

The spatial dependence of Tr[G(sc)(R, R, ω)] is determined by the functions H (1)
n (η2r).

For the imaginary frequency ω = iu, we have k j = iκ j and η j = iq j , where κ j = √
ε j (iu) u/c and q j =

√
κ2

j + β2 =√
ε j (iu)u2/c2 + β2 for j = 1 and 2. Note that ε j (iu) is real and positive and hence so is q j . Using the relations Jn(ix) = inIn(x)

and H (1)
n (ix) = (2/π )i−n−1Kn(x), we find

Tr[G(sc)(R, R, iu)] = 1

4π2

∞∑
n=−∞

∫ ∞

−∞
dβ

{(
A − C

β2

κ2
2

)[
n2

q2
2r2

K2
n (q2r) + K ′ 2

n (q2r)

]
− C

q2
2

κ2
2

K2
n (q2r)

−2i(B + D)
nβ

q2κ2r
Kn(q2r)K ′

n(q2r)

}
, (A10)

where

A = 1

W

In(q2a)

Kn(q2a)

[
n2β2

a2

(
1

q2
2

− 1

q2
1

)2

+
(

I ′
n(q1a)

q1In(q1a)
− I ′

n(q2a)

q2In(q2a)

)(
κ2

1 I ′
n(q1a)

q1In(q1a)
− κ2

2 K ′
n(q2a)

q2Kn(q2a)

)]
,

C = 1

W

In(q2a)

Kn(q2a)

[
n2β2

a2

(
1

q2
2

− 1

q2
1

)2

+
(

I ′
n(q1a)

q1In(q1a)
− K ′

n(q2a)

q2Kn(q2a)

)(
κ2

1 I ′
n(q1a)

q1In(q1a)
− κ2

2 I ′
n(q2a)

q2In(q2a)

)]
,

B = D = i

W

In(q2a)

Kn(q2a)

κ2

q2

nβ

a

(
1

q2
2

− 1

q2
1

)(
I ′
n(q2a)

In(q2a)
− K ′

n(q2a)

Kn(q2a)

)
, (A11)

with

W = n2β2

a2

(
1

q2
2

− 1

q2
1

)2

+
(

I ′
n(q1a)

q1In(q1a)
− K ′

n(q2a)

q2Kn(q2a)

)(
κ2

1 I ′
n(q1a)

q1In(q1a)
− κ2

2 K ′
n(q2a)

q2Kn(q2a)

)
. (A12)

Note that Tr[G(sc)(R, R, iu)] is real. The spatial dependence of Tr[G(sc)(R, R, iu)] is determined by the monotonic functions
Kn(q2r).

APPENDIX B: DAWSON-FUNCTION MODEL FOR THE
SILICA DIELECTRIC PERMITTIVITY DISPERSION

In order to describe the frequency dispersion of the di-
electric permittivity ε(ω) = ε′(ω) + iε′′(ω) of silica for the
wavelength in the range from 7 to 50 μm, we employ the
Dawson-function model suggested by Meneses and coauthors
in Ref. [69]. According to this model, we have

ε′(η) = ε∞ + 2
∑

j

α j√
π

(D(2
√

ln 2 (η + η j )/σ j )

− D(2
√

ln 2 (η − η j )/σ j )),

ε′′(η) =
∑

j

α j
(
e−4 ln 2 (η−η j )2/σ 2

j − e−4 ln 2 (η+η j )2/σ 2
j
)
. (B1)

Here, η is the frequency measured in cm−1, ε∞ = 2.1232
is the permittivity of silica at high frequencies, D(x) =
e−x2 ∫ x

0 et2
dt is the Dawson function, and α j , η j , and σ j are

the model fitting parameters that were suggested in Ref. [70]
for silica and are presented in Table I.

Note that the Dawson function D(z) can be generalized for
the entire complex plane of its argument z and can be written
as

D(z) = i
√

π

2

(
e−z2 − w(z)

)
, (B2)

TABLE I. Model parameters proposed in Ref. [70] and used to
fit different experimental data on silica glass permittivity.

j α j η j (cm−1) σ j (cm−1)

1 3.7998 1089.7 31.454
2 0.46089 1187.7 100.46
3 1.2520 797.78 91.601
4 7.8147 1058.2 63.153
5 1.0313 446.13 275.111
6 5.3757 443.00 45.220
7 6.3305 465.80 22.680
8 1.2948 1026.7 232.14
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where

w(z) = e−z2

(
1 + 2i√

π

∫ z

0
et2

dt

)
(B3)

is the Faddeeva function. By making use of Eq. (B2), one can
rewrite Eq. (B1) in a rather elegant form:

ε(η) = ε∞ +
∑

j

iα j[w(z j,−) − w(z j,+)],

z j,± = 2
√

ln 2 (η ± η j )

σ j
. (B4)

When dealing with the nonresonant part of the Casimir-
Polder potential, one has to compute the dielectric permittivity
for a purely imaginary frequency. In this case, owing to the
property w(x + iy) = w∗(−x + iy) (for real x and y), one can
obtain

ε(iη) = ε∞ + 2
∑

j

α jIm[w(ζ j )], (B5)

where ζ j = 2
√

ln 2 (iη + η j )/σ j .
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